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Abstract

We consider non-parametric estimation and inference of conditional moment models in high di-
mensions. We show that even when the dimension D of the conditioning variable is larger than the
sample size n, estimation and inference is feasible as long as the distribution of the conditioning
variable has small intrinsic dimension d, as measured by locally low doubling measures. Our es-
timation is based on a sub-sampled ensemble of the k-nearest neighbors (k-NN) Z-estimator. We
show that if the intrinsic dimension of the covariate distribution is equal to d, then the finite sample
estimation error of our estimator is of order n~/(4+2) and our estimate is n'/(#+2)_asymptotically
normal, irrespective of D. The sub-sampling size required for achieving these results depends on
the unknown intrinsic dimension d. We propose an adaptive data-driven approach for choosing this
parameter and prove that it achieves the desired rates. We discuss extensions and applications to
heterogeneous treatment effect estimation.

Keywords: non-parametric statistics, inference, intrinsic dimension, conditional moment equation

1. Introduction

Many non-parametric estimation problems in econometrics and causal inference can be formulated
as finding a parameter vector #(z) € RP that is a solution to a set of conditional moment equations:

E[y(Z;0(x))|X = z] =0, (1

when given n i.i.d. samples (Z1, ..., Z,) from the distribution of Z, where ¢ : Z x RP — RP is
a known vector valued moment function, Z is an arbitrary data space, X € X C RP” is the feature
vector that is included Z. Examples include non-parametric regression!, quantile regression?, het-
erogeneous treatment effect estimation®, instrumental variable regression®, local maximum likeli-
hood estimation® and estimation of structural econometric models (see e. g., Reiss and Wolak (2007)
and examples in Chernozhukov et al. (2016); Chernozhukov et al. (2018b)). The study of such con-
ditional moment restriction problems has a long history in econometrics (see e.g., Newey (1993); Ai
and Chen (2003); Chen and Pouzo (2009); Chernozhukov et al. (2015); Chen et al. (2016)). How-
ever, the majority of the literature assumes that the conditioning variable X is low dimensional, i.e.
D is a constant as the sample size n grows (see e.g., Athey et al. (2019)).°

. Z =(X,Y), where Y € RP? is the dependent variable, and ¢(Z; 0(z)) =Y — 6(x).

. Z = (X Y)and ¢(Z;0(z)) = 1{Y < 6(z)} — «, for some « € [0, 1] that denotes the target quantile.

. Z =(X,T,Y), where T € R is a vector of treatments, and ¢(Z; 0(x)) = (Y — (0(z),T)) T

. Z =(X,T,W,Y),where T € Ris atreatment, W € R an instrument and (Z;6(z)) = (Y — 0(x) T) W.

5. Where the distribution of Z admits a known density f(z;6(z)) and ¢(Z;6(z)) = Ve log(f(Z;6(x)).

6. Notable exceptions include high dimensional models under parametric assumptions on 6(z), such as sparse linear
forms (see e.g., Chernozhukov et al. (2018a)). There is also work that addresses the fully non-parametric setup
(see e.g., Lafferty and Wasserman (2008); Dasgupta and Freund (2008); Kpotufe (2011); Biau (2012); Scornet et al.
(2015)) but those are focused on the estimation problem, and do not address inference (i.e., constructing asymptoti-
cally valid confidence intervals).
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Recent studies demonstrate the success of non-parametric methods (see e.g., Lewis and Syrgka-
nis (2018)) for solving conditional moment equations even in the high-dimensional settings. Yet,
there are limited theoretical results that explain why these methods work well. Indeed without any
further structural assumptions on the problem, the exponential in dimension rates of approximately
nt/D (see e.g., Stone (1982)) cannot be avoided. Thereby estimation is in-feasible even if D grows
very slowly with n.

One hypothesis is that the intrinsic dimension of the conditioning variables is low (i.e. even
though X is high dimensional, its coordinates are highly correlated), and that causal machine learn-
ing estimators are adaptive to this hidden low dimensional structure in the data.” Our work makes
this argument, establishing estimation and asymptotic normality results for the general conditional
moment problem, with rates that only depend on the intrinsic dimension, independent of the explicit
dimension of the conditioning variable.

We build on two literatures. The statistical machine learning literature introduces the notion
of intrinsic dimension, which is defined by saying that the distribution of X has a small doubling
measure around the target point . Under assumptions of low intrinsic dimension papers in this
literature establish fast estimation rates in high-dimensional kernel regression settings (Dasgupta
and Freund, 2008; Kpotufe, 2011; Kpotufe and Garg, 2013; Xue and Kpotufe, 2018; Chen and
Shah, 2018; Kim et al., 2018; Jiang, 2017). However these results do not apply to the conditional
moment problems we study here. In the econometrics literature, the pioneering work of Wager and
Athey (2018); Athey et al. (2019) does address estimation and inference of conditional moment
models, but only in the low dimensional regime.8 Relative to these literatures, our contributions are
as follows:

e We extend the asymptotic normality results of Wager and Athey (2018); Athey et al. (2019) to
general sub-sampled kernel estimators and for vector valued parameters (z). Our analysis also
allows us to establish rates in the high-dimensional low intrinsic dimension regime. Given sam-

ples S = (Z1,...,Z,), our estimator solves a locally weighted empirical conditional moment
equation
n
0(x) solves : Z K(z, X;,S)¢(Z;;0) =0, ()
i=1

where K (z, X;, S) is a kernel capturing the proximity of X; to the target point z. We consider
weights K (z, X;, S) that take the form of an average over B base weights: K(x, X;,S) =
= Zszl K(z,X;,Sp) 1{i € Sp}, where each K(z, X;,Sp) is calculated based on a randomly
drawn sub-sample S}, of size s < n from the original sample.

e Our main estimation and asymptotic normality results (see Theorems 6 and 7), are stated in
terms of two high-level quantities, specifically an upper bound €(s) on the rate at which the

7. This observation builds on a long line of work in machine learning (Dasgupta and Freund, 2008; Kpotufe, 2011;
Kpotufe and Garg, 2013).

8. These results have been extended in multiple directions, such as improved rates through local linear smoothing
Friedberg et al. (2018), robustness to nuisance parameter estimation error Oprescu et al. (2018) and improved bias
analysis via sub-sampled nearest neighbor estimation Fan et al. (2018). However, they all require low dimensional
setting and the rate provided by the theoretical analysis is roughly n~ VP, translating to Q(e~7) samples for getting a
confidence interval of size €, which is prohibitive in most target applications of machine learning based econometrics.
In particular, Wager and Athey (2018) consider regression and heterogeneous treatment effect estimation with a scalar
0(x) and prove n/P _asymptotic normality of a sub-sampled random forest based estimator and Athey et al. (2019)
extend it to the general conditional moment settings.
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kernel “shrinks” and a lower bound 7)(s) on the “incrementality” of the kernel. Notably, the
explicit dimension of the conditioning variable D does not enter the theorem, so it suffices in
what follows to show that €(s) and 7(s) depend only on d. The shrinkage rate €(s) is defined
as the /»-distance between the target point « and the farthest point on which the kernel places
positive weight X;, when trained on a data set of s samplesIncrementality of a kernel describes
how much information is revealed about the weight of a sample ¢ solely by knowledge of X;, and
is captured by the second moment of the conditional expected weight The sub-sampling size s
can be used to control both shrinkage and incrementality and for trading-off correctly between
bias and variance. We also prove that incrementality can be lower bounded as a function of kernel
shrinkage, so that having a sufficiently low shrinkage rate enables both estimation and inference.
Corollary 11 and Lemma 13), rather than the explicit dimension D. In particular, we show that
e(s) = O(s~ %) and n(s) = ©(1/s), which lead to our main theorem that the sub-sampled
k-NN estimate achieves an estimation rate of order n'/ (@+2) and is also n*/ (d+2)—asympt0tically
normal (Theorems 12 and 15).

e We provide a closed form characterization of the asymptotic variance of the sub-sampled k-NN
estimate, based on the conditional variance moments defined as o%(z) = Var (¥(Z;0) | X = z)
(Theorem 14 and Eq. (14)). For example, for the 1-NN kernel, the asymptotic variance is

Var(f(z)) = 5(22(;”1‘(”12) . This strengthens prior results of Fan et al. (2018) and Wager and Athey
(2018), which only proved the existence of an asymptotic variance without providing an explicit
form (and thereby relied on bootstrap approaches for the construction of confidence intervals).
Our Monte Carlo study shows that our constructed confidence intervals provide great finite sam-

ple coverage in a high dimensional regression setup (see Figure 1)°.

e The sub-sampling size required to achieve optimal rates depends on the intrinsic dimension which
is unknown. We discuss an adaptive data-driven approach for picking the sub-sample size s so
as to achieve near-optimal estimation or asymptotic normality rates, adapting to the unknown
intrinsic dimension of data (see Propositions 16 and 17). Figure 2 depicts the performance of our
adaptive approach compared to two benchmarks, one constructed based on theory for intrinsic
dimension d which may be unknown, and the other one constructed naively based on the known
but sub-optimal extrinsic dimension D. As can be observed, our adaptive approach selects s close
to the value suggested by the theory and therefore leads to a compelling finite sample coverage!°.

Structure of the paper. The rest of the paper is organized as follows. In §2, we provide prelimi-
nary definitions, in §2.1 and §2.2 we explain our algorithms, in §2.3 we explain doubling dimension
(see Appendix B for examples). In §3 we state our assumptions, in §4 we provide general estimation
and inference results for kernels that satisfy shrinkage and incrementality conditions, and in §5 we
apply such results to the £-NN kernel and prove estimation and inference rates for such kernels that
only depend on intrinsic dimension. We discuss the extension to heterogeneous treatment effect
estimation in §6 and and defer technical proofs to Appendices.

2. Preliminaries

Suppose we have a data set M of n observations Z1, Zs, . .., Z, drawn independently from some
distribution D over the observation domain Z. We focus on the case that Z; = (X, Y;), where X;

9. See Appendix C for detailed explanation of our simulations
10. Code is available via https://anonymous.4open.science/r/inference-intrinsic-dimension-E037
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Figure 1: Left: distribution of estimates over 1000 Monte Carlo runs for £ = 1,2,5. Right: the quantile-quantile plot comparison
with theoretical asymptotic normal distribution of estimates stemming from our characterization. Means are 0.676,0.676,0.676 and
standard deviations are 0.058, 0.055, 0.049, respectively. n = 20000, D = 20,d = 2, E[Y|X] = o = 1. Test

point: z[0] ~ 0.245, E[Y'|X = z] =~ 0.676.

1+exp{—3X[0]}"

is the vector of covariates and Y; is the outcome. In Appendix 6, we briefly discuss how our results
can be extended to the setting where nuisance parameters and treatments are included in the model.

Suppose that the covariates space X C R” is contained in a ball with unknown diameter A .
Denote the marginal distribution of X by p and the empirical distribution of X on n sample points
by fin. Let B(z,r) = {z € RP: |lz — z|]z < r} be the f-ball centered at = with radius r and
denote the standard basis for R? by {e1, e2,...,€p}.

Let ¢ : Z x R? — RP be a score function that maps observation Z and parameter § € R? to
a p-dimensional score ¢/(Z;0). For z € X and § € RP define the expected score as m(z;6) =
E[(Z;60) | X = z]. The goal is to estimate the quantity §(z) via local moment condition, i.e.

0(x) solves: m(z;0) = E[)(Z;0) | X = z] = 0.

2.1. Sub-Sampled Kernel Estimation

Base Kernel Learner. Our learner £, takes a data set .S containing m observations as input and a
realization of internal randomness w, and outputs a kernel weighting function K, : X x X x Z"™ —
[0, 1]. In particular, given any target feature = and the set .S, the weight of each observation Z; in
S with feature vector X; is K, (z, X;,S). Define the weighted score on a set S with internal

randomness w as Wg(z;0) = > .o Ko, (z, X;, S)(Z;;0). When it is clear from context we will
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omit w from our notation for succinctness and essentially treat & as a random function. For the rest
of the paper, we are going to use notations g, (X;) = K, (x, X;, S) interchangeably.

Averaging over B sub-samples of size s. Suppose that we consider B random and independent
draws from all (2) possible subsets of size s and internal randomness variables w and look at their
average. Index these draws by b = 1,2, ..., B where 5, contains samples in bth draw and wy, is the
corresponding draw of internal randomness. We can define the weighted score as

B

B
Wri0) = D s (430) = 23 sy (X2 6). G)
=1

b=11i€S,

Estimating 0(z). We estimate 6(x) as a vanishing point of ¥ (z;6). Letting 6 be this point, then
U(2;0) = & S S sy w, (Xi)¥(Zi; 6) = 0. This procedure is explained in Algorithm 1.
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Figure 2: Confidence interval and true values for 100 randomly sampled test points on a single run for £ = 1,2, 5 and when (1) left:
s = s¢ is selected via Proposition 17 with ¢ = 0.1, (2) second from the left: s = n1-05d/(d+2) and (3) middle: s = nt-050/(D+2),
Second from the right: coverage over 1000 runs for methods considered. Right: average value of s selected via Proposition 17
for ¢ = 0.1 for different test points compared to the theoretical value s = nl1:05d/(d+2)  Here n = 20000, D = 20, d = 2,

E[Y|X] = WM’ o = 1. Nominal coverage: 0.98.



2.2. Sub-Sampled k-NN Estimation

We especially focus on the case that the weights are distributed across the £-NN of x. In other words,
given a data set S, the weights are given according to K, (z, X;,S5) = 1{X; € H(x,S)} /k,
where Hy(x, S) are k-NN of z in the set S. The pseudo-code for this can be found in Algorithm 2.

