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ABSTRACT

The application of large deep learning models in weather forecasting has led to
significant advancements in the field, including higher-resolution forecasting and
extended prediction periods exemplified by models such as Pangu and Fuxi. De-
spite these successes, previous research has largely been characterized by the
neglect of extreme weather events, and the availability of datasets specifically
curated for such events remains limited. Given the critical importance of accu-
rately forecasting extreme weather, this study introduces a comprehensive dataset
that incorporates high-resolution extreme weather cases derived from the High-
Resolution Rapid Refresh (HRRR) data, a 3-km real-time dataset provided by
NOAA. We also evaluate the current state-of-the-art deep learning models and
Numerical Weather Prediction (NWP) systems on HR-Extreme, and provide a
improved baseline deep learning model called HR-Heim which has superior per-
formance on both general loss and HR-Extreme compared to others. Our results
reveal that the errors of extreme weather cases are significantly larger than overall
forecast error, highlighting them as an crucial source of loss in weather prediction.
These findings underscore the necessity for future research to focus on improving
the accuracy of extreme weather forecasts to enhance their practical utility.

1 INTRODUCTION

Weather forecasting is a crucial scientific endeavor that influences various aspects of human life,
from daily activities to disaster management and agricultural planning. The ability to predict weather
conditions accurately can mitigate the impact of natural disasters, optimize resource management,
and improve public safety. Traditionally, Numerical Weather Prediction (NWP) models (European
Centre for Medium-Range Weather Forecasts (ECMWF), 2024; Bauer et al., 2015) have been the
cornerstone of weather forecasting by explicitly solving the large-scale Partial Differential Equations
(PDE). These models rely on mathematical formulations of atmospheric dynamics and physical
processes to predict future states of the atmosphere based on current observations. While NWP
models have achieved significant success, they are extremely computationally intensive, requiring
substantial supercomputer power due to vast amount of data propressing and complex PDEs to
simulate atmospheric conditions. Additionally, they have limitations in capturing the intricacies of
certain weather phenomena.

In recent years, the advent of deep learning has revolutionized weather forecasting by offering alter-
native approaches that can potentially overcome some of the limitations of traditional NWP models
by implicitly solving large-scale PDEs. Deep learning models such as Pangu-Weather (Bi et al.,
2023), Fuxi (Chen et al., 2023b), and FourCastNet (Pathak et al., 2022) have shown promising re-
sults in generating high-resolution weather forecasts. FourCastNet is a Fourier-based neural network
model, which leverages Adaptive Fourier Neural Operators and vision transformer (ViT) to produce
high-resolution, global weather forecasts. Pangu-Weather leverages large-scale neural networks to
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provide accurate and timely predictions. Fuxi integrates multi-scale spatiotemporal features to en-
hance forecast accuracy by effectively capturing the complex interactions within the atmosphere.

Despite these advances, one of the most critical and challenging aspects of weather forecasting is
the accurate prediction of extreme weather events. Extreme weather, such as hurricanes, tornadoes,
and severe storms, poses significant risks to life and property. Accurate forecasting of such events
is essential for effective disaster preparedness and response. However, existing models and datasets
often fall short in this regard. Current datasets lack sufficient types of extreme weather cases (Racah
et al., 2017), or irrelevant data forms (Liu et al., 2023; Yu et al., 2023b; Zhu et al., 2016), or not
very specific (Liu et al., 2021a), leading to models that are less reliable about extreme weather. On
the other hand, current state-of-the-art (SOTA) deep learning models in weather forecasting have
either been tested on only a limited range of extreme weather events or even lack testing in this area
(Bi et al., 2023; Chen et al., 2023b; Pathak et al., 2022). This gap underscores the urgent need for
specialized datasets and models that focus on extreme weather prediction.

In this work, we address this gap by proposing a comprehensive dataset that includes high-resolution
extreme weather cases derived from the High-Resolution Rapid Refresh (HRRR) (National Oceanic
and Atmospheric Administration (NOAA), 2024) data, a 3-km real-time dataset provided by the Na-
tional Oceanic and Atmospheric Administration (NOAA). Our dataset, called HR-Extreme, includes
high-resolution feature maps with dimensions (69, 320, 320) – where 69 represents the number of
physical variables as channels and (320, 320) denotes the size of each feature map, with each pixel
corresponding to a 3km by 3km area – aims to improve the accuracy of weather forecasting models
in predicting extreme weather events. This dataset is built on U.S. area because of its complete and
rich storm data. Our key contributions are:

• We propose a weather forecasting dataset called HR-Extreme specifically for evaluating
extreme weather cases, based on HRRR data with a 3-km resolution, which provides a sig-
nificantly higher resolution than previous most-used dataset ERA5, which is 31-km resolu-
tion, and is suitable for evaluating and improving SOTA deep learning and physics-based
models.

• Our dataset includes a comprehensive set of 17 extreme weather types, such as strong
winds, heavy rains, hail, tornadoes, and extreme temperatures, while previous work typi-
cally evaluates only one or a few types of extreme weather.

• We provide an extensive evaluation of SOTA models on our dataset, including visualiza-
tion and detailed analysis. Additionally, we provided an improved version of deep learning
model called HR-Heim based on HRRR data as a baseline, inspired by FuXi (Chen et al.,
2023b) and MagViTv2 (Yu et al., 2023a), which outperforms SOTA methods on both nor-
mal weather forecasting and extreme weather evaluation in terms of one-hour prediction.

