
Conic Blackwell Algorithm: Parameter-Free
Convex-Concave Saddle-Point Solving

Julien Grand-Clément∗
ISOM Department

HEC Paris
grand-clement@hec.fr

Christian Kroer
IEOR Department

Columbia University
christian.kroer@columbia.edu

Abstract

We develop new parameter-free and scale-free algorithms for solving convex-
concave saddle-point problems. Our results are based on a new simple regret
minimizer, the Conic Blackwell Algorithm+ (CBA+), which attains O(1/

√
T)

average regret. Intuitively, our approach generalizes to other decision sets of
interest ideas from the Counterfactual Regret minimization (CFR+) algorithm,
which has very strong practical performance for solving sequential games on
simplexes. We show how to implement CBA+ for the simplex, `p norm balls, and
ellipsoidal confidence regions in the simplex, and we present numerical experiments
for solving matrix games and distributionally robust optimization problems. Our
empirical results show that CBA+ is a simple algorithm that outperforms state-of-
the-art methods on synthetic data and real data instances, without the need for any
choice of step sizes or other algorithmic parameters.

1 Introduction

We are interested in solving saddle-point problems (SPPs) of the form

min
x∈X

max
y∈Y

F (x,y), (1)

whereX ⊂ Rn,Y ⊂ Rm are convex, compact sets, and F : X×Y → R is a subdifferentiable convex-
concave function. Convex-concave SPPs arise in a number of practical problems. For example, the
problem of computing a Nash equilibrium of a zero-sum game can be formulated as a convex-concave
SPP, and this is the foundation of most methods for solving sequential zero-sum games [vS96,
ZJBP07, TBJB15, KWKKS20]. They also arise in imaging [CP11], `∞-regression [ST18], Markov
Decision Processes [Iye05, WKR13, ST18], and in distributionally robust optimization, where the
max term represents the distributional uncertainty [ND16, BTHKM15]. In this paper we propose
efficient, parameter-free algorithms for solving (1) in many settings, i.e., algorithms that do not
require any tuning or choices of step sizes.

Repeated game framework One way to solve convex-concave SPPs is by viewing the SPP as
a repeated game between two players, where each step t consists of one player choosing xt ∈ X ,
the other player choosing yt ∈ Y , and then the players observe the payoff F (xt,yt). If each player
employs a regret-minimization algorithm, then a well-known folk theorem says that the uniform
average strategy generated by two regret minimizers repeatedly playing an SPP against each other
converges to a solution to the SPP. We will call this the “repeated game framework” (see Section
2). There are already well-known algorithms for instantiating the above repeated game framework

∗Julien Grand-Clément acknowledges the financial support of Hi! Paris for this project.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

for (1). For example, one can employ the online mirror descent (OMD) algorithm, which generates
iterates as follows for the first player (and similarly for the second player):

xt+1 = arg min
x∈X

〈ηft,x〉+D(x‖xt), (2)

where ft ∈ ∂xF (xt,yt) (∂x denotes here the set of subgradients as regards the variable x), D(·‖·) is
a Bregman divergence which measures distance between pairs of points, and η > 0 is an appropriate
step size. By choosing D appropriately for X , the update step (2) becomes efficient, and one can
achieve an overall regret on the order of O(

√
T) after T iterations. This regret can be achieved

either by choosing a fixed step size η = α/L
√
T , where L is an upper bound on the norms of

the subgradients visited (ft)t≥0, or by choosing adaptive step sizes ηt = α/
√
t, for α > 0. This

is problematic, as 1) the upper bound L may be hard to obtain in many applications and may be
too conservative in practice, and 2) adequately tuning the parameter α can be time- and resource-
consuming, and even practically infeasible for very large instances, since we won’t know if the step
size will cause a slow convergence or a divergence until late in the optimization process. This is
not just a theoretical issue, as we highlight in our numerical experiments (Section 4) and in the
appendices (Appendices F). Similar results and challenges hold for the popular follow the regularized
leader (FTRL) algorithm (see Appendix F).

The above issues can be circumvented by employing adaptive variants of OMD or FTRL, which
lead to parameter- and scale-free algorithms that estimate the parameters through the observed
subgradients, e.g., AdaHedge for the simplex setting [DRVEGK14] or AdaFTRL for general compact
convex decisions sets [OP15]. Yet these adaptive variants have not seen practical adoption in large-
sale game-solving, where regret-matching variants are preferred (see the next paragraph). As we show
in our experiments, adaptive variants of OMD and FTRL perform much worse than our proposed
algorithms. While these adaptive algorithms are referred to as parameter-free, this is only true in the
sense that they are able to learn the necessary parameters. Our algorithm is parameter-free in the
stronger sense that there are no parameters that even require learning. Formalizing this difference
may be one interesting avenue for explaining the performance discrepancy on saddle-point problems.

Regret Matching In this paper, we introduce alternative regret-minimization schemes for instantiat-
ing the above framework. Our work is motivated by recent advances on solving large-scale zero-sum
sequential games. In the zero-sum sequential game setting, X and Y are simplexes, the objective
function becomes F (x,y) = 〈x,Ay〉, and thus (1) reduces to a bilinear SPP. Based on this bilinear
SPP formulation, the best practical methods for solving large-scale sequential games use the repeated
game framework, where each player minimizes regret via some variant of counterfactual regret
minimization (CFR, [ZJBP07]). Variants of CFR were used in every recent poker AI challenge, where
poker AIs beat human poker players [BBJT15, MSB+17, BS18, BS19]. The CFR framework itself
is a decomposition of the overall regret of the bilinear SPP into local regrets at each decision point in
a sequential game [FKS19a]. The key to the practical performance of CFR-based algorithms seems
to be three ingredients (beyond the CFR decomposition itself): (1) a particular regret minimizer
called regret matching+ (RM+) [TBJB15] which is employed at each decision point, (2) aggressive
iterate averaging schemes that put greater weight on recent iterates (e.g. linear averaging, which
weights iterate at period t by 2t/T (T + 1)), and (3) an alternation scheme where the updates of the
repeated game framework are performed in an asymmetric fashion. The CFR framework itself is
specific to sequential bilinear games on simplexes, but these last three ingredients could potentially
be generalized to other problems of the form (1). That is the starting point of the present paper.

The most challenging aspect of generalizing the above ingredients is that RM+ is specifically designed
for minimizing regret over a simplex. However, many problems of the form (1) have convex
sets X ,Y that are not simplexes, e.g., box constraints or norm-balls for distributionally robust
optimization [BTHKM15]. In principle, regret matching arises from a general theory called Blackwell
approachability [Bla56, HMC00], and similar constructions can be envisioned for other convex
sets. However, in practice the literature has only focused on developing concrete implementable
instantiations of Blackwell approachability for simplexes. A notable deviation from this is the work
of [ABH11], who showed a general reduction between regret minimization over general convex
compact sets and Blackwell approachability. However, their general reduction still does not yield a
practically implementable algorithm: among other things, their reduction relies on certain black-box
projections that are not always efficient. We show how to implement these necessary projections for
the setting where X and Y are simplexes, `p balls, and intersections of the `2 ball with a hyperplane

2

(with a focus on the case where an `2 ball is intersected with a simplex, which arises naturally as a
confidence region). This yields an algorithm which we will refer to as the conic Blackwell algorithm
(CBA), which is similar in spirit to the regret matching algorithm, but crucially generalizes to other
decision sets. Motivated by the practical performance of RM+, we construct a variant of CBA which
uses a thresholding operation similar to the one employed by RM+. We call this algorithm CBA+.

Our contributions We introduce CBA+, a parameter-free algorithm which achieves O(
√
T) regret

in the worst-case and generalizes the strong performances of RM+ for bilinear, simplex saddle-points
solving to other more general settings. A major selling point for CBA+ is that it does not require
any step size choices. Instead, the algorithm implicitly adjusts to the structure of the domains and
losses by being instantiations of Blackwell’s approachability algorithm. After developing the CBA+

algorithm, we then develop analogues of another crucial components for large-scale game solving. In
particular, we prove a generalization of the folk theorem for the repeated game framework for solving
(1), which allows us to incorporate polynomial averaging schemes such as linear averaging. We then
show that CBA+ is compatible with linear averaging on the iterates. This mirrors the case of RM and
RM+, where only RM+ is compatible with linear averaging on the iterates. We also show that both
CBA and CBA+ are compatible with polynomial averaging when simultaneously performed on the
regrets and the iterates. Combining all these ingredients, we arrive at a new class of algorithms for
solving convex-concave SPPs. As long as efficient projection operations can be performed (which
we show for several practical domains, including the simplex, `p balls and confidence regions in the
simplex), one can apply the repeated game framework on (1), where one can use either CBA or CBA+

as a regret minimizer for X and Y along with polynomial averaging on the generated iterates to solve
(1) at a rate of O

(
1/
√
T
)

.

We highlight the practical efficacy of our algorithmic framework on several domains. First, we solve
two-player zero-sum matrix games and extensive-form games, where RM+ regret minimizer combined
with linear averaging and alternation, and CFR+, lead to very strong practical algorithms [TBJB15].
We find that CBA+ combined with linear averaging and alternation leads to a comparable performance
in terms of the iteration complexity, and may even slightly outperform RM+ and CFR+. On this
simplex setting, we also find that CBA+ outperforms both AdaHedge and AdaFTRL. Second, we
apply our approach to a setting where RM+ and CFR+ do not apply: distributionally robust empirical
risk minimization (DR-ERM) problems. Across two classes of synthetic problems and four real data
sets, we find that our algorithm based on CBA+ performs orders of magnitude better than online
mirror descent and FTRL, as well as their optimistic variants, when using their theoretically-correct
fixed step sizes. Even when considering adaptive step sizes, or fixed step sizes that are up to 10, 000
larger than those predicted by theory, our CBA+ algorithm performs better, with only a few cases of
comparable performance (at step sizes that lead to divergence for some of the other non parameter-free
methods). The fast practical performance of our algorithm, combined with its simplicity and the total
lack of step sizes or parameters tuning, suggests that it should be seriously considered as a practical
approach for solving convex-concave SPPs in various settings.

Finally, we make a brief note on accelerated methods. Our algorithms have a rate of convergence
towards a saddle point of O(1/

√
T), similar to OMD and FTRL. In theory, it is possible to obtain a

faster O (1/T) rate of convergence when F is differentiable with Lipschitz gradients, for example via
mirror prox [Nem04] or other primal-dual algorithms [CP16]. However, our experimental results show
that CBA+ is faster than optimistic variants of FTRL and OMD [SALS15], the latter being almost
identical to the mirror prox algorithm, and both achieving O(1/T) rate of convergence. A similar
conclusion has been drawn in the context of sequential game solving, where the fastest O(1/

√
T)

CFR-based algorithms have better practical performance than the theoretically-superior O (1/T)-rate
methods [KWKKS20, KFS18]. In a similar vein, using error-bound conditions, it is possible to
achieve a linear rate, e.g., when solving bilinear saddle-point problems over polyhedral decision sets
using the extragradient method [Tse95] or optimistic gradient descent-ascent [WLZL20]. However,
these linear rates rely on unknown constants, and may not be indicative of practical performance.

3

2 Game setup and Blackwell Approachability

As stated in Section 1, we will solve (1) using a repeated game framework. The first player chooses
strategies from X in order to minimize the sequence of payoffs in the repeated game, while the
second player chooses strategies from Y in order to maximize payoffs. There are T iterations with
indices t = 1, . . . , T . In this framework, each iteration t consists of the following steps:

1. Each player chooses strategies xt ∈ X ,yt ∈ Y
2. First player observes ft ∈ ∂xF (xt,yt) and uses ft when computing the next strategy

3. Second player observes gt ∈ ∂yF (xt,yt) and uses gt when computing the next strategy

The goal of each player is to minimize their regret RT,x, RT,y across the T iterations:

RT,x =

T∑
t=1

〈ft,xt〉 − min
x∈X

T∑
t=1

〈ft,x〉, RT,y = max
y∈Y

T∑
t=1

〈gt,y〉 −
T∑
t=1

〈gt,yt〉.

The reason this repeated game framework leads to a solution to the SPP problem (1) is the following
folk theorem. Relying on F being convex-concave and subdifferentiable, it connects the regret
incurred by each player to the duality gap in (1).