Complete U-statistic. The expression in Equation (3) is an incomplete U -statistic. Complete U-
statistic is obtained if we allow each subset of size s from n samples to be included in the model
exactly once. In other words, this is achieved if B = (Z), all subsets S1, S, ..., Sp are distinct,
and we also take expectation over the internal randomness w. Denoting this by W¢(z; #), we have

\I/o(x;9)2<z>_1 > E,

Sen):|S|=s

S asw(Xi)$(Z::0)

i€S

: “

Note in the case of £-NN estimator we can also represent W in terms of order statistics, i.e., Vg is
an L-statistics (see e.g., Serfling (2009)). By sorting samples in X = {X;, Xo,..., X,,} based on
their distance with  as || X (1) — z|| < [|X9) — 2[| < -+ < [[X(n) — 2|, we can write Uo(z;0) =
> i1 a(X)) ¥(Z;); 0) where the weights are given by

M7 i<k
(M7 S (GO () ikl

2.3. Local intrinsic dimension

We are interested in settings that the distribution of X has some low dimensional structure on a
ball around the target point x. The following notions are adapted from Kpotufe (2011), which we
present here for completeness.

Definition 1 The marginal p is called doubling measure if there exists a constant Cgy, > 0 such
that for any © € X and any r > 0 we have u(B(z,r)) < Cappu(B(z,7/2)).

An equivalent definition of this notion is that, the measure p is doubling measure if there exist
C,d > 0 such that forany 2 € X',r > 0, and 0 € (0,1) we have u(B(x,r)) < CO~%u(B(z,0r)).
One example is given by Lebesgue measure on the Euclidean space R?, where for any r >
0,0 € (0,1) we have vol(B(x, 0r)) = vol(B(z,r))0?. Building upon this, let ¥ € R” be a subset
of d-dimensional hyperplane and suppose that for any ball B(x, r) in X we have vol(B(z,r)NX) =
O(r?). If u is almost uniform, then we also have u(B(x, 0r))/u(B(z,r)) = ©(6%).
Unfortunately, this global notion of doubling measure is restrictive and most probability mea-
sures are globally complex. Rather, once restricted to local neighborhoods, they become lower
dimensional and intrinsically less complex. The following definition captures this intuition better.

Definition 2 Fix z € X and r > 0. The marginal 1 is (C, d)-homogeneous on B(x, r) if for any
0 € (0,1) we have p(B(z,7)) < CO~4u(B(x, 0r)).

Intuitively, this definition requires the marginal p to have a local support that is intrinsically
d-dimensional. This definition covers low-dimensional manifolds, mixture distributions, d-sparse
data, and also any combination of these examples. These examples are explained in Appendix B.
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Algorithm 1 Sub-Sampled Kernel Estimation Algorithm 2 Sub-Sampled k-NN Estimation

1: Input. Data {Z; = (X;,Y;)};",, moment 1: Input. Data {Z; = (X;,Y;)} ,, moment
1, kernel K, sub-sampling size s, number 1), sub-sampling size s, number of itera-

of iterations B tions B, number of neighbors k
2: Initialize. o(X;) = 0,1 < i < nfor b + 2: Initialize. «(X;) + 0,1 < i < nforb «
1, Bdo 1,Bdo
B: B:
end end
Sub-sampling. Draw set S; by sam- Sub-sampling. Draw set .S; by sam-
pling s points from 21, Z>, ..., Z, without pling s points from 21, Zs, ..., Z, without
replacement. replacement
4: Weight Updates. o(X;) < «a(X;) + 4 Weight Updates. o(X;) + o(X;) +
wa(x,Xi,Sb) 1{Xi € Hk(x,Sb)}/k:
5: :
6: Weight Normalization. a(X;) < 6 Weight Normalization. alX;) <+
a(X;)/B R a(X;)/B R
7. Estimation. Denote 6 as a solution of 7: Estimation. Denote # as a solution of
(a3 0) = Y0, a(Xi)$(Zis6) = 0 W(a;0) = Y0 o Xi)$(Zis6) = 0

3. Assumptions

For non-parametric sub-sampled estimators, the bias and asymptotic variance are tightly connected
to the kernel shrinkage and incrementality, formally defined below.

Definition 3 (Kernel Shrinkage in Expectation) The function €(s) defines a kernel shrinkage in
expectation if given a set S containing s i.i.d. observations drawn from distribution D, it satisfies

€(s) := E[sup{|lz — Xilj2 : K(z,X;,S) > 0}] . 5)

Definition 4 (Kernel Shrinkage in Probability) The function €(s, 0) defines a kernel shrinkage in
probability if given a set S containing s i.i.d. observations drawn from distribution D w.p. 1 — ¢ it
satisfies

sup {||z — Xill2 : K(x, X;,5) >0} < e(s,0). (6)

Definition 5 (Incrementality of Kernel) The incrementality of kernel K when provided with s
i.i.d. observations from distribution D is defined as

n(s) = B |[BIK (2, X;, )|X0)] | ™

As shown in Wager and Athey (2018), for trees that satisfy some regularity condition, €(s) < s¢/D
for a constant ¢. We are interested in shrinkage rates that scale as s—/¢, where d is the local intrinsic
dimension of x on B(z,r). Similar to Oprescu et al. (2018); Athey et al. (2019), we rely on the
following assumptions on the moment and score functions.

Assumption 1 The moment and score functions satisfy the following:



1. The moment m(x; 0) corresponds to the gradient w.r.t. 0 of a A-strongly convex loss L(x;0).

This also means that the Jacobian My = Vgm/(x;0(x)) has minimum eigenvalue at least \.

For any fixed parameters 6, m(x; 0) is a Ly,-Lipschitz function in x for some constant L.

There exists a bound 1yx such that for any observation z and any 0, ||1(2;6)]|co < ¥max-

4. The bracketing number Ny (F, €, La) of the function class: F = {1(+;0) : 0 € O}, satisfies
IOg(NH (fv €, L2>) = 0(1/6)

w N

Assumption 2 The moment and score functions satisfy the following:

1. For any coordinate j of the moment vector m, the Hessian Hj(z;0) = Va,m;(x;0) has
eigenvalues bounded above by a constant L for all 0.

2. Maximum eigenvalue of My is upper bounded by L j.

3. Second moment of 1)(x; 0) defined as Var ((Z;0) | X = x) is Lym-Lipschitz in z, i.e.,

| Var (6(Z:0) | X = ) — Var (#(Z:0) | X =) & < Lynmlz — 2|12
4. Variogram is Lipschitz: sup,¢cy || Var(¢(Z;0) — (Z;0") | X = 2)||r < Ly |0 — 62
The condition on variogram always holds for a ¢ that is Lipschitz in 6. This larger class of
functions ¢/ allows estimation in more general settings such as a-quantile regression that involves a

1 which is non-Lipschitz in 6. Similar to Athey and Imbens (2016); Athey et al. (2019), we require
kernel K to be honest and symmetric.

Assumption 3 The kernel K, built using samples {Z1,Zs,...,Zs}, is honest if the weight of
sample i given by K (x, X;,{Z; }jzl) is independent of Y; conditional on X for any j € [s].

Assumption 4 The kernel K, built using samples {Z1, Zs, ..., Zs}, is symmetric if for any per-
mutation w : [s| — [s|, the distribution of K(x, X, {Zj};zl) and K (v, X, ), {Zﬂ(j)}jzl) are
equal. In other words, the kernel weighting distribution remains unchanged under permutations.

For a deterministic kernel K, the above condition implies that K (z, X;, {Z;};_;) = K(x, X, {Zx(

for any 7 € [s]. In the next section, we provide general estimation and inference results for a general
kernel based on the its shrinkage and incrementality rates.

4. Guarantees for sub-sampled kernel estimators

Our first result establishes estimation rates, both in expectation and high probability, for kernels
based on their shrinkage rates. The proof of this theorem is deferred to Appendix D.

Theorem 6 (Finite Sample Estimation Rate) Let Assumptions I and 3 hold. Suppose that Algo-
rithm 1 is executed with B > n/s. If the base kernel K satisfies kernel shrinkage in expectation,
with rate €(s), then w.p. 1 — 0

16060112 < 3 (L) + O (imay 2 Qo lontafs) +10x/s) ) ) . ®

Moreover,

(£0e(5)+0 (st togtonton/s)) ) . )

8

>N

VR (160l <

S

7 Ij=1

),
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The next result establishes asymptotic normality of sub-sampled kernel estimators. In particular, it
provides coordinate-wise asymptotic normality of our estimate 6 around its true underlying value
O(x). For this result, in addition to the shrinkage, we require the incrementality of the kernel to
satisfy some conditions. The proof of this theorem is deferred to Appendix E.

Theorem 7 (Asymptotic Normality) Let Assumptions 1, 2, 3, and 4 hold. Suppose that Algorithm
1 is executed with B > (n/s)®/* and the base kernel K satisfies kernel shrinkage, with rate €(s, )
in probability and €(s) in expectation. Let 1)(s) be the incrementality of kernel K defined in Equation
(7) and s grow at a rate such that s — oo, nn(s) — 0o, and €(s,1(s)?) — 0. Consider any fixed
coefficient § € RP with ||8|| < 1 and define the variance as

2

O'iﬂ(.’ﬂ) = %Var E

> K(x, Xi {Z;}50) (B, My "(Zi;0(x))) | Z1
i=1

Then it holds that oy, g(x) = ) (5\/77(8)/71). Moreover, suppose that

max (e(s), e(s)t/4 <§ log log(n/s)> i , (% log log(n/s))5/8> =o(opp(x)). (10)

Then,
onp(x)
Theorems 6 and 7 generalize existing estimation and asymptotic normality results of Athey et al.
(2019); Wager and Athey (2018); Fan et al. (2018) to an arbitrary kernel that satisfies appropriate
shrinkage and incrementality rates (see Remark 24 in Appendix E). The following lemma relates

these two and provides a lower bound on the incrementality in terms of kernel shrinkage. The proof
uses the Paley-Zygmund inequality and is left to Appendix F.

—d N(O, 1) .

Lemma 8 For any symmetric kernel K (Assumption 4) and for any § € [0,1]:

_ ) (18" (1)
09 =B [B (K X0 (250 |50V 2 G e o+ oy

Thus if 1(B(z,€(s,1/(25%)))) = O(log(s)/s), then picking p = 1/(2s?) and § = 1/2 implies that
E[E[K (2, X1,{Z;};-1)|X1]%] = Q(1/slog(s)).

Corollary 9 If e(s,0) = O((log(1/8)/s)"/?) and u satisfies a two-sided version of the dou-
bling measure property on B(x,r), defined in Definition 2, i.e., c0%u(B(x,r)) < u(B(z,0r)) <
CO%u(B(z,7)) for any 6 € (0,1). Then, E[E[K (v, X1, {Zj}‘;:l)|X1]2] = Q(1/(slog(s))).

Even without this extra assumption, we can still characterize the incrementality rate of the k-NN

estimator, as we observe in the next section.

5. Main theorem: adaptivity of £-NN estimator

In this section, we provide estimation guarantees and asymptotic normality of the k-NN estimator
by using Theorems 6 and 7. We first establish shrinkage and incrementality rates for this kernel.



5.1. Estimation guarantees for the £-NN estimator

In this section we provide shrinkage results for the k-NN kernel. As observed in Theorem 6, shrink-
age rates are sufficient for bounding the estimation error. The shrinkage result that we present in the
following would only depend on the local intrinsic dimension of 1 on B(x, 7).

Lemma 10 (High probability shrinkage for the £-NN kernel) Suppose that the measure i is (C, d)-
homogeneous on B(x,r). Then, for any § satisfying 2 exp (—u(B(z,7))s/(8C)) < § < 3 exp(—k/2),

1/d
w.p. at least 1 — & we have ||z — X |l2 < ex(s,6) = O (M) / .

S

We can turn this result into a shrinkage rate in expectation as follows. In fact, by the very con-
venient choice of § = s~/ combined with the fact that X’ has diameter A ¥, wWe can establish
O ((log(s)/ s)V/ 4) rate on expected kernel shrinkage. However, a more careful analysis would help
us to remove the log(s) dependency in the bound and is stated in the following corollary:

Corollary 11 (Expected shrinkage for the £-NN kernel) Suppose that the conditions of Lemma
10 hold. Let k be a constant and €y, (s) be the expected shrinkage for the k-NN kernel. Then, for any
s larger than some constant we have e (s) = E [||lz — X2 = O (1) 1,

We are now ready to state our estimation result for the £-NN kernel, which is honest and sym-
metric. Therefore, we can substitute the expected shrinkage rate established in Corollary 11 in
Theorem 6 to derive estimation rates for this kernel.

Theorem 12 (Estimation Guarantees for the £-NN Kernel) Suppose that . is (C, d)-homogeneous
on B(x,r), Assumption 1 holds and that Algorithm 2 is executed with B > n/s. Then, w.p. 1 — §:

10 =011z = 5 (0 (57) + 0 (s 22 toost/s) +1oe(o/) ) ) 11

B (10— owyg] <2 (o (s4) + 0 (wmaXJ 2 loglog(pn )>> R

By picking s = © (n¥/(4+2)) and B = Q (n¥(@+2)) we get \/E {Hé — H(x)Hg] = O (n~V/(d+2),

and

5.2. Asymptotic normality of the k-NN estimator

In this section we prove asymptotic normality of k-NN estimator. We first provide a bound on the
incrementality of the k-NN kernel.

