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6.1 Notation and Definitions

Given a set X , we denote the set of probability measures on X by P(X). While one does not
require X to be a measurable space (a set paired with a �-algebra on it) in order to define P(X)

(by considering outer measures), we assume that all the sets in this work are subsets of measurable
spaces. This is non-restrictive as it is trivial to define a �-algebra on any set. Some authors call sets
paired with �-algebras on them measure spaces, while others reserve the term measure space for
triples of a set, a �-algebra, and a measure. When X = Rn, for some n 2 N, we assume that P(Rn

)

is the set of Borel probability measures on Rn.

When X = D ⇥H , D refers to a data space, and H an hypothesis space, we refer to P(D ⇥H) as
the set of communication plans (on D ⇥H).

Recall, given a set X , the set 2X denotes the power set or set of subsets of X .

Given two sets D and H and probability measures µ 2 P(D) and ⌫ 2 P(H), we define two subsets
of P(D ⇥H): the first consists of those probability measures with D-marginal equal to µ,

⇧µ := {⇡ 2 P(D ⇥H) : ⇡(A⇥H) = µ(A) for all measurable A ⇢ D},
and the second consists of those probability measures with H-marginal equal to ⌫,

⇧
⌫
:= {⇡ 2 P(D ⇥H) : ⇡(D ⇥B) = ⌫(B) for all measurable B ⇢ H}.

Furthermore, µ⌦ ⌫ is the standard product measure of µ and ⌫; it is an element of P(D ⇥H). In
particular, µ ⌦ ⌫(A ⇥ B) = µ(A)⌫(B) for all measurable A ⇢ D and B ⇢ H . In addition, we
define

⇧
⌫

µ
:= ⇧

⌫ \⇧µ ⇢ P(D ⇥H).

Recall the Kullback–Liebler divergence (or relative entropy) is defined as follows: given ↵,� 2
P(X),

KL(↵ |�) :=
Z

X

log

✓
d↵

d�

◆
d↵ if ↵ ⌧ � and := +1 otherwise;

the quotient d↵
d� denotes the Radon–Nikodym derivative of ↵ with respect to �.

Recall that the Boltzman-Shannon entropy functional is defined as follows: given a probability
density function f on X ,

H(f) := �
Z

X

f log f.

6.2 Theory Supplement

Proof of Theorem 2.6. Observe that

L✏,�(PT , PL) =

Z
�PT (d, h) log

f
L
(h | d)fL(d)
fL(d)

+ ✏KL(PT | fL ⌦ gT ) + �KL(fT | fL)

=

Z
PT log

fLPT

PLPT

+ ✏KL(PT | fL ⌦ gT ) + �KL(fT | fL)

= KL(PT |PL) +

Z
PT log

fL

PT

+ ✏KL(PT | fL ⌦ gT ) + �KL(fT | fL)

= KL(PT |PL) +

Z
PT log

fLgT

PT gT
+ ✏KL(PT | fL ⌦ gT ) + �KL(fT | fL)

= CC✏,�(⇡T ,⇡L)�
Z Z

g
T
(d |h)gT (h) log gT (h)

= CC✏,�(⇡T ,⇡L) + H(gT ).

Here g
T
(d |h) := PT (d, h)/gT (h) if gT (h) 6= 0 and g

T
(d |h) := 0 otherwise. Similarly,

f
L
(h | d) := PL(d, h)/fL(d) if fL(d) 6= 0 and f

L
(h | d) := 0 otherwise, where fL denotes the data

marginal of PL. Moreover, fT denotes the data marginal of PT . The theorem follows.
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Proof of Theorem 2.8. The set of admissible teaching plans ⇧⌫ is a compact convex subset of the set
of (|D|⇥ |H|)-matrices. Since ⇢ has positive entries, L✏,k is strictly convex and bounded from below
on (⇧

⌫
, {⇢(h | d)µ(d)}). Thus, a unique matrix Pk exists such that (Pk, ⇢(h | d)µ(d)) minimizes

L✏,k on (⇧
⌫
, {⇢(h | d)µ(d)}). For every convergent subsequence of the bounded sequence {Pk}k,

the limit is the unique ✏-entropy regularized optimal transport plan for cost cT and marginals µ and ⌫.
Hence, Pk converges to P1 the minimizer of (2.4) for i = T with cT = � log ⇢.