Theorem 2.1 (Theorem 1, [Kro20]). Let (x̄T , ȳT) =
1

T

∑T
t=1 (xt,yt) for any (xt)t≥1 , (yt)t≥1.

Then
max
y∈Y

F (x̄T ,y)− min
x∈X

F (x, ȳT) ≤ (RT,x +RT,y)/T.

Therefore, when each player runs a regret minimizer that guarantees regret on the order of O(
√
T),

(x̄T , ȳT)T≥0 converges to a solution to (1) at a rate of O
(

1/
√
T
)

. Later we will show a general-
ization of Theorem 2.1 that will allow us to incorporate more aggressive averaging schemes that
put additional weight on the later iterates. Given the repeated game framework, the next question
becomes which algorithms to employ in order to minimize regret for each player. As mentioned in
Section 1, for zero-sum games, variants of regret matching are used in practice.

Blackwell Approachability Regret matching arises from the Blackwell approachability frame-
work [Bla56]. In Blackwell approachability, a decision maker repeatedly takes decisions xt from
some convex decision set X (this set plays the same role as X or Y in (1)). After taking decision xt
the player observes a vector-valued affine payoff function ut(x) ∈ Rn. The goal for the decision
maker is to force the average payoff 1

t

∑t
τ=1 uτ (xτ) to approach some convex target S. Blackwell

proved that a convex target set S can be approached if and only if for every halfspaceH ⊇ S , there
exists x ∈ X such that for every possible payoff function u(·), u(x) is guaranteed to lie inH. The
action x is said to forceH. Blackwell’s proof is via an algorithm: at iteration t, his algorithm projects
the average payoff ū = 1

t−1

∑t−1
τ=1 uτ (xτ) onto S, and then the decision maker chooses an action

xt that forces the tangent halfspace to S generated by the normal ū− πS(ū), where πS(ū) is the
orthogonal projection of ū onto S . We call this algorithm Blackwell’s algorithm; it approaches S at a
rate of O(1/

√
T). It is important to note here that Blackwell’s algorithm is rather a meta-algorithm

than a concrete algorithm. Even within the context of Blackwell’s approachability problem, one
needs to devise a way to compute the forcing actions needed at each iteration, i.e., to compute πS(ū).

Details on Regret Matching Regret matching arises by instantiating Blackwell approachability
with the decision space X equal to the simplex ∆(n), the target set S equal to the nonpositive
orthant Rn−, and the vector-valued payoff function ut(xt) = ft − 〈ft,xt〉e equal to the regret
associated to each of the n actions (which correspond to the corners of ∆(n)). Here e ∈ Rn has one
on every component. [HMC00] showed that with this setup, playing each action with probability
proportional to its positive regret up to time t satisfies the forcing condition needed in Blackwell’s
algorithm. Formally, regret matching (RM) keeps a running sum rt =

∑t
τ=1 (fτ − 〈fτ ,xτ 〉e),

and then action i is played with probability xt+1,i = [rt,i]
+/
∑n
i=1[rt,i]

+, where [·]+ denotes
thresholding at zero. By Blackwell’s approachability theorem, this algorithm converges to zero
average regret at a rate of O(1/

√
T). In zero-sum game-solving, it was discovered that a variant of

4

regret matching leads to extremely strong practical performance (but the same theoretical rate of
convergence). In regret matching+ (RM+), the running sum is thresholded at zero at every iteration:
rt = [rt−1 + ft − 〈ft,xt〉e]+, and then actions are again played proportional to rt. In the next
section, we describe a more general class of regret-minimization algorithms based on Blackwell’s
algorithm for general sets X , introduced in [ABH11]. Note that a similar construction of a general
class of algorithms can be achieved through the Lagrangian Hedging framework of [Gor07]. It
would be interesting to construct a CBA+-like algorithm and efficient projection approaches for this
framework as well.

3 Conic Blackwell Algorithm

We present the Conic Blackwell Algorithm Plus (CBA+), a no-regret algorithm which uses a variation
of Blackwell’s approachability procedure [Bla56] to perform regret minimization on general convex
compact decision sets X . We will assume that losses are coming from a bounded set; this occurs, for
example, if there exists Lx, Ly (that we do not need to know), such that

‖f‖ ≤ Lx, ‖g‖ ≤ Ly, ∀ x ∈ X ,y ∈ Y,∀ f ∈ ∂xF (x,y),∀ g ∈ ∂yF (x,y). (3)

CBA+ is best understood as a combination of two steps. The first is the basic CBA algorithm,
derived from Blackwell’s algorithm, which we describe next. To convert Blackwell’s algorithm
to a regret minimizer on X , we use the reduction from [ABH11], which considers the conic hull
C = cone({κ} × X) where κ = maxx∈X ‖x‖2. The Blackwell approachability problem is then
instantiated with X as the decision set, target set equal to the polar C◦ = {z : 〈z, ẑ〉 ≤ 0,∀ẑ ∈ C}
of C, and payoff vectors (〈ft,xt〉,−ft). The conic Blackwell algorithm (CBA) is implemented by
projecting the average payoff vector onto C, calling this projection α(κ,x) with α ≥ 0 and x ∈ X ,
and playing the action x.

The second step in CBA+ is to modify CBA to make it analogous to RM+ rather than to RM. To
do this, the algorithm does not keep track of the average payoff vector. Instead, we keep a running
aggregation of the payoffs, where we always add the newest payoff to the aggregate, and then
project the aggregate onto C. More concretely, pseudocode for CBA+ is given in Algorithm 1. This
pseudocode relies on two functions: CHOOSEDECISIONCBA+ : Rn+1 → Rn, which maps the
aggregate payoff vector ut to a decision in X , and UPDATEPAYOFFCBA+ which controls how we
aggregate payoffs. Given an aggregate payoff vector u = (ũ, û) ∈ R× Rn, we have

CHOOSEDECISIONCBA+(u) = (κ/ũ)û.

If ũ = 0, we just let CHOOSEDECISIONCBA+(u) = x0 for some chosen x0 ∈ X .

The function UPDATEPAYOFFCBA+ is implemented by adding the most recent payoff to the aggre-
gate payoffs, and then projecting onto C. More formally, it is defined as

UPDATEPAYOFFCBA+(u,x,f , ω, S) = πC

(
S

S + ω
u+

ω

S + ω
(〈f ,x〉/κ,−f)

)
,

where ω is the weight assigned to the most recent payoff and S the weight assigned to the previous
aggregate payoff u. Because of the projection step in UPDATEPAYOFFCBA+ , we always have u ∈ C,
which in turn guarantees that CHOOSEDECISIONCBA+(u) ∈ X , since C = cone({κ} × X).

Let us give some intuition on the effect of projection onto C. In a geometric sense, it is easier to
visualize things in R2 with C = R2

+ and C◦ = R2
−. The projection on C moves the vector along the

edges of C◦, maintaining the distance to C◦ and moving toward the vector 0. This is illustrated in
Figure 5 in Appendix B.1. From a game-theoretic standpoint, the projection on C = R2

+ eliminates
the components of the payoffs that are negative. It enables CBA+ to be less pessimistic than CBA,
which may accumulate negative payoffs on actions for a long time and never resets the components
of the aggregated payoff to 0, leading to some actions being chosen less frequently.

We will see in the next section that RM+ is related to CBA+ but replaces the exact projection step
πC(u) in UPDATEPAYOFFCBA+ by a suboptimal solution to the projection problem. Let us also
note the difference between CBA+ and the algorithm introduced in [ABH11], which we have called

5

Algorithm 1 Conic Blackwell Algorithm Plus (CBA+)

1: Input A convex, compact set X ⊂ Rn, κ = max{‖x‖2 | x ∈ X}.
2: Algorithm parameters Weights (ωτ)τ≥1 ∈ RN.
3: Initialization t = 1, x1 ∈ X .
4: Observe f1 then set u1 = (〈f1,x1〉/κ,−f1) ∈ R× Rn.
5: for t ≥ 1 do
6: Choose xt+1 = CHOOSEDECISIONCBA+(ut).
7: Observe the loss ft+1 ∈ Rn.
8: Update ut+1 = UPDATEPAYOFFCBA+(ut,xt+1,ft+1, ωt+1,

∑t
τ=1 ωτ).

9: Increment t← t+ 1.

CBA. CBA uses different UPDATEPAYOFF and CHOOSEDECISION functions. In CBA the
payoff update is defined as

UPDATEPAYOFFCBA(u,x,f , ω, S) =
S

S + ω
u+

ω

S + ω
(〈f ,x〉/κ,−f) .

Note in particular the lack of projection as compared to CBA+, analogous to the difference between
RM and RM+. The CHOOSEDECISIONCBA function then requires a projection onto C:

CHOOSEDECISIONCBA(u) = CHOOSEDECISIONCBA+ (πC(u)) .

Based upon the analysis in [Bla56], [ABH11] show that CBA with uniform weights (both on payoffs
and decisions) guarantees O(1/

√
T) average regret. The difference between CBA+ and CBA is

similar to the difference between the RM and RM+ algorithms. In practice, RM+ performs significantly
better than RM for solving matrix games, when combined with linear averaging on the decisions (as
opposed to the uniform averaging used in Theorem 2.1). In the next theorem, we show that CBA+ is
compatible with linear averaging on decisions only. We present a detailed proof in Appendix B.
Theorem 3.1. Consider (xt)t≥0 generated by CBA+ with uniform weights: ωτ = 1,∀ τ ≥ 1. Let
L = max{‖ft‖2 | t ≥ 1} and κ = max{‖x‖2 | x ∈ X}. Then∑T

t=1 t〈ft,xt〉 −minx∈X
∑T
t=1 t〈ft,x〉

T (T + 1)
= O

(
κL/
√
T
)
.

Note that in Theorem 3.1, we have uniform weights on the sequence of payoffs (ut)t≥0, but linearly
increasing weights on the sequence of decisions. The proof relies on properties specific to CBA+, and
it does not extend to CBA. Numerically it also helps CBA+ but not CBA. In Appendix B, we show
that both CBA and CBA+ achieve O

(
κL/
√
T
)

convergence rates when using a weighted average
on both the decisions and the payoffs (Theorems B.2-B.3). In practice, using linear averaging only
on the decisions, as in Theorem 3.1, performs vastly better than linear averaging on both decisions
and payoffs. We present empirical evidence of this in Appendix B.

We can compare the O
(
κL/
√
T
)

average regret for CBA+ with the O
(

ΩL/
√
T
)

average regret
for OMD [NY83, BTN01] and FTRL [AHR09, McM11], where Ω = max{‖x− x′‖2|x,x′ ∈ X}.
We can always recenter X to contain 0, in which case the bounds for OMD/FTRL and CBA+

are equivalent since κ ≤ Ω ≤ 2κ. Note that the bound on the average regret for Optimistic
OMD (O-OMD, [CYL+12]) and Optimistic FTRL (O-FTRL, [RS13]) is O

(
Ω2L/T

)
in the game

setup, a priori better than the bound for CBA+ as regards the number of iterations T . Nonetheless,
we will see in Section 4 that the empirical performance of CBA+ is better than that of O(1/T)
methods. A similar situation occurs for RM+ compared to O-OMD and O-FTRL for solving poker
games [FKS19b, KWKKS20].

The following theorem gives the convergence rate of CBA+ for solving saddle-points (1), based on
our convergence rate on the regret of each player (Theorem 3.1). The proof is in Appendix C.

Theorem 3.2. Let (x̄T , ȳT) = 2
∑T
t=1 t (xt,yt) /(T (T+1)),where (xt)t≥0 , (yt)t≥0 are generated

by the repeated game framework with CBA+ with uniform weights: ωτ = 1,∀ τ ≥ 1. Let L =
max{Lx, Ly} defined in (3) and κ = max{max{‖x‖2, ‖y‖2} | x ∈ X ,y ∈ Y}. Then

max
y∈Y

F (x̄T ,y)− min
x∈X

F (x, ȳT) = O
(
κL/
√
T
)
.