Lemma 13 (k-NN Incrementality) Letr K be the k-NN kernel and let ny(s) denote the incremen-
tality rate of this kernel. Then, the following holds:

2k—2
m(s) = B[ [K(x. X (ZYm) | X1)7] = (2_11),€ (Z b) !

t=0
where sequences {at}?ia2 and {bt}fia2 are defined as
min{t,k—1} t
s—1\ (s—1 s—1\ (s—1
" 2 ( i ><tl> and bt:z< i ><tz)
i=max{0,t—(k—1)} 1=0

10
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We can substitute 7 (s) in Theorem 7 to prove asymptotic normality of the £-NN estimator. The
following theorem takes a step further and derives the asymptotic variance of this estimator o, ;(z).

Theorem 14 (Asymptotic Variance of k&-NN) Let j € [p| be one of coordinates. Suppose that k
is constant while s — oo. Then, for the k-NN kernel

s2  03(x)

7@ = e 1)

whereaj( x) = VarKej,M w(ZH >\X—a:] ande:kH-Z?k 29—t Zz T k+1()

Ck +o(s/n), 13)

Combining results of Theorem 7, Theorem 14, Corollary 11, and Lemma 13 we have:

Theorem 15 (Asymptotic Normality of £-NN Estimator) Suppose that yis (C, d)-homogeneous
on B(z,7). Let Assumptions 1, 2 hold and suppose that Algorithm 2 is executed with B > (n/s)/4
iterations. Suppose that s grows at a rate such that s — 0o, nJs — oo, and also s~/%(n/s)'/? —
0. Let j € [p] be one of coordinates and 0%7 (@) be defined in Equation (13). Then,

0;(x) — 0;(x)
on,j()

Finally, if s = n® and B > n10=8 with B € (d/(d+2),1). Then, % — N(0,1).

— N(0,1).

Plug -in confidence intervals. Observe that the Theorem 14 implies that if we define 7 J( x) =
2 5@) g op (@)

n 25—1 k2 o-n](x)

as the leading term in the variance, then —p 1. Thus, due to Slutsky’s theorem

0, —0; 6;—6;0.(x)
g,

&2,] (@) o2 (z)52 (x)

Hence, we have a closed form solution to the variance in our asymptotic normality theorem. If
we have an estimate 62-(90) of the variance of the conditional moment around x, then we can build

—4 N(0,1). 14)

plug-in confidence intervals based on the normal distribution with variance - 25( 1) Sk Note that C k
can be calculated easily for desired values of k. For instance, we have (; = 1,(, = 2, and (3 =

~2 2 2
and for k = 1, 2, 3 the asymptotic variance becomes ;?S—(gjl), %‘;—2 ;S( 1) ,and %}l ‘; ; = ) respectlvely

5.3. Selecting s adaptively

According to Theorem 12, s = O(n%(4+2)) would trade-off between bias and variance terms.
Also, according to Theorem 15, picking s = n® with d/(d+2) < 3 < 1 would result in asymptotic
normality of the estimator. However, both choices depend on the unknown intrinsic dimension of x
on the ball B(z,r). Inspired by Kpotufe (2011), we explain a data-driven way for estimating s.
Suppose that § > 0 is given. Let C,, , s = 2log(2pn/J) and pick A > Ay. Forany k < s < n,
let H(s) be the U-statistic estimator for €(s) defined as H(s) = }_ge(n):|s/=s MAXx, €M, (x,5) |7 —
Xill2/ (75‘) Each term in the summation computes the distance of x to its k-nearest neighbor on
S and H(s) is the average of these numbers over all ( ) possible subsets S (see Remark 34 in
Appendix G regarding to efficient computation of H(s)). Define Gs(s) = Ay/C,, p 5ps/n. Iterate

11



over s = n,--- , k. Let sy be the smallest s for which we have H(s) > 2G5(s) and let s; = so + 1.
Note that €(s) is decreasing in s and G;(s) is increasing in s. Therefore, there exists a unique
1 < s* < nsuchthat e;(s*) < G5(s*) and €(s* — 1) > Gs(s* — 1). We have following results.

Proposition 16 (Adaptive Estimation) Let Assumptions of Theorem 12 hold. Suppose that s,
is the output of the above process. Let s, = 9s1 + 1 and suppose fhat Algorithm 2 is executed
with s = s, and B > n/s.. Then w.p. at least 1 — 26 we have |6 — 0(x)|2 = O(Gs(s*)) =

~1/(d+2) N s
0 <<pbg(g[mm) ) Further, for § = 1/n we have \/E [HG - 9($)H§} =0 (n_l/(d+2)).

Proposition 17 (Adaptive Asymptotic Normality) Let Assumptions of Theorem 15 hold. Let s,
be the output of the above process when § = 1/n and s, = 9s; + 1. For any ¢ € (0, (log(n) —
log(s1) — loglog?(n))/log(n))) define s = s.nS. Suppose that Algorithm 2 is executed with

s = s¢ and B > (n/s¢)%/4, then for any coordinate j € [p], we have bi@)=b;l@) _, N(0,1).

U'n,j(x)

6. Nuisance parameters and heterogeneous treatment effects

Using the techniques of Oprescu et al. (2018), our work easily extends to the case where the mo-
ments depend on, potentially infinite dimensional, nuisance components hg, that also need to be
estimated, i.e.,

0(z) solves: m(x; 0, ho) = E[Y(Z;0, ho) | ] = 0. (15)
If the moment m is orthogonal with respect to h and assuming that hg can be estimated on a separate
sample with a conditional MSE rate of

E[(h(2) — ho(2))*|X = 2] = op(e(s) + /5/n). (16)

then using the techniques of Oprescu et al. (2018), we can argue that both our finite sample estima-
tion rate and our asymptotic normality rate, remain unchanged, as the estimation error only impacts
lower order terms. This extension allows us to capture settings like heterogeneous treatment effects,
where the treatment model also needs to be estimated when using the orthogonal moment as

¥(230,ho) = (y — qo(z,w) — 0(t — po(z,w))) (t — po(z, w)), (17)
where y is the outcome of interest, ¢ is a treatment, x,w are confounding variables, qo(z,w) =
EY|X = 2,W = w] and po(z,w) = E[T|X = x, W = w]|. The latter two nuisance functions
can be estimated via separate non-parametric regressions. In particular, if we assume that these
functions are sparse linear in w, i.e.:

QQ({L',’UJ) = </B(x>7w> ) po(.%','w) = <7(x)7w> . (18)

Then we can achieve a conditional mean-squared-error rate of the required order by using the kernel
lasso estimator of Oprescu et al. (2018), where the kernel is the sub-sampled k-NN kernel, assuming
the sparsity does not grow fast with n.

Conclusion

In this work we studied non-parametric inference when solving general conditional moment equa-
tions in high-dimensions and provided estimation and inference guarantees that only depend on the
local intrinsic dimension of the covariate space. We confirmed our theoretical findings via numerical
simulations.

12
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Appendix A. Related work

There exist a very large body of work in causal inference. We refer the reader to Pearl (2009) and
Imbens and Rubin (2015) for a thorough review.

There exists a vast literature on average treatment effect estimation in high-dimensional settings.
The key challenge in such settings is the problem of overfitting which is usually handled by adding
regularization terms. However, this leads to a shrinked estimate for the average treatment effect
and therefore not desirable. The literature has taken various approaches to solve this issue. For
instance, Belloni et al. (2014a,b) used a two-step method for estimating average treatment effect
where in the first step feature-selection is accomplished via a lasso and then treatment effect is
estimated using selected features. Athey et al. (2018) studied approximate residual balancing where
a combination of weight balancing and regression adjustment is used for removing undesired bias
and for achieving a double robust estimator. Chernozhukov et al. (2018a,a) considered a more
general semi-parametric framework and studied debiased/double machine learning methods via first
order Neyman orthogonality condition. Mackey et al. (2017) extended this result to higher order
moments. Please refer to Athey and Imbens (2017); Mullainathan and Spiess (2017); Belloni et al.
(2017) for a review on this literature.

However, in many applications, researchers are interested in estimating heterogeneous treatment
effect on various sub-populations. One effective solution is to use one of the methods described in
previous paragraph to estimate problem parameters and then project such estimations onto the sub-
population of interest. However, these approaches usually perform poorly when there is a model
mis-specification, i.e., when the true underlying model does not belong to the parametric search
space. Consequently, researchers have studied non-parametric estimators such as k-NN estimators,
kernel estimators, and random forests. While these non-parametric estimators are very robust to
model mis-specification and work well under mild assumptions on the function of interest, they suf-
fer from the curse of dimensionality (see e.g., Bellman (1961); Robins and Ritov (1997); Friedman
et al. (2001)). Therefore, for applying these estimators in high-dimensional settings it is necessary
to design and study non-parametric estimators that are able to overcome curse of dimensionality
when possible.

The seminal work of Wager and Athey (2018) utilized random forests originally introduced by
Breiman (2001) and adapted them nicely for estimating heterogeneous treatment effect. In partic-
ular, the authors demonstrated how the recursive partitioning idea, explained in Athey and Imbens
(2016) for estimating heterogeneity in causal settings, can be further analyzed to establish asymp-
totic properties of such estimators. The main premise of random forests is that they are able to
adaptively select nearest neighbors and that is very desirable in high-dimensional settings where
discarding uninformative features is necessary for combating the curse of dimensionality. In a
follow-up work, they extended these results and introduced Generalized Random Forests for more
general setting of solving generalized method of moment (GMM) equations Athey et al. (2019).
There has been some interesting developments of such ideas to other settings. Fan et al. (2018)
introduced Distributional Nearest Neighbor (DNN) where they used 1-NN estimators together with
sub-sampling and explained that by precisely combining two of these estimators for different sub-
sampling sizes, the first order bias term can be efficiently removed. Friedberg et al. (2018) paired
this idea with a local linear regression adjustment and introduced Local Linear Forests in order to
improve forest estimations for smooth functions. Oprescu et al. (2018) incorporated the double ma-
chine learning methods of Chernozhukov et al. (2018a) into GMM framework of Athey et al. (2019)
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and studied Orthogonal Random Forests in partially linear regression models with high-dimensional
controls. Although forest kernels studied in Wager and Athey (2018) and Athey et al. (2019) seem
to work well in high-dimensional applications, to the best of our knowledge, there still does not
exists a theoretical result supporting it. In fact, all existing theoretical results suffer from the curse
of dimensionality as they depend on the dimension of problem D.

The literature on machine learning and non-parametric statistics has recently studied how these
worst-case performances can be avoided when the intrinsic dimension of problem is smaller than D.
Please refer to Cutler (1993) for different notions of intrinsic dimension in metric spaces. Dasgupta
and Freund (2008) studied random projection trees and showed that the structure of these trees do
not depend on the actual dimension D, but rather on the intrinsic dimension d. They used the notion
of Assouad Dimension, introduced by Assouad (1983), and proved that using random directions for
splitting, the number of levels required for halving the diameter of a leaf scales as O(d log d). The
follow-up work Verma et al. (2009) generalized these results for some other notions of dimension.
Kpotufe and Dasgupta (2012) extended this idea to the regression setting and proved integrated
risk bounds for random projection trees that were only dependent on intrinsic dimension. Kpotufe
(2011); Kpotufe and Garg (2013) studied this in the context of k-NN and kernel estimations and
established uniform point-wise risk bounds only depending on the local intrinsic dimension.

Our work is deeply rooted in the literature on intrinsic dimension explained above, literature
on k-NN estimators (see e.g, Mack (1981); Samworth et al. (2012); Gyorfi et al. (2006); Biau
and Devroye (2015); Berrett et al. (2019); Fan et al. (2018)), and generalized method of moments
(see e.g., (Tibshirani and Hastie, 1987; Staniswalis, 1989; Fan et al., 1998; Hansen, 1982; Stone,
1977; Lewbel, 2007; Mackey et al., 2017)). We adapt the framework of Athey et al. (2019) and
Oprescu et al. (2018) and solve a generalized moment problem using a DNN estimator, originally
introduced and studied by Fan et al. (2018). We establish consistency and inference properties
of this estimator and prove that these properties only depend on the local intrinsic dimension of
problem. In particular, we prove that the finite sample estimation error of order n~1/(d+2) together
with n!/(4+2)_agymptotically normality result of DNN estimator for solving the generalized moment
problem regardless of how big the actual dimension D is.

Our result differs from existing literature on intrinsic dimension (e.g., Kpotufe (2011); Kpotufe
and Garg (2013)) since in addition to estimation guarantees for the regression setting, we also allow
valid inference in solving conditional moment equations. Our asymptotic normality result is dif-
ferent from existing results for k-NN (see e.g., Mack (1981)), generalized method of moments (see
e.g., Lewbel (2007)). This paper complements the work of Fan et al. (2018) and extends it to the
generalized method of moment setting. Furthermore, we relax the common assumption on the ex-
istence of density for covariates and prove that DNN estimators are adaptive to intrinsic dimension.

We also provide the exact expression for the asymptotic variance of DNN estimator built using
a k-NN kernel, which enables plug-in construction of confidence intervals, rather than the bootstrap
method of (Efron, 1982) which was used by (Wager and Athey, 2018; Athey et al., 2019; Fan
et al., 2018). While establishing consistency and asymptotic normality of our estimator, we also
provide more general bounds on kernel shrinkage rate and also incrementality which can be useful
for establishing asymptotic properties in other applications. One such application is given in high-
dimensional settings where the exact nearest neighbor search is computationally expensive and
Approximate Nearest Neighbor (ANN) search is often replaced in order to reduce this cost. Our
flexible result allows us to use the state-of-the-art ANN algorithms (see e.g., Andoni et al. (2017,
2018)) while maintaining consistency and asymptotic normality.
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Appendix B. Examples of spaces with small intrinsic dimension

In this section we provide examples of metric spaces that have small local intrinsic dimension. Our
first example covers the setting where the distribution of data lies on a low-dimensional manifold
(see e.g., Roweis and Saul (2000); Tenenbaum et al. (2000); Belkin and Niyogi (2003)). For in-
stance, this happens for image inputs. Even though images are often high-dimensional (e.g., 4096
in the case of 64 by 64 images), all these images belong intrinsically to a 3-dimensional manifold.

