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ABSTRACT

Learning with multiple modalities has recently demonstrated significant gains in
many domains by maximizing the shared information across modalities. How-
ever, the current approaches strongly rely on high-quality paired datasets, which
allow co-training from the paired labels from different modalities. In this context,
we raise a pivotal question: Can a model with one modality synergize the train-
ing of other models with the different modalities, even without the paired multi-
modal supervision? Our answer is ‘Yes’. As a figurative description, we argue
that a writer, i.e., a language model, can promote the training of a painter, i.e., a
visual model, even without the paired ground truth of text and image. We theoret-
ically show that a superior representation can be achieved by the synergy between
two different modalities, without paired supervision. As proofs of concept, we
broadly confirm the considerable gains from the synergy across visual, language,
and audio models. From a theoretical viewpoint, we first establish a mathemati-
cal foundation of the synergy between two different modality models, where each
one is trained with its own modality. From a practical viewpoint, our work aims to
broaden the scope of multimodal learning to encompass the synergistic usage of
single-modality models, relieving a strong limitation of paired supervision. The
code is available at https://github.com/johnjaejunlee95/synergistic-multimodal.

1 INTRODUCTION

In recent years, multimodal learning, which aims to train the joint information across different
modalities, is changing the paradigm of cutting-edge deep models from the conventional one modal-
ity training to the joint training of multiple modalities. Based on the recent success of large mod-
els, such as residual architectures (He et al., 2016), Transformers (Vaswani et al., 2017; Devlin
et al., 2018; Liu et al., 2019) and Vision Transformers (ViT) (Dosovitskiy et al., 2021; Steiner et al.,
2022), has spurred the emergence of numerous multimodal learning methods, mainly focusing on
the vision-language domain.

Notable practices include CLIP (Radford et al., 2021) and ALBEF (Li et al., 2021), which pursue to
align the representations from the vision and language modalities. Also, as another branch, CoOp
(Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) are based on adjustments of the prompt tokens
of pretrained vision-language models. More recently, ViT+LLaMA (Pang et al., 2024) attempt to
concatenate the pretrained language models with vision models, hypothesizing that the language
models would filter significant information from the features extracted by the vision encoder.

This practical success relies on the presumption that the correlated modalities create a synergy when
jointly trained on multimodal data samples, e.g., a synergy of the visual information and the textual
description of an image, or a synergy of the RGB-based camera images and the LIDAR-based sens-
ing signals of autonomous vehicles. As a theoretical foundation of the practices, researchers claim
the existence of the true latent representations, which are able to encompass multiple modalities
(Huang et al., 2021; Huh et al., 2024). This implies that when a paired supervision from multiple
modalities is given, a model has the potential to more accurately represent the shared semantics by
incorporating additional information from other modality models.
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We want to raise a critical limitation of the prior works in both practical and theoretical sides. First,
the existing multimodal learning methods mainly require the perfectly paired datasets, leading to the
immense efforts in building multimodal datasets of high quality and restricting the usage of descent
single-modality models in unleashing the synergy between modalities. Second, the current theory
only explains how multiple modalities promote better representations when paired labels across
modalities are given.

In this context, we start by raising a pivotal question: Can one modality model synergize training
of other modality model, even without matched supervisions across modalities? As an informal de-
scription of the question: Can a writer without true visual supervision (a language model), promote
the training of a painter without true textual supervision, (a visual model)? Our answer is ‘Yes’.

(a) [V] (Acc: 96.01) (b) [L→V] (Acc: 97.09)
Figure 1: t-SNE visualizations between single
(left) and multimodality (right) on CIFAR-10

To showcase how one modality model pro-
motes the training of the other models, we
here provide a preliminary experiment, which
is simple yet intuitive. We consider a case that
a language model [L] synergizes the training of
a visual model [V]; denoting it as [L→V] case.
Specifically, a pretrained BERT model is used
to promote the training of a ResNet model for
the CIFAR-10 classification task (Krizhevsky
et al., 2009). We used the text prompt "This
is about Class #.", providing imper-
fect supervision loosely associated with the image. Herein, # indicates the Arabic class index,
which does not provide semantic information of a given image. When utilizing this imperfect tex-
tual representation in training of the visual model, we surprisingly observe meaningful performance
gains. As shown in Figure 1, when compared with the single-modality [V] case, our case [L→V]
shows the well-clustered feature representations and accuracy gain1. Noteworthy, it demonstrates
that language models help visual models, even with imperfect prompts, i.e., a writer indeed helps a
painter. Our work aims to provide a theoretical foundation for understanding how it happens, and
further proof-of-concepts in variety modalities, architectures, and tasks.