6

3.1 Efficient implementations of CBA+

To obtain an implementation of CBA+ and CBA, we need to efficiently resolve the functions
CHOOSEDECISIONCBA+ and UPDATEPAYOFFCBA+ . In particular, we need to compute πC(u),
the orthogonal projection of u onto the cone C, where C = cone({κ} × X):

πC(u) ∈ arg min
y∈C
‖y − u‖22. (4)

Even for CBA this problem must be resolved, since [ABH11] did not study whether (4) can be
efficiently solved. It turns out that (4) can be computed in closed-form or quasi closed-form for
many decision sets X of interest. Interestingly, parts of the proofs rely on Moreau’s Decomposition
Theorem [CR13], which states that πC(u) can be recovered from πC◦(u) and vice-versa, because
πC(u) + πC◦(u) = u. We present the detailed complexity results and the proofs in Appendix D.

Simplex X = ∆(n) is the classical setting used for matrix games. Also, for extensive-form games,
CFR decomposes the decision sets (treeplexes) into a set of regret minimization problems over
the simplex [FKS19a]. Here, n is the number of actions of a player and x ∈ ∆(n) represents a
randomized strategy. In this case, πC(u) can be computed in O(n log(n)). Note that RM and RM+

are obtained by choosing a suboptimal solution to (4), avoiding the O(n log(n)) sorting operation,
whereas CBA and CBA+ choose optimally (see Appendix D). Thus, RM and RM+ can be seen as
approximate versions of CBA and CBA+, where (4) is solved approximatively at every iteration. In
our numerical experiments, we will see that CBA+ slightly outperforms RM+ and CFR+ in terms of
iteration count.

`p balls This is when X = {x ∈ Rn | ; ‖x‖p ≤ 1} with p ≥ 1 or p = ∞. This is of interest
for instance in distributionally robust optimization [BTHKM15, ND16], `∞ regression [ST18] and
saddle-point reformulation of Markov Decision Process [JS20]. For p = 2, we can compute πC(u)
in closed-form, i.e., in O(n) arithmetic operations. For p ∈ {1,∞}, we can compute πC(u) in
O(n log(n)) arithmetic operations using a sorting algorithm.

Ellipsoidal confidence region in the simplex Here, X is an ellipsoidal subregion of the simplex,
defined as X = {x ∈ ∆(n) | ‖x − x0‖2 ≤ εx}. This type of decision set is widely used because
it is associated with confidence regions when estimating a probability distribution from observed
data [Iye05, BdHP19]. It can also be used in the Bellman update for robust Markov Decision Process
[Iye05, WKR13, GGC18]. We also assume that the confidence region is “entirely contained in the
simplex”: {x ∈ Rn|x>e = 1}⋂{x ∈ Rn | ‖x − x0‖2 ≤ εx} ⊆ ∆(n), to avoid degenerate
components. In this case, using a change of basis we show that it is possible to compute πC(u) in
closed-form, i.e., in O(n) arithmetic operations.

Other potential sets of interests Other important decision sets include sets based on
Kullback-Leibler divergence {x ∈ ∆(n) | KL (x,x0) ≤ εx}, or, more generally, φ-
divergence [BTDHDW+13]. For these sets, we did not find a closed-form solution to the projection
problem (4). Still, as long as the domain X is a convex set, computing πC(u) remains a convex
problem, and it can be solved efficiently with solvers, although this results in a slower algorithm than
with closed-form computations of πC(u).

4 Numerical experiments

In this section we investigate the practical performances of our algorithms on several instances of
saddle-point problems. We start by comparing CBA+ with RM+ in the matrix and extensive-form
games setting. We then turn to comparing our algorithms on instances from the distributionally robust
optimization literature. The code for all experiments is available in the supplemental material.

4.1 Matrix games on the simplex and Extensive-Form Games

Since the motivation for CBA+ is to obtain the strong empirical performances of RM+ and CFR+ on
other decision sets than the simplex, we start by checking that CBA+ indeed provides comparable

7

performance on simplex settings. We compare these methods on matrix games

min
x∈∆(n)

max
y∈∆(m)

〈x,Ay〉,

where A is the matrix of payoff, and on extensive-form games (EFGs). EFGs can also be writ-
ten as SPPs with bilinear objective and X ,Y polytopes encoding the players’ space of sequential
strategies [vS96]. EFGs can be solved via simplex-based regret minimization by using the coun-
terfactual regret minimization (CFR) framework to decompose regrets into local regrets at each
simplex. Explaining CFR is beyond the scope of this work; we point the reader to [ZJBP07] or
newer explanations [FKS19c, FKS19a]. For matrix games, we generate 70 synthetic 10-dimensional
matrix games with Aij ∼ U [0, 1] and compare the most efficient algorithms for matrix games with
linear averaging: CBA+ and RM+. We also compare with two other scale-free no-regret algorithms,
AdaHedge [DRVEGK14] and AdaFTRL [OP15]. Figure 1a presents the duality gap of the current
solutions vs. the number of steps. Here, both CBA+ and RM+ use alternation, which is a trick that is
well-known to improve the performances of RM+ [TBJB15], where the repeated game framework is
changed such that players take turns updating their strategies, rather than performing these updates
simultaneously, see Appendix E.1 for details.2

For EFGs, we compare CBA+and CFR+ on many poker AI benchmark instances, including Leduc,
Kuhn, search games and sheriff (see [FKS21] for game descriptions). We present our results
in Figures 1b-1d. Additional details and experiments for EFGs are presented in Appendix E.4.
Overall, we see in Figure 1 that CBA+may slightly outperform RM+ and CFR+, two of the strongest
algorithms for matrix games and EFGs, which were shown to achieve the best empirical performances
compared to a wide range of algorithms, including Hedge and other first-order methods [Kro20,
KFS18, FKS19b]. For matrix games, AdaHedge and AdaFTRL are both outperformed by RM+

and CBA+; we present more experiments to compare RM+ and CBA+ in Appendix E.2, and more
experiments with matrix games in Appendix E.3. Recall that our goal is to generalize these strong
performance to other settings: we present our numerical experiments for solving distributionally
robust optimization problems in the next section.

100 101 102 103

Number of steps

10−4

10−3

10−2

10−1

Du
al

ity
 g

ap

RM+ CBA+ AdaFTRL AdaHedge

(a) Matrix game.

102 103

Number of steps

10−3

10−2

10−1

100

Du
al

ity
 G

ap

CBA + CFR +

(b) EFG: Leduc, 2 players,
9 ranks.

102 103

Number of steps

10−2

10−1

100

Du
al

ity
 G

ap

CBA + CFR +

(c) EFG: Battleship, 3
turns, 1 ship.

102 103

Number of steps

10−3

10−2

10−1

100
Du

al
ity

 G
ap

CBA + CFR +

(d) EFG: Leduc, 2 players,
5 ranks.

Figure 1: Comparison of CBA+ with RM+ and CFR+ on matrix games and EFGs.

4.2 Distributionally Robust Optimization

Problem setup Broadly speaking, DRO attempts to exploit partial knowledge of the statistical
properties of the model parameters to obtain risk-averse optimal solutions [RM19]. We focus on the
following instance of distributionally robust classification with logistic losses [ND16, BTHKM15].
There are m observed feature-label pairs (ai, bi) ∈ Rn × {−1, 1}, and we want to solve

min
x∈Rn,‖x−x0‖2≤R

max
y∈∆(m),‖y−y0‖22≤λ

m∑
i=1

yi`i(x), (5)

where `i(x) = log(1 + exp(−bia>i x)). The formulation (5) takes a worst-case approach to put more
weight on misclassified observations and provides some statistical guarantees, e.g., it can be seen as a
convex regularization of standard empirical risk minimization instances [DGN21].

We compare CBA+ (with linear averaging and alternation) with Online Mirror Descent (OMD),
Optimistic OMD (O-OMD), Follow-The-Regularized-Leader (FTRL) and Optimistic FTRL (O-
FTRL). We provide a detailed presentation of our implementations of these algorithms in Appendix

2We note that RM+ is guaranteed to retain its convergence rate under alternation. In contrast, we leave
resolving this property for CBA+ to future work.

8

10−2

10−1

100

no
rm

al

α = 1 α = 100 α = 1, 000 α = 10, 000

10−4

10−2

100

sp
lic

e

101 102 10310−6

10−4

10−2

100

m
ad

el
on

101 102 103 101 102 103 101 102 103

Number of steps

M
ax

L
os

s(
x)

CBA+ OMD OOMD FTRL OFTRL

Figure 2: Comparisons of the performances of CBA+ with OMD,FTRL,O-OMD and O-FTRL with
fixed step sizes, on synthetic (with normal distribution) and real data sets (splice and madelon).

F. We compare the performances of these algorithms with CBA+ on two synthetic data sets and four
real data sets. We use linear averaging on decisions for all algorithms, and parameters x0 = 0, R =
10,y0 = (1, ..., 1) /m, λ = 1/2m in eq. (5).

Synthetic and real instances For the synthetic classification instances, we generate an optimal
x∗ ∈ Rn, sample ai ∼ N(0, I) for i ∈ {1, ...,m}, set labels bi = sign(a>i x

∗), and then we flip
10% of them. For the real classification instances, we use the following data sets from the libsvm
website3: adult, australian, splice, madelon. Details about the empirical setting, the data sets and
additional numerical experiments are presented in Appendix G.

Choice of step sizes One of the main motivation for CBA+ is to obtain a parameter-free algorithm.
Choosing a fixed step size η for the other algorithms requires knowing a bound L on the norm of
the instantaneous payoffs (see Appendix F.2 for our derivations of this upper bound). This is a
major limitation in practice: these bounds may be very conservative, leading to small step sizes.
We highlight this by showing the performance of all four algorithms, for various fixed step sizes
η = α× ηth, where α ∈ {1, 100, 1, 000, 10, 000} is a multiplier and ηth is the theoretical step size
which guarantees the convergence of the algorithms for each instance. We detail the computation of
ηth in Appendix F.2. We present the results of our numerical experiments on synthetic and real data

sets in Figure 2. Additional simulations with adaptive step sizes ηt = 1/
√∑t−1

τ=1 ‖fτ‖22 [Ora19] are
presented in Figure 3 and in Appendix G.

Results and discussion In Figure 2, we present the worst-case loss of the current solution x̄T in
terms of the number of steps T . We see that when the step sizes is chosen as the theoretical step
sizes guaranteeing the convergence of the non-parameter free algorithms (α = 1), CBA+ vastly
outperforms all of the algorithms. When we take more aggressive step sizes, the non-parameter-free
algorithms become more competitive. For instance, when α = 1, 000, OMD, FTRL and O-FTRL
are competitive with CBA+ for the experiments on synthetic data sets. However, for this same
instance and α = 1, 000, O-OMD diverges, because the step sizes are far greater than the theoretical
step sizes guaranteeing convergence. At α = 10, 000, both OMD and O-OMD diverge. The same
type of performances also hold for the splice data set. Finally, for the madelon data set, the non

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

9

101 102 103

10−2

10−1

100

normal

101 102 103

10−3

10−2

10−1

splice

101 102 103

10−5

10−4

10−3

10−2

madelon

CBA+ OMD OOMD FTRL OFTRL

Number of steps

M
ax

L
os

s(
x)

Figure 3: Comparisons of the performances of CBA+, OMD,FTRL,O-OMD and O-FTRL with
adaptive step sizes, on synthetic (with normal distribution) and real data sets (splice and madelon).

parameter-free algorithms start to be competitive with CBA+ only when α = 10, 000. Again, we
note that this range of step sizes η is completely outside the values ηth that guarantee convergence of
the algorithms, and fine-tuning the algorithms is time- and resource-consuming. In contrast, CBA+

can be used without wasting time on exploring and finding the best convergence rates, and with
confidence in the convergence of the algorithm. Similar observations hold for adaptive step sizes (see
Figure 3 and Appendix G). The overall poor performances of the optimistic methods (compared to
their O(1/T) average regret guarantees) may reflect their sensibility to the choice of the step sizes.
Additional experiments in Appendix G with other real and synthetic EFG and DRO instances show
the robustness of the strong performances of CBA+ across additional problem instances.