2 RELATED WORK

Historically, NWP models have been the gold standard, utilizing explicit solutions of PDEs to sim-
ulate atmospheric states. Although NWP models, such as those from the ECMWF, have achieved
considerable success, they are computationally intensive and often struggle with the intricacies of
complex weather phenomena.

2.1 ADVANCEMENT IN MODELS

Recently, weather forecasting has seen transformative advances with the integration of machine
learning. Keisler (2022) utilizes graph neural networks to achieve successful short-term and
medium-range forecasting on a 1.0◦ latitude/longitude grid. GraphCast (Lam et al., 2022) demon-
strates that ML-based methods can compete with traditional weather forecasting techniques on
ERA5 data, while ClimaX (Nguyen et al., 2023a) establishes a foundation model for weather pre-
diction by pretraining and fine-tuning on several datasets using a transformer-based architecture
(Vaswani et al., 2017). FengWu (Chen et al., 2023a) also employs a transformer architecture, ad-
dressing global medium-range forecasting as a multi-modal, multi-task problem and outperforming
GraphCast. Subsequently, FengWu-GHR (Han et al., 2024) became the first data-driven method
to successfully forecast at a 0.09◦ horizontal resolution. Stormer (Nguyen et al., 2023c) further
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analyzes the key components that contribute to the success of transformers in this task. Addition-
ally, GenCast and SEEDS (Price et al., 2023) emulate ensemble weather forecasts using diffusion
models, enabling the generation of large ensembles that preserve the statistical properties and pre-
dictive skills of physics-based ensembles. In contrast, the NeuralGCM (Kochkov et al., 2024) model
integrates a differentiable dynamical core for atmospheric dynamics with machine learning compo-
nents, achieving significant computational efficiency and improved accuracy for both short-term and
long-term predictions compared to traditional GCMs. Meanwhile, ClimODE (Verma et al., 2024)
is a physics-informed neural ODE model that integrates value-conserving dynamics and uncertainty
quantification, delivering state-of-the-art performance in both global and regional forecasting.

Models like Pangu-Weather (Bi et al., 2023) and FuXi (Chen et al., 2023b) represent significant
strides in this domain. Pangu-Weather leverages three-dimensional neural networks with Earth-
specific priors to effectively manage complex weather patterns, achieving higher accuracy and ex-
tended prediction periods. FuXi employs a cascaded machine learning system to provide 15-day
global forecasts, demonstrating superior performance compared to traditional ECMWF models, par-
ticularly in extending the lead times for key weather variables.

Nevertheless, a critical challenge persisting in accurately weather forecasting is extreme weather
events, which include hurricanes, tornadoes, severe storms and etc. These events pose significant
risks to life and property, which makes precise forecasting essential for effective disaster preparation
and response. However, recent advanced models, such as GraphCast, GenCast, FourCastNet (Pathak
et al., 2022), Pangu, Fuxi, including physics-based models only involve a few types of extreme
weather or only state the abilities in extreme weather prediction. Although NowcastNet (Zhang et al.,
2023) is designed for extreme weather, it only predicts extreme precipitation. The reasons include
insufficient attention to extreme weather events and the lack of a comprehensive and systemactic
dataset that covers various types of extreme weather over a long period.

2.2 RELATED DATASET

Several datasets have been developed to address this challenge; however, they often fall short in com-
prehensiveness and resolution, or relevance. The ExtremeWeather dataset (Racah et al., 2017) is a
notable effort, utilizing 16 variables, such as surface temperature and pressure, to detect and localize
extreme weather events through object detection techniques and 3D convolutional neural networks
(CNNs). However, this dataset is limited to three specific weather phenomena, such as tropical de-
pression and tropical cyclones, and does not encompass a broad range of extreme weather types.
Similarly, the EWELD dataset (Liu et al., 2023) focuses on electricity consumption and weather
conditions, providing a temporal dataset that supports weather analysis over 15-minute intervals.
However, EWELD provides time-series numerical data (signals) which is completely different from
feature maps in HRRR data, and therefore it is not applicable in our weather forecasting problem.

ClimSim (Yu et al., 2023b) and ClimateNet (Prabhat et al., 2021) represent further advances in
dataset development. ClimSim aims to bridge the gap between physics-based and machine learn-
ing models by providing multi-scale climate simulations with over 5.7 billion pairs of multivariate
input and output vectors. Despite its scale, ClimSim is more geared towards hybrid ML-physics
research rather than specific extreme weather forecasting and multi-channel feature map prediction.
ClimateNet, on the other hand, provides an expert-labeled dataset designed for high-precision anal-
yses of extreme weather events, such as tropical cyclones and atmospheric rivers. The most relevant
work is a severe convective weather dataset proposed by Liu et al. (2021a), which includes ground
observation data, soundings, and multi-channel satellite data for various types of extreme weather in
China. Although extensive, their feature maps are of lower resolution, contain too much redundant
data, involve fewer types of extreme weather, provide less accurate location information of extreme
events, and different countries, compared to our dataset.