In this paper, we establish a theory that makes us envision how one modality promotes others with-
out paired supervision. The key of this claim is that there exists an interpolated representation of two
single-modality representations that outperforms the two (referred to Theorem 1). Furthermore, it
can be well-approximated without paired supervisions from the given modalities (referred to Theo-
rem 2). As the proof of concepts of our claim, we select the most widely-used modalities, i.e., vision
[V], language [L], and audio [A], to empirically evaluate the synergies between the three modalities.
When using notation, [Mi → Mj], indicates that modality Mi promotes the training of modality
Mj , we mainly confirm that language models promote the training of visual models, i.e., [L→V].
Moreover, we find that visual models or language models aid the training of audio models, and vice
versa, i.e., [V→A], [A→V], [L→A] and [A→L]. Noteworthy, our theoretical claim is not limited to
particular modalities, which broadens the fundamental understanding of the synergy between differ-
ent modalities. Also, our work offers the opportunity to utilize the descent single-modality models
to enhance other modality models, which strongly relieves the crucial demands of paired supervision
of the current multimodal learning.

2 RELATED WORKS

2.1 VISION LANGUAGE MODEL

Vision and Language are among the most common modalities in deep learning, driving advance-
ments in both empirical and theoretical perspectives. These developments led to foundation models
like Transformers for language (Vaswani et al., 2017; Devlin et al., 2018; Liu et al., 2019) and Vision
Transformer (ViT) for vision (Dosovitskiy et al., 2021; Steiner et al., 2022), enabling co-training
with aligned datasets. A key example is CLIP (Radford et al., 2021), which contrastively learns
latent features by maximizing similarity between matching vision-Language pairs while increasing
separation for non-matching pairs. Building on this, methods have emerged that incorporate label

1Full training details are described in Section 4
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spaces (Yang et al., 2022) or hard negative samples (Robinson et al., 2021; Li et al., 2021) to improve
representation learning. However, these approaches require high-quality, perfectly aligned datasets.
Our work overcomes this limitation by showing that even simplified or loosely aligned information
can significantly enhance performance.

2.2 TRANSLATION OF LANGUAGE INTO VISION MODALITY

Recent advancements in vision-language foundation models have extended their applications across
modalities. Large Language Models (LLMs), such as GPT-3 (Brown et al., 2020), and the LLaMA
series (Touvron et al., 2023a;b; Dubey et al., 2024), have achieved state-of-the-art results in tasks
like reasoning (Talmor et al., 2019) and knowledge retrieval (Kwiatkowski et al., 2019), primarily
through prompt engineering. Building on this, several approaches have employed LLMs trained
solely on language data to assist in vision tasks (Sharma et al., 2024), using their capabilities to
generate new prompts or serve as auxiliary tools. Conversely, our approach focuses on utilizing
latent features derived from language modality, even when imperfect data, without relying on the
extensive capabilities of LLMs to perform vision-related tasks. This enables a more targeted and
efficient use of cross-modal guidance.

2.3 MULTIMODAL LEARNING

Several approaches have moved beyond vision-language paradigms to address a wider range of
multimodal tasks, both empirically and theoretically. On the practical side, methods like MFAS
and Multibench (Liang et al., 2021; Pérez-Rúa et al., 2019) employ fusion networks (Zadeh et al.,
2017; Tsai et al., 2019) to combine inputs or latent features from multiple modalities, enhancing
multimodal learning. Additionally, related research has explored approaches for handling missing
or unpaired sets in multimodal learning (Girdhar et al., 2023; Mizrahi et al., 2024). These methods
include training separate classifiers for each modality (Kim & Kim, 2025), training prompts (Lee
et al., 2023), or utilizing a shared encoder (Wang et al., 2023) to address missing modalities.

However, prior works also contain a few key limitation. Recent methods in fully supervised or
unpaired settings often aim to improve multimodal model performance, typically by training or fine-
tuning both modalities (Shukor et al., 2023). In contrast, our approach utilizes latent representations
from a well-trained modality model to enhance the training of another modality model from scratch.
Moreover, synergy between modality models remains simultaneously underexplored from both em-
pirical and theoretical sight. Thus, our approach addresses this gap by enabling single-modality
models to support the training of others empirically, and provide theoretical framework based on
interpolated representations to explain their synergy.