Running times compared to CBA+ We would like to emphasize that all of our figures show the
number of steps on the x-axis, and not the actual running times of the algorithms. Overall, CBA+

converges to an optimal solution to the DRO instance (5) vastly faster than the other algorithms. In
particular, empirically, CBA+ is 2x-2.5x faster than OMD, FTRL and O-FTRL, and 3x-4x faster than
O-OMD. This is because OMD, FTRL, O-OMD, and O-FTRL require binary searches at each step,
see Appendix F. The functions used in the binary searches themselves require solving an optimization
program (an orthogonal projection onto the simplex, see (33)) at each evaluation. Even though
computing the orthogonal projection of a vector onto the simplex can be done in O(n log(n)), this
results in slower overall running time, compared to CBA+ with (quasi) closed-form updates at each
step. The situation is even worse for O-OMD, which requires two proximal updates at each iteration.
We acknowledge that the same holds for CBA+ compared to RM+. In particular, CBA+ is slightly
slower than RM+, because of the computation of πC(u) in O(n log(n)) operations at every iteration.

5 Conclusion

We have introduced CBA+, a new algorithm for convex-concave saddle-point solving, that is 1)
simple to implement for many practical decision sets, 2) completely parameter-free and does not
attempt to lear any step sizes, and 3) competitive with, or even better than, state-of-the-art approaches
for the best choices of parameters, both for matrix games, extensive-form games, and distributionally
robust instances. Our paper is based on Blackwell approachability, which has been used to achieved
important breakthroughs in poker AI in recent years, and we hope to generalize the use and imple-
mentation of this framework to other important problem instances. Interesting future directions of
research include developing a theoretical understanding of the improvements related to alternation
in our setting, designing efficient implementations for other widespread decision sets (e.g., based
on Kullback-Leibler divergence or φ-divergence), and novel accelerated versions based on strong
convex-concavity or optimistim.

Societal impact There is a priori no direct negative societal consequence to this work, since our
methods simply return the same solutions as previous algorithms but in a simpler and more efficient
way.

10

References

[ABH11] Jacob Abernethy, Peter L Bartlett, and Elad Hazan. Blackwell approachability and no-regret
learning are equivalent. In Proceedings of the 24th Annual Conference on Learning Theory,
pages 27–46. JMLR Workshop and Conference Proceedings, 2011.

[AHR09] Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. 2009.

[BBJT15] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015.

[BdHP19] Dimitris Bertsimas, Dick den Hertog, and Jean Pauphilet. Probabilistic guarantees in robust
optimization. 2019.

[Bla56] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of
Mathematics, 6(1):1–8, 1956.

[BMS19] Neil Burch, Matej Moravcik, and Martin Schmid. Revisiting cfr+ and alternating updates.
Journal of Artificial Intelligence Research, 64:429–443, 2019.

[BS18] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, 359(6374):418–424, 2018.

[BS19] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science,
365(6456):885–890, 2019.

[BT03] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[BTDHDW+13] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs
Rennen. Robust solutions of optimization problems affected by uncertain probabilities.
Management Science, 59(2):341–357, 2013.

[BTHKM15] Aharon Ben-Tal, Elad Hazan, Tomer Koren, and Shie Mannor. Oracle-based robust optimiza-
tion via online learning. Operations Research, 63(3):628–638, 2015.

[BTN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis,
algorithms, and engineering applications, volume 2. Siam, 2001.

[CP11] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–
145, 2011.

[CP16] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order
primal–dual algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

[CR13] Patrick L Combettes and Noli N Reyes. Moreau’s decomposition in banach spaces. Mathe-
matical Programming, 139(1):103–114, 2013.

[CYL+12] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin,
and Shenghuo Zhu. Online optimization with gradual variations. In Conference on Learning
Theory, pages 6–1. JMLR Workshop and Conference Proceedings, 2012.

[DGN21] John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization: A
generalized empirical likelihood approach. Mathematics of Operations Research, 2021.

[DRVEGK14] Steven De Rooij, Tim Van Erven, Peter D Grünwald, and Wouter M Koolen. Follow the leader
if you can, hedge if you must. The Journal of Machine Learning Research, 15(1):1281–1316,
2014.

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the L-1 ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

[EPGMFBV03] Juan José Egozcue, Vera Pawlowsky-Glahn, Glòria Mateu-Figueras, and Carles Barcelo-Vidal.
Isometric logratio transformations for compositional data analysis. Mathematical Geology,
35(3):279–300, 2003.

11

[FKS19a] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for se-
quential decision processes and extensive-form games. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 1917–1925, 2019.

[FKS19b] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Optimistic regret minimization
for extensive-form games via dilated distance-generating functions. In Advances in Neural
Information Processing Systems, pages 5222–5232, 2019.

[FKS19c] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret circuits: Composability
of regret minimizers. In International Conference on Machine Learning, pages 1863–1872,
2019.

[FKS21] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive
blackwell approachability: Connecting regret matching and mirror descent. In Proceedings of
the AAAI Conference on Artificial Intelligence. AAAI, 2021.

[GCK20a] Julien Grand-Clément and Christian Kroer. First-order methods for Wasserstein distribution-
ally robust MDP. arXiv preprint arXiv:2009.06790, 2020.

[GCK20b] Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps.
arXiv preprint arXiv:2005.05434, 2020.

[GGC18] Vineet Goyal and Julien Grand-Clément. Robust Markov decision process: Beyond rectangu-
larity. arXiv preprint arXiv:1811.00215, 2018.

[GKG19] Yuan Gao, Christian Kroer, and Donald Goldfarb. Increasing iterate averaging for solving
saddle-point problems. arXiv preprint arXiv:1903.10646, 2019.

[Gor07] Geoffrey J Gordon. No-regret algorithms for online convex programs. In Advances in Neural
Information Processing Systems, pages 489–496. Citeseer, 2007.

[HMC00] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68(5):1127–1150, 2000.

[Iye05] Garud Iyengar. Robust dynamic programming. Mathematics of Operations Research,
30(2):257–280, 2005.

[JS20] Yujia Jin and Aaron Sidford. Efficiently solving mdps with stochastic mirror descent. In
International Conference on Machine Learning, pages 4890–4900. PMLR, 2020.

[KFS18] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Solving large sequential games with
the excessive gap technique. In Advances in Neural Information Processing Systems, pages
864–874, 2018.

[Kro20] Christian Kroer. Ieor8100: Economics, ai, and optimization lecture note 5: Computing Nash
equilibrium via regret minimization. 2020.

[KWKKS20] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algo-
rithms for extensive-form game solving via improved smoothing functions. Mathematical
Programming, pages 1–33, 2020.

[McM11] Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems
and l1 regularization. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 525–533. JMLR Workshop and Conference Proceedings,
2011.

[MSB+17] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

[ND16] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally
robust optimization with f-divergences. In NIPS, volume 29, pages 2208–2216, 2016.

[Nem04] Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequali-
ties with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[NY83] Arkadi Nemirovski and David Yudin. Problem complexity and method efficiency in optimiza-
tion. 1983.

12

[OP15] Francesco Orabona and Dávid Pál. Scale-free algorithms for online linear optimization. In
International Conference on Algorithmic Learning Theory, pages 287–301. Springer, 2015.

[Ora19] Francesco Orabona. A modern introduction to online learning. arXiv preprint
arXiv:1912.13213, 2019.

[RM19] Hamed Rahimian and Sanjay Mehrotra. Distributionally robust optimization: A review. arXiv
preprint arXiv:1908.05659, 2019.

[RS13] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In
Conference on Learning Theory, pages 993–1019. PMLR, 2013.

[SALS15] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
regularized learning in games. arXiv preprint arXiv:1507.00407, 2015.

[Shi16] Nahum Shimkin. An online convex optimization approach to blackwell’s approachability. The
Journal of Machine Learning Research, 17(1):4434–4456, 2016.

[ST18] Aaron Sidford and Kevin Tian. Coordinate methods for accelerating l-infinity regression and
faster approximate maximum flow. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 922–933. IEEE, 2018.

[TBJB15] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up
limit Texas hold’em. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[Tse95] Paul Tseng. On linear convergence of iterative methods for the variational inequality problem.
Journal of Computational and Applied Mathematics, 60(1-2):237–252, 1995.

[vS96] Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic
Behavior, 14(2):220–246, 1996.

[WKR13] W. Wiesemann, D. Kuhn, and B. Rustem. Robust Markov decision processes. Operations
Research, 38(1):153–183, 2013.

[WLZL20] Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo. Linear last-iterate con-
vergence in constrained saddle-point optimization. In International Conference on Learning
Representations, 2020.

[ZJBP07] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Advances in neural information
processing systems, pages 1729–1736, 2007.

13

A Comparison to [Shi16] and [FKS21]

The focus of our paper is on developing new algorithms for convex-concave saddle-point solving via
Blackwell approachability algorithms for sets beyond the simplex domain. This is what motivated
the development of CBA+, which attempts to generalize the ideas from RM+ and CFR+ beyond
simplex settings. A complementary question is to consider the second construction of [ABH11],
which is a way to convert a no-regret algorithm into an approachability algorithm. At a very level, that
construction ends up using the no-regret algorithm to select which hyperplane to force, and performing
regret minimization on the choice of hyperplane. An observation made by both [Shi16] and [FKS21]
is that if one uses FTRL with the Euclidean regularizer, then it corresponds to Blackwell’s original
approachability algorithm, and thus to regret matching on the simplex. This begs the question of
what happens if one uses a different algorithm from FTRL. The most natural substitute would be
OMD with a Bregman divergence derived from the Euclidean distance, which is also known as online
gradient descent (OGD).

[Shi16] considers OGD on a variation of the original construction of [ABH11] with the simplex
as the decision set. This setup (and the original setup from [ABH11]) uses (a subset of) the unit
ball as the feasible set for the regret minimizer, and thus OGD ends up projecting the cumulated
payoff vector onto the unit ball after every iteration. Therefore, the OGD setup by [Shi16] yields an
algorithm that is reminiscent of RM+, but where we repeatedly renormalize the cumulated payoff
vector. One consequence of this is that the stepsize used to add new payoff vectors becomes important.
[FKS21] show that the [ABH11] construction can be extended to allow the regret minimizer to use
any decision set D such that K ⊆ D ⊆ S◦, where S is the target set and S◦ its polar cone, and K is
S◦ intersected with the unit ball. Then, [FKS21] consider the simplex regret-minimization setting,
and show that OGD instantiated on Rn+ = S◦ is equivalent to RM+.

CBA+ does not generalize either of the two simplex approaches above. For [Shi16], this can be seen
because of the projection and subsequent dependence on stepsize required by [Shi16]’s construction.
For [FKS21], this can be seen by the fact that they obtain RM+ when applying their approach to
the simplex setting, and CBA+ differs from RM+ (in fact, that paper does not attempt to derive
new unaccelerated regret minimizers; the goal is to design accelerated, or predictive/optimistic,
variants of RM and RM+). However, an alternative derivation of CBA+ can be accomplished by
using the generalization from [FKS21] where OGD is run with the decision set S◦. Instead of
applying OGD on the no-regret formulation of the Blackwell formulation of regret-minimization
on the simplex with target set S = Rn− as in [FKS21], we can apply the OGD-setup of [FKS21]
to the Blackwell formulation of a general no-regret problem with decision set X and target set C◦
where C = cone({κ} × X). Then, we would get an indirect proof of correctness of the CBA+

algorithm through the correctness of OGD and the two layers of reduction from regret minimization
to Blackwell approachability to regret minimization. However, we believe that this approach is
significantly less intuitive than understanding CBA+ directly in terms of its properties as a Blackwell
approachability algorithm.

B Proofs of Theorem 3.1

Notations and classical results in conic optimization We make use of the following facts. We
provide a proof here for completeness.

Lemma B.1. Let C ⊂ Rn+1 a closed convex cone and C◦ its polar.

1. If u ∈ Rn+1, then u − πC◦(u) = πC(u) ∈ C,〈u − πC◦(u), πC◦(u)〉 = 0, and ‖u −
πC◦(u)‖2 ≤ ‖u‖2.

2. If u ∈ Rn+1 then
d(u, C) = max

w∈C◦⋂B2(1)
〈u,w〉,

where B2(1) = {w ∈ Rn+1 | ‖w‖2 ≤ 1}.
3. If u ∈ C, then d(u, C◦) = ‖u‖2.

14

4. Assume that C = cone({κ} × X) with X ⊂ Rn convex compact and κ = maxx∈X ‖x‖2.
Then C◦ is a closed convex cone. Additionally, if u ∈ C we have −u ∈ C◦.