In conclusion, existing datasets often lack the necessary resolution and variety of extreme weather
examples, which are essential for evaluating SOTA robust models. To address this gap, this study
introduces a novel dataset derived from the High-Resolution Rapid Refresh (HRRR) data, a 3-km
real-time dataset provided by NOAA. The HRRR dataset is significantly more detailed than previous
datasets, offering high-resolution weather forecasting and a rich set of physical channels. This
dataset is designed to enhance the predictive capability of weather forecasting with SOTA large
deep learning models, particularly for accurately forecasting extreme weather events.
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3 DATASET CONSTRUCTION

3.1 DATASET OUTLINE

In the context of weather forecasting, a model predicts a multi-channel feature map, where each
channel represents a physical variable, such as temperature at two meters above ground, vertical
wind speed, or humidity at a specific atmospheric pressure level. The dimensions of these feature
maps depend on the resolution of the original data and the detection range. For example, each
pixel in the feature maps in Pangu and Fuxi (Bi et al., 2023; Chen et al., 2023b) is 0.25° x 0.25°,
constructing a grid of 721 × 1440 latitude-longitude points representing the global area. Although
previous work has focused mainly on ECMWF ERA5 reanalysis data (Hersbach et al., 2020) (0.25°
x 0.25° per pixel), our dataset is derived from HRRR (National Oceanic and Atmospheric Adminis-
tration (NOAA), 2024) data provided by NOAA. This dataset features a 3-km resolution, is updated
hourly, and offers cloud-resolving, convection-allowing atmospheric data with approximately ten
times higher resolution than ERA5.

Our dataset comprises 17 types of extreme weather events that occurred in 2020, including extreme
temperatures, hail, tornadoes, heavy rain, marine winds and etc. For each event, we specifically crop
the area and utilize a series of feature maps with dimensions of (69, 320, 320) to cover both spatial
and temporal axes. An event is thus expressed as (n, t, c, w, h), where n is the number of 320 × 320
feature maps covering the event area, t is the timestamp, c is the number of physical variables, and
w and h denote width and height, respectively. In our case, we set t = 3 and c = 69, which means
that for a particular hour when an extreme event occurs, we group the feature maps with this hour
and two hours before. This approach accommodates models that take two previous timestamps of
feature maps as input and predict the current timestamp. However, in our interface, users can adjust
any number of hours before and after the timestamp for different usages.

The file naming convention used is “date type1+type2+. . . typeN minX minY maxX maxY”,
for example “2020070100 Hail+Tornado 762 466 821 551.npz”, where “date” is in the format
“yyyymmddhh” and “type” denotes the event types included in this area, connected by “+”. “minX,
minY, maxX, maxY” are the indices of the area extracted from the original HRRR product, such
that applying [minY:maxY, minX:maxX] on HRRR data will directly obtain this area. This format
allows users to easily evaluate models in terms of different spans and event types, as well as visual-
izations. In the following sections, Section 3.2 will elaborate on how each type of extreme weather
is collected and processed, and Section 3.3 will describe the creation of feature maps covering the
area and the interface to generate additional years of data beyond current storage.

Variable Definition Unit Range

msl Mean Sea Level Pressure Pa -
2t Temperature 2 m above ground K -

10u U-component Wind Speed 10 m
above ground m/s -

10v V-component Wind Speed 10 m
above ground m/s -

hgtn Geopotential Height gpm
At 50, 100, 150, 200, 250, 300,
400, 500, 600, 700, 850, 925, 1000
millibars, 13 levels in total

u U-component Wind Speed m/s
v V-component Wind Speed m/s
t Temperature K
q Specific Humidity kg/kg

Table 1: Summary of the 69 physical variables in the dataset

3.2 DATA COLLECTION

Our dataset focuses on extreme weather events in the U.S. based on NOAA HRRR data. The original
feature maps measure 1799 pixels in width and 1059 pixels in height, covering latitudes from 21.1°
to 52.6° and longitudes from 225.9° to 299.1°, as collected by the Herbie Python library (Blaylock,
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2024). The sources of extreme weather cases are divided into three categories based on extreme
weather types.

NOAA Storm Events Database The first source is the NOAA Storm Events Database (National
Centers for Environmental Information (NCEI), 2024), which includes a wide range of storms and
significant weather phenomena from 1950 to 2024, recorded by NOAA’s National Weather Service
(NWS). While most events from this database include information on location and spatial range,
some lack these critical details. Additionally, certain event types, such as avalanches and high surf,
or events requiring long-term predictions like droughts, do not significantly impact the physical
variables predicted by the models. To ensure greater accuracy, we have filtered out these events.
Common types of extreme events not covered here will be supplemented by the other two sources.
Otherwise the extensive and detailed records in this database facilitate the identification of areas and
time spans through provided ranges and timestamps directly.

NOAA Storm Prediction Center The NOAA Storm Prediction Center (National Oceanic and At-
mospheric Administration (NOAA), Storm Prediction Center (SPC), 2024) records daily reports of
hail, tornadoes, and wind from various sources, including local NWS offices, public reports, agen-
cies, and weather stations. However, the lack of event classification means that no specific ranges or
time spans are provided, and multiple events are often mixed together. This complicates the creation
of clear and accurate areas necessary for training and evaluating deep learning models accurately
and effectively. To address this, we employ an unsupervised clustering algorithm to classify the
events. After extensive case studies, we determined that DBSCAN (Ester et al., 1996) is the most
suitable for this task, as illustrated in Figure 1. For each timestamp, user reports are treated as 2D
points based on normalized latitude and longitude on the x and y axes. DBSCAN identifies clusters
based on point density, forming a cluster if there are enough points in close proximity. We carefully
tune the hyperparameters of DBSCAN to create more intuitive clusters and to filter out noisy points
more accurately as shown in Figure 1. Noisy points are filtered out because they likely represent
minor events or errors that are not significant enough to warrant creating a separate cropped area for
evaluation.