3 THEORETICAL PERSPECTIVE AND METHODS

3.1 BASIC NOTATIONS AND A SKETCH OF MATHEMATICAL CLAIMS

Let us denote Mi and Mj as two different modalities. For inputs, let xi and xj indicate the paired
inputs from modalties Mi and Mj respectively. In additon, gi : X i → Zi and gj : X j → Zj are
two representation models that map an input to latent space, for the respective modalities. Also,
hi : Zi → Y is the hypothesis from embedding space to the label space Y for the respective
modaltiy. Here, representations and hypothesis are independently trained on each modaltiy, without
joint training.
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Figure 2: A conceptual sketch of our
claims in [L→V] case

In the context of multimodal learning, it is widely ac-
cepted to assume the existence of true latent space Z⋆,
which is the optimal representation across both modalities
Mi and Mj (Huang et al., 2021). As a brief sketch, we
show that there exists an interpolated latent representation
space Zk that shows smaller distance to Z⋆, leading to
outperform the two single-modality representations, i.e.,
Zi and Zj (referred to Theorem 1). It implies that we
can find a better representation by interpolating two rep-
resentations from different modalities. However, the first
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claim is limited in assuming correctly-paired inputs xi and xj , which draws extensive costs in anno-
tations of multimodal learning. To this end, we argue that even given with an imperfect or restricted
embedding ẑj ∈ Ẑj (not correctly-paired with zi), there exists an interpolated representation Ẑk

between Zi and Ẑj , which is closer to the true representation, leading to surpass the two, i.e., Zi

and Zj (referred to Theorem 2). Figure 2 illustrates a brief sketch of our claims. It means that
imperfect samples from modality Mj can promote the training of the superior representation that
promotes the performance of modality Mi; enabling the [Mj →Mi] case. In the following part, we
provide the formal description.

3.2 HOW ONE MODALITY MODEL SYNERGIZE THE TRAINING OF OTHERS?

We begin by introducing the distance metric between two distributions P1 and P2 as follows:

Definition 1 (2-Wasserstein Distance (Villani et al., 2009)). 2-Wasserstein distance between 2 dis-
tribution P1 and P2 is defined as:

W2(P1,P2) = inf
γ∈Γ(P1,P2)

(∫
Z1×Z2

d(z1, z2)
2dγ(z1, z2)

)1/2

(1)

where Γ(P1,P2) is all set of joint distribution (couplings) of P1 and P2.

We use 2-Wasserstein Distance to represent the distance between the probability density functions
of the extracted features from different representations, as described below:

Definition 2. Let zi ∈ Zi, zj ∈ Zj , and z⋆ ∈ Z⋆ denote the latent spaces of the i,j-modality,
and the true latent space, where z⋆ represents the optimal representation across both modalities.
zi and zj are assumed to be correctly-paired, which means that they represent the same underlying
concept but in different modalities (e.g., i for image and j for text). Furthermore, let Pi, Pj , and P⋆

are their corresponding distributions, i.e., zi ∼ Pi, zj ∼ Pj , and z⋆ ∼ P⋆. The distances between
the distributions are then defined as follows:

∆i := W2(P⋆,Pi), ∆j := W2(P⋆,Pj) and ∆ij := W2(Pi,Pj), (2)

where ∆i, ∆j , and ∆ij are positive real numbers.

Let us define an interpolated representation between the representations of two different modalities:

Definition 3. Let latent space zk ∈ Zk is an interpolated representation between the latent repre-
sentation spaces of the i,j-modalities with interpolation coefficient α ∈ [0, 1], as follows:

Zk := {zk = (1− α)zi + αzj | zi ∈ Zi, zj ∈ Zj}. (3)

In addition, let Pk denote the distribution of zk, and 2-Wasserstein distance between Pk and P⋆ is
∆k := W2(P⋆,Pk).

Assumption 1. Let ∆ij not converge to 0, i.e., ∆ij ≫ 0.

