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A Modeling Description for the Pendulum

The pendulum (Section 4.1) is modeled as a rigid rod, mounted to a frictionless rotational joint at
the top. Its Equation of Motion (EoM) is modeled as

θ̈ =
τ − 1

2gmplpsin(θ)
1
3mpl2p

,

where θ is the angle towards the vertical axis (θ = 0 when hanging down), τ is the torque applied to
the pendulum at the joint, mp and lp are the pendulum’s mass and length, dp is the viscous friction
coefficient, and g is the gravitational acceleration constant.

B System Identification via Bayesian Linear Regression on the Furuta
Pendulum

In general, rigid body dynamics can be written in the form
M(q)q̈ + c(q, q̇) = τ ,

where M is the mass/inertia matrix, q are generalized coordinates, c is a nonlinear term consisting
of centrifugal, Coriolis, and gravitation components, and τ are forces/torques. In case of the Furuta
pendulum with generalized coordinates q = [θ, α]T, with q = 0 when handing down centered, the
components of this equation are given by

M(q) =

[
w0 + w1sin2(α) w2cos(α)

w2cos(α) 4
3w1

]
, (1)

c(q, q̇) =

[
w1sin(2α) θ̇α̇− w2sin(α) α̇2 + w4θ̇

− 1
2w1sin(2α) θ̇2 + w3sin(α) + w5α̇

]
,

τ =

[
γu
0

]
,

with parameters w defined as follows
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(
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Mr +Mp

)
L2
r, (2)
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MpLpLr,
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w4 =
k2m
Rm

+Dr,

w5 = Dp.
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The parameter γ = km/Rm in front of the control input u characterizes motor properties and
[km, Rm] are assumed to be known. Since the equations of motion are linear in the parameters, they
can be written in the form

[
θ̈ θ̈sin2(α) + θ̇α̇sin(2α) α̈cos(α)− α̇2sin(α) 0 θ̇ 0

0 4
3 α̈− θ̇

2sin(α) cos(α) θ̈cos(α) sin(α) 0 α̇

]
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and one can find vector w by linear regression, subsequently recovering the physics parameters as
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.

The gravitational acceleration g is a known physical constant here. Both friction coefficients can
be recovered as Dp = w5 and Dr = w4 − γkm. After all parameters have been identified, system
trajectories can be obtained by simulating the forward dynamics

q̈ = M−1(q) (τ − c(q, q̇)) .

If one finds a distribution over w, e.g., by performing Bayesian ridge regression, then one can
sample from this distribution and simulate an ensemble of trajectories. Exact analytic uncertainty
propagation is not possible here even if the distribution is Gaussian because the forward dynamics
are highly nonlinear in the parameters.

Note that if we would assume km or Rm to be unknown, the solution of (1) would not be unique,
i.e., every coefficient in (2) could be scaled by γ which is a variable in the context of domain
randomization.

C Overview of Likelihood-Free Inference Approaches

Table A1 summarizes state-of-the-art Likelihood-Free Inference (LFI) approaches with focus on
novel methods which use neural density estimators (Section 5.3). For a comprehensive survey on
LFI from simulations, we refer to [42].

Table A1: List of LFI approaches. Here, p(ξ|x) denotes the true posterior, d(x,xobs) a distance
measure between the query data x and the observed data xobs, p̃(ξ|x) the proposal posterior, q(ξ|x)
the approximate posterior, and p(x|ξ) the likelihood. We use the acronyms Sequential Neural Poste-
rior Estimation (SNPE), Sequential Neural Likelihood Estimation (SNLE), Sequential Neural Ratio
Estimation (SNRE), Mixture Density Network (MDN), Mixture of Gaussians (MoG), and Masked
Autoregressive Flow (MAF). The approach presented in this paper employs SNPE-C, but could
have used any of the others, too.

