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A STATISTICAL SIGNIFICANCE

In Table 3, we present the results of one-sided one-sample t-tests conducted to evaluate the statis-
tical significance of the performance gains achieved by our method in comparison to the strongest
baselines. For each dataset and evaluation metric, we compare the results obtained from multiple
independent runs of our best-performing configuration against the corresponding baseline means.

Table 3: Statistical significance tests of metric values compared between our best model and the
best baseline values using the U-Net base model.

Dataset Metric t-value p-value

BoMBR(Raina et al., 2024)

DSC 0.591 0.293
clDice 0.828 0.227
JSI 0.297 0.391
FNR -1.857 0.068
FPR -0.717 0.257

DRIVE(Hassan et al., 2015)

DSC 0.967 0.194
clDice 0.206 0.423
JSI 0.983 0.191
FNR 2.053 0.945
FPR 1.428 0.887

Cracks(Tomaszkiewicz & Owerko, 2023)

DSC 1.669 0.085
clDice 2.467 0.035
JSI 2.241 0.044
FNR 5.072 0.996
FPR 2.772 0.975

Drone1

DSC 1.4771 0.107
clDice 1.690 0.083
JSI 1.464 0.109
FNR -1.609 0.092
FPR -2.338 0.039

We observe that, while not all improvements reach statistical significance, there are multiple en-
couraging trends in favour of our approach. Notably, on the Cracks dataset, our method shows
statistically significant improvements in both clDice (p = 0.035) and JSI (p = 0.044), suggesting
reliable gains in capturing structural and overlap quality. Similarly, in the Drone dataset, a signifi-
cant reduction in the false positive rate (FPR; p = 0.039) is observed, indicating better precision in
delineating relevant regions.

Several other metrics, such as DSC and clDice on Drone, and DSC on Cracks, approach the signifi-
cance threshold (p < 0.1), pointing to consistent, if not conclusive, improvements. On the BoMBR
and DRIVE datasets, although most differences are not statistically significant, the metric values
achieved by our method remain competitive with the baselines.

B THE N -FACTOR

As per the function shown in Equation 1, the ESL loss function is given as:

LESL = −
∑

i∈Ω yi ŷi

N +
∑

i∈Ω yi(1− ŷi)

The numerator counts the True Positives (TP), while the denominator combines the normalization
term N with the FN. The constant N serves to stabilize the loss magnitude across images of different
sizes or pixel counts, preventing the loss from becoming excessively large when many false negatives
occur.
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From a gradient perspective, consider the derivative of LESL with respect to a predicted pixel ŷi:

∂LESL

∂ŷi
= −

v ∂u
∂ŷi
− u ∂v

∂ŷi

v2

= −

(
N +

∑
j∈Ω yj(1− ŷj)

)
yi −

(∑
j∈Ω yj ŷj

)
(−yi)(

N +
∑

j∈Ω yj(1− ŷj)
)2

= −
yi

(
N +

∑
j∈Ω yj(1− ŷj) +

∑
j∈Ω yj ŷj

)
(
N +

∑
j∈Ω yj(1− ŷj)

)2

= −
yi

(
N +

∑
j∈Ω yj

)
(
N +

∑
j∈Ω yj(1− ŷj)

)2 .

We may observe the following from the derived expression:

1. The gradient is proportional to yi:

∂LESL

∂ŷi
∝ yi.

Therefore, if yi = 0 (corresponding to a negative pixel), then

∂LESL

∂ŷi
= 0.

This shows that True Negatives (TN) and FP pixels do not contribute to the gradient, and
the loss specifically emphasizes the positive pixels (yi = 1), i.e., the FN regions.

2. The numerator term (N +
∑

j∈Ω yj) is constant for a given image. Only the denominator

D = N +
∑
j∈Ω

yj(1− ŷj)

varies with the predicted values, and it decreases as the number of correctly predicted
positive pixels increases. Since ∑

j∈Ω

yj(1− ŷj) ≤
∑
j∈Ω

yj ,

the denominator is always bounded below by N , preventing the gradient magnitude from
becoming excessively large.

Thus, including N in the denominator ensures numerical stability:

∣∣∣∣∂LESL

∂ŷi

∣∣∣∣ = yi

(
N +

∑
j∈Ω yj

)
(
N +

∑
j∈Ω yj(1− ŷj)

)2 ≤
yi

(
N +

∑
j∈Ω yj

)
N2

≤ yiN

N2
,

=⇒
∣∣∣∣∂LESL

∂ŷi

∣∣∣∣ ≤ yi
N

.

Since yi ∈ {0, 1}, we have ∣∣∣∣∂LESL

∂ŷi

∣∣∣∣ ≤ 1

N
.

,
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which guarantees bounded and stable gradients even for sparse positive targets, ensuring stable
optimization throughout training.