Assumption 1 implies that even if modalities Mi and Mj are similarly distant from the true latent
space, the distance between Mi and Mj remains significant. Intuitively, while two modalities may
represent similar information in certain contexts, their overall representations can differ markedly.
Furthermore, they may contain distinct information. For example, modality [L] can effectively
convey representations about “questions,” whereas modality [V] may hard to provide such represen-
tations. Thus, assuming that ∆ij ≫ 0 is a reasonable and justifiable consideration.

In the following theorem, we present the closed form solution of the interpolation coefficient α∗,
which makes Zk be closest to Z⋆.

Theorem 1. The optimal α∗ that minimizes ∆k is formulated as follows:

α∗ =
∆2

i −∆2
j +∆2

ij

2∆2
ij

(4)

Moreover, the resulting interpolated representation satisfies ∆k ≤ ∆i and ∆k ≤ ∆j .
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Corollary 1.1. The optimal α∗ is bounded as follows:

α∗ =



[
∆i

∆i +∆j
, 1

]
if ∆i > ∆j

[
0,

∆i

∆i +∆j

]
otherwise

(5)

For the proofs of Theorem 1 and Corollary 1.1, please see Appendix A.1.

Remark 1.1. (The behavior of α∗) α∗ is strongly influenced by the quality of modalities. For
an instance, let us discuss what happens when ∆j changes while fixing ∆i. Specifically, 1) when
∆i > ∆j , i.e., modaltiy Mj is superior to modality Mi, the optimal α∗ will be greater than 0.5,
i.e., α∗ > 0.5, implying that Pk tends to be closer to Pj . Conversely, 2) if ∆i < ∆j , α∗ < 0.5,
indicating that Pk shifts closer to Pi. Finally, 3) when ∆i = ∆j , the optimal α∗ equals to 0.5. It is
convincing that the behavior of α∗ shows that the superior interpolated representation forms near
to the better modality. Further discussions are provided at Appendix A.1.

Remark 1.2. (The condition of the synergy) For a scenario of utilizing Mj in training Mi, it is
crucial to judge how beneficial Mj is in promoting the training of the Mi. If modality Mj does not
bear information on the true latent space, where ∆j ≫ ∆i, this suggests that the Mj is much far
from both the true latent space and the Mi. Thus, leveraging Mj is not effective in training Mi, and
it makes to α∗ close to 0, which leads to the single-modality training of Mi. Thus, Assumption 1 is
critical to ensure that information from the Mj can be effectively utilized.

As aforementioned, obtaining exactly paired datasets in real-world scenarios is challenging. Theo-
rem 1 assumes the perfectly matched pairing of zi and zj with a common concept. Let us draws a
setting of ‘imperfect’ or ‘restricted’ pairing between modalities into our theoretical framework.

Definition 4. Let ẑj ∈ Ẑj be the imperfect latent space of the j-modality, with P̂j as its correspond-
ing distribution. The gap δ between zj and ẑj is defined as:

δ := W2(Pj , P̂j). (6)

Additionally, the distance from P̂j to the true latent space P⋆ and Pi are denoted as respectively:

∆̂j := W2(P⋆, P̂j) and ∆̂ij := W2(Pi, P̂j). (7)

Based on Definition 3 of imperfect representation, we rephrase the Theorem 1 to provide the fol-
lowing theorem:

Theorem 2. Let ẑk ∈ Ẑk be the interpolated latent space between the Mi and the restricted Mj ,
defined by the interpolation coefficient α as: Ẑk = {ẑk = (1 − α)zi + αẑj | zi ∈ Zi, ẑj ∈ Ẑj},
where P̂k represents its distribution. Let the 2-Wasserstein distance between P̂k and P⋆ be denoted
as W2(P⋆, P̂k) = ∆̂k. Then the optimal α̂∗ that minimizes ∆̂k is formulated as follows: ∆̂k:

α̂∗ =
∆2

i − ∆̂2
j + ∆̂2

ij

2∆̂2
ij

(8)

Moreover, the resulting interpolated representation satisfies ∆̂k ≤ ∆i and ∆̂k ≤ ∆̂j .