6.3 Experiments Supplement

6.3.1 Cooperative Inference via Variational Cooperative Communication

Let H be a hypothesis space and D be a data space, and let µ and ⌫ denote mutually known prior
distribution on D and H respectively. In cooperative inference, Yang et al. (2018) defines a system of
two interrelated equations:

PT (d |h) =
PL(h | d)µ(d)

PL(h)
and PL(h | d) =

PT (d |h)⌫(h)
PT (d)

,

where PL(h | d) is the learner’s likelihood of inferring hypothesis h given d, PT (d |h) is the teacher’s
likelihood of choosing data d given hypothesis h, and PT (d) =

P
h2H

PT (d |h)⌫(h) and PL(h) =P
d2D

PL(h | d)µ(d) are the normalizing constants. This system is solved iteratively after initializing
with a family of conditional probabilities, either PL0(h | d) or PT0(d |h), coming from a consistency
matrix.

We claim that the two equations that govern cooperative inference is can be recovered from our model
upon considering an alternating minimization scheme and when ✏ = 1 and � = 0:

min
PL2⇧µ

min
PT2⇧⌫

KL(PT |PL),

as well as initialization.

Since the teacher’s hypothesis marginal and the learner’s data marginal are always fixed, our al-
ternating minimization scheme varies conditional probabilities: the hypothesis induced family of
conditional probabilities for the teacher and the data induced family of conditional probabilities for
the learner. Note the other families of conditional probabilities and marginals can be found by Bayes’
rule. Indeed,

PT (d) =

X

h2H

PT (d |h)⌫(h) and PT (h | d) =
PT (d |h)⌫(h)

PT (d)

and
PL(h) =

X

d2D

PL(h | d)µ(d) and PL(d |h) =
PL(h | d)µ(d)

PL(h)
.

Therefore, assuming we start by minimizing over PL(h | d) while initializing the conditional teach-
ing plans as follows: PT0(d |h) = M(d |h), where M(d |h) is the column normalization of the
consistency matrix in cooperative inference, we have

KL(PT0(h, d) |PL(h, d)) = EPT0 (d)
[KL(PT0(h | d) |PL(h | d))] + KL(PT0(d) |µ(d))

And, for all d 2 D,

PL0(h | d) = argmin

PL(h | d)
KL(PT0(h, d) |PL(h, d)) = PT0(h | d) =

PT0(d |h)⌫(h)
PT (d)

.

This is the first of the two equations that define cooperative inference at step one. Similarly, we derive
the second equation by fixing the initial conditional learning plans PL0(h | d) and then optimizing in
PT (d |h). This yields, for all h 2 H ,

PT1(d |h) = argmin

PT (d |h)
KL(PT (h, d) |PL0(h, d)) = PL0(d |h) =

PL0(h | d)µ(d)
PL(h)

.

Continuing in the alternating minimization scheme defined and outlined above for one full step until
convergence, we arrive at a pair of plans (P ⇤

T
(d, h), P

⇤
L
(d, h)).
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We have shown that our model and cooperative inference are theoretically equivalent under a specific
choice of parameters. Now we check the equivalence empirically, assuming uniform priors on data
and hypothesis and that |H | = |D | . In this case, communication plans are just square matrices
with sum of all elements equaling to 1. The consistency matrices are randomly sampled from standard
normal distribution and then normalized appropriately. The neural networks are randomly initialized.
We calculate the `1-distances between the teacher’s optimal communication plans obtained from
cooperative inference and those from our model. The results are listed in Table1.

Table 1: `1-distances between couplings from our model and from cooperative inference.

SIZE OF M 5 10 20 40 80

kP ⇤
T � P

⇤
CIk`1 3E-4± 9E-05 2E-4± 6E-05 2E-4± 5E-05 3E-4± 6E-05 6E-4± 1E-04

In this setting, Yang et al. (2018) shows that the optimal communication plans for the teacher and
learner are the same. Translated to our framework, Yang et al. (2018) tells us that P ⇤

T
(d, h) =

P
⇤
L
(d, h). While the table suggests that our model empirically only almost recovers the (teacher’s)

optimal plan from cooperative inference, we believe this is a consequence of the limit of float point
precision as the `1-distance between the convergent pair (P ⇤

T
, P

⇤
L
), which should be 0 is not 0; it is of

the same size as `1-distance between (P
⇤
T
, P

⇤
CI

).