Example 1 (Low dimensional manifold (adapted from Kpotufe (2011))) Consider a d-dimensional
submanifold X C RP and let u have lower and upper bounded density on X. The local intrinsic
dimension of |1 on B(z,r) is d, provided that r is chosen small enough and some conditions on
curvature hold. In fact, Bishop-Gromov theorem (see e.g., Carmo (1992)) implies that under such
conditions, the volume of ball B(x,r) N X is ©(r?). This together with the lower and upper bound

on the density implies that p(B(z,)NX)/u(B(x,0r)NX) = ©(0%), i.e. yis (C,d)-homogeneous

on B(x,r) for some C > 0.

Another example which happens in many applications, is sparse data. For example, in the bag
of words representation of text documents, we usually have a vocabulary consisting of D words.
Although D is usually large, each text document contains only a small number of these words.
In this application, we expect our data (and measure) to have smaller intrinsic dimension. Before
stating this example, let us discuss a more general example about mixture distributions.

Example 2 (Mixture distributions (adapted from Kpotufe (2011))) Consider any mixture dis-
tribution j = ), i, with each p; defined on X with potentially different supports. Consider a
point x and note that if v & supp(u;), then there exists a ball B(x,r;) such that j1;(B(x,r;)) = 0.
This is true since the support of any probability measure is always closed, meaning that its com-
plement is an open set. Now suppose that r is chosen small enough such that for any i satisfying
x € supp(u;), i is (Cy, d;)-homogeneous on B(x,r), while for any i satisfying x ¢ supp(u;) we
have p;(B(z,r)) = 0. Then,

w(B(z,r)) = Zm,u,i(B(a;,r)) = Z mipi(B(x,r)) + Z mipi(B(x,r))
i i:pi (B(z,r))=0 t:pi (B(z,r))>0

co— Z mipi(B(zx, 0r)) = CO~? Zmui(B(m, 0r) = CO~u(B(x,0r)),
i (B(z,m))>0 i

IA

where C' = maX;.,,,(B(z,r))>0 Ci and d = max;.,,, (B(zr))>0 di and we used the fact that if j1;( B(z, 7)) =
0 then p;(B(x,0r)) = 0. Therefore, p is (C, d)-homogeneous on B(x,r).

This result applies to the case of d-sparse data and is explained in the following example.

Example 3 (d-sparse data) Suppose that X C RP is defined as
D
X = {(xl,xg,...,xp) eRP: Z 1{z; # 0} §d}.
i=1

Let 11 be a probability measure on X. In this case, we can write X as the union of k = (g),d—
dimensonal hyperplanes in RP. In fact,

X = Ui<i <ig<ig<p { (1,22, ,xp) € RP 12 =0, j & {ir,40,...,4a}} .
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Letting (i, 4,....i, be the probability measure restricted to the hyperplane defined by x; = 0,5 &

{i1,12,...,1q}, we can express i = Zl§i1<i2<~~-id§D it sio....ighli1ia,...ig- 1herefore, the result
of Example 2 implies that for any © € X, for r that is small enough p is (C,d)-homogeneous on
B(zx,r).

Our final example is about the product measure. This allows us to prove that any concatenation
of spaces with small intrinsic dimension has a small intrinsic dimension as well.

Example 4 (Concatenation under the product measure) Suppose that yi; is a probability mea-
sure on X; C RP1. Define X = {(21,22) | 21 € X1, 20 € Ao} and let u = p1 X po be the product
measure on X, i.e., ( Fy X Eg) = u1(E1) X pa(Es) for E; that is ji;-measurable, i = 1, 2. Suppose
that p; is (C;, d;)-homogeneous on B(x;,1;) and let © = (x1,x2). Then, p is (C, d)-homogeneous
on B(z,7), where d = dy+do, 7 = min {r, 2} and C = (C} Cy r—(d1+d2) 2(d1“‘d2)/2)/(r1—d1 r;dz).
To establish this, let 1 = min {r1, r2} and note that for any 6 € (0, 1) we have

M(B(Q?,T)) < M(B(.%'l,'l“) X B($27T)) =M (B(xlvr)) X 2 (B(.’L‘Q,?“))
< pa (B(@y,m1)) x pg (B(w2,12))

r6 —dy 0 . . y
C - = B , = X C v B il
1 <r1\/§> H1 < <x1 ﬁ))] [ 2 <r2\/§> 2 < <x2 ﬁ))]
C Cy r—(drtdz)
= del T;dg \/if(lerdQ)
Cy Co p—(di+d2) o(d1+d2)/2

= —di_—ds
Ty T

g-d1=dz, (B(:Bl,rﬁ/\f?) X B(xg,rﬁ/\/i))

6=+ (B(x,r0))

where we used two simple inequalities that ||(z1, z2) — (x1,x2)||2 < 7 implies ||z; — x;|lo <71, i =
1,2, and further ||z; — xil|2 < r/V/?2, i = 1,2, implies ||(21, z2) — (z1,72)|]2 < 7.

Appendix C. Simulation Setting

Here we explain the settings for simulations shown in Figures 1 and 2.

C.1. Single test point

The data for single test point simulation, shown in Figure 1, has been generated as follows. Here
p=1,D = 20 and d = 2. All the points are generated using X; = AX!°%, where A € RP*? and
entries of A are independently sampled from U[—1, 1]. Components of each X %"W are also generated
independently from U[—1,1]. We generate a fix test point Test = A:U{g;’{ and keep the matrix A
throughout all Monte-Carlo iterations fixed. In each Monte-Carlo iteration, we generate n = 20000
training points as mentioned before. The values of Y; are generated according to Y; = f(X;) + &,
where f(X) = m, and g; ~ N(0,02) with 0. = 1. We are interested in estimate
and inference for f(zs) which is equivalent to solving for E[¢(Z;0(z)) | X = z] = 0 with
Y(Z;0(x)) =Y —0(x) at & = Tese. We run DNN (Algorithm 2) for £ = 1,2 and 5 with parameter
s = s¢ chosen using Proposition 17 with ¢ = 0.1 over 1000 Monte-Carlo iterations and report
the histogram and quantile-quantile plot of estimates compared to theoretical asymptotic normal
distribution of estimates stemming from our characterization. In our simulations, we considered the
complete U-statistic case, i.e., B = (”)

S
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C.2. Multiple test points
The data for the multiple test points simulation, shown in Figure 2, has been generated very similarly
to the single test point setting. The only difference is that instead of generating a single test point
we generate 100 test points. These test points together with matrix A are kept fixed throughout all
1000 Monte-Carlo iterations. We compare the performance of DNN (Algorithm 2) with parameter
s = s¢ chosen using Proposition 17 with ¢ = 0.1 with two benchmarks that set s4 = n1-05d/(d+2)
and sp = n!9°P/(P+2) This process has been repeated for k = 1,2 and 5 and the coverage over
a single run for all test points, the empirical coverage over 1000 runs, and chosen s versus sg are
depicted.
Appendix D. Proof of Theorem 6
Lemma 18 Forany 0 € O:
2

16 = 8(@)ll2 < S llm(w; O)]l2- (19)

Proof By strong convexity of the loss L(z; ) and the fact that m(z; 6(z)) = 0, we have:
A A
L(w;0) = L(x:0(x)) = (m(w; 0(2)),0 = 0(@)) + 5 - 10 = 0@)[[5 = 5 - 10 = 0()][3
By convexity of the loss L(x; ) we have:
L(w;0(x)) — L(x:0) > (m(30), 0(z) — 0) .

Combining the latter two inequalities we get:
A
5 10 =0@)I5 < (m(w;0),0 = 0(x)) < [Im(z; 0)ll2 - 16 = O(=)l|2.

Note that if ||§ — 6(x)||2 = 0, then the result is obvious. Otherwise, dividing over by ||0 — 6(x)||2
completes the proof of the lemma. |

Lemma 19 Ler A(x;0) = m(z;0) — U(x;0). Then the estimate 0 satisfies:

Im(; 0)]|2 < sup [|A(z; 0)]2 (20)
fco
Proof Observe that 0, by definition, satisfies W (z; §) = 0. Thus:
lm(; 0)ll2 = |lm (; 8) — W(z; 0)]l2 = [|A(2:)||2 < Sup [[A(2; 0)]|2 -

Lemma 20 Suppose that the kernel is built with sub-sampling at rate s, in an honest manner
(Assumption 3) and with at least B > n/s sub-samples. If the base kernel satisfies kernel shrinkage
in expectation, with rate €(s), then w.p. 1 — §:

smwwms%$H0@mfﬂmmwwmme. @1
0cO n
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Proof Define
po(z;0) = E[Wo(x;0)] ,

where we remind that ¥ denotes the complete U-statistic:
o\ L
Wo(z;6) = <S> > wn | D Sy (Xi)(Z550)
SbC[n}:ISbI—S €Sy

Here the expectation is taken with respect to the random draws of n samples. Then, the following
result which is due to Oprescu et al. (2018) holds.

Lemma 21 (Adapted from Oprescu et al. (2018)) For any 0 and target x

m(:c;e):(’;)_l S E|Y s (X)m(x:0)

Sbc[n]:|Sb| s IS

In other words, Lemma 21 states that, in the expression for yy we can simply replace ¢ (Z;; 6) with
its expectation which is m(X;; ). We can then express A(x; ) as sum of kernel error, sampling
error, and sub-sampling error, by adding and subtracting appropriate terms, as follows:

A(x;0) = m(x;0) — ¥(x;0)
= m(z;0) — po(x;0) + po(x; 0) — Vo(z;0) + Yo(;0) — ¥(z;0)

~~ ~~

I'(z,0)=Kernel error A(z,0)=Sampling error Y (z,0)=Sub-sampling error

The parameters should be chosen to trade-off these error terms nicely. We will now bound each of
these three terms separately and then combine them to get the final bound.

Bounding the Kernel error. By Lipschitzness of m with respect to « and triangle inequality, we
have:

-1
o< (1) X BT asw(0ln(o) - nxo)|

SpCn]:|Sp|=s €Sy

-1
n
< Lm<s> Z Zasbwb HZE—X H
SbC[TL]:|S;,| S 1€Sp
-1
n
<io(l) X Bl Xl as.. (%) > 0}
SpC[n]:|Sp|=5
< me(s)v

where the second to last inequality follows from the fact that ) . |avs, (X;)| = 1.
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Bounding the Sampling error. For bounding the sampling error we rely on Lemma 35 and in
particular Corollary 36. Observe that for each j € {1,...,p}, ¥o;(z;6) is a complete U-statistic
for each #. Thus the sampling error defines a U-process over the class of symmetric functions
COHV(.FJ') = {f](, 9) 10 € @}, with fj(Z1, ey A 9) = E, [Z?:l aZl;S,w(Xi)wj(Zﬁ 9)] Ob-
serve that since f; € conv(F;) is a convex combination of functions in F; = {¢;(-;6) : § € ©},
the bracketing number of functions in conv(F}) is upper bounded by the bracketing number of F,
which by our assumption, satisfies log(Nj(F;, €, L2)) = O(1/¢). Moreover, by our assumptions
on the upper bound ¥max of ¥;(2;6), we have that sup . cconv(7;) 1.fll2, SUP f; cconv( ;) | filloo <
¥max. Thus all conditions of Corollary 36 are satisfied, with n = G = ¥yax and we get that w.p.
1—46/2p:

5up 8(,0)] = O (Vs (o og(n/s) +105(2/9) ) @

By a union bound over j, we get that w.p. 1 — §/2:

sup A2, 02 < +/pmaxsup | A;(z,0)] = O (wmax\/p"” (log log(n/s) + log<p/5>>> -
0cO J€lp] oco n @3

Bounding the Sub-sampling error. Sub-sampling error decays as B is increased. Note that for a
fixed set of samples {Z1, Zs, ..., Z,}, for a set Sp randomly chosen among all (Z) subsets of size
s from the n samples, we have:

Esywp | D 08y, (X)¥(Zi0) | = Wo(a;0).
1€Sy

Therefore, W (x;#) can be thought as the sum of B i.i.d. random variables each with expectation
equal to Wy (x; 6), where expectation is taken over B draws of sub-samples, each with size s. Thus
one can invoke standard results on empirical processes for function classes as a function of the
bracketing entropy. For simplicity, we can simply invoke Corollary 36 in the appendix for the case
of a trivial U-process, with s = 1 and n = B to get that w.p. 1 — §/2:

L loglog(B) + log(2/9)
zgg ‘T(‘r’e)’ - O <¢max\/ B >

Thus for B > n/s, the sub-sampling error is of lower order than the sampling error and can be
asymptotically ignored. Putting together the upper bounds on sampling, sub-sampling and kernel
error finishes the proof of the Lemma. |

The probabilistic statement of the proof follows by combining the inequalities in the above three
lemmas. The in expectation statement follows by simply integrating the exponential tail bound of
the probabilistic statement.
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Appendix E. Proof of Theorem 7

We will show asymptotic normality of & = < B, é> for some arbitrary direction 3 € RP, with

|B]l2 < R. Consider the complete multi-dimensional U-statistic:

-1
Uo(z;0) = (Z) Y Eu | asw(X)e(Zi0)| . 24)

Sbc[n}l|sb| s €Sy

Let
A(w;0) = Wo(x;0) — po(w;0) (25)

where 119(z;0) = E [o(z; 0)] (as in the proof of Theorem 6) and
0 = 0(z) — My 'A(z; 0(x)) (26)
Finally, let
a2 (8,0) = (8,0() - (8,M;" Aw;0() @7)
For shorthand notation let ap = (B, 0(x)), ¥5(Z;0) = (8, My ' (¥(Z;0) — m(X;6))) and

Vos(z;0) = (B, My ' Aw;6()))

_ (”) S B |3 ase (X00s(Zis0)

Sy C[n):|Sp|=s i€Sy

be a single dimensional complete U-statistic. Thus we can re-write:
a=ag— VYog(z;6(x))

We then have the following lemma which its proof is provided in Appendix I:

Lemma 22 Under the conditions of Theorem 7:

Yo,5(; 0())

(@) — N(0,1),

2

for o3 (w) = 5 Var [B [ S0, K (e, X {X;15-)65(Z60) | Xa| | = (n(s))
Invoking Lemma 22 and using our assumptions on the kernel, we conclude that:

a — ap(x)

on()

— N(0,1). (28)

For some sequence o2 which decays at least as slow as s27(s)/n. Hence, since

Q>

& — 64—9(:6)

on(z)  on(z) | onlx

)’
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if we show that f‘n_(f;‘) —p 0, then by Slutsky’s theorem we also have that:

& — ap

on()

— N(0,1), (29)

as desired. Thus, it suffices to show that:

l& = alla

—, 0. (30)
on(2) ?
Observe that since ||3]|2 < R, we have ||& — |2 < R||6 — 0||2. Thus it suffices to show that:

16 — 4]

on()

—p 0.