Algorithm Estimated Density Model

ABC p(ξ|(d(x,xobs)) < ε) empirical (e.g. MCMC)
SNPE-A [8] p̃(ξ|x) MDN (e.g. MoG)
SNPE-B [9] q(ξ|x) MDN (e.g. MoG)
SNPE-C a.k.a. APT [10] q(ξ|x) MAF
SNLE [11] p(x|ξ) MAF
SNRE-A a.k.a. AALR-MCMC [12] p(ξ|x)/p(ξ) = p(x|ξ)/p(x) classifier (e.g. ResNet)
SNRE-B a.k.a. SRE [13] p(ξ|x)/p(ξ) = p(x|ξ)/p(x) classifier (e.g. ResNet)
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D Additional Results

In the following, we present supplementary results for the swing-up and balance task on the Furuta
pendulum (Section 4.3). We investigate samples from the learned posteriors, the importance of the
density estimator model, and the number of rollouts for the inference subroutine in NPDR.

D.1 Domain Parameter Posteriors for the Sim-to-Real Experiment on the Furuta pendulum

Similar to the mini golf experiment, Figure A1 shows the approximated domain parameter posterior
p̂
(
ξ|x = xobs

)
for the swing-up and balance task. The condition xobs is a set of 5 common real-

world trajectories, and the displayed posteriors are the ones reported in Table 2.
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Figure A1: A 6-dimensional slice from
the 9-dimensional posteriors learned with
NPDR (blue), BayesSim (orange), and
Bayesian linear regression (purple) in the
Furuta pendulum experiment. The nomi-
nal values (green), were either determined
by prior measurements or by coarse es-
timates. Every domain off-diagonal plot
shows the same 200 samples for 2 dimen-
sions, whereas the diagonal plots show the
marginal distributions. The domain param-
eters km, Rm, and g were omitted since
they can not be handled by Bayesian lin-
ear regression (Section B). Moreover, for
this baseline the Mp and Mr samples
are not visible since all posterior samples
lie outside the prior range of NPDR and
BayesSim. Details on the domain param-
eters ranges can be found in Table A5.

D.2 On the Influence of the Density Estimator Model for NPDR

We carried out an ablation study on a physical Furuta pendulum to assess the importance of the
inference procedure and the density estimator model. For that, we repeat the Bayesian system
identification from Section 4.3 using SNPE-C and MoGs with 10 mixture components. The results
listed in Table A2 highlight that NPDR works well with either MAFs and MoGs which suggests that
the inference procedure is pivotal for the performance on the swing-up task.

Table A2: Performances of the Bayesian system identification for different inference methods and
density estimators. The metrics quantify how well each approach fits a common ground truth data set
of trajectories recorded on a physical Furuta pendulum. For every configuration (column), we report
the mean and standard deviation of 1000 domain parameter samples from 5 distinct experiments.
Each domain parameter sample was evaluated with one (simulated) rollout.

Metric NPDR (MAF) NPDR (MoG) BayesSim (MoG)

DTW dist. [1.07 ± 0.03]e+3 [1.11 ± 0.07]e+3 [1.24± 0.06]e+3
RMSE [2.63 ± 0.04]e−1 [2.74 ± 0.21]e−1 [2.95± 0.02]e−1
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D.3 On the Influence of the Number of Target Domain Rollouts for NPDR

The influence of the number of target domain rollouts H on the domain parameter posterior is
visualized in Figure A2. To study this effect, we chose the sim-to-sim variant of swing-up and
balance task on the Furuta pendulum. By conducting this experiment in simulation we were able
to minimize side-effects and to sample more target domain rollouts. Figure A2 shows that with
an increasing number of trajectories, i.e., a higher dimensional context for the density estimator
network, NPDR yields more accurate estimates. For sim-to-real experiments, we need to trade off
the number of rollouts we are able or willing to record at every iteration against the accuracy which
we demand from our posterior estimate.
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Figure A2: A 6-dimensional slice from
the 9-dimensional posteriors learned with
NPDR for H = 1 (purple), H = 5
(orange), and H = 10 (blue) target do-
main rollouts used for the LFI for a sim-
to-sim Furuta pendulum experiment. The
ground truth domain parameters (black) de-
fine a different dynamical system which lies
within the prior but is unknown to the infer-
ence procedure. Every domain off-diagonal
plot shows the same 200 samples for 2 di-
mensions, whereas the diagonal plots show
the marginal distributions. The damping
coefficient Dp was difficult to identify for
all our experiments, which is most likely
due its minor importance for the system dy-
namics (Dr affects the rotating pole).