Figure 1: The performance of clustering by KMeans (right) and DBSCAN (left). It can be seen that
the results of DBSCAN are more accurate and reliable, and the approach also identifies noisy points
effectively.

Manually Filtered Extreme Temperatures As extreme temperature events are not covered in the
Storm Events Database and are absent from the Storm Prediction Center, we manually created cases
for unusual temperatures over large areas. ClimateLearn (Nguyen et al., 2023b) uses the 5th and
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95th percentiles of the 7-day localized mean surface temperature for each pixel as a threshold to filter
extreme temperature cases, similar to our approach. We also calculate the mean temperature for each
pixel and use the 5th and 95th percentiles as a reference, and select the thresholds for extreme cold
and heat at -29°C and 37°C, respectively, because exposure to such conditions can quickly cause
discomfort or injury, and these temperatures are uncommon over large areas in the U.S. For each
timestamp, we count the number of pixels in the feature map of the variable “temperature 2 meters
above ground” that exceed these thresholds. If the count is below 100, we discard the timestamp
since events in such timestamps are likely to be localized phenomena such as volcanic eruptions
or fires rather than the widespread heat or cold events we aim to predict. Subsequently, we apply
DBSCAN to each timestamp to further classify the events and eliminate noisy points.

3.3 DATA CROPPING AND INTERFACE

Figure 2: Event area are cropped and covered by a series of squares considering the fixed size fed to
the neural network, masks are provided to ensure only event area are calculated.

Alongside the dataset generated by our code, we provide an index file that contains details on loca-
tion, range, type of extreme weather, and time span by integrating information from above three data
source. Users can easily convert this information from the index file to longitude and latitude coordi-
nates with our open-source code. Based on the information from the index file, the original feature
maps covering the US are cropped into a series of sub-images that specifically focus on extreme
events. This approach allows models to train and evaluate on extreme events more precisely and
exclusively. The entire pipeline is illustrated in Figure 2. To account for uncertainties in records and
user reports, we slightly increased the range of each event. Each target area is covered by a series
of squares with dimensions (320, 320) to ensure compatibility with neural networks, and masks are
provided to ensure that only the target area is considered in loss calculations. When a cover image
reaches the edge of the sampling image, it is moved completely inside the edges instead of adding
constant value paddings, with masks adjusted accordingly. This ensures optimal performance of
deep learning models, which are trained without constant padding for this specific task. We provide
data for extreme events that occurred in 2020, totaling 5 TiB of memory. Data after July 2020 is
designated as the evaluation set. Due to substantial memory requirements and varying user needs,
we also offer a code interface for generating the dataset, allowing users to create datasets for any
selected year, with any number of hours before and after for each piece of data, ensuring scalability
and compatibility for different prediction strategies.

3.4 DATA AVAILABILITY

The HRRR data is in U.S. Government Work license, which means that the data is in the pub-
lic domain and can be freely used, distributed, and modified without any restrictions. Our dataset
(https://huggingface.co/datasets/NianRan1/HR-Extreme) and code (https:
//github.com/HuskyNian/HR-Extreme) will be available upon the accpetance of this pa-
per.
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4 EVALUATION

4.1 MODELS

NWP Numerical Weather Prediction models make predictions on HRRR data by solving mathemat-
ical equations that describe atmospheric dynamics and thermodynamics (Olson et al., 2022; Bauer
et al., 2015). In this work, if refers to the WRF-ARWv3.9+ model (Skamarock et al., 2008) in
HRRRv4. They assimilate observational data to create an initial atmospheric state, then use this
data to initialize model variables. The model integrates these equations forward in time to produce
forecasts of various atmospheric parameters at high resolution.

Pangu Pangu-Weather utilizes a 3D Earth-specific transformer (3DEST) architecture based on
Swin-Transformer (Liu et al., 2021b). The 3DEST model incorporates height information as an ad-
ditional dimension, enabling it to effectively capture atmospheric state relationships across different
pressure levels. Predictions are made by processing reanalysis weather data through a hierarchical
temporal aggregation strategy, which reduces cumulative forecast errors.

FuXi FuXi employs a cascaded deep learning architecture for weather forecasting. It features three
components: cube embedding to reduce input dimensions, a U-Transformer using Swin Transformer
V2 (Liu et al., 2022) blocks for data processing, and a fully connected layer for predictions. The
cascade involves three models optimized for different time windows (0-5, 5-10, and 10-15 days),
using outputs from shorter lead time models as inputs for longer ones to reduce forecast errors.