Corollary 2.1. The optimal α̂∗ is bounded as follows:

α̂∗ =



[
∆i

∆i +∆j + δ
, 1

]
if ∆i > ∆̂j

[
0,

∆i

∆i +∆j

]
otherwise

(9)

For the proofs of Theorem 2 and Corollary 2.1, please see Appendix A.2.
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Remark 2.1. (δ does not hinder the synergy) Although ẑj ∼ P̂j deviates from Pj , it still represents
the latent space of the Mj . We can extract an imperfect feature representation from Pj by giving
imperfect input to the modality Mj . This allows ẑj exist in the distribution Pj

2. Consequently, ẑj
is closer to or part of the latent space of the Mj than to that of the Mi or the true latent space.
Therefore, additional gap δ in Equation 6 is unlikely to significantly impact the determination of the
optimal α̂∗, as δ will be generally much smaller than both ∆i and ∆j . It stems for δ does not hinder
the synergy between two modalities, i.e., the modality Mj can promote the training of Mi, even with
an imperfect representation.
Remark 2.2. (Mj indeed helps the training of Mi) In training Mj , we can find a superior repre-
sentation Ẑk by utilizing imperfect feature representation from Mj . When revisiting the conceptual
sketch in Figure 2 and the preliminary experiments on CIFAR-10 shown in the Introduction, an
imperfect textual description, i.e., "This is about Class #." works as ẑj promotes the
training of visual models by finding the interpolated representation.

3.3 METHODOLOGY: TRAINING MODALITY Mi BY LEVERAGING MODALITY Mj

Based on our theory, we thus propose a training method for one modality Mi by leveraging modality
Mj with sampling imperfect ẑj from the representation space of Mj . Let us consider the scenario
for training modality Mi by leveraging modality Mj , i.e., [Mj →Mi], without loss of generality.

We extend our notation by introducing an uppercase superscript to denote the data modality. Specifi-
cally, let Si = {(xi

m, yim)}Mm=1, representing the dataset for the Mi to be learned, where xi
m denotes

the input data and yim its corresponding label, where M is the number of data points sampled. Sim-
ilarly, let Sj = {x̂j

m}Mm=1 represent the sampled set of imperfect samples of the Mj . This yields
the latent vectors ẑjm = gj(x̂

j
m) ∈ Ẑj , as introduced in Definition 4, where gj(·) is the pretrained

model function associated with the Mj . Si and Sj are sampled subsets from their respective full
modality datasets, Di and Dj . In last, the primary objective is to minimize risk through Empiri-
cal Risk Minimization (ERM). We then define two associated empirical risks by the following loss
functions:

Classification Loss: Lcls = E
(xi

m,yi
m)∼Si

[
LCE(h ◦ g(xi

m), yim)
]

Latent Loss: Lz = E
(xi

m,yi
m,ẑj

m)∼Si×Ẑj

[
||g(xi

m)− ẑjm||2
]

In this approach, the classification loss Lcls is utilized to optimize the learning of the Mi while latent
loss Lz is treated as a regularization term, enforcing alignment of features from the Mj .

We here propose a straightforward loss formulation, which allows to find the interpolated repre-
sentations between two modalities. We linearly combine the classification and latent loss terms:
Ltotal = (1− α)Lcls + αLz , to find optimal ẑk = g(xi)|argminLtotal

. A psuedocode of the learn-
ing procedures is given in Appendix B.2. Lastly, we describe how to obtain imperfect feature ẑj for
each modality in the following section, including vision, language, and audio.

4 EXPERIMENTAL RESULTS

In this section, we provide an overview of the experimental results, along with detailed descriptions
of the datasets, models and additional experimental settings.

4.1 EXPERIMENTAL SETTINGS

Datasets For the main experiments, we test on the ImageNet-1K dataset (Krizhevsky et al., 2012)
for visual tasks as the case of [L→V]. For further experiments in the multimodal setting, we employ
the IEMOCAP (Busso et al., 2008) and AVMNIST (Liang et al., 2021; Li et al., 2023) datasets.
IEMOCAP includes [A+L+Video] modalities, where we specifically focus on the [A+L] subset
for our experiments. We performed experiemnts on both direction, [L→A] and [A→L]. For AVM-
NIST, which contains [A+V] modalities, we followed the preprocessing steps outlined in CentralNet

2We fully describe how it can be done in the empirical testing in Section 4 and Appendix B.
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Table 1: Classification results on ImageNet-1K and evaluation benchmarks (OOD and robustness)

Model [L→V] IN V2 Rend. Sketch A Style. C (↓)

ResNet-50 (reproduced) 77.83 66.20 39.28 27.35 6.44 8.59 66.01
+ BERT (Devlin et al., 2018) 78.41 67.10 40.38 28.19 8.47 9.64 64.96
+ RoBERTa (Liu et al., 2019) 78.54 67.30 40.92 28.78 8.25 9.19 65.32