5. Let us write ≤C◦ the order induced by C◦ : x ≤C◦ y ⇐⇒ y − x ∈ C◦. Then

x ≤C◦ y,x′ ≤C◦ y′ ⇒ x+ x′ ≤C◦ y + y′,∀ x,x′,y,y′ ∈ Rn+1, (6)

x+ x′ ≤C◦ y ⇒ x ≤C◦ y,∀ x,y ∈ Rn+1,∀ x′ ∈ C◦, (7)

6. Assume that x ≤C◦ y for x,y ∈ Rn+1. Then d(y, C◦) ≤ ‖x‖2.

Proof. 1. The fact that u − πC◦(u) = πC(u) ∈ C,〈u − πC◦(u), πC◦(u)〉 = 0 follows from
Moreau’s Decomposition Theorem [CR13]. The fact that ‖u − πC◦(u)‖2 ≤ ‖u‖2 is a
straightforward consequence of 〈u− πC◦(u), πC◦(u)〉 = 0.

2. For any w ∈ C◦⋂B2(1) we have

〈u,w〉 ≤ 〈u− πC(u),w〉 ≤ ‖w‖2‖u− πC(u)‖2 ≤ ‖u− πC(u)‖2.
Conversely, since (u− πC(u)) /‖u− πC(u)‖2 ∈ C◦, we have

max
w∈C◦⋂B2(1)

〈u,w〉 ≥ ‖u− πC(u)‖2.

This shows that
max

w∈C◦⋂B2(1)
〈u,w〉 = ‖u− πC(u)‖2 = d(u, C).

3. For any u ∈ Rn+1, by definition we have d(u, C◦) = ‖u − πC◦(u)‖2. Now if u ∈ C we
have πC◦(u) = 0 so d(u, C◦) = ‖u‖2.

4. Let u ∈ C. Then u = α(κ,x) for α ≥ 0,x ∈ X . We will show that −u ∈ C◦. We have

−u ∈ C◦ ⇐⇒ 〈−u,u′〉 ≤ 0,∀ u′ ∈ C
⇐⇒ 〈−α(κ,x), α′(κ,x′)〉 ≤ 0,∀ α′ ≥ 0,∀ x′ ∈ X
⇐⇒ κ2 + 〈x,x′〉 ≥ 0

⇐⇒ −〈x,x′〉 ≤ κ2,

and −〈x,x′〉 ≤ κ2 is true by Cauchy-Schwartz and the definition of κ = maxx∈X ‖x‖2.

5. We start by proving (6). Let x,x′,y,y′ ∈ Rn+1, and assume that x ≤C◦ y,x′ ≤C◦ y′.
Then y − x ∈ C◦,y′ − x′ ∈ C◦. Because C◦ is a convex set, and a cone, we have

2 ·
(
y − x

2
+
y′ − x′

2

)
∈ C◦. Therefore, y + y′ − x− x′ ∈ C◦, i.e., x+ x′ ≤C◦ y + y′.

We now prove (7). Let x,y ∈ Rn+1,x′ ∈ C◦ and assume that x + x′ ≤C◦ y. Then by
definition y − x− x′ ∈ C◦. Additionally, x′ ∈ C◦ by assumption. Since C◦ is convex, and

is a cone, 2 ·
(
y − x− x′

2
+
x′

2

)
∈ C◦, i.e., y − x ∈ C◦. Therefore, x ≤C◦ y.

6. Let x,y ∈ Rn+1 such that x ≤C◦ y. Then y − x ∈ C◦. We have

d(y, C◦) = min
z∈C◦

‖y − z‖2 ≤ ‖y − (y − x)‖2 = ‖x‖2.

Based on Moreau’s Decomposition Theorem, we will use πC(u) and u− πC◦(u) interchangeably.

Results for various linear averaging schemes We now present our convergence results for various
linear averaging schemes. As a warm-up, we start with two theorems, Theorem B.2 and Theorem
B.3, which show that CBA and CBA+ are compatible with weighted average schemes, when both the
decisions and the payoffs are weighted. The proofs for these theorems will be used in the proof of our
main theorem, Theorem 3.1. For the sake of consiness, in all the proofs of this section we will always
write L = max{‖ft‖2 | t ≥ 1}, κ = max{‖x‖2 | t ≥ 1},vt = (〈ft,xt〉/κ,−ft〉). We start with
the following theorem.

15

Theorem B.2. Let (xt)t≥0 the sequence of decisions generated by CBA with weights (ωt)t≥0 and
let St =

∑t
τ=1 ωτ for any t ≥ 1. Then∑T

t=1 ωt〈ft,xt〉 −minx∈X
∑T
t=1 ωt〈ft,x〉

ST
= O (κ · d(uT , C◦)) .

Additionally,

d(uT , C◦)2 = O

L2 ·
∑T
t=1 ω

2
t(∑T

t=1 ωt

)2

 .

Overall, ∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
= O

κL
√∑T

t=1 ω
2
t∑T

t=1 ωt

 .

Proof. The proof proceeds in two steps. We start by proving∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
= O (κ · d(uT , C◦)) .

We have

d(uT , C◦) = max
w∈cone({κ}×X)

⋂
B2(1)

〈 1

ST

T∑
t=1

ωtvt,w〉 (8)

≥ max
x∈X
〈 1

ST

T∑
t=1

ωtvt,
(κ,x)

‖(κ,x)‖2
〉

≥ 1

ST
max
x∈X

∑T
t=1 ωt〈ft,xt〉 −

∑T
t=1 ωt〈ft,x〉

‖(κ,x)‖2
, (9)

where (8) follows from Statement 1 in Lemma B.1, and (9) follows from CBA maintaining

ut =

(
1

St

t∑
τ=1

ωτ
〈fτ ,xτ 〉

κ
,− 1

St

t∑
τ=1

ωτfτ

)
,∀ t ≥ 1.

We can conclude that

2κd(uT , C◦) ≥
∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
.

We now prove that

d(uT , C◦)2 = O

L2

∑T
τ=1 ω

2
τ(∑T

τ=1 ωτ

)2

 .

We have
d(ut+1, C◦)2 = min

z∈C◦
‖ut+1 − z‖22 (10)

≤ ‖ut+1 − πC◦(ut)‖22
≤ ‖ St

St + ωt+1
ut +

ωt+1

St + ωt+1
vt+1 − πC◦(ut)‖22

≤ ‖ St
St + ωt+1

(ut − πC◦(ut)) +
ωt+1

St + ωt+1
(vt+1 − πC◦(ut)) ‖22

≤ 1

S2
t+1

(S2
t ‖ut − πC◦(ut)‖22 + ω2

t+1‖vt+1 − πC◦(ut)‖22

+ 2Stωt+1〈ut − πC◦(ut),vt+1 − πC◦(ut)〉)

≤ 1

S2
t+1

(
S2
t ‖ut − πC◦(ut)‖22 + ω2

t+1‖vt+1 − πC◦(ut)‖22
)
, (11)

16

where (11) follows from
〈ut − πC◦(ut),vt+1 − πC◦(ut)〉 = 0. (12)

This is because:

• 〈ut−πC◦(ut),vt+1〉 = 0. This is one of the crucial component of Blackwell’s approachabil-
ity framework: the current decision is chosen to force a hyperplane on the aggregate payoff.
To see this, first note that ut − πC◦(u) = πC(ut). Let us write π = (π̃, π̂) = πC(ut). Note
that by definition, xt+1 = (κ/π̃)π̂, and vt+1 = (〈ft+1,xt+1〉/κ,−ft+1). Therefore,

〈ut − πC◦(ut),vt+1〉 = 〈π,vt+1〉
= 〈(π̃, π̂) , (〈ft+1,xt+1〉/κ,−ft+1)〉
= 〈(π̃, π̂) , (〈ft+1, (κ/π̃)π̂〉/κ,−ft+1)〉
= 〈π̂,ft+1〉 − 〈π̂,ft+1〉
= 0.

• 〈ut − πC◦(ut), πC◦(ut)〉 = 0 from Statement 3 of Lemma B.1 and ut − πC◦(ut) =
πC(ut) ∈ C.

We therefore have

d(ut+1, C◦)2 ≤ 1

S2
t+1

(
S2
t ‖ut − πC◦(ut)‖22 + ω2

t+1‖vt+1 − πC◦(ut)‖22
)
.

This recursion directly gives

d(ut+1, C◦)2 ≤ 1

S2
t+1

t∑
τ=1

ω2
τ+1‖vτ+1 − πC◦(uτ)‖22 ≤ O

(
L2 ·

∑t+1
τ=1 ω

2
τ

S2
t+1

)
,

where the last inequality follows from the definition of vt and L.

Theorem B.3. Let (xt)t≥0 the sequence of decisions generated by CBA+ with weights (ωt)t≥0 and
let St =

∑t
τ=1 ωτ for any t ≥ 1. Then∑T

t=1 ωt〈ft,xt〉 −minx∈X
∑T
t=1 ωt〈ft,x〉

ST
= O (κ · d(uT , C◦)) .

Additionally,

d(uT , C◦)2 = O

L2 ·
∑T
t=1 ω

2
t(∑T

t=1 ωt

)2

 .

Overall, ∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
= O

κL
√∑T

t=1 ω
2
t∑T

t=1 ωt

 .

Proof of Theorem B.3. The proof proceeds in two steps. We start by proving∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
= O (κ · d(uT , C◦)) .

Recall that vt = (〈ft,xt〉/κ,−ft〉), and let us considerRt =
1

St

∑t
τ=1 ωτvτ . By definition ofRt,

similarly as in the proof of Theorem B.2, we have∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
= O (κ · d(RT , C◦)) .

Note that at any period t, we have

St+1ut+1 − Stut ≤C◦ St+1Rt+1 − StRt. (13)

17

This is simply because ut+1 = πC(ut+1/2) = ut+1/2 − πCo(ut+1/2) with

ut+1/2 = UPDATEPAYOFFCBA(ut) =
St

St + ωt+1
ut +

ωt+1

St + ωt+1
vt+1.

Now we have

St+1Rt+1 − StRt − (St+1ut+1 − Stut) = ωt+1vt+1 + Stut − St+1ut+1/2 + St+1πC◦(ut+1/2)

= St+1ut+1/2 − St+1ut+1/2 + St+1πC◦(ut+1/2)

= St+1πC◦(ut+1/2) ∈ C◦.
From (6) in Lemma B.1, we can sum the inequalities (13). Noticing that u1 = R1, we can conclude
that

ut ≤C◦ Rt.

From ut ∈ C and Statement 6 in Lemma B.1, we have d(Rt, C◦) ≤ ‖ut‖2. This implies∑T
t=1 ωt〈ft,xt〉 −minx∈X

∑T
t=1 ωt〈ft,x〉

ST
= O (κ‖uT ‖2) .

We now turn to proving

‖uT ‖22 = O

L2

∑T
t=1 ω

2
t(∑T

t=1 ωt

)2

 .

We have

‖ut+1‖22 = ‖ut+1/2 − πC◦(ut+1/2)‖22 (14)

≤ ‖ut+1/2‖22 (15)

≤ ‖ St
St + ωt+1

ut +
ωt+1

St + ωt+1
vt+1‖22, (16)

where (15) follows from Statement 1 in Lemma B.1. Therefore,

‖ut+1‖22 ≤
1

(St + ωt+1)
2

(
S2
t ‖ut‖22 + ω2

t+1‖vt+1‖22 + 2Stωt+1〈ut,vt+1〉
)
.

By construction and for the same reason as for (12), 〈ut,vt+1〉 = 0. Therefore, we have the recursion

‖ut+1‖22 ≤
1

S2
t+1

(
S2
t ‖ut‖22 + ω2

t+1‖vt+1‖22
)
.

By telescoping the inequality above we obtain

d(ut+1, C◦)2 ≤ 1

S2
t+1

(
t+1∑
τ=1

ω2
τ‖vτ‖22

)
.

By definition of L,

‖ut+1‖22 = O

(
L2 ·

∑t+1
τ=1 ω

2
τ

S2
t+1

)
.