6.3.2 Perturbation Analysis

We investigated the stability of the alternating minimization scheme defined above as well as the
model itself (joint minimization). The settings for M and marginals are the same as in the previous
section. We pre-train the neural network so that the conditional teaching plan is M(d |h), i.e.,
PT0(d |h) = M(d |h). We sample positive noise matrices M✏ by sampling each element from N(0, 1)

and then normalize its exponential to have `1-norm 1. We then calculate the `1-distance between the
plans if M is perturbed by s ·M✏, i.e., Mpert = M + s ·M✏ where s 2 {0.02, 0.04, 0.06, 0.08, 0.1}.
We repeat the experiment 20 times for M of sizes {5, 10, 20, 40, 80}. Since the pair of distributions
(matrices in discrete cases) will converge to the same limiting matrix, we use P

opt to represent the
optimal plan. P opt

pert
denotes the optimal plan if given Mpert.

Figure 6.1: From left to right (a) model with alternating minimization on matrix M of size 80; (b) model with
alternating minimization on matrix M of size 5, 10, 20, 40, and 80; (c) model with joint minimization on matrix
M of size 80; (d) model with joint minimization on matrix M of size 5, 10, 20, 40, and 80. The center dots
and error bars represent the mean and standard deviation over 20 experiments. The dot lines are fitted by linear
regression over all points.

In Figure 6.1 (a) and (b), we see that with alternating minimization, the mean of kP opt

pert
� P

optk`1
is approximately linear with respect to kMpert � Mk`1 with slopes around 1. And the standard
deviation is increasing in s. The standard deviations increase as noise scales increase. This reveals
the possibility of linear relationship between optimal plan and initial matrix M . When jointly
minimization, our objective has a whole set of minimizers when considering the common ground pair
(⇧

⌫
,⇧µ), and we attempt to approximate this by sampling many initializations. Figure 6.1 (c) and

(d) suggest that, in general, our model is very sensitive to the initialization. The changes in solutions
are roughly increasing over the scale of the noise.
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Table 2: Hypothesis marginals used in experiments
Marginals Mean Covariance

1 Gaussian µ1 =

✓
0
0

◆
⌃1 =

✓
1 0
0 1

◆

3 Gaussians

µ1 =

✓
1.8705

�1.4432

◆
⌃1 =

✓
2.8894 �1.8727

�1.8727 1.2738

◆

µ2 =

✓
0.4894

�0.5546

◆
⌃2 =

✓
4.6205 1.9951
1.9951 0.8835

◆

µ3 =

✓
�0.1615
0.4268

◆
⌃3 =

✓
0.9581 �0.1390

�0.1390 0.2930

◆

5 Gaussians

µ1 =

✓
�2.5486
�4.5255

◆
⌃1 =

✓
0.1233 �0.0038

�00038 0.2399

◆

µ2 =

✓
1.0328
4.2199

◆
⌃2 =

✓
3.1931 �0.1261

�0.1261 3.2483

◆

µ3 =

✓
�0.4467
�2.6998

◆
⌃3 =

✓
1.4428 �0.9623

�0.9623 1.0269

◆

µ4 =

✓
5.6779
0.3771

◆
⌃4 =

✓
0.2698 �0.7867

�0.7867 3.1732

◆

µ5 =

✓
3.3328
0.1242

◆
⌃5 =

✓
4.5678 1.9727
1.9727 2.1902

◆

6.3.3 Experiments Details

The sample size of expectation estimation is chosen to be 600 for all semi-continuous experiments.
The training iterations are fixed to 50000 for the discrete case and 20000 for the semi-continuous case.
The learning rate of Adam was initially set to 5⇥ 10

�4 and annealed to 1⇥ 10
�5 gradually by cosine

scheduler in PyTorch. The �1 and �2 parameters of Adam were set to 0.9 and 0.999 respectively.

The neural network architectures are typical variational autoencoder architectures. We have 3 fully
connected layers with ReLU activation in between. The layer width is set to be 256 regardless of the
depth. The output layer is stacked with a soft-max for discrete outputs and split into two sub-layers
for mean and log-variance parameters of the normal distributions in semi-continuous cases.
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