ViT-B/32 (reproduced) 75.04 62.02 40.31 27.34 9.23 16.56 55.45
+ BERT (Devlin et al., 2018) 76.59 63.37 41.28 28.53 11.31 18.11 53.28
+ RoBERTa (Liu et al., 2019) 76.75 64.00 41.81 29.50 11.55 18.75 52.95

ViT-B/16 (reproduced) 80.07 68.60 44.72 31.22 24.20 18.81 51.21
+ BERT (Devlin et al., 2018) 81.62 70.07 45.72 33.13 25.12 20.31 49.27
+ RoBERTa (Liu et al., 2019) 81.90 70.55 45.41 33.19 26.89 19.93 48.51

Table 2: Classification results on IEMOCAP and AVMNIST datasets on each cases of [Mj →Mi].

Datasets Model [L→A] Accuracy Model [A→L] Accuracy

IEMOCAP††
Wav2Vec2† (Ravanelli et al., 2021) 59.46 BERT (Devlin et al., 2018) 55.81

+ BERT-B (Devlin et al., 2018) 60.44 + Wav2Vec2-B (Baevski et al., 2020) 56.49
+ BERT-L (Devlin et al., 2018) 61.20 + Wav2Vec2-L (Baevski et al., 2020) 56.05

Datasets Model [V→A] Accuracy Model [A→V]∗ Accuracy

AVMNIST
Audio Model (Li et al., 2023) 41.28 Vision Model (Li et al., 2023) 65.18

+ ResNet-18 (He et al., 2016) 42.08 + Wav2Vec2-B (Baevski et al., 2020) 66.37
+ ResNet-34 (He et al., 2016) 42.44 + Wav2Vec2-L (Baevski et al., 2020) 66.69

†: SpeechBrain (Ravanelli et al., 2021) experimented with 4 out of 6 labels; we used the all labels.
††: Owing to transformer-type model requires numerous data, we fine-tuned the pretrained model.
∗: Since the audio data in AVMNIST is based on spectrograms, we use the original raw audio data prior to its
conversion into spectrogram.

(Vielzeuf et al., 2018), transforming raw audio into 112 × 112 spectrograms and utilizing 28 × 28
PCA-projected MNIST images. Similar to IEMOCAP datasets, we conducted experiments in both
directions, [V→A] and [A→V].

Models For the [L→V] case with the ImageNet-1K dataset, we employed modern architectures,
including ResNet50 (He et al., 2016), ViT-B/32, and ViT-B/16 for [V] modality. To incorporate
additional information from text prompts, we utilized pretrained BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), two extensively used transformer encoders for embedding the [L]
modality. We use the “large” size versions on both encoders. For the [L→A] and [A→L] cases
with IEMOCAP datasets, we employed a Wav2Vec2 (Baevski et al., 2020) model with SpeechBrain
(Ravanelli et al., 2021) configurations for [A] modality, alongside pretrained BERT-B and BERT-L
for the [L] modality. For the [V→A] case with AVMNIST experiments, we used the audio encoder
from AGM (Li et al., 2023), enhanced with an additional classification layer for the [A] modality,
and a pretrained ResNet-18 for the [V] modality. In addition, for the [A→V] case with AVMNIST,
we used the original pretrained Wav2Vec2-B/L model for the [A] modality. Especially, in Table 2,
“-B” refers to “base” size of model, while “-L” refers to “large” size configuration. For [Mj →Mi],
all model parameters of Mj modality are frozen.

Additional Settings (how to get ẑj) For the [L→V] case with the ImageNet-1K dataset, we ob-
tain ẑj by employing simple prompt engineering that provides imperfect and restricted information
for the language modality. Specifically, prompts like "This is about Class #." are used,
where # is a random number unrelated to the actual class label, ensuring imperfect supervision
for the language modality. For the [L→A] case with IEMOCAP, ẑj is generated using prompts
like "This is about Emotion #.", where # is also a random number unrelated to actual
labels, helping audio classification on the IEMOCAP dataset. We exclude the paired [L] modality
data in IEMOCAP. In the [A→L] case with IEMOCAP, we added Gaussian noise to audio data and
randomly shuffle to represent ẑj , thereby promoting sentiment classification in the [L] modality. For
the [V→A] case with AVMNIST, we use randomly shuffled images from AVMNIST as ẑj in audio
classification tasks. For the [A→V] case in AVMNIST, ẑj is generated by adding Gaussian noise
to the audio data and apply shuffling, similar to the [A→L] case, to assist the classification task on
PCA-projected MNIST images. Detail description of implementing ẑj is provided on Table 5.
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IEMO. [L→A] WD