Lemma 23 Under the conditions of Theorem 7, for o2(x) = Q (S—n(s)> :

16— 6]

on ()

—, 0. 31)

Proof Performing a second-order Taylor expansion of m;(z; ) around 6(z) and observing that
mj(x;0(x)) = 0, we have that for some §; € O:

mj(w:0) = (Vom;(w:0(2)),0 — 0(2) ) + (6 = 0()) TH;(2:85) (0 — 0(a))” .

Pj

Letting p = (p1, ..., pp), writing the latter set of equalities for each j in matrix form, multiplying
both sides by M ! and re-arranging, we get that:

0 = 0(x) + My 'm(x;0) — My p.
Thus by the definition of  we have:
0—0=DM;'- (m(x;0) + Alz; 0(x))) — My Lp.
By the bounds on the eigenvalues of H(z;6) and M; ', we have that:
-1 Ly s 2
Mg pll2 < THQ —0(2)]z- (32)
Thus we have:
~ ~ 1 ~ LH ~ 2
16— 0lla =  Ilm(3 6) + Aa; 0(z))ll2 + =210 — 6(x) 3
By our estimation error Theorem 6, we have that the expected value of the second term on the

right hand side is of order O (e(s)?, £ loglog(n/s)). Thus by the assumptions of the theorem, both
are o(oy,). Hence, the second term is op,(0y,).
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We now argue about the convergence rate of the first term on the right hand side. Similar to the
proof of Theorem 6, since ¥(z; ) = 0 we have:

m(z;0) = m(z;0) — U (x;0) = m(x;0) — Uo(x;0) + Vo(z;0) — V(a3 0) .

Sub-sampling error

m(w:0) = m(z;0) — po(a 9) po(z é) Wo(a; 0) + Wo(w; 0) — ¥ (w;0)
= m(x:0) — po(w: 6) — A(w; 6) + Wo(a; 6) — W(x;6).
Combining we have:

m(z;0) + A(z;0(x)) = m(x;0) — po(w;0) + Aw;0(x)) — Aw; 0) + Vo(w;0) — U(;0) .

Ve Ve
C=Kernel error F'=Stochastic equicontinuity term E=Sub-sampling error

Now similar to proof of Theorem 6 we bound different terms separately and combine the results.

Kernel Error. Term C'is a kernel error and hence is upper bounded by €(s) in expectation. Since,
by assumption s is chosen such that €(s) = o(o,,(z)), we ge that ||C||2 /0y, (z) =, 0.

Sub-sampling Error. Term FE is a sub-sampling error, which can be made arbitrarily small if the
number of drawn sub-samples is large enough and hence || E||2/0,(z) — 0. In fact, similar to the
part about bounding sub-sampling error in Lemma 20 we have that that:

s | Y s, (Xi)(Zi;0) | = Wo(a;6),

€Sy

Therefore, ¥ (x; #) can be thought as the sum of B independent random variables each with expec-
tation equal to Wo(z; #). Now we can invoke Corollary 36 in the appendix for the trivial U-process,
with s = 1,n = B to get that w.p. 1 — d;:

sup || Wo(z;0) — ¥(z;0)|| <O (\pmax\/log log(B) + 1og(1/51)) |

O B

5/8

Hence, for B > (n/s)®/*, due to our assumption that (s/nloglog(n/s))*® = o(on(x)) we get

1Ell2/on(z) —p 0.

Sampling Error. Thus it suffices that show that || F'||2/0p(x) —p 0, in order to conclude that
llm(@:0)+Wo(x:0(x)) |12

on(x

—p 0. Term F' can be re-written as:

F = Uo(x;0(x)) — Wo(2:0) — B |Wo(a;0(x)) — Uo(x;0)]| . (33)

Observe that each coordinate j of F', is a stochastic equicontinuity term for U-processes over
the class of symmetric functions conv(F;) = {f;(;0) : 6§ € O}, with f;(Z,...,Z0) =
E, > az,.,0(Xi)(@i(Z;0(x)) — wJ(ZZ,H))]. Observe that since f; € conv(F;) is a con-
vex combination of functions in F; = {t;(-;0(x)) — ¢;(-;0) : § € O}, the bracketing number
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of functions in conv(F;) is upper bounded by the bracketing number of F;, which in turn is upper
bounded by the bracketing number of the function class {¢;(-;0) : § € ©}, which by our assump-
tion, satisfies log(Nyj(Fj, €, L2)) = O(1/¢). Moreover, under the variogram assumption and the
lipschitz moment assumption we have that if ||§ — 0(z)|| < r < 1, then:

155 Ol = E (Zaz“ )(W;(Zi; 0(x)) w]-(Zz-;e))g
< E _Z g, (Xi) (0(Zi; 0(x)) —zpj(zi;e)f] (Jensen’s inequality)
= E Zozzls E [¢;(Zi;0(x)) — 0;(Zi; 0))* | X3) (honesty of kernel)
= E Zaz1 . (Var(w(Z; 0(z)) — (Z;0)|Xi) + (m(Xs; 0(x)) — m(Xi;H))z)]
= Lwl!9—9( o) + L30 = 0(@)[I* < Lyr + Lir* = O(r) .

Moreover, || filloc < 2%max. Thus we can apply Corollary 36, with n = \/Lyr + L3r2 = O(y/r)
and G = 20y to get that if ||§ — 6(z)|| < r, then w.p. 1 — 6 /p:

|Fj] < sup
0:10—0(z) | <r

= 0((r4-+ ViV Iogo/) + Tog g Gs71]) )
-0 <<r1/4\/10g(p/5) —l—loglog(n/s)) \/D 2 (r 8,1, 8).

Wo(:6(2)) — Wo(a: 6) — E [Wo(a:0(x)) — Wo(a: )] |

Using a union bound this implies that w.p. 1 — § we have

max |Fj| < k(r, s,n,0).
J

By our MSE theorem and also Markov’s inequality, w.p. 1 — &": |0 — 0(z)|| < v(s)/d’, where:

() = 3 (Bnels) +0 (s 2 boglogtos/m)))

Thus using a union bound w.p. 1 — § — &', we have:

max |Fj| = O (k(v(5)/%', 5,1,9)))

To improve readability from here we ignore all the constants in our analysis, while we keep all terms
(even log or log log terms) that depend on s and n. Note that we can even ignore § and ', because
they can go to zero at very slow rate such that terms log(1/4) or even ¢’ 1/4 appearing in the analysis
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grow slower than log log terms. Now, by the definition of v(s) and x(r, s, n, §’), as well as invoking
the inequality (a + b)'/* < a'/* + b'/4 for a, b > 0 we have:
, 14 (S 1/2 s 5/8
max |Fj| < O(k(v(s)/d',5,n,0)) < O ( e(s)” (—log log(n/s)> + (—loglog(n/s)> ,
J n n

(34
Hence, using our Assumption on the rates in the statement of Theorem 7 we get that both of the
terms above are o(oy, (x)). Therefore, || F'||2/op(2) —p 0. Thus, combining all of the above, we get
that:

as desired. [ ]

Remark 24 Our notion of incrementality is slightly different from that of Wager and Athey (2018),
as there the incrementality is defined as Var [E [K(m, X, {Zj}jzl) | X1”. However; using the

tower law of expectation
E [E[K (2, X1,{Z;};—1) | X1]*] — Var [E[K (z, X1, {Z;}}—1) | X1]]
= E[E[K(z, X1,{Z;}1) | Xa]]* = E[K(z, X1, {Z;}3-)]° -

2
For a symmetric kernel the term E {K (x, X1,{Z; }j’:l)} is equal to 1/s? and is asymptotically

negligible compared to Var [E [K(w, X1,{Z;}21) | Xl} } which usually decays at a slower rate.

Appendix F. Lower Bound on Incrementality as Function of Kernel Shrinkage

We give a generic lower bound on the quantity E[E[K (z, X1,{Z;}]_)|X 1)?] that depends only
on the Kernel shrinkage. The bound essentially implies that if we know that the probability that
the distribution of x’s assigns to a ball of radius €(s, 1/2s) around the target x is of order 1/s, i.e.
we should expect at most a constant number of samples to fall in the kernel shrinkage ball, then
the main condition on incrementality of the kernel, required for asymptotic normality, holds. In
some sense, this property states that the kernel shrinkage behavior is tight in the following sense.
Suppose that the kernel was assigning positive weight to at most a constant number of k& samples.
Then kernel shrinkage property states that with high probability we expect to see at least k£ samples
in a ball of radius €(s, 0) around x. The above assumption says that we should also not expect to see
too many samples in that radius, i.e. we should also expect to see at most a constant number K > k
of samples in that radius. Typically, the latter should hold, if the characterization of €(s, d) is tight,
in the sense that if we expected to see too many samples in the radius, then most probably we could
have improved our analysis on Kernel shrinkage and given a better bound that shrinks faster.

F.1. Proof of Lemma 8
By the Paley-Zygmund inequality, for any random variable Z > 0 and for any § € [0, 1]:

E[Z]?

BIZ%) > 0= 0 5 5wz
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Let Wi = K(z, X1,{Z;};_;). Then, applying the latter to the random variable Z = E[W;|X/]
and observing that by symmetry E[Z] = E[W;]| = 1/s, yields:
(1 —8)*E[W:]? (1—6)*(1/s)?

2 _
B BN 2 ST > smwa]] ~ PrBin ] > 674

Moreover, observe that by the definition of (s, p) for some p > 0:
Pr(IW; > 0 A [|X1 — 2] > e(s,p)] < p

This means that at most a mass p s/d of the support of X7 in the region || X; — z|| > €(s, p) can
have Pr[IW; > 0|X1] > d/s. Otherwise the overall probability that W; > 0 in the region of
| X1 — z|| > €(s, p) would be more than p. Thus we have that except for a region of mass p s/d, for
each X in the region || X1 — z|| > €(s, p): E[W1]|X1] < §/s. Combining the above we get:

Pr[E[W1|X1] < 6/s] > Pr{|[ X1 — ]| > €(s, )] — ps/s
Thus:
PrE[W1[X1] > 6/s] < Pr[[| X1 — zf| < €(s,p)] + ps/6 = n(B(z,€(s,6))) + ps/o

Since p was arbitrarily chosen, the latter upper bound holds for any p, which yields the result.

F.2. Proof of Corollary 9
Thus applying Lemma 8 with § = 1/2 yields:

BIBIE G X0, 120 2 (M(B((:lv{iip))) +2ps)
Observe that:
(B (o, e p) < Cels, ) (Bl 1) = 0 (E0L2))
Hence:

inf (u(B(z,e(s, p))) +2ps) = O <inf (k’g(l/ﬂ) + 2ps>> -0 (log(s))

p>0 p>0 S s

where the last follows by choosing p = 1/s2. Combining all the above yields:

E[E[K (z, X1, {Z;};-1)|X1])] = @ (slolg(S)>

Appendix G. Proofs of Section 5
G.1. Proof of Lemma 10

For proving this result, we rely on Bernstein’s inequality which is stated below:
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Proposition 25 (Bernstein’s Inequality) Suppose that random variables Z1, Zs, . . . , Z,, are i.i.d.,
belong to [—c, c| and E[Z;) = p. Let Z, = 37" | Z; and 0® = Var(Z;). Then, f0r any 6 > 0,

Pr (|Z0—pl > 0) < 2 "

T — exp|l =———= 1.
noH = 2P\ 952 1 200/3

This also implies that w.p. at least 1 — ¢ the following holds:

20210g(2/9) n 2clog(2/9)

Zn —ul <
[Zn =l = n 3n

(35)

Let A be any p-measurable set. An immediate application of Bernstein’s inequality to random
variables Z; = 1{X; € A}, implies that w.p. 1 — ¢ over the choice of covariates (X;);_,, we have:

us(A) — p(A)] < \/QM(A) log(2/9) , 210g(2/9)

S 3s

In above, we used the fact that Var(Z;) = u(A)(1 — u(A)) < p(A). This result has the following
corollary.

Corollary 26 Define U = 2log(2/9)/s and let A be an arbitrary p-measurable set. Then, w.p.
1 — § over the choice of training samples, j(A) > 4U implies j15(A) > U.