HR-Heim The architecture of HR-Heim follows a conventional structure with an encoder, a series
of transformer layers, and a decoder, inspired by the FuXi architecture (Chen et al., 2023b). For the
encoder, we utilize causal convolutions from MagViTv2 to capture spatial-temporal input (Yu et al.,
2023a). The transformer segment consists of multiple stacked SwinTransformer blocks (Liu et al.,
2022). Unlike typical Vision Transformer decoders that use a simple MLP with 1 × 1 convolution,
which can hinder resolution, our decoder progressively upscales the feature map from H

h × W
w to the

target size H×W through a series of steps. Each step resolves details at its specific resolution level,
incorporating convolutional layers and upsampling operations to enhance prediction quality. More
details about the architecture and its effectiveness are explained in the supplementary materials.

4.2 COMPUTE RESOURCES AND EXPERIMENT SETUP

The dataset creation process is resource-efficient, leveraging improved code efficiency and multi-
threading capabilities. Generating the dataset for a half-year period requires approximately 8 hours
on 42 CPU machines, utilizing around 2.5 TB of memory. HR-Extreme is designed to be machine
learning (ML) ready, allowing users to simply load a file and use keys to retrieve inputs, targets, and
masks to create tensors for a model. All models were evaluated on an Nvidia A100 80G GPU, with
the evaluation of a deep learning model for half a year’s data taking approximately 8 hours. For our
experiments, we set the batch size to 8. Given HR-Extreme’s ML-ready format, it is straightforward
to use, with no additional parameter setup required.

4.3 EXPERIMENTS

Model Type RMSE on
original set

RMSE on
HR-Extreme

Mean increasement of
RMSE of each variable

HR-Heim 1.40 1.60 34.30%
Pangu 2.77 10.42 394.23%
Fuxi 2.39 6.10 121.81%
NWP 2.35 3.27 78.08%

Table 2: Evaluation of NWP and deep learning models on extreme weather compared to on normal dataset.

All models (Pangu, Fuxi, and our HR-Heim) were trained on HRRR data spanning the U.S. from
January 2019 to June 2020, from scratch. They were trained under identical parameters and same
level of model parameters, and no hyperparameter tuning was applied to HR-Heim. Furthermore,
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Figure 3: The comparison of each variable on original test set and HR-Extreme evaluated on four models,
where the blue areas are normalized RMSE on original test set and green areas are normalized RMSE on HR-
Extreme.

none of these models were fine-tuned on our HR-Extreme dataset, ensuring a fair basis for compar-
ison and evaluation. We first evaluated the NWP model and the deep learning model on the original
test set spanning from July 2020 to the end of 2020. Subsequently, these models were assessed
and compared on HR-Extreme during the same period, as illustrated in Table 2. The losses on HR-
Extreme for all models increased significantly compared to general losses. The highest increase
was observed in Pangu, which experienced a nearly fourfold rise, while the smallest increase was
noted in HR-Heim, at 34.3%. This underscores the substantial impact of extreme weather on model
performance.

The complete loss for each variable, evaluated on both the original test set and HR-Extreme, and the
comparisons are shown in Table 4 and Table 5 in the appendix A.2. The best results in these tables
on the original test set are highlighted in black bold font, while those on HR-Extreme are highlighted
in red bold font. In summary, HR-Heim exhibits superior performance on both the original dataset
and HR-Extreme across nearly every variable. In terms of original test set, only 4 out of 69 variable
losses are slightly higher than the results of NWP, and they are U and V component of wind speed,
temperature and specific humidity at 50 millibars. On HR-Extreme, only the humidity at 50 and 100
millibars of HR-Heim are slightly higher than that of NWP and FuXi respectively, demonstrating
HR-Heim as a strong baseline on HRRR data in terms of both general and extremes predictions.
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From Figure 3, where the blue areas represent normalized RMSE on the original test set and the
green areas represent normalized RMSE on HR-Extreme, it is evident that the losses for nearly all
variables of all models on HR-Extreme increase significantly, often by many times compared to
losses on the original set. However, HR-Heim performs most stably in both the original test set and
HR-Extreme, with both green and blue areas of HR-Heim being dramatically smaller than those
of other models. Notably, NWP shows more stability in terms of extreme weather detection com-
pared to previous SOTA deep learning models, Pangu and FuXi, showing the demand of improving
extreme weather predictions of deep learning models. We conducted additional experiments with

Lead time RMSE of NWP on
original set

RMSE of NWP on
HR-Extreme

RMSE of HR-Heim on
HR-Extreme

1 2.35 3.27 1.60
2 3.55 4.12 2.29
3 4.63 5.20 2.86
4 5.49 6.04 3.43

Table 3: RMSE of NWP and HR-Heim on HR-Extreme with different lead times

varying lead times for the NWP and HR-Heim models. The results show that losses gradually
increase with longer lead times. Notably, the HR-Heim model consistently and significantly outper-
forms the NWP model across all lead times, achieving even lower losses than the NWP model on
the original dataset. This demonstrates the HR-Heim model’s effectiveness as a robust baseline for
high-resolution predictions (e.g., HRRR) and extreme event analysis on HR-Extreme.

4.4 CASE STUDY

Figure 4: The mean error heatmap of all variables on entire U.S for four mdoels.

Figure 4 presents the mean error heatmap visualization of all variables with normalized loss across
the entire U.S. Normalizing losses ensures each variable equally contributes to the error heatmap
despite differing scales. The upper left and right panels depict NWP and Pangu predictions, re-
spectively, at 8 p.m. on August 15, 2020, while the lower left and right panels show HR-Extreme
and Fuxi predictions at 10 p.m. on July 2, 2020. Different models are used for a single timestamp
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for comparison, and two timestamps are included for a more comprehensive demonstration. A red
bounding box indicates the occurrence of a specific type of extreme event, and overlapping bounding
boxes denote multiple extreme events in the same area.