W2(PA, P̂k) 0.494

W2(PL, P̂k) 0.141

W2(PA,PL) 0.977

IEMO. [A→L] WD

W2(PL, P̂k) 0.965

W2(PA, P̂k) 0.460

W2(PL,PA) 1.005

AVMN. [V→A] WD

W2(PA, P̂k) 0.025

W2(PV , P̂k) 0.754

W2(PA,PV ) 0.790

AVMN. [A→V] WD

W2(PV , P̂k) 0.908

W2(PA, P̂k) 0.502

W2(PV ,PA) 0.954

Figure 3: t-SNE visualizations and Wasserstein Distances (WD) across multimodal datasets

Implementation For the [L→V] case in ImageNet-1K classification task, we followed hyperpa-
rameter settings from the AugReg-ViT (Steiner et al., 2022) in training ResNet50, ViT-B/32, and
ViT-B/16. For multimodal datasets, i.e., IEMOCAP and AVMNIST, particularly in the cases of
[L→A], [A→L], [V→A] and [A→V], we employed customized hyperparameter settings for each
case. We consistently used 30 training epochs with Adam optimizer (Kingma & Ba, 2015). We
omitted any data augmentations. Lastly, we applied α = 0.5 for the [L→V] case, and α = 0.3 for
the other cases. Additional details are provided in Appendix B.

4.2 RESULTS

Main Results Our main results are two parts: Table 1 with ImageNet-1K and Table 2 with multi-
modal datasets, i.e., IEMOCAP and AVMNIST.

According to Table 1, the results for the multimodal learning case, especially [L→V] case, high-
lights the outstanding performance of our approach on ImageNet-1K (IN). where it achieved im-
provements between approximately +1.5% and +2.0%. Notably, our approach also demonstrates
significant improvements across additional evaluation datasets, including ImageNet-V2, out-of-
distribution (OOD) datasets such as ImageNet-Rend. (Hendrycks et al., 2020), ImageNet-Sketch
(Wang et al., 2019), and ImageNet-Style. (Geirhos et al., 2019), achieving performance gains be-
tween +1.0% and +2.0%. Furthermore, our approach also excels in robustness benchmarks, achiev-
ing improvements up to +2.6% on adversarial examples from ImageNet-A (Hendrycks et al., 2020)
and 2.5↓ on corrupted images from ImageNet-C (Hendrycks & Dietterich, 2019). Surprisingly,
language models clearly promote the training of visual models, i.e., writers indeed help painters.
Notably, the synergy shows consistent gains even in OOD, adversarial, and corrupted samples. It
emphasizes that language models also facilitate visual models to acquire representations, which are
well-generalized on a wide range of visual data distributions.

For more cases with IEMOCAP and AVMNIST in Table 2, our approach also leads to performance
gains across various tests. In the IEMOCAP experiments, it shows a considerable gain of approxi-
mately +1.6% in the [L→A] case and +0.6% gain in the [A→L] case. For the AVMNIST testing,
the performance improvement is around +1.2% in the [A→L] case and +1.4% in the [A→L] case.

Consequently, we confirm that the three modalities—Vision, Language, and Audio—are shown to
mutually enhance each other’s training in ways that are not easily anticipated. This underscores
the potential for significant performance improvements when multiple modalities are effectively
integrated and demonstrates the broad applicability of our claims across different types of modalities.
Moreover, we emphasize that our claims have been validated across numerous existing deep model
architectures, where this validation highlights the model-agnostic nature of our approach, making it
applicable to a broad spectrum of scenarios.