Linear averaging only on decisions We are now ready to prove our main convergence result,
Theorem 3.1. Our proof heavily relies on the sequence of payoffs belonging to the cone C at every
iteration (ut ∈ C,∀ t ≥ 1), and for this reason it does not extend to CBA. We also note that the use of
conic optimization somewhat simplifies the argument compared to the proof that RM+is compatible
with linear averaging [TBJB15].

18

Proof of Theorem 3.1. Recall that vt = (〈ft,xt〉/κ,−ft〉). By construction and following the same
argument as for the proof of Theorem B.3, we have

T∑
t=1

t〈ft,xt〉 − min
x∈X

T∑
t=1

t〈ft,x〉 = O

(
κ · d

(
T∑
t=1

tvt, C◦
))

. (17)

Additionally, Equation (13) for uniform weights (ωτ = 1, Sτ = τ) yields
vt+1 ≥C◦ (t+ 1)ut+1 − tut.

Therefore,
(t+ 1)vt+1 ≥C◦ (t+ 1)2ut+1 − t2ut − tut.

Summing up the previous inequalities from t = 1 to t = T − 1 and using u1 = v1 we obtain
T∑
t=1

tvt ≥C◦ T 2uT −
T−1∑
t=1

tut.

Note that since
∑T−1
t=1 tut ∈ C, Statement 4 in Lemma B.1 shows that −∑T−1

t=1 tut ∈ C◦. Now, by
applying (7) in Lemma B.1, we have

T∑
t=1

tvt ≥C◦ T 2uT −
T−1∑
t=1

tut ⇒
T∑
t=1

tvt ≥C◦ T 2uT .

Since T 2uT ∈ C, Statement 6 shows that

d

(
T∑
t=1

tvt, C◦
)
≤ ‖T 2uT ‖2.

By construction uT is the output of CBA+ with uniform weight, so that d(uT , C◦) = ‖uT ‖2 =

O(L/
√
T) (see Theorem B.3). Therefore, d(

∑T
t=1 tvt, C◦) = O

(
L · T 3/2

)
. This shows that∑T

t=1 t〈ft,xt〉 −minx∈X
∑T
t=1 t〈ft,x〉

T (T + 1)
= O

κd
(∑T

t=1 tvt, C◦
)

T (T + 1)

 = O
(
κL/
√
T
)
.

Comparisons of different weighted average schemes We conclude this section with an empirical
comparisons of the different weighted average schemes (Theorem B.2, Theorem B.3, and Theorem
3.1). We also compare these algorithms with RM+. We present our numerical experiments on sets
of random matrix game instances in Figure 4. The setting is the same as in our simulation section,
Section 4. We note that CBA+ with linear averaging only on decisions outperforms both CBA+ and
CBA with linear averaging on both decisions and payoffs, as well as RM+ with linear averaging on
decisions.

B.1 Geometric intuition on the projection step of CBA+

Figure 5 illustrates the projection step πC(·) of CBA+. At a high level, from ut to ut+1, an instanta-
neous payoff vt is first added to ut (where vt = (〈ft,xt〉/κ,−ft〉)), and then the resulting vector
u+
t = ut + vt is projected onto C. The projection πC(·) moves the vector u+

t along the edges of the
cone C◦, preserving the (orthogonal) distance d to C◦.

C Proof of Theorem 3.2

Let ωt = t, ST =
∑T
t=1 ωt = T (T + 1)/2, and

x̄T =
1

ST

T∑
t=1

ωtxt, ȳT =
1

ST

T∑
t=1

ωtyt.

19

101 102 103

Number of steps

10−4

10−3

10−2

10−1

D
u

al
it

y
ga

p

RM+ CBA+ (dec.) CBA+ (dec.,payoff) CBA (dec.,payoff)

(a) Uniform distribution for payoffs.

101 102 103

Number of steps

10−3

10−2

10−1

100

D
u

al
it

y
ga

p

RM+ CBA+ (dec.) CBA+ (dec.,payoff) CBA (dec.,payoff)

(b) Normal distribution for payoffs.

Figure 4: Comparison of RM+ vs. CBA+ and CBA with different linear averaging schemes: only
on decisions (CBA+ (dec.)), or on both the decisions and the payoffs u (CBA+ (dec.,payoff),CBA
(dec.,payoff)).

C∘ = ℝ2−
0

u+
t = ut + vtd

πC(u+
t)

d ut

C = ℝ2+

C∘ 0

u+
t = ut + vt

d

πC(u+
t)

d

ut

C

Figure 5: Illustration of πC(·) for C = R2
+ (left-hand side) and C any cone in R2 (right-hand side).

Since F is convex-concave, we first have

max
y∈Y

F (x̄T ,y)− min
x∈X

F (x, ȳT) ≤ 2

T (T + 1)

(
max
y∈Y

T∑
t=1

ωtF (xt,y)− min
x∈X

T∑
t=1

ωtF (x,yt)

)
.

Now,

max
y∈Y

T∑
t=1

ωtF (xt,y)− min
x∈X

T∑
t=1

ωtF (x,yt) =

(
max
y∈Y

T∑
t=1

ωtF (xt,y)−
T∑
t=1

ωtF (xt,yt)

)

+

(
T∑
t=1

ωtF (xt,yt)− min
x∈X

T∑
t=1

ωtF (x,yt)

)
.

Now since F is convex-concave, we can use the following upper bound:

max
y∈Y

T∑
t=1

ωtF (xt,y)−
T∑
t=1

ωtF (xt,yt) ≤ max
y∈Y

ωt

T∑
t=1

〈gt,y〉 −
T∑
t=1

ωt〈gt,yt〉,

T∑
t=1

ωtF (xt,yt)− min
x∈X

T∑
t=1

ωtF (x,yt) ≤
T∑
t=1

ωt〈ft,xt〉 − min
x∈X

T∑
t=1

ωt〈ft,x〉,

where ft ∈ ∂xF (xt,yt), gt ∈ ∂yF (xt,yt) (recall the repeated game framework presented at the
beginning of Section 2).

20

Now we have proved in Theorem 3.1 that

2

T (T + 1)
max
y∈Y

T∑
t=1

ωt〈gt,y〉 −
T∑
t=1

〈ωtgt,yt〉 = O
(
κL/
√
T
)
,

2

T (T + 1)

T∑
t=1

ωt〈ft,xt〉 − min
x∈X

T∑
t=1

ωt〈ft,x〉 = O
(
κL/
√
T
)
.

Therefore, we can conclude that

max
y∈Y

F (x̄T ,y)− min
x∈X

F (x, ȳT) = O
(
κL/
√
T
)
.

Remark C.1. Note that we essentially reprove the folk theorem, except that we consider weighted
average for the decisions of both players. This is because Theorem 3.2 uses linear averaging on
decisions, whereas Theorem 2.1 is written with uniform averaging on decisions.

D Proofs of the projections of Section 3.1

We will extensively use Moreau’s Decomposition Theorem [CR13]: for any convex cone C ⊂ Rn+1

and u ∈ Rn+1, we can decompose u = πC(u) +πC◦(u), where C◦ is the polar cone of C. Therefore,
to compute πC(u), it is sufficient to compute πC◦(u), the orthogonal projection of u onto C◦. We
will see that in some cases, it is simpler to compute πC◦(u) and then use πC(u) = u− πC◦(u) than
directly computing πC(u) via solving (4).

D.1 The case of the simplex

We consider X = ∆(n). Note that in this case, κ = maxx∈∆(n) ‖x‖2 = 1. The next lemma gives a
closed-form expression of C◦.
Lemma D.1. Let C = cone({1} ×∆(n)). Then C◦ = {(ỹ, ŷ) ∈ Rn+1 | maxi=1,...,n ŷi ≤ −ỹ}.

Proof of Lemma D.1. Note that for y = (ỹ, ŷ) ∈ Rn+1 we have

y ∈ C◦ ⇐⇒ 〈y, z〉 ≤ 0,∀ z ∈ C
⇐⇒ 〈(ỹ, ŷ), α(1,x)〉 ≤ 0,∀ x ∈ ∆(n),∀ α ≥ 0

⇐⇒ ỹ + 〈ŷ,x〉 ≤ 0,∀ x ∈ ∆(n)

⇐⇒ max
x∈∆(n)

〈ŷ,x〉 ≤ −ỹ

⇐⇒ max
i=1,...,n

ŷi ≤ −ỹ.

For a given u = (ũ, û), computing πC◦(u) is now equivalent to solving

min{(ỹ − ũ)2 + ‖ŷ − û‖22 | (ỹ, ŷ) ∈ Rn+1, max
i=1,...,n

ŷi ≤ −ỹ}. (18)

Using the reformulation (18), we show that for a fixed ỹ, the optimal ŷ(ỹ) can be computed in
closed-form. It is then possible to avoid a binary search over ỹ and to simply use a sorting algorithm
to obtain the optimal ỹ. The next proposition summarizes our complexity result for X = ∆(n).
Proposition D.2. An optimal solution πC◦(u) to (18) can be computed in O(n log(n)) time.

Proof. Computing πC◦(u) is equivalent to computing

min (ỹ − ũ)2 + ‖ŷ − û‖22
ỹ ∈ R, ŷ ∈ Rn,

max
i=1,...,n

ŷi ≤ −ỹ.

21

Let us fix ỹ ∈ R and let us first solve

min ‖ŷ − û‖22
ŷ ∈ Rn,

max
i=1,...,n

ŷi ≤ −ỹ.
(19)

This is essentially the projection of û on (−∞,−ỹ]n. So a solution to (19) is ŷi(ỹ) =

min{−ỹ, ûi},∀ i = 1, ..., n. Note that in this case we have û − ŷ(ỹ) = (û+ ỹe)
+
. So over-

all the projection brings down to the optimization of φ : R 7→ R+ such that

φ : ỹ 7→ (ỹ − ũ)2 + ‖ (û+ ỹe)
+ ‖22. (20)

In principle, we could use binary search with a doubling trick to compute a ε-minimizer of the convex
function φ in O

(
log(ε−1)

)
calls to φ. However, it is possible to find a minimizer ỹ∗ of φ using the

following remark. By construction, we know that u− πC◦(u) ∈ C. Here, C = cone ({1} ×∆(n)),
and u− πC◦(u) =

(
ũ− ỹ∗, (û+ ỹ∗e)

+
)
. This proves that

(û+ ỹ∗e)
+

ũ− ỹ∗ ∈ ∆(n),

which in turns imply that

ỹ∗ +

n∑
i=1

max{ûi + ỹ∗, 0} = ũ. (21)

We can use (21) to efficiently compute ỹ∗ without using any binary search. In particular, we can sort
the coefficients of û in O (n log(n)) operations, and use (21) to find ỹ∗.

Having obtained πC◦(u), we can obtain πC(u) by using the identity πC(u) = u− πC◦(u). Note that
RM and RM+ are obtained by choosing the closed-form feasible point corresponding to ỹ = ũ in
(18).

D.2 The case of an `p ball

In this section we assume that X = {x ∈ Rn | ; ‖x‖p ≤ 1} with p ≥ 1 or p =∞. The next lemma
provides a closed-form reformulation of the polar cone C◦.
Lemma D.3. Let X = {x ∈ Rn | ; ‖x‖p ≤ 1}, with p ≥ 1 or p = ∞. Then C◦ = {(ỹ,y) ∈
R× Rn | ‖y‖q ≤ −κỹ}, with q such that 1/p+ 1/q = 1.

Proof of Lemma D.3. Let us writeBp(1) = {z ∈ Rn | ‖z‖p ≤ 1}. Note that for y = (ỹ, ŷ) ∈ Rn+1

we have

y ∈ C◦ ⇐⇒ 〈y, z〉 ≤ 0,∀ z ∈ C
⇐⇒ 〈(ỹ, ŷ), α(κ,x)〉 ≤ 0,∀ x ∈ Bp(1),∀ α ≥ 0

⇐⇒ κỹ + 〈ŷ,x〉 ≤ 0,∀ x ∈ Bp(1),

⇐⇒ max
x∈Bp(1),

〈ŷ,x〉 ≤ −κỹ

⇐⇒ ‖x‖q ≤ −κỹ,
since ‖ · ‖q is the dual norm of ‖ · ‖p.