In the upper left heatmap, bright areas covered with several bounding boxes indicate regions with
high losses where multiple extreme weather events are occurring. The upper right heatmap features
a very large bounding box with significant losses, which means Pangu makes significant errors in
predicting this extreme event. Comparing the upper images highlights the superior generalizability
of HR-Extreme, demonstrating its capacity to reveal the varying abilities of different models to
detect extreme weather. Specifically, it shows that NWP’s predictions for extreme events outperform
Pangu’s in this case, particularly regarding the largest bounding box, which corresponds to excessive
heat. This comparison confirms that the most significant loss contributions are effectively identified
by extreme weather.

The lower heatmaps further prove that the most prominent loss contributions are accurately situated
within the bounding boxes. However, the most apparent loss areas are not always precisely centered
within the bounding boxes, likely due to the movement of extreme weather events and HR-Extreme’s
basis on reports. Despite this, HR-Extreme exhibits excellent generalizability for both physical-
based and deep-learning-based methods. We also provide more case studies of physical varibles in
different extreme events in appendix A.1.

4.5 LIMITATION

Aside from excessive heat and cold extremes, HR-Extreme identifies bounding boxes primarily
based on user reports, including inputs from individuals, weather stations, and agencies. This re-
liance introduces uncertainty in identifying the range and span of extreme weather events, particu-
larly in regions with sparse populations or insufficient detection devices, such as mountains, marine
areas, and deserts. Consequently, many events may be omitted. Although HR-Extreme encompasses
a wide range of extreme weather events, it does not account for some large weather phenomena, such
as tropical depressions and tropical cyclones(Racah et al., 2017). These phenomena are also crucial
for predicting extreme weather events.

5 CONCLUSION AND FUTURE WORK

In this work, we present a comprehensive fine-grained dataset that encompasses 17 types of ex-
treme weather events in the US, derived from HRRR data, which is updated hourly and features a
3-km resolution. Due to the incomplete records of extreme events in the NOAA database (National
Centers for Environmental Information (NCEI), 2024), we utilized records from the NOAA Storm
Prediction Center (National Oceanic and Atmospheric Administration (NOAA), Storm Prediction
Center (SPC), 2024) and employed unsupervised clustering along with manual filtering to compile
a complete set of extreme events that significantly impact HRRR feature maps. These events are
anticipated to be accurately predicted by both deep learning and physical models, ensuring precise
identification of extreme weather events. HR-Extreme serves as a novel dataset for evaluating the
performance of weather forecasting models, particularly in practical applications. Our experiments
indicate that the misprediction of extreme or “unusual” events significantly contributes to the overall
prediction losses, revealing deficiencies in current model performance and underscoring the under-
valuation of these events. Our proposed model outperforms SOTA transformers and NWP models
in single-step prediction accuracy on both original dataset and extreme weather dataset.

For future work, since the current dataset is primarily built on user reports, developing more and im-
proved methods combining with user reports to identify the time span and range of extreme weather
events could yield a more accurate dataset. In addition, incorporating precursors of extreme weather
events as well as large weather phenomenons such as tropical cyclones into the dataset could provide
an even more comprehensive training framework. Furthermore, it would be beneficial to fine-tune
models specifically on the extreme weather dataset to enhance their practical utility. Regarding HR-
Heim, although it has superior performance compared to both SOTA deep learning models and NWP
model, it is only trained and tested on single hour prediction, but it still serves as a strong baseline
on HRRR data. Thus, an improved version of HR-Heim to predict longer period can be developed.
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A APPENDIX

A.1 ADDITIONAL VARIABLE CASE STUDY

We conducted a statistical analysis comparing values between normal and extreme cases as shown
in figure 5. To mitigate seasonal and regional effects, we randomly selected 50 timestamps within
15 days of the extreme event’s start or end date, ensuring at least 24 hours separation from the event
occurrence, within the same area. Extreme variables were averaged over the event duration, and
details of the variables are provided in Table 1. For clarity, the analysis focused on variables closest
to the ground. Extreme means differ significantly from normal cases, demonstrating the dataset’s
ability to statistically capture extreme values and events. Different types of extreme events exhibit
distinct characteristics, while similar types show consistent features. During heavy rainfall, humidity
increases rapidly, often with fluctuations in pressure and wind speeds. Thunderstorm winds display
more complex variability in temperature, wind speed, and pressure. Cases of hail, lightning, and
marine strong winds reveal different patterns: hail and lightning, which co-occur in this case, show
significant increases in humidity, mean sea level pressure, and geopotential height, while marine
strong winds show drops in mean sea level pressure and geopotential height, with a notable increase
in humidity.