5 ANALYSIS

5.1 ANALYSIS AND REPRESENTATION VISUALIZATIONS

Wasserstein Distance Between Modalities Our hypothesis suggests that the Wasserstein distance
between the latent feature distributions of individual modalities should exceed that of an adaptively
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Figure 4: Validation Latent loss Lz across the entire datasets

Table 3: Evaluation across the different value of α

Datasets Accuracy
α = 0 α = 0.1 α = 0.3 α = 0.5 α = 0.7

IEMOCAP [L→A] 59.46 60.34 61.20 59.87 59.93

IEMOCAP [A→L] 55.81 55.51 56.49 54.19 55.90

AVMNIST [V→A] 41.28 42.03 42.44 41.77 41.79

AVMNIST [A→V] 65.18 65.03 66.69 64.77 64.76

Table 4: Comparison: ẑj vs. zj

Model [L→V] ẑj zj

ResNet-50 78.54 78.61 (+0.07)+ RoBERTa

ViT-B/32 76.75 76.99 (+0.24)+ RoBERTa

ViT-B/16 81.90 82.54 (+0.64)+ RoBERTa

trained distribution, P̂k, which ideally lies between the latent spaces of the given modalities. Figure
3 illustrates this concept. In the test of [Mj →Mi] scenario, the aaa denote latent vectors zi from
the Mi modality, aaa represent {ẑkm}Mm=1, and aaa represent Mj modality latent vectors zj . As
expected, t-SNE visualizations largely represent that ẑkm resides between the latent spaces of Mi

and Mj , with asmaller Wasserstein distance to each modality (see W2(·, P̂k) terms), while individ-
ual modalities are shown to be distant to each other. These findings visually illustrate our hypothesis,
coinciding with the claim of ‘interpolated’ representations. It further confirms that our Ltotal em-
pirically serves as an adequate objective function to acquire the superior interpolate representation
in between individual modalities.

The Convergence of Latent Loss We here show how the latent loss, i.e., Lz , which reflects how
much the interpolated representation moves close to the modality Mj , behaves during the training.
As shown in Figure 4, the loss consistently decreases throughout all cases. This result highlights the
narrowing gap between the latent vectors from modality Mj and the representation vectors derived
from the input data. By minimizing this gap, models successfully exploits simplified yet informative
latent features ẑj , thereby improving overall performance. As Mean Squared Error (MSE) is em-
ployed, the magnitude of the gap may vary across experiments due to dimensions of representation
vectors. To account for this, we applied normalized latent loss to observe a clear convergence for all
cases. Despite some fluctuations in certain cases, the loss consistently decreases and converges to a
value close to, but not exactly, zero due to interpolation.

5.2 ABLATION STUDIES

The Effect of α Due to the fact that α plays a crucial role in finding optimal latent space, we
evaluated how variations in α influence performance on multimodal datasets. We tested various
values of α = {0.0, 0.1, 0.3, 0.5, 0.7}, and the corresponding results are shown in Table 3. We
observe clear performance degradation when a biased α with too small or large values is used. It
demonstrates that the biased cases, which tend to strongly rely on one single modality, do not show
a synergy. Among candidates, α = 0.3 consistently shows the best accuracies, highlighting the
importance of balancing the contribution of each modality. When reminding t-SNE visualizations
in Figure 3, α with a moderate value coincides with the spatial position of the representation at the
middle of two individual representations.

The Usage of Paired Supervision Zj vs. Ẑ
j
: Rather than using imperfect ẑj , we investigate how

much gains would be further achieved when using the perfectly matched zj . In Table 4, we tested
the ImageNet-1K (IN) cases, where the column with ‘ẑj’ refers to the numbers in Table 1 of the
main experiments, and the column with ‘zj’ is done with perfectly matched supervision in the [L]
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modality.3 As shown in Table 4, although the performance slightly improves, the gains are mini-
mal. This result aligns with our hypothesis, indicating that δ from Theorem 2 has a limited effect
on performance, supporting our hypothesis. Also, the result emphasizes that our approach signifi-
cantly relieves the cost of pairing perfectly matched supervision across modalities while achieving
a comparative performance with the ideal case with paired supervision.

6 FURTHER DISCUSSIONS AND LIMITATIONS

Innovating Multimodal Learning: In prior works, many multimodal learning methods have relied
on paired-datasets for training. This contrasts with human learning, which often occurs without
the need for precisely paired object from different modality. Similar to human’s perspective, our
work seek to overcome this limitation, demonstrating that minimal or even imperfect supervision
from different modalities can still enhance learning in the primary modality. Consequently, our
approach suggest further advancements in technical perspective, enabling the effective utilization of
multimodal settings even when only a single modality is available.