This analysis highlights that the gradient flow for our loss function is entirely concentrated on pos-
itive pixels, directly targeting the FN regions while ignoring TN and FP contributions. Moreover,
the presence of N in the denominator effectively scales the gradient, ensuring that its magnitude
remains bounded by 1/N regardless of the number of positive pixels or their predictions. Conse-
quently, the loss maintains sensitivity to challenging regions without causing unstable or excessively
large updates, supporting consistent and stable training even for sparse masks. Thus, N acts as a
normalization factor, balancing sensitivity to false negatives with overall numerical stability.

C TESTING SMM ON SEGNET

To further demonstrate the versatility and robustness of our proposed framework, we evaluated both
variants of SMM on SegNet (Badrinarayanan et al., 2017), a widely used segmentation architecture
that differs from U-Net in its encoder-decoder design and feature propagation strategy. This ex-
periment highlights the architecture-agnostic nature of our approach, showing that the unified mask
modulation and generalizable training strategy can be applied to diverse segmentation networks
while maintaining high performance. Table 4 presents the test set metrics for SegNet trained under

Table 4: Test set metrics of SegNet models trained using different strategies. SMMv1 and SMMv2
present results for both versions of our proposed framework.

Method DSC ↑ clDice ↑ JSI ↑ FNR ↓ FPR ↓
BoMBR (Raina et al., 2024)

SegNet 64.35 ± 1.82 61.56 ± 1.97 54.26 ± 2.05 26.11 ± 2.02 8.17 ± 0.65
SegNet + SRL 64.67 ± 2.89 62.33 ± 3.05 54.83 ± 2.89 27.00 ± 3.09 8.08 ± 1.08
SegNet + BL 64.12 ± 2.00 61.94 ± 1.42 54.86 ± 2.16 28.16 ± 0.72 8.43 ± 1.07

SMMv1 66.52± 1.07 64.17± 1.21 56.99± 1.19 25.62± 1.72 7.33± 0.20
SMMv2 65.76 ± 1.02 63.87 ± 0.93 56.31 ± 1.14 25.92 ± 1.21 7.83 ± 0.83

DRIVE (Hassan et al., 2015)

SegNet 66.52 ± 5.41 66.32 ± 5.61 50.13 ± 5.94 38.07 ± 5.03 3.33 ± 0.71
SegNet + SRL 63.96 ± 3.10 63.70 ± 3.04 47.17 ± 3.42 38.28 ± 3.15 4.30 ± 0.46
SegNet + BL 65.51 ± 4.90 66.10 ± 5.27 48.99 ± 5.55 42.83 ± 6.07 2.32± 0.49

SMMv1 66.63 ± 4.92 66.02 ± 4.95 50.23 ± 5.44 38.54 ± 5.10 3.14 ± 0.50
SMMv2 67.06± 4.96 66.79± 5.06 50.72± 5.50 36.22± 5.06 3.63 ± 0.62

various strategies, including baseline training, self-regularized learning (SRL), boundary loss (BL),
and our proposed SMM variants. Across both datasets, SMM consistently improves segmentation
performance compared to standard training strategies, achieving higher Dice, clDice, and Jaccard
scores while reducing false negative and false positive rates. These results confirm that the effective-
ness of SMM is not confined to a single architecture, underscoring its potential for broad deployment
across different segmentation models.

D VERSIONAL DESIGN LED SUPERIORITY

The results presented in Table 2 highlight the distinct behaviors of the two variants of SMM across
datasets with different characteristics. For clarity, we classify the datasets into two categories:

1. Negative-dominant datasets: The background is considerably more diverse and substan-
tially larger than the foreground. Segmentation in such cases is particularly challenging
due to bias toward the more abundant negative class. Representative datasets include
DRIVE (Hassan et al., 2015) and Cracks (Tomaszkiewicz & Owerko, 2023).

2. Balanced or foreground-rich datasets: The classes are approximately balanced, or fore-
ground pixels slightly dominate. Here, the primary challenge lies in capturing fine struc-
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tural details and ensuring accurate delineation of class boundaries. Examples include
BoMBR (Raina et al., 2024) and Drone1.

For architectures such as U-Net, SMMv1 consistently improves overlap- and topology-oriented met-
rics relative to vanilla baselines, with the largest gains observed in Category 1 datasets. This obser-
vation emphasizes the effectiveness of the ESL loss in tasks dominated by negative samples, thereby
positioning SMMv1 as the more robust variant under such conditions. In contrast, SMMv2 demon-
strates superior performance on Category 2 datasets, reflecting its suitability for scenarios where the
segmentation task depends less on class imbalance and more on semantic precision and fine-grained
contextual reasoning. These findings are further substantiated by the qualitative results shown in
Figure 4.

It should be noted that the aforementioned trends are observed in architectures that are not specif-
ically tailored to a particular domain or task (e.g., U-Net). We do not assert these patterns as
universal across all segmentation models.

Interestingly, the trend reverses when considering the results in Table 4. In this case, SMMv1 ex-
hibits stronger performance on Category 2, whereas SMMv2 proves more effective for Category 1
datasets.

15


	Statistical Significance
	The N-Factor
	Testing SMM on SegNet
	Versional Design Led Superiority