E Empirical Discussion on the Computational Costs

The vast majority of the computational cost for NPDR as well as BayesSim originates from running
the simulations. Once the simulations are done, the posteriors are fitted. Using the sbi toolbox [20],
these weight updates take about 5–300 s for SNPE-C as well as SNPE-A. Importantly, SNPE-C is
performing a substantially different multi-round inference than SNPE-A, meaning it updates the
posterior multiple times on the same set of simulations (unlike SNPE-A). This leads to a notable
reduction of the required number of simulations. Eventually, NPDR and BayesSim take approxi-
mately the same wall clock time, measured on a desktop PC: 20 min (pendulum) 3.5 h (mini golf),
and 8 h (Furuta pendulum). Most of the required time for the experiment on the Furuta comes from
the policy optimization and the interaction with the physical device.

F Parameter Values for the Experiments

The Tables A3 to A5 list the hyper-parameters for all training runs during the experiments in Sec-
tion 4. Note that the physics engine multiplies the rolling friction parameter µb with the (local)
curvature of the associated body’s shape before applying it.
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Table A3: Configuration for the simulated pendulum experiment in Section 4.1

Hyper-parameter Value
common

prior range mp [0.3, 1.7] kg
prior range lp [0.3, 1.7] m
behavioral policy π π(t) = 4.5sin(2πt)
num. iterations I 1
num. rounds R 3
learning rate inference 5e−4
num. simulations per round N 200
num. target domain rollouts H 5
num. segments 1
time series embedding f BayesSim embedding [14]

NPDR specific
density estimator MAF [41]
num. features 20
num. transformations 2

BayesSim specific
density estimator MoG
num. mixture components 5
component perturbation 1e−2

Table A4: Configuration for the mini golf experiment in Section 4.2

Hyper-parameter Value
common

prior range rb [0.014, 0.026] m
prior range mb [2.5, 7.5] g
prior range eb [0, 1] 1
prior range µb [0, 5e−4] m
prior range ∆x1 [−0.08, 0.08] m
prior range ∆y1 [−0.08, 0.08] m
prior range ∆x2 [−0.08, 0.08] m
prior range ∆y2 [−0.08, 0.08] m
prior range ∆γ1 (-π, π) rad
prior range ∆γ2 (-π, π) rad
behavioral policy π π(t) = qinit + (qend − qinit) min(t/tend, 1)
num. iterations I 1
learning rate INFER 3e−4
num. target domain rollouts H 2
num. segments 1

NPDR specific
num. rounds R 7
num. simulations per round N 4e+3
time series embedding f linear layer with 128 neurons
density estimator MAF [41]
num. features 100
num. transformations 10

BayesSim specific
num. rounds R 1 (due to SNPE-A)
num. simulations per round N 2.8e+5
time series embedding f BayesSim embedding [14]
density estimator MoG
num. mixture components 20
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Table A5: Configuration for the Furuta pendulum experiment in Section 4.3

Hyper-parameter Value
common

prior range Dr [0.0, 1.0e−3] N m s/rad
prior range Dp [0.0, 1.0e−5] N m s/rad
prior range Rm [0.3, 1.7] Ω
prior range km [0.3, 1.7] V s/rad
prior range Mr [0.66e−1, 1.2e−1] kg
prior range Mp [1.68e−2, 3.12e−2] kg
prior range Lr [0.43e−1, 1.28e−1] m
prior range Lp [0.65e−1, 1.94e−1] m
prior range g [8.34, 11.28] m/s2

policy πθ
hybrid controller: energy-based
+ PD (7 parameters)

policy optimization POLOPT PoWER
num. importance samples POLOPT 10
population size POLOPT 25
learning rate INFER 3e−4
num. target domain rollouts H 5
len. segments 200 steps
time series embedding f linear layer with 256 neurons

NPDR specific
density estimator MAF [41]
num. rounds R 5
num. simulations per round N 1000
num. features 50
num. transformations 5
num. iterations POLOPT 20
num. iterations I 1

online BayesSim specific
num. rounds R 1 (due to SNPE-A)
density estimator MoG
num. mixture components 10
num. simulations per round N 5000
num. iterations POLOPT 1
num. iterations I 3
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