Proof Define U = 2log(2/4)/s. Then, Bernstein’s inequality in Proposition 25 implies that w.p.
1 — 9 we have

1a(4) — 1(A)] < VT aCA) + 5

Assume that p(A) > 4U, we want to prove that p5(A) > U. Suppose, the contrary, i.e., us(A) <
U. Then, by dividing the above equation by 11(A) we get

,Us(A)_ L EL
vt ER Voot

Note that since us(A) < U < p(A), by letting z = U/u(A) < 1/4 the above implies that

4
1—zsﬁ+§;»§z+\/2—120,

which as z > 0 only holds for

—3+/57
vz > 2T Vel + = z>0.3234.

This contradicts with z < 1/4, implying the result. |
Now we are ready to finish the proof of Lemma 10. First, note that using the definition of (C, d)-

d
homogeneous measure. Note that for any 6 € (0,1) we have u(B(xz,0r)) > (1/C)0%u(B(z,r))
Replace 6r = € in above. It implies that for any € € (0, 7)

w(Bla,€)) > oen(Bla,r). (36)
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Pick € (s, d) according to
8C log(2/5)\ /¢
N=r|—m—>r"= :
wt9) = (S50
Note that for having (s, 0) € (0,r) we need

log(2/§) < 810 (B(z,7r))s = 0 > 2exp <—81C,M(B(x,r)s> .

Therefore, replacing this choice of e;(s,d) in Equation (36) implies that u(B(z,€x(s,d))) >

M Now we can use the result of Corollary 26 for the choice A = B(z,¢eg(s,)). It im-

plles that w.p. 1 — § over the choice of s training samples, we have

2log(2/d
e Bl ex(s,0))) = 282
Note that whenever § < exp(—£k/2)/2 we have
2log(2/96) > ﬁ
s s

Therefore, w.p. 1 — § we have

S

o 1/d
e — Xyl < ex(s.6) = O (W) .

G.2. Proof of Corollary 11

8C'log(2/4)

1/d
#(B(xr))s) ,such that ¢ < r and t >

Lemma 10 shows that for any ¢ = €x(s,d) = T(

1/d
4k C '
" (m) , we have that:

Pr[||z — Xwyll2 > ex(s,0)] <9.

Let p — L (#(Br) Y s : : .
etp= 3C , which is a constant. Solving for J in terms of ¢ we get:
Pr{|z — X lla > 1] < 2exp <—pdstd> ,

for any t € [W, r} . Thus, noting that X;’s and target x both belong to X’ that has diameter
Ay, we can upper bound the expected value of [[|[z — X ;)| as:

Ax
Blle =Xl = [ Prllle = Xyl = o] @
s/k 1/d
< (s/k)—/< +/ vl — Xgolla > t] dt + Pr [z — Xglla > 7] (Ax —7)
P p s 1/d
1/d
< (s/k)—/7 +/ 2exp{—pdstd}dt+2e><p{—pd7"d8}(AX—7")-
P p(s/k)=1/d
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Note that for s larger than some constant, we have exp { —p?r?s} < s71/. Thus the first and last

terms in the latter summation are of order (%) /4 We now show that the same holds for the middle
term, which would complete the proof. By setting u = p? st? and doing a change of variables in
the integral we get:

/ 2exp{—pdstd}dt§/ 2exp{—pd5td}dt
p(s/k)t/4 0

1

= dpsl/d/g w4 exp {—u} du =

s—1/dq
gf‘(l/d).

where I is the Gamma function. Since by the properties of the Gamma function 2I'(z) = I'(z + 1),

the latter evaluates to: S_l/df((d+ 1)/d). Since (d+1)/d € [1,2], we have that I'((d + 1) /d) < 2.

)
Thus the middle term is upper bounded by Lpl/d, which is also of order (1) 1d,

s

G.3. Proof of Lemma 13

Before proving this lemma we state and prove and auxiliary lemma which comes in handy in our
proof.

Lemma 27 Let P; denote the mass that the density of the distribution of X; puts on the ball around
x with radius ||x — X1||2, which is a random variable as it depends on X1. Then, for any s > k the
following holds:

k-1

> (S ; 1> (1—P)* ' P

=0

E ~BE[S | X)) =",

Proof The proof is an easy consequence of symmetry. Let S; = 1{sample 1 is among k nearest neighbors},
then we can write

k-1

> (S R 1) (1-P)"~ 'R

=0

E[E[S: | Xi]]=E

9

which simply computes the probability that there are at most £ — 1 other points in the ball with
radius ||z — X1]|. Now, by using the tower law

E[B[S: | X1 = Elsi] = &

which holds because of the symmetry. In other words, the probability that sample 1 is among the
k-NN is equal to k/s. Hence, the conclusion follows. |

We can finish the proof of Lemma 13. Define S; = 1{sample 1 is among k nearest neighbors},
then we can write

1

E [E (K (2, X1, {Z;}5_1) | Xlﬂ = SE [E St | Xlﬂ .
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Recall that if P; denotes the mass that the density of the distribution of X; puts on the ball around
x with radius ||z — X1]|2, which is a random variable depending on X. Therefore,

k—1

E[S| X =) (8 . 1> (1— PP

=0

Now we can write

- 2
E [E [Sy |X1]2} _E (k . <5 ; 1>(1 _ P1)5_1—¢P1i>

[k—1k—1 s 1 1 S
ol T
0

- B 2H( QS“Pkal§< )( ]1>1{i+j:t}

_t:O 1=0 j=0
ok —2 min{t,k—1} o 1N /s 1
2s—2—t pt
= E (1—P) Pll > ( . )(t_i>
| t=0 i=max{0,t—(k—1)}
[2k—2
= E ar (1— P> *'Pf
t=0

Now using Lemma 27 (where s is replaced by 2s — 1) we know that for any value of 0 < r < 25—2
we have

_ r+1
25— 1°

E|) b (1-P)* 2P (37)

t=0

"L (25 —2 59
—E Z( . )(1—131)2 2-tpt

t=0

This implies that for any value of 7 we have E [b,(1 — P1)?*"2""P[| = 1/(2s — 1). The reason is
simple. Note that the above is obvious for » = 0 using Equation (37). For other values of r > 1, we
can write Equation (37) for values r and  — 1. Taking their difference implies the result. Note that
this further implies that E [(1 — P;)*~2"P[| = 1/(b, (25 — 1)), as b, is a constant. Therefore,
by plugging this back into the expression of E[E[S] | X 1] | we have

2k—2 1 2k72a
E[E[S{| X’ = E 1— p)2s—2-tpt| — at
[E[S1]X1]7] ;at( 1) 1 P ;bt ;

which implies the desired result.

Remark 28 Note that by = (2‘9;2) since we can view by as follows: how many different subsets of
size t can we create from a set of 2s —2 elements if we pick a number i = {0, . .., t} and then choose
1 elements from the first half of these elements and t — i elements from the second half. Observe
that this process creates all possible sets of size t from among the 2s — 2 elements, which is equal

to (25;2)‘
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Furthermore, ay = b, for 0 <t < k — 1 and for any k <t < 2k — 2, after some little algebra,

we have
2k—1—1t Qg
— < =<1.
t+1 b

This implies that the summation appeared in Lemma 29 satisfies

2k—2 2k—2
2k—1—-1t
k —<2k—1
IR DI

G.4. Proof of Theorem 14

Note that according to Lemma 38, the asymptotic variance 07217j(:v) = % Var [®1(Z1)], where
®,(7,) = kE[ZiEHk(:r,s) (ej, My '(Zi;0(x))) | Z1]. Therefore, once we establish an expres-
sion for Var [®1(Z1)] we can finish the proof of this theorem. The following lemma provides such
result.

Lemma 29 Suppose that the kernel K is the k-NN kernel and let 0]2 (z) = Var ({ej, Myt p(z; 9(z))) | X = ).
Moreover; suppose that e;(s, 1/s%) — 0 for any constant k. Then:

o2(x 22
Var [®1(Z1)] = 0(2)*E [E (K (x, X1,{Z;}}-1) | Xl]Q} +o(1/s) = (25]—(1))k:2 <Z bt) +o(1/s)

t=0

where the second equality above holds due to Lemma 13 and sequences a; and by, for 0 < t < 2k—2,
are defined in Lemma 13.

Proof In this proof for simplicity we let Y; = <ej,M0_1w(Zi;9(x))> and u(X;) = E[Y;] =
(e, My 'm(X;;0 (z))). Let Z(; denote the random variable of the i-th closest sample to z. For the
case of k-NN we have that:

k®(Zy) =

ZY<>|Zl

Let S; = 1{sample 1 is among k nearest neighbors}. Then we have:

k

S1) Yl 4

=1

k
(1-5)) Yo | Z
=1

Let ffw denote the label of the ¢-th closest point to z, excluding sample 1. Then:

k
slzy(z | Z1| +E

1—512 4
7,k1 =k
B (5 (Yo~ Vi) | 2] + Z )[4
=1 =1

k®(2:) =
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Observe that }7(i) are all independent of Z;. Hence:

S1 Ek: (Y(z) - Y/(z)) | 7,

i=1

kq)l(Zl): E +E

k
> Yo
=1

Therefore the variance of ®(Z;) is equal to the variance of the first term on the right hand side.
Hence:

Tk 1] k
K2 Var[01(Z0)] = E |E | > (Yo = V) 1 21| | —E |1 Y (Yo - Vo)
L =1 | =1
- _ . _ 2:
= E|E |5 (Yo - Y) 1 21| | +o(1/s).
L i=1 J
Where we used the fact that:
k
2k Ymax
E Yy — <E 2kYmax = ————— .
51;( () ()) [S1] 2ky . (38)

Moreover, observe that under the event that S; = 1, we know that the difference between the closest
k values and the closest k values excluding 1 is equal to the difference between the Y7 and Y{;1).
Hence:

k

E (5 (Y~ Vi) | 2

=1

B[S (Vi ~ Yn) | 2] = B[S (Y~ n(Xir) | 21]

where the last equation holds from the fact that for any j # 1, conditional on X, the random
variable Y is independent of Z; and is equal to ;(X;) in expectation. Under the event S1 = 1, we
know that the (k + 1)-th closest point is different from sample 1. We now argue that up to lower
order terms, we can replace (X (j1)) with p(X1) in the last equality:

E [S1 (Vi — u(Xri1) | Z1] = E[S1 (Y1 — u(X1)) | Z1] + E [S1 (u(X1) — (X (y1)) | Z1] -
A p

Observe that:
E [E [S1 (V1 = (X (j41)) | Z1] ] = E[4%] + E[p*] + 2E[4p)].
Moreover, by Jensen’s inequality, Lipschitzness of the first moments and kernel shrinkage:
B[] = B |E[S) (u(X1) = #(X(11)) | 21)°] SE[S1 (0(X1) = u(Xgi)]
< ALy €41 (s, 0) BE[S1 X1]] + 40970 < 4L7ex11(5, 5)2§ + 40 -
Hence, for § = 1/s2, the latter is o(1/s). Similarly:
(A < B[] o] < tunB [B [S1 [1(X1) — 1(Xe)] | Z2]] = Yinan [S1 [1(X0) — (X oy ]

k
S wmaxE[SlkkJrl(& 5) + 26wmax - wmaxek+1(57 5); + 25'¢max .
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which for § = 1/s? is also of order o(1/s). Combining all the above we thus have:

K2 Var [01(Z1)] = E |E[S) (Vi — u(X1)) | Zi]°] + 0(1/5)

= E[E[S | Xi* (Vi — u(X1))?] +o(1/5).
We now work with the first term on the right hand side. By the tower law of expectations:

E [E[s1 | X1]2 (V) — M(Xl))ﬂ — E[E[S: | X1°E [V — u(X1)? | X1]] = E[E[S) | X1]%02(X))]
=E [E[Sl ’ X1]20'J2-({E)] + E [E[Sl | X1]2 (O’?(Xl) — U?(.’L‘))] .

By Lipschitzness of the second moments, we know that the second part is upper bounded as:

IN

E [E[S: | X1]? (07 (X1) — 03 (2))]| < |E[E[S: | X1] (07(X1) — 07 (x))]|
|E [S1 (07(X1) = o}(2))]|
|E [S1 (0] (X () — o5(2))]|
< LymE[S1] ex(s,0) + 67 .
k

Loym 1)
= EZ(S) + 57/]max :

IN

For § = 1/s?itis of 0o(1/s). Thus:
¥ Var[@1(21)] = B [BIS: | X1?] o2(z) + o(1/s)

Note that Lemma 13 provides an expression for E [E[Sl | X 1]2] which finishes the proof. |

For finishing proof of Theorem 14 we need to prove that Z% 2 a: is equal to (; plus lower
order terms. This is proved in the following lemma.