A.2 DETAILED VARIABLE LOSS AND TYPE DESCRIPTION
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Figure 5: Case studies for physical variables in normal and extreme cases in the same area.
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Variable

HR-
Heim

General
Loss

HR-
Heim
HR-

Extreme
Loss

Pangu
General

Loss

Pangu
HR-

Extreme
Loss

FuXi
General

Loss

FuXi
HR-

Extreme
Loss

NWP
General

Loss

NWP
HR-

Extreme
Loss

msl 27.00 27.88 37.09 36.06 40.48 78.61 60.30 80.07
2t 0.40 0.47 0.81 0.74 0.86 1.63 0.52 1.19

10u 0.59 0.75 0.81 0.90 0.78 1.09 0.89 1.32
10v 0.59 0.77 0.82 0.93 0.78 1.12 0.89 1.36

hgtn 5000 6.48 6.80 8.35 8.53 10.25 25.09 8.05 10.58
hgtn 10000 5.32 5.93 6.87 7.39 9.54 28.76 7.04 8.56
hgtn 15000 5.14 5.80 6.55 7.15 10.70 35.26 6.83 8.22
hgtn 20000 4.77 5.54 6.77 7.53 10.54 36.72 6.50 8.12
hgtn 25000 4.32 5.10 5.76 272.94 9.84 34.94 6.12 7.80
hgtn 30000 3.95 4.69 5.19 14.26 9.01 30.41 5.82 7.38
hgtn 40000 3.30 3.93 4.31 17.91 7.38 22.87 5.37 6.84
hgtn 50000 2.85 3.39 4.06 13.11 5.95 18.27 5.18 6.73
hgtn 60000 2.58 3.02 3.35 10.66 4.98 14.14 5.11 6.64
hgtn 70000 2.40 2.69 3.05 83.58 4.21 10.82 5.06 6.42
hgtn 85000 2.27 2.44 2.88 28.27 3.45 7.05 5.06 6.51
hgtn 92500 2.31 2.44 3.24 39.93 3.40 6.46 5.15 6.86
hgtn 100000 2.26 2.37 46.46 44.29 3.41 6.46 5.10 6.90

u 5000 0.49 0.52 0.71 0.69 0.75 1.32 0.48 0.93
u 10000 0.47 0.55 0.69 0.74 0.76 1.69 0.49 1.03
u 15000 0.67 0.83 0.90 1.06 0.97 2.34 0.73 1.45
u 20000 0.96 1.20 1.27 1.84 1.35 2.95 1.08 1.96
u 25000 0.92 1.14 1.22 13.53 1.35 3.02 1.03 1.89
u 30000 0.83 1.04 1.09 3.14 1.24 2.71 0.91 1.67
u 40000 0.69 0.93 0.91 3.55 1.03 2.38 0.75 1.42
u 50000 0.62 0.93 0.89 2.94 0.89 2.20 0.70 1.42
u 60000 0.58 0.89 0.80 2.75 0.82 1.87 0.68 1.39
u 70000 0.59 0.88 0.79 6.60 0.80 1.70 0.69 1.36
u 85000 0.59 0.89 0.78 4.37 0.79 1.57 0.73 1.40
u 92500 0.55 0.86 1.28 4.15 0.73 1.44 0.72 1.42

u 100000 0.45 0.60 3.12 2.64 0.57 0.96 0.63 1.04
v 5000 0.52 0.53 0.71 0.68 0.65 0.86 0.47 0.95

v 10000 0.47 0.54 0.67 0.70 0.70 1.21 0.47 1.00
v 15000 0.68 0.82 0.89 1.03 0.96 1.97 0.72 1.43
v 20000 0.98 1.19 1.28 1.90 1.34 2.69 1.07 1.95
v 25000 0.94 1.13 1.25 11.74 1.36 2.63 1.04 1.92
v 30000 0.84 1.03 1.11 3.10 1.25 2.38 0.92 1.72
v 40000 0.70 0.93 0.93 3.64 1.02 2.06 0.76 1.48

Table 4: Losses of each variable for each model
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v 50000 0.63 0.94 0.90 3.06 0.90 1.92 0.71 1.48
v 60000 0.59 0.91 0.81 2.82 0.82 1.77 0.68 1.45
v 70000 0.60 0.90 0.81 6.52 0.80 1.60 0.69 1.40
v 85000 0.60 0.91 0.80 4.78 0.80 1.60 0.74 1.43
v 92500 0.57 0.88 1.36 4.80 0.76 1.52 0.74 1.47

v 100000 0.46 0.62 4.04 3.34 0.60 1.01 0.65 1.08
t 5000 0.32 0.35 0.43 0.43 0.51 0.63 0.29 0.63

t 10000 0.24 0.29 0.35 0.39 0.41 0.90 0.25 0.57
t 15000 0.23 0.29 0.33 0.36 0.36 0.82 0.26 0.49
t 20000 0.31 0.34 0.41 0.46 0.43 0.63 0.35 0.43
t 25000 0.25 0.28 0.34 5.42 0.38 0.83 0.29 0.38
t 30000 0.21 0.26 0.28 1.29 0.34 0.92 0.25 0.39
t 40000 0.21 0.28 0.28 1.57 0.35 0.96 0.25 0.43
t 50000 0.19 0.27 0.31 1.43 0.35 0.89 0.24 0.44
t 60000 0.18 0.26 0.28 1.47 0.33 0.87 0.22 0.43
t 70000 0.21 0.30 0.30 7.29 0.38 0.98 0.26 0.51
t 85000 0.28 0.35 0.44 2.64 0.49 1.15 0.38 0.65
t 92500 0.31 0.37 1.05 3.02 0.53 1.20 0.43 0.75
t 100000 0.29 0.36 9.79 3.11 0.52 1.19 0.48 0.95
q 5000 6.30e-08 5.61e-08 7.99e-08 6.99e-08 8.89e-08 1.49e-07 5.03e-08 5.51e-08