The orthogonal projection problem onto C◦ becomes

min{(ỹ − ũ)2 + ‖ŷ − û‖22 | (ỹ, ŷ) ∈ Rn+1, ‖ŷ‖q ≤ −κỹ}. (22)

For p = 2, (22) has a closed-form solution. For p = 1, a quasi-closed-form solution to (22) can be
obtained efficiently using sorting. For p =∞, it is more efficient to directly compute πC(u). This is
because the dual norm of ‖ · ‖∞ is ‖ · ‖1.

22

Proposition D.4. • For p = 1, πC◦(u) can be computed in O(n log(n)) arithmetic opera-
tions.

• For p =∞, πC(u) can be computed in O(n log(n)) arithmetic operations.

• For p = 2, πC(u) can be computed in closed-form.

Proof. The case p = 1. Assume that p = 1. Then ‖ · ‖q = ‖ · ‖∞ and κ = 1. We want to compute
the projection of (ũ, û) on C◦:

min
y∈C◦

‖y − u‖22 = min (ỹ − ũ)2 + ‖ŷ − û‖22
ỹ ∈ R, ŷ ∈ Rn,
‖ŷ‖∞ ≤ −ỹ.

(23)

For a fixed ỹ, we want to compute
min ‖ŷ − û‖22

ŷ ∈ Rn,
‖ŷ‖∞ ≤ −ỹ.

(24)

The projection (24) can be computed in closed-form as

ŷ∗(ỹ) = min{−ỹ,max{ỹ, û}} (25)

since this is simply the orthogonal projection of û onto the `∞ ball of radius −ỹ. Let us call
φ : R 7→ R such that

φ(ỹ) = (ỹ − ũ)
2

+ ‖ŷ∗(ỹ)− û‖22.
Because of the closed-form expression for ŷ∗(ỹ) as in (25), we have

φ : ỹ 7→ (ỹ − ũ)
2

+ ‖ (û+ ỹe)
+ ‖22.

Finding a minimizer of φ can be done in O(n log(n)), with the same methods as in the proof in the
previous section (Appendix D.1).

The case p =∞. Let p =∞. The problem of computing πC(u), the orthogonal projection onto the
cone C, is equivalent to

min
y∈C
‖y − u‖22 = min (ỹ − ũ)2 + ‖ŷ − û‖22

ỹ ∈ R, ŷ ∈ Rn,
‖ŷ‖∞ ≤ ỹ.

(26)

Note the similarity between (26) (computing the orthogonal projection onto C when p = ∞), and
(23) (computing the orthogonal projection onto C◦ when p = 1). From Lemma D.3, we know that
this is the case because ‖ · ‖1 and ‖ · ‖∞ are dual norms to each other.

Therefore, the methods described for computing πC◦(u) for p = 1 can be applied to the case p =∞
for directly computing πC(u). This gives the complexity results as stated in Proposition D.4: πC(u)
can be computed in O(n log(n)) operations.

The case p = 2. Let ‖ · ‖p = ‖ · ‖2, then ‖ · ‖q = ‖ · ‖2. Let us fix ỹ and consider solving

min ‖ŷ − û‖22
ŷ ∈ Rn,
‖ŷ‖2 ≤ −ỹ.

(27)

The projection (27) can be computed in closed-form as

ŷ∗(ỹ) = (−ỹ)
û

‖û‖2
,

since this is just the orthogonal projection of the vector û onto the `2-ball of radius −ỹ. Let us call
φ : R 7→ R such that

φ(ỹ) = (ỹ − ũ)
2

+ ‖ŷ∗(ỹ)− û‖22.

23

Note that here, ỹ 7→ ŷ∗(ỹ) is differentiable. Therefore φ : ỹ 7→ (ỹ − ũ)
2

+ ‖ŷ∗(ỹ) − û‖22 is
also differentiable. First-order optimality conditions yield a closed-form solution for computing
(ỹ∗, ŷ∗) = πC◦(u), as

ỹ∗ =
ũ− ‖û‖2

2
, ŷ∗ = −1

2
(ũ− ‖û‖2)

û

‖û‖2
. (28)

D.3 The case of an ellipsoidal confidence region in the simplex

In this section we assume that X is X = {x ∈ ∆(n) | ‖x − x0‖2 ≤ εx}. We also assume that
{x ∈ Rn|x>e = 1}⋂{x ∈ Rn | ‖x− x0‖2 ≤ εx} ⊆ ∆(n), so that we can write X = x0 + εB̃,

where B̃ = {z ∈ Rn | z>e = 0, ‖z‖2 ≤ 1}.
Suppose we took a sequence of decisions x1, ...,xT , which can be written as xt = x0 + εzt for
zt ∈ B̃. Then it is clear that for any sequence of payoffs f1, ...,fT , we have

T∑
t=1

ωt〈ft,xt〉 − min
x∈X

T∑
t=1

ωt〈ft,x〉 = εx

(
T∑
t=1

ωt〈ft, zt〉 −min
z∈B̃

T∑
t=1

ωt〈ft, z〉
)
. (29)

Therefore, if we run CBA+ on the set B̃ to obtain O
(√

T
)

growth of the right-hand side of

(29), we obtain a no-regret algorithm for X . We now show how to run CBA+ for the set B̃. Let
V = {v ∈ Rn | v>e = 0}. We use the following orthonormal basis of V: let v1, ...,vn−1 ∈ Rn
be the vectors vi =

√
i/(i+ 1) (1/i, ..., 1/i,−1, 0, ..., 0) ,∀ i = 1, ..., n− 1, where the component

1/i is repeated i times. The vectors v1, ...,vn−1 are orthonormal and constitute a basis of V
[EPGMFBV03]. Writing V = (v1, ...,vn−1) ∈ Rn×(n−1), and noting that V >V = I , we can
write B̃ = {V s | s ∈ Rn−1, ‖s‖2 ≤ 1}. Now, if x = x0 + εxzt with zt ∈ V , we have zt = V st,
for st ∈ Rn−1 and ‖s‖2 ≤ 1. Finally,

T∑
t=1

ωt〈ft,xt〉 − min
x∈X

T∑
t=1

ωt〈ft,x〉 = εx

(
T∑
t=1

ωt〈V >ft, st〉 − min
s∈Rn−1,‖s‖2≤1

T∑
t=1

ωt〈V >ft, s〉
)
.

(30)

Therefore, to obtain a regret minimizer for the left-hand side of (30) with observed payoffs (f)t≥0,
we can run CBA+ on the right-hand side, where the decision set is an `2 ball and the sequence of
observed payoffs is

(
V >ft

)
t≥0

. In the previous section we showed how to efficiently instantiate
CBA+ in this setting (see Proposition D.4).

Remark D.5. In this section we have highlighted a sequence of reformulations of the regret, from
(29) to (30). We essentially showed how to instantiate CBA+ for settings where the decision set X is
the intersection of an `2 ball with a hyperplane for which we have an orthonormal basis.

E Additional details and numerical experiments for matrix
games and EFGs

E.1 Numerical setup

Numerical setup for matrix games For the experiments on matrix games, we sample at random
the matrix of payoffsA ∈ Rn×m and we let n,m = 10, where n,m represent the number of actions
of each player. We average our results over 70 instances. The decision sets X and Y are given as
X = ∆(n) and Y = ∆(m).

24

Alternation Alternation is a method which improves the performances of RM and RM+ [BMS19].
We leave proving this for CBA and CBA+ to future works. Using alternation, the players play in turn,
instead of playing at the same time. In particular, the y-player may observe the current decision xt of
the x-player at period t, before choosing its own decision yt. For CBA and CBA+, it is implemented
as follows. At period t ≥ 2,

1. The x-player chooses xt using its payoff uxt−1 : xt = CHOOSEDECISION(uxt−1).

2. The y-player observes g ∈ ∂yF (xt,yt−1) and updates uyt :

uyt = UPDATEPAYOFFCBA+(uyt−1,yt−1, g, ωt,

t−1∑
τ=1

ωτ).

3. The y-player chooses yt using uyt−1 : yt = CHOOSEDECISION(uyt).

4. The x-player observes f ∈ ∂xF (xt,yt) and updates uxt :

uxt = UPDATEPAYOFFCBA+(uxt ,xt,f , ωt,

t−1∑
τ=1

ωτ).

E.2 Comparing RM, RM+, CBA, and CBA+ on matrix games

In Figure 6 and Figure 7, we show the performances of RM, RM+, CBA and CBA+ with and without
alternation, and with and without linear averaging. On the y-axis we show the duality gap of the
current averaged decisions (x̄T , ȳT). On the x-axis we show the number of iterations.

• In Figure 6a and Figure 7a, the four algorithms do not use alternation nor linear averaging,
i.e., the four algorithms use uniform weights on the sequence of decisions. We note that
RM+ is the best algorithm in this setting, outperforming CBA+, which performs similarly as
RM.

• In Figure 6b and Figure 7b, we note that linear averaging (only on the decisions) slightly
improves the performances of RM+ and CBA+. Note that RM and CBA are not known to be
compatible with linear averaging (on decisions only), so we use uniform weights for RM
and CBA here.

• In Figures 6c and Figure 7c, the four algorithms use alternation, but not linear averaging.
The performances of the four algorithms are very similar.

• Finally, in Figure 6d and Figure 7d, RM+ and CBA+ use linear averaging on decisions and
alternation. We see that the strongest performances are achieved by CBA+. Recall that RM
and CBA are not known to be compatible with linear averaging (on decisions only), so we
do not show their performances here.

• Conclusion of our experiments. We see that it is both alternation and linear averaging that
enable the strong empirical performances of CBA+, rendering it capable to outperform RM+.
Crucially, it is the “+ operation” that enables CBA+ (and RM+) to be compatible with linear
averaging on the decisions only and to outperform CBA and RM.

101 102 103

Number of steps

10−2

10−1

D
u

al
it

y
ga

p

RM RM+ CBA CBA+

(a) Without alternation nor
linear averaging.

100 101 102 103

Number of steps

10−2

10−1

Du
al

ity
 g

ap

RM RM+ CBA CBA+

(b) Without alternation but
with linear averaging (only
for RM+ and CBA+).

101 102 103

Number of steps

10−3

10−2

10−1

D
u

al
it

y
ga

p

RM RM+ CBA CBA+

(c) With alternation but no
linear averaging.

101 102 103

Number of steps

10−4

10−3

10−2

10−1

D
u

al
it

y
G

ap

CBA+ RM+

(d) With alternation and lin-
ear averaging.

Figure 6: Comparison of RM, RM+, CBA and CBA+ for X = ∆(n),Y = ∆(m) and random
matrices, with and without alternations, and with and without linear averaging. We choose n,m = 10
and Aij ∼ U [0, 1] over 70 instances.

25

101 102 103

Number of steps

10−1

100

D
u

al
it

y
ga

p

RM RM+ CBA CBA+

(a) Without alternation nor
linear averaging.

100 101 102 103

Number of steps

10−1

100

Du
al

ity
 g

ap

RM RM+ CBA CBA+

(b) Without alternation but
with linear averaging (only
for RM+ and CBA+).

101 102 103

Number of steps

10−2

10−1

D
u

al
it

y
ga

p

RM RM+ CBA CBA+

(c) With alternation but no
linear averaging.

101 102 103

Number of steps

10−3

10−2

10−1

100

D
u

al
it

y
G

ap

CBA+ RM+

(d) With alternation and lin-
ear averaging.

Figure 7: Comparison of RM, RM+, CBA and CBA+ for X = ∆(n),Y = ∆(m) and random
matrices, with and without alternations, and with and without linear averaging. We choose n,m = 10
and Aij ∼ N(0, 1) over 70 instances.

E.3 Additional numerical experiments for matrix games

We have seen in Appendix E.2 that RM+ and CBA+ with alternation and linear averaging are outper-
forming RM and CBA. In Figure 1a, we have compared both RM+ and CBA+ with AdaFTRL [OP15]
and AdaHedge [DRVEGK14], two algorithms that also enjoy the desirable scale-free property, i.e.,
their sequences of decisions remain invariant when the losses are scaled by a constant factor. In the
next figure, we provide additional comparisons of RM+, CBA+, AdaHedge and AdaFTRL when the
coefficients of the matrix of payoff are normally distributed. We found that RM+ and CBA+ are both
outperforming AdaHedge and AdaFTRL, a situation similar to the case of uniform payoffs (Figure
1a.)