Lemma 30 Suppose that s — oo and k is fixed. Then

2k—2

3 Z—: = G+ 0(1/s).

t=0
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Proof Note that for any 0 < t < k — 1 we have a; = b; according to Remark 28. For any
k<t <2k —2we have

k=1 (s—1\ (s—1 k=1 (5=1)(5=2)...(s—1) (s=1)(s—2)...(s—t+1)
a 7)) i &
b Z (25—2) - Z (25—2)(25—3)...(2s—1—1)

b stk t i=t—k+1 A

B ’“Zl (t)(s—l)(s—2)...(s—i)(5—1)(5—2)...(s—t+z’)
i\ (2s —2)(2s—3)...(2s—1—1)
B kz_:l (t)s—l s—2  s—i s—1 s-2  s—t+4i
N 1)2s—22s—3 2s—1—12s—12s—1—1 2s—1—1
i=t—k+1
— S Q_t(t)(l 1 )<1H> <1+Z’_2.>...(1+i_(i_t—i_1)>
) 7 2s — 3 2s —1—1 28 — 1 2s —1—1t
i=t—k+1
k—1 .
=27t (Z> (14 0(1/s))
i=t—k-+1
k—1 "
=27t <,>—|—O(1/s),
i=t—k+1 t

where we used the fact that t and i are both bounded above by 2k — 2 which is a constant. Hence,

2k—2 a 2k—2 k—1 .
t —t o
Sit-ke Y2t Y (D)o =atouss),
t=0 t=k i=t—k+1
as desired. [ |

G.5. Proof of Theorem 15

The goal is to apply Theorem 7. Note that £k-NN kernel is both honest and symmetric. According
to Lemma 10, we have that €;(s, §) = O ((log(1/4)/s)/¢) for exp(—C's) < § < D, where C and
D are constants. Corollary 11 also implies that e;(s) = O((1/s)"/?). Furthermore, according to
Lemma 13, the incrementality 7 (s) is ©(1/s). Therefore, as s goes to oo we have e (s, ni(s)) =
O ((10g(s)/5)1/d) — 0. Moreover, as 7;(s) = ©(1/s), we also get that nn;(s) = O(n/s) — oo.
We only need to ensure that Equation (10) is satisfied. Note that o, j(z) = @(\/3/7) Therefore,
by dividing terms in Equation (10) it suffices that

max (s‘l/d (2)1/2 L5~ 1/4 (log log(n/s))/? (Z)US (log log(n/S))5/8> =o(1).

S

Note that due to our Assumption n/s — oo, the last term obviously goes to zero. Also, because of
the assumption made in the statement of theorem, the first term also goes to zero. We claim that if
the first term goes to zero, the same also holds for the second term. Note that we can write

g 1/4d (log log(n/s))l/g _ <8—1/d (n)1/2>1/4 ' [(Z) —-1/8 (log log(n/S))l/Q] 7

S
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and since n/s — oo, our claim follows. Therefore, all the conditions of Theorem 7 are satisfied and
the result follows.
The second part of result is implied by the first part since if s = n” and 8 € (d/(d + 2), 1) then

s_l/d\/g — 0.

G.6. Proof of Proposition 16

For proving this lemma, we need two following auxiliary results. Before that we state the Hoeffd-
ing’s inequality for U-statistics Hoeftding (1994).

Proposition 31 Suppose that X = (X1, Xo, ..., X,,) are i.i.d. and q is a function that has range
—1
[0,1]. Define Us = () 32 cinenci €(Xiys Xig, .., Xi,). Then, for any € > 0

Pr{|Us — E[Us]| > €] < 2exp (—|n/s]€?) .

Furthermore, for any 6 > 0, w.p. 1 — § we have

U= B <\ 1y

Lemma 32 Consider the function H (s) defined in Section 5.3 and Gs(s) = A\/2ps/nlog(2np/s).
Then, w.p. 1 — ¢, for all values of k < s < n we have

log(2/0) .

[H(s) — er(s)| < Gs(s).

Proof Note that H(s) is the complete U-statistic estimator for €x(s). For each subset S of size s
from [n] we have
E — Xill2] = .
[Xiefgfé,s) [l — Xill2] = ex(s)

Further, ||x — 2'||2 < Ax < A holds for any ©' € X. Therefore, using Hoeffding’s inequality for
U -statistics stated in Proposition 31, for any fixed s, w.p. 1 — § we have

1
[n/s]

Note that | z| > z/2 for z > 1 and therefore the above translates to

|H(s) — ex(s)] < Ay/ 271—8 log(2/9) .

Taking a union bound over s = k,k + 1,...,n, replacing § = §/n, and using p > 1, implies the
result. |

[H(s) = er(s)| < A

log(2/4) .

Lemma 33 Consider the selection process mentioned in Section 5.3 and let sy be the output of this
process. Then, w.p. 1 — § we have
s*—1
9

<sp <s*.
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Proof Note that using Lemma 32, w.p. 1 — ¢, for all values of s we have |H(s) — €x(s)| < Gs(s).
Now consider three different cases:

e 51 > s9 > s* : Note that based on the choice of s1, so, we have H (s2) > 2G5s(s2). However,
H(s2) < er(s2) + Gs(s2). Hence, €(s2) > Gs(s2) which contradicts with the assumption
that so > s*. Note that this is true since € (s) — Gs(s) is non-positive for s > s*.

e 51 = 5% 59 =5 —1:0bviously s; < s*.
e 59 < 51 < s*—1:Note that we have
ex(s1) — Gs(s1) < H(s1) < 2Gs(s1).
Hence, G5(s* —1) < ex(s*—1) < ex(s1) < 3Gs(s1). This means that Gs(s* —1)/Gs(s1) <
3 which implies y/(s* — 1)/s1 < 3. Therefore, 51 > (s* — 1)/9.

This completes the proof. |

Now we are ready to finalize the proof of Theorem 16. Note that using the result of Lemma 33, w.p.
1 — 6, we have
s*—1
<
g =
This basically means that if s, = 9s; + 1, then s, belongs to [s*, 10s*]. Hence, we have € (s.) <
ex(s*) < Gs(s*) and Gs(s«) < G5(10s*) = v/10G5(s*). Now using Theorem 6, for B > n/s,
w.p. 1 —  we have

51 < s*.

10— 0511z = 5 (Le(s.) +0 (s 22 tglogton/s) + ogt/s)) ) )

Note that G5(sy) = A\/QP% log(2pn/d). Therefore,

¢ DS+ (10g log(n/s.) + log(p/8)) < Ga(s.) < VIIGs(s").

n

Replacing this in above equation together with a union bound implies that w.p. at least 1 — 26 we
have

16— 0()]l2 = O(Gs(s"))

which finishes the first part of the proof. For the second part, note that according to Corollary 11,
for the k-NN kernel €(s) < C's~1/4, for a constant C.. Note that at s = s* — 1 we have

2
Ay/ % log(2np/d) = ex(s) < Cs~ /4

for a constant C'. The above implies that

O 2/(d+2) n d/(d+2) O\ 24/(d+2) n d/(d+2)
SF<1+ (= S — <2(= S L ,
(A> <2p10g(2np/5)> <A> (2plog(2np/5)>

Hence,

Gs(s*) < V2A2/(d+2) 0d/(d+2) < n

—1/(d+2)
2plog(2np/d) >
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Remark 34 Note that although computation of H(s) may look complex as it involves calculation of
distance to k-nearest neighbor of x on all (Z) subsets, there is a closed form representation for H (s)
according to its representation based on L-statistic. In fact, by sorting samples (X1, Xo, ..., X},)
based on their distance to z, i.e, ||z — X(p[l2 < [z — Xg)ll2 < ... < lz — X

o () E G D

=k

9, we have

Therefore, after sorting training samples, we can compute values of H (s) very efficient and fast.

G.7. Proof of Proposition 17

Note that according to Lemma 33, w.p. 1 — 1/n, the output of process, s; satisfies

s*—1
9

SSISS*a

where s* is the point for which we have ¢ (s*) = Gy/,(s*). This basically means that s, =
9s1 + 1 > s*. Note that for the k-NN kernel we have n;(s) = O(1/s). As s¢ > nS, this
also implies that ex(s¢, i (s¢)) = O((log(s¢)/s¢)t/?) — 0. Also, according to the inequality

(< log(")floglfg*();)bglogQ(") we have 1 — ¢ > (log(s«) + loglog®(n))/log(n) and therefore

)

_ S¢ 1
nt=¢ > 8§10g2(n) — " < W

and hence nny(s¢c) — 0. Finally, note that 0, j() = ©(y/s/n) and according to Theorem 7 it
suffices that

max <ek(s<) (%)_1/2 , 6k(84)1/4 (log log(n/sc))l/z7 (%)1/8 (log log(n/sc))5/8> =o(1).

Note that for any ¢ > 0, s¢ > s* and therefore e (s¢) < ex(s™) = G/, (s). For the first term,

Ek(Sg) (s<)71/2 < G1/n(8*) (jf)l/z

n
B 2p s* 5 s\ ~1/2
= A\/ log(2n?/p) (71)

n

=0 <\/87*10g(n)> .
8¢

Now note that s; = s,n¢ > s*n¢ and hence \/s*/s;log(n) = O(n=¢/?log(n)) — 0. For the
second term, note that again s¢ > s* and therefore € (s¢) < €x(s*) = G/ (5") < Gy/p(s¢). Now
note that since s¢/n < 1/log?(n) hence

og(n) \ /%
ek(34)1/4 log log(n/sc)l/2 < Gl/n(sc) loglog(n) = O ((110;2(@))) log log(n)) — 0.
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Finally, for the last term we have s¢/n < 1/log?(n) and hence

SC 1/8 5/8 1 1/4
(;) (loglog(n/s¢))”® < (k)g(n)) loglog(n) — 0.
This basically means w.p. 1 — 1/n, s¢ belongs to the interval for which the asymptotic normality
result in Theorem 7 holds. As n — oo, the conclusion follows.

Appendix H. Stochastic Equicontinuity of U-statistics via Bracketing

We define here some standard terminology on bracketing numbers in empirical process theory.
Consider an arbitrary function space F of functions from a data space Z to R, equipped with some
norm || - ||. A bracket [a,b] C F, where a,b : Z — R consists of all functions f € F, such
that a < f < b. An e-bracket is a bracket [a, b] such that |[a — b|| < e. The bracketing number
Ny(e, F, |- ]|) is the minimum number of e-brackets needed to cover F. The functions [a, b] used in
the definition of the brackets need not belong to F but satisfy the same norm constraints as functions
in F. Finally, for an arbitrary measure P on Z, let

[fllp2 = VEz~prlf(Z)?] [flpeo=sup [f(2)] (39)
z € support(P)

Lemma 35 (Stochastic Equicontinuity for U-statistics via Bracketing) Consider a function space
F of symmetric functions from some data space Z° to R and consider the U-statistic of order s,
with kernel f over n samples:

—1
\Ps(f, Zl:n) = (n) Z f(zila ce azis) (40)

S
1<ii<..<is<n

Suppose sup s r | f|
wp. 1 —9:

— G?
P2 <0, supser || fllpoo < Gandlet k = n/s. Then fork > Tog Ny (/2.7 Tra)’

sup [Vs(f, Z1:n) — E[f(ZLS)”

feF
2
=0 (inf\}g/ n\/log(N[](G,]:, I- ||P’2)+n\/10g(1/5)+loglog(n/p) +p)
p

p>0 K

Proof Let xk = n/s. Moreover, wlog we will assume that F contains the zero function, as we can
always augment F with the zero function without changing the order of its bracketing number. For
g=1,...,M,let F, = vaqufqi be a partition of F into brackets of diameter at most ¢, = 27/29,
with JFq containing a single partition of all the functions. Moreover, we assume that JF, are nested
partitions. We can achieve the latter as follows: i) consider a minimal bracketing cover of F of
diameter €, ii) assign each f € F to one of the brackets that it is contained arbitrarily and define
the partition F; of size Ny = Ny(eq, F,|| - ||p2). by taking Fy; to be the functions assigned to
bracket i, iii) let F, be the common refinement of all partitions Fy, . .., F,. The latter will have size
at most N, < ]_[34: o Ng. Moreover, assign a representative function f,; to each partition F,;, with
the representative for the single partition at level ¢ = 0 is the zero function.
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Chaining definitions. Consider the following random variables, where the dependence on the
random input Z is hidden:

mqf = fgi» i f € Fy
Aqf = sup |g_h|7 lff € ]:qi

g,h€Fyi
B,f = {Aof <ag,...., A1 f <ago1,A¢f > a4}
Af = {Aof <o, Agf <y},

for some sequence of numbers «p, . . ., ajr, to be chosen later. By noting that A,_1 f = A, f + B, f
and continuously expanding terms by adding and subtracting finer approximations to f, we can
write the telescoping sum:

f—=mof = (f —mof) Bof + (f —mof)Aof

(f =mof) Bof + (f —mf)Aof + (m1f — mof)Aof
= (f —mof) Bof + (f —m1f)Bif + (f —mf)ArLf + (mof — 7o f)Aof

M

M
= > (f =7/ )Bof + D (mgf =71 f)Agrf + (f =7 f)Auf -
=0 q=1

q

For simplicity let P, ,, f = Y(f, Z1.), Pf = E[f(Z1.5)] and G ,, denote the U-process:
Gs,nf = Ps,nf _Pf (41)

Our goal is to bound ||Ps, f||7 = supsex [Ps . f|, with high probability. Observe that since Fj
contains only the zero function, then Gy ,, fo = 0. Moreover, the operator G j, is linear. Thus:

M M
Gaonf =Gen(f = m0f) =D Gan(f — mf)Bof + O Gan(mgf — wg-1£)Ag1f + Gon(f — T f)An f -
q=0

q=1

Moreover, by triangle inequality:

M M
IGenflF <D NGan(f = 74 f)Bafllr + > _NGon(mof — mg1)Ag1flF + |Gan(f — marf)Ani fll 7 -

q=0 g=1
We will bound each term in each summand separately.

Edge cases. The final term we will simply bound it by 2a,y, since |(f — marf)Anm f] < aar,
almost surely. Moreover, the summand in the first term for ¢ = 0, we bound as follows. Observe
that By f = 1{sup |f| > ao}. But we know that sup; | f| < G, hence: Byf < 1{G > ao}.

Gs,n(f - Wﬂf)BUf = Gs,nfBDf < |Ps,nfBOf‘ + |]P>fB0f’ < 2G 1{G > Oéo} .