q 10000 1.87e-07 3.86e-07 2.42e-07 3.66e-07 4.20e-07 6.99e-07 4.45e-07 6.63e-07
q 15000 6.13e-07 1.17e-06 7.38e-07 1.18e-06 8.85e-07 1.66e-06 9.66e-07 2.13e-06
q 20000 3.02e-06 5.68e-06 3.86e-06 7.74e-06 3.94e-06 8.34e-06 4.73e-06 1.05e-05
q 25000 9.16e-06 1.72e-05 1.17e-05 9.99e-05 1.21e-05 2.72e-05 1.47e-05 3.31e-05
q 30000 2.03e-05 3.85e-05 2.58e-05 1.02e-04 2.70e-05 6.43e-05 3.17e-05 7.52e-05
q 40000 5.82e-05 1.13e-04 7.41e-05 3.92e-04 7.71e-05 1.93e-04 8.62e-05 2.15e-04
q 50000 1.13e-04 2.16e-04 1.53e-04 7.44e-04 1.46e-04 3.74e-04 1.56e-04 3.72e-04
q 60000 1.79e-04 3.34e-04 2.23e-04 1.05e-03 2.26e-04 5.60e-04 2.32e-04 5.10e-04
q 70000 2.56e-04 4.76e-04 3.14e-04 3.60e-03 3.20e-04 7.35e-04 3.22e-04 6.76e-04
q 85000 4.13e-04 6.60e-04 5.04e-04 3.27e-03 5.02e-04 9.85e-04 4.83e-04 9.04e-04
q 92500 4.57e-04 5.77e-04 1.28e-03 3.37e-03 5.78e-04 1.03e-03 5.44e-04 8.06e-04

q 100000 3.59e-04 4.32e-04 5.13e-03 2.44e-03 4.97e-04 9.81e-04 4.99e-04 8.01e-04

Table 5: Losses of each variable for each model, follow Table 4
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Variable Definition

Debris Flow
May be triggered by intense rain after wildfires. A slurry of loose soil, rock, organic

matter, and water, similar to wet concrete, which is capable of holding particles larger
than gravel in suspension.

Flash Flood
A life-threatening, rapid rise of water into a normally dry area beginning within

minutes to multiple hours of the causative event (e.g., intense rainfall, dam failure, ice
jam).

Flood
Any high flow, overflow, or inundation by water which causes damage. In general, this
would mean the inundation of a normally dry area caused by an increased water level

in an established watercourse, or ponding of water, associated with heavy rainfall

Funnel Cloud

A rotating, visible extension of a cloud pendant from a convective cloud with
circulation not reaching the ground. It is a precursor to more severe weather events.

The wind shear caused by it (sudden changes in wind speed and direction) will
endanger aviation.

Hail Frozen precipitation in the form of balls or irregular lumps of ice.

Heavy Rain Unusually large amount of rain which does not cause a Flash Flood or Flood event, but
causes damage

Lightning A sudden electrical discharge from a thunderstorm, resulting in a fatality, injury, and/or
damage

Marine Hail Hail 3/4 of an inch in diameter or larger, occurring over the waters and bays of the
ocean, Great Lakes, and other lakes with assigned specific Marine Forecast Zones

Marine High
Wind

Non-convective, sustained winds or frequent gusts of 48 knots (55 mph) or more,
resulting in a fatality, injury, or damage, over the waters and bays of the ocean, Great

Lakes, and other lakes with assigned specific Marine Forecast Zones.

Marine Strong
Wind

Non-convective, sustained winds or frequent gusts up to 47 knots (54 mph), resulting
in a fatality, injury, or damage, occurring over the waters and bays of the ocean, Great

Lakes, and other lakes with assigned specific Marine Forecast Zones.
Marine

Thunderstorm
Wind

Winds, associated with thunderstorms, occurring over the waters and bays of the
ocean, Great Lakes, and other lakes with assigned specific Marine Forecast Zones with

speeds of at least 34 knots (39 mph) for 2 hours or less.

Thunderstorm
Wind

Winds, arising from convection (occurring within 30 minutes of lightning being
observed or detected), with speeds of at least 50 knots (58 mph), or winds of any speed

(non-severe thunderstorm winds below 50 knots)

Tornado
A violently rotating column of air, extending to or from a cumuliform cloud or

underneath a cumuliform cloud, to the ground, and often (but not always) visible as a
condensation funnel.

Waterspout
A rotating column of air, pendant from a convective cloud, with its circulation

extending from cloud base to the water surface of bays and waters of the Great Lakes,
and other lakes with assigned Marine Forecast Zones.

Wind
Severe thunderstorm wind, strong wind that causes damage, which is reported and
recorded by NOAA Storm Prediction Center (National Oceanic and Atmospheric

Administration (NOAA), Storm Prediction Center (SPC), 2024).

Heat Large area of excessive heat above 37 degrees celsius in US during daytime, manually
filtered.

Cold Large area of excessive cold below -29 degress celsius in US during nighttime,
manually filtered.

Table 6: Explaination of each type of extreme weather included in HR-Extreme
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