100 101 102 103

Number of steps

10−3

10−2

10−1

100

Du
al

ity
 g

ap

RM+ CBA+ AdaFTRL AdaHedge

Figure 8: Comparison of RM+, CBA+, AdaHedge and AdaFTRL for X = ∆(n),Y = ∆(m) and
random matrices. We choose n,m = 10 and Aij ∼ N(0, 1) over 70 instances.

E.4 Additional numerical experiments for EFGs

In Section 4.1 , we have compared CBA+ (using alternation and linear averaging) and CFR+ on
various EFGs instances. We present in Figure 9 additional simulations where CBA+ and CFR+

performs similarly. A description of the games can be found in [FKS21]. On the y-axis we show
the duality gap of the current averaged decisions (x̄T , ȳT). On the x-axis we show the number of
iterations.

26

102 103

Number of steps

10−3

10−2

10−1

100

Du
al

ity
 G

ap

CBA + CFR +

(a) Search game, 4 turns.

102 103

Number of steps

10−3

10−2

10−1

100

Du
al

ity
 G

ap

CBA + CFR +

(b) Search game, 5 turns.

102 103

Number of steps

10−3

10−2

10−1

100

Du
al

ity
 G

ap

CBA + CFR +

(c) Leduc, 2 players, 3 ranks.

102 103

Number of steps

10−4

10−3

10−2

10−1

100

Du
al

ity
 G

ap

CBA + CFR +

(d) Leduc, 2 players, 6 faces.

Figure 9: Comparison of CBA+ and CFR+ for various Extensive-Form Games (EFG) instances.

F OMD, FTRL and optimistic variants

F.1 Algorithms

Let us fix some step size η > 0. For solving our instances of distributionally robust optimization, we
compare Algorithm CBA+ with the following four state-of-the-art algorithms:

1. Follow-The-Regularized-Leader (FTRL) [AHR09, McM11]:

xt+1 ∈ arg min
x∈X

〈
t∑

τ=1

fτ ,x〉+
1

η
‖x‖22. (FTRL)

Optimistic FTRL [RS13]: given an estimationmt+1 of loss at period t+ 1, choose

xt+1 ∈ arg min
x∈X

〈
t∑

τ=1

fτ +mt+1,x〉+
1

η
‖x‖22. (O-FTRL)

2. Online Mirror Descent (OMD) [NY83, BT03]:

xt+1 ∈ min
x∈X
〈ft,x〉+

1

η
‖x− xt‖22. (OMD)

Optimistic OMD [CYL+12]: given an estimationmt+1 of loss at period t+ 1,

zt+1 ∈ min
z∈X
〈mt+1, z〉+

1

η
‖z − xt‖22,

Observe the loss ft+1 related to zt+1,

xt+1 ∈ min
x∈X
〈ft+1,x〉+

1

η
‖x− xt‖22.

(O-OMD)

Note that a priori these algorithms can be written more generally using Bregman divergence (e.g.,
[BTN01]). We choose to work with ‖ · ‖2 instead of Kullback-Leibler divergence as this `2-setup is
usually associated with faster empirical convergence rates [CP16, GKG19]. Additionally, following
[CYL+12, RS13], we use the last observed loss as the predictor for the next loss, i.e., we set
mt+1 = ft.

27

F.2 Implementations

When X is the simplex or a ball based on the `2-distance and centered at 0, there is a closed-form
solution to the proximal updates for FTRL, OMD, O-FTRL and O-OMD. However, it is not clear
how to compute these proximal updates for different settings, e.g., when X is a subset of the simplex
or an `p-ball. We present the details of our implementation below. The results in the rest of this
section are reminiscient to the novel tractable proximal setups presented in [GCK20a, GCK20b].

Computing the projection steps for min-player For X = {x ∈ Rn | ‖x − x0‖2 ≤ εx},
c,x′ ∈ Rn and a step size η > 0, the proximal update becomes

min
‖x−x0‖2≤εx

〈c,x〉+
1

2η
‖x− x′‖22. (31)

This is the same arg min as
min

‖x−x0‖2≤εx
‖x− (x′ − ηc)‖22.

We can change x by z = (x− x0) /εx to solve the equivalent program

min
‖z‖2≤1

‖z − 1

εx
(x′ − ηc− x0) ‖22.

The solution to the above program is

z =
x′ − ηc− x0

max{εx, ‖x′ − ηc− x0‖2}
.

From x = x0 + εxz we obtain x∗ the solution to (31)

x∗ = x0 + εx
x′ − ηc− x0

max{εx, ‖x′ − ηc− x0‖2}
.

Computing the projection steps for max-player For Y = {y ∈ ∆(m) | ‖y − y0‖2 ≤ εy}, the
proximal update of the max-player from a previous point y′ and a step size of η > 0 becomes

min
‖y−y0‖2≤εy,y∈∆(m)

〈c,y〉+
1

2η
‖y − y′‖22. (32)

If we dualize the `2 constraint with a Lagrangian multiplier µ ≥ 0 we obtain the relaxed problem
q(µ) where

q(µ) = −(1/2)ε2yµ+ min
y∈∆(m)

〈c,y〉+
1

2η
‖y − y′‖22 +

µ

2
‖y − y0‖22. (33)

Note that the arg min in

min
y∈∆(m)

〈c,y〉+
1

2η
‖y − y′‖22 +

µ

2
‖y − y0‖22

is the same arg min as in

min
y∈∆(m)

‖y − η

ηµ+ 1

(
1

η
y′ + µy0 − c

)
‖22. (34)

Note that (34) is an orthogonal projection onto the simplex. Therefore, it can be solved efficiently
[DSSSC08]. We call y(µ) an optimal solution of (34). Then q(µ) can be rewritten

q(µ) = −(1/2)ε2yµ+ 〈c,y(µ)〉+
1

2η
‖y(µ)− y′‖22 +

µ

2
‖y(µ)− y0‖22.

We can therefore binary search q(µ) as in the previous expression. An upper bound µ̄ for µ∗ can be
computed as follows. Note that

q(µ) ≤ −(1/2)ε2yµ+ 〈c,y0〉+
1

2η
‖y0 − y′‖22.

Since µ 7→ q(µ) is concave we can choose µ̄ such that q(µ) ≤ q(0). Using the previous inequality
this yields

µ̄ =
2

ε2y

(
〈c,y0〉+

1

2η
‖y0 − y′‖22 − q(0)

)
.

We choose a precision of ε = 0.001 in our simulations. Note that these binary searches make OMD,
FTRL, O-FTRL and O-OMD slower than CBA+ in terms of running times, since the updates in CBA+

only requires to compute the projection πC(u), and we have shown in Proposition D.4 and Appendix
D.2 how to compute this in O(n) when X is an `2 ball X = {x ∈ ∆(n) | ‖x− x0‖2 ≤ εx}.

28

Computing the theoretical step sizes We now give details about the choice of choice of theoretical
step sizes. In theory (e.g., [BTN01]), for a player with decision set X , we can choose ηth =√

2Ω/L
√
T with Ω = maxx,x′∈X ‖x− x′‖2, and L an upper bound on the norm of any observed

loss ft: ‖ft‖2 ≤ L,∀ t ≥ 1. Note that this requires to know 1) the number of steps T , and 2) the
upper bound L on the norm of any observed loss ft, before the losses are generated. We now show
how to compute Lx and Ly (for the x-player and the y-player) for an instance of the distributionally
robust optimization problem (5).

1. For the y-player, the lossft is ft = (`i(xt))i∈[1,m], with `i(x) = log(1 + exp(−bia>i x)).
For each i ∈ [1,m] we have |`i| ≤ log(1 + exp(|bi|R‖ai‖2)) so that

Ly =

√√√√ m∑
i=1

log(1 + exp(|bi|R‖ai‖2))2.

2. For the x-player we have ft = Atyt, where At is the matrix of subgradients of x 7→
F (x,yt) at xt:

Atij =
−1

1 + exp(bia>i xt)
biai,j ,∀ (i, j) ∈ {1, ...,m} × {1, ..., n}.

Therefore, ‖ft‖2 ≤ ‖At‖2‖yt‖2 ≤ ‖At‖2, because y ∈ ∆(m). Now we have ‖At‖2 ≤
‖At‖F =

√∑
i,j |Atij |2. From |Atij | ≤ |biai,j | we use

Lx =

√∑
i,j

|biai,j |2.

G Additional details and numerical experiments for distribution-
ally robust optimization

We compare CBA+ with alternation and linear averaging, OMD,FTRL,O-OMD and O-OMD for
various step sizes η where η = αηth for α ∈ {1, 100, 1, 000, 10, 000}, on additional synthetic and
real data sets. We also add a comparison with adaptive step sizes.

Data sets We present here the characteristics of the data sets that we use in our DRO simulations.
All data sets can be downloaded from the libsvm classification libraries4

• Adult data set: two classes, m = 1, 605 samples with n = 123 features.

• Australian data set: two classes, m = 690 samples with n = 14 features.

• Madelon data set: two classes, m = 2, 000 samples with n = 500 features.

• Splice data set: two classes, m = 1, 000 samples with n = 60 features.

Additional experiments with fixed step sizes In this section we present additional numerical
experiments for solving distributionally robust optimization instances in Figure 10. We use a synthetic
data set, where we sample the features aij as uniform random variables in [0, 1]. We also present
results for the adult and the australian data sets from libsvm. We vary the aggressiveness of the
step sizes η = αηth by multiplying the theoretical step sizes ηth by a multiplicative step factor α.
The empirical setting is the same as in Section 4. We note that our algorithm still outperforms or
performs on par with the classical approaches after 102 iterations, without requiring a single choice
of parameter.

4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

29

10−1

100

un
if

or
m

α = 1 α = 100 α = 1, 000 α = 10, 000

100

101

ad
ul

t

101 102 103

100

101

au
st

ra
lia

n

101 102 103 101 102 103 101 102 103

Number of steps

M
ax

L
os

s(
x)

CBA+ OMD OOMD FTRL OFTRL

Figure 10: Comparisons of the performances of CBA+ with alternation and linear averaging,
OMD,FTRL,O-OMD and O-FTRL on synthetic (with uniform distribution) and real data sets (adult
and australian). We use fixed step sizes η = αηth, where ηth is the theoretical step size that guarantees
convergence.

Additional experiments with adaptive step sizes We present our additional results with adaptive
step sizes in Figure 11. Given vt the payoff observed by the player at period t, and following [Ora19],
we choose the step sizes (ηt)t≥1 as

ηt = 1/

√√√√ t∑
τ=1

‖vτ‖22. (35)

We note that CBA+ still outperforms, or performs on par, with the state-of-the-art approaches.

101 102 103

Number of steps

10−1

100

M
ax

L
os

s(
x)

CBA+ OMD OOMD FTRL OFTRL

(a) Uniform.

101 102 103

Number of steps

100

M
ax

L
os

s(
x)

CBA+ OMD OOMD FTRL OFTRL

(b) Adult

101 102 103

Number of steps

100

4× 10−1

6× 10−1

M
ax

L
os

s(
x)

CBA+ OMD OOMD FTRL OFTRL

(c) Australian

Figure 11: Comparisons of the performances of CBA+ with alternation and linear averaging,
OMD,FTRL,O-OMD and O-FTRL on synthetic (with uniform distribution) and real data sets (adult
and australian). For the non-parameter free algorithms, we use the adaptive step sizes as in (35).

30

	Introduction
	Game setup and Blackwell Approachability
	Conic Blackwell Algorithm
	Efficient implementations of CBA+

	Numerical experiments
	Matrix games on the simplex and Extensive-Form Games
	Distributionally Robust Optimization

	Conclusion
	Comparison to shimkin2016online and farina2021faster
	Proofs of Theorem 3.1
	Geometric intuition on the projection step of CBA+

	Proof of Theorem 3.2
	Proofs of the projections of Section 3.1
	The case of the simplex
	The case of an p ball
	The case of an ellipsoidal confidence region in the simplex

	Additional details and numerical experiments for matrix games and EFGs
	Numerical setup
	Comparing RM, RM+, CBA, and CBA+ on matrix games
	Additional numerical experiments for matrix games
	Additional numerical experiments for EFGs

	OMD, FTRL and optimistic variants
	Algorithms
	Implementations

	Additional details and numerical experiments for distributionally robust optimization