Hence, if we assume that ¢ is large enough such that cig > G, then the latter term is zero. By the
. . . . . 2
setting of o that we will describe at the end, the latter would be satisfied if k >

G
lOgN[](1/27]:7||'HP,2) ’
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B, terms. For the terms in the first summand we have by triangle inequality:

’Gs,n(f - ﬂqf)qu‘ < ]P)s,n‘f - qu’qu + P‘f - qu’qu
< PsnAgfByf + PAGf By f
< GunAgfBof +2PALfB,f .

A

Moreover, observe that:

e

PAGfByf <PAGfI{Af > a4} < %P(Aqf)zl{Aqf > ag}t < aip(Aqu 7HAqf||P2 S
q q

Qg

where we used the fact that the partitions in F,, have diameter at most ¢,, with respect to the
|| - || P2 norm. Now observe that because the partitions F, are nested, A, f < A, f. Therefore,
AgfByf < Ay—1fBqf < ag—1, almost surely. Moreover, ||A,fB,fllp2 < [|Aqfllp2 < €. By
Bernstein’s inequality for U statistics (see e.g. Peel et al. (2010)) for any fixed f, w.p. 1 — é:

Gany B f| < /2log 2/5 2log 2/6)
s,n q q

Taking a union bound over the N, members of the partition, and combining with the bound on
PA,fB,f, we have w.p. 1 — §:

21og(2N,/6) 210 (2N,/6)  2€2
1Gan(f = maf) Bof |7 < gy 2 B(2Ny/0) B - 210g(2Ny/0) | =@
q

A, terms. For the terms in the second summand, we have that since the partitions are nested,

((mqf = Tq-1f)Ag-1f| < Ag-1fAq-1f < ag-1. Moreover, |(7qf — mg-1f)Ag-1flp2 <
|Ag—1fllp2 < €g—1 < 2¢,. Thus, by similar application of Bernstein’s inequality for U-statistics,
we have for a fixed f, w.p. 1 — é:

(Gan(mgf = mg-1f)Ag- JMMW 210g 2/6)

As f ranges there are at most N,_1 N, < Nq2 different functions (7, f —m4—1 f)Ag—1f. Thus taking
a union bound, we have that w.p. 1 — §:

161og(2N, 41 (2N, /6
HGS’"(W‘J_Wq—lf)Aq—lfoSeq\/m Og = /)

Taking also a union bound over the 2/ summands and combining all the above inequalities,
we have that w.p. 1 — J:

M )
32log(2N,M /S 6loc(2N. M/§ %

1GsnfllF < Eeq 82N /)+a¢4§43q/) q
q=1 K

K Qg
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Choosing aq = eq\/E/\/log(2Nq+1M/6) for ¢ < M and «p; = €ps, we have for some constant

C:
M log(2N,M/9)
IGsnfllr < CY eqy| —————+3
q=1 "
M M
log(N,
C Z €q\/ log(Ng) + C’Z €q\/ log(2M/9) + 3enm
q=1 " q=1 "
Mo log(V) [log(20M/5)
q=1

Moreover, since log(N,) < Y1, log(Ny(eq, F, || - || p2), we have:

i/[:eq\/log

g=1 q

IN

q

M
0’ \Jlos(Ny(er, 7. [ - l1p2) = wog (0, F | 1p2) D g

t=0 qg=t

M:

Il
R

WE

IN

2 et\/log(N[](Q,}-’ I lp2)

t

M
< 42(6,5 — 6t+1)\/10g(NH(6t7-F7 H ’ HP,Q)
t=0

€0
< 4/ \/Iog(N[](E,fa |- 1lp2)-
€M

Combining all the above yields the result. |

Il
o

Corollary 36 Consider a function space JF of symmetric functions. Suppose that sup sc r || f|| p2 <
n and log(Ny (¢, F, || - |[p2) = O(1/€). Then for k > O(G?), wp. 1 —6:

w901 1) - B2 = 0 ( \/Z*” \/log(1/5)+ioglog(n/ﬁ)> . @

Proof Applying Lemma 35, we get for every p > 0, the desired quantity is upper bounded by:

0<;E /:2*” log(1/) + ;oglogm/p) +p>

_0 (x/ﬁ\;E\/ﬁJrn log(1/6) 4 loglog(n/p) +p> '

K

Choosing p = /1/+/k, yields the desired bound. |
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Appendix I. Proof of Lemma 22

We will argue asymptotic normality of the U-statistic defined as:

1
Vo s(x;0(z)) = <Z> Z E,, Z s, w, (Xi)¥p(Zi; 0(x))

bC[n]:|b|=s i€Sy

under the assumption that for any subset of indices Sy, of size s: E [E[ag, w, (X1)|X1]?] = n(s)
and that the kernel satisfies shrinkage in probability with rate €(s, §) such that e(s,7(s)?) — 0 and
nn(s) — oo. For simplicity of notation we let:

Y = v3(Zi;6(x)) 44)
and we then denote:
®(Zy,...,2Zs) = By, ZKw(x,Xi, {Z;}5_)Yq| . (45)
i=1

Observe that we can then re-write our U -statistic as:
) L
\IJ(]’B(J};Q(IE» = <S) . Z q)(Zzl,,ZZS)
1<i1<...<is<n

Moreover, observe that by the definition of V;, E[Y; | X;] = 0 and also

R
Yil < I8la1M5™ (92 0()) — m(Xis 0@)l2 < (2550 < 2 i 2 i

Invoking Lemma 38, it suffices to show that: Var [®1(Z1)] = Q(n(s)), where @ (z1) = E[®(z1, Zo, . ..

The following lemma shows that under our conditions on the kernel, the latter property holds.

Lemma 37 Suppose that the kernel K is symmetric (Assumption 4), has been built in an honest
manner (Assumption 3) and satisfies:

B[E[K(@ X Z o) | ) =0 <1 and  e(s,n()?) 0.
Then, the following holds
Var [@(Z1)] > Var(Y' | X = x) 1(s) + o(n(s)) = 2 (n(s)) -
Proof Note we can write

O (2) =E[®(Zy,...,2) | Xi|+E[®(Zy,.... Z,) | X1, V1] - E[®(Z1, ..., Z5) | X1].

A B

Here, B is zero mean conditional on X; and also A and B are uncorrelated, i.e., E[AB] =
E[A]E[B] = 0. Therefore:

s

Var [®1(Z1)] > Var [B] = Var | Y (E [K(x, Xi,{Z;};2))Yi | X1, V1] — E[K (2, X, {Z;};-,)Y; | X1])

=1
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For simplicity of notation let W; = K (=, X1,{Z;};_;) denote the random variable which corre-
sponds to the weight of sample 7. Note that thanks to the honesty of kernel defined in Assumption
3, W; is independent of Y; conditional on X7, for ¢ > 2. Hence all the corresponding terms in the
summation are zero. Therefore, the expression inside the variance above simplifies to

E[W1Y: | X1,Y1] — E[W1Y7 | X4].

Moreover, by honesty W is independent of Y] conditional on X;. Thus, the above further simplifies
to:
EW:i | Xi] (Y1 —E[Y1 | X4]) .

Using Var(G) = E[G?] — E[G]?, this can be further rewritten as
Var [©1(Z1)] > E [E[Wl | X1* (M~ EYi | Xa])*| - E[EW: | Xa](Yi - E[Y; | Xa])]” .

Note that Y7 — E[Y] | X;] is uniformly upper bounded by some ) ax. Furthermore, by the sym-
metry of the kernel we have E [E[W; | X;]] = E[W;] = 1/s.!! Thus the second term in the latter
is of order 1/s2. Hence:

Var[@(21)] > E [Elay(X1) | XiJ? (Vi — B[V | X])?] +0(1/5).
Focusing at the first term and letting 0 (x) = Var(Y|X = ), we have:

E [E[W: | Xi]* (Vi — Y | Xi])?| = E [E[W | X3]20%(X))]
= E[EW | X1]?] o*(2) + E [E[W; | X1]* (6*(X1) — 0*(2))] .
The goal is to prove that the second term is o(1/s). For ease of notation let V; = E [W; | X;]. Then
we can bound the second term as:
|E [Vf (02(X1) — 02(:5))” < Lyme(s,0) E [Vf |z — Xil2 < 6(5,5)}]

+ 2y B [V 1{]|z — Xl2 > (s, 6)}]
Lyme(s,0) E [Vf] + 2¢2 .E [Vf L{llz — X1|l2 > €(s,6)}]
Linme(s,8)1(s) + 2ymax B V1 1{llz — X1l > €(s,6)}]
meE(Sv 6)77(3) + 2y12naxE [Wl 1 {Hx - X1||2 > G(Sv 5)}} )

ININ A

where we used the fact that V; < 1, the assumption that 02(-) is L,,m-Lipschitz, the tower rule and
the definition of 7(s). Furthermore,

E[Wi1{]|lz — X1|2 > €(s,0)}] < Pr[||lz — Xi||2 > €(s,d) and W7 > 0]
< Pr|sup{||z — Xill2 : W; > 0} > €(s,6)| ,

2

which by definition is at most ¢. By putting 6 = 7(s)* we obtain

’E [E[Wl | X1]2 (UQ(Xl) - 0-2(1‘))” < me€(5>77(3)2)77(5) + 2y12nax77(3)2 = 0(77(5)) )

11. Since E[Wj] are all equal to the same value x and >, E[W;] =1, we get & = 1/s.
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where we invoked our assumption that €(s, 7(s)?) — 0. Thus we have obtained that:
Var [01(Z1)] > E [E[W: | X1]?] 0* () + o(n(s)) ,

which is exactly the form of the lower bound claimed in the statement of the lemma. This concludes
the proof. |

I.1. Hajek Projection Lemma for Infinite Order U-statistics

The following is a small adaptation of Theorem 2 of Fan et al. (2018), which we present here for
completeness.

Lemma 38 (Fan et al. (2018)) Consider a U-statistic defined via a symmetric kernel ®:

—1
n
U(Zy,...,2,) = <S> | Z‘ ®(Ziy,.. . Zi,), (46)
1<in<..<is<n
where Z; are i.i.d. random vectors and s can be a function of n. Let ®1(z1) = E[® (21, Za, ..., Z)]

and n1(s) = Var,, [®1(z1)]. Suppose that Var ® is bounded, nn(s) — oo. Then:

U(Zi,...,2,) —

On

where 02 = %m(s).

Proof The proof follows identical steps as the one in Fan et al. (2018). We argue about the asymp-
totic normality of a U -statistic:

-1
U(Zla"'aZn) = (n) Z (I)(Zip'--,Zis)' (48)

S
1<ii<...<is<n

Consider the following projection functions:

P1(21) = E[®(21, 22, ..., Z,)], P1(z1) = @1(21) —E[P],
@2(21,22) = E[(I)(Zl,ZQ,Zg, ey Zs), &)2(21,22) = @2(21, ZQ) —E [@] N
(135(21,22,...,25): E[(I)(Zl,ZQ,Zg,...,ZS), és(zl,z%...,zs): (1)8(21,2:2,...,23)—]3[(1)] y
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where E [®] = E[®(Z),...,Z;)]. Then we define the canonical terms of Hoeffding’s U-statistic
decomposition as:

gi(z1) = @1(21),
g2(21,22) = Pa(21,22) — g1(21) — g2(22) ,
3
g3(21,22,23) = Pa(21,22,Z3) = > _gu(z) — Y g2 2),
i=1 1<i<j<3

S
98(217227”'728) - @3(21,22,..-723)_Zgl(Zi)_ Z gZ(ziazj)_
i=1

1<i<j<s

= Z gsfl(zilazbw'"zis—l)'

1<i1<i2<...<is—1<8

Subsequently the kernel of the U-statistic can be re-written as a function of the canonical terms:

S
q)(zl>"'7zs):(I)(zla"'>ZS)_E[(I)]:Zgl(zi)+ Z QQ(Zi,Zj)+---+gs(21,...,23)-
i 1<i<j<s
(49)
Moreover, observe that all the canonical terms in the latter expression are un-correlated. Hence, we

e Var [8(Zy,...,2,)] = G)E [91] + <;)E (3] +...+ (Z)E 93] - (50)

We can now re-write the U statistic also as a function of canonical terms:

U(Zi,...,Z,) —E[U] = <”>_1 3 &(Zi,,.... Z:.)

S
1<i1<i2<...<is<n

S (Co)zmen (23) 5 e
(7 B )

1<41<19<...<is<n

Now we define the Hajek projection to be the leading term in the latter decomposition:

U(Zi.....2,) = (Z) <Z:i> > 0 (51)

The variance of the Hajek projection is:

. §2 2
= Var |U(2y,.. ‘7Zn):| = Var[®1(z1)] = —(s). (52)

The H4jek projection is the sum of independent and identically distributed terms and hence by the
Lindeberg-Levy Central Limit Theorem (see e.g., Billingsley (2008); Borovkov (2013)):

U(Zy,..., %)

On

—a N(0,1). (53)
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We now argue that the remainder term: —

%iﬂ_(] vanishes to zero in probability. The latter then

implies that U%E[U] —a N(0, 1) as desired. We will show the sufficient condition of convergence

n

1n mean square: o2

E [(U—E[U] —0)1 -

<

<

Since Var [®(Z4, . ..
have:

E [(U—E[U] - U)g]

E[(U-E[U]-0)’]

— 0. From an inequality due to Wager and Athey (2018):

<Z>2{<Z§>2<32>Ewa+---+<zg)?(z)E[ga}

NS (e
r=2
ZZV&r[(I)(ZI, 7))

, Zy)] is bounded by a constant V* and nn;(s) — oo, by our assumption, we

2
ST \/* *
Vv

— 0. 54)

< =
o2 2 nmi(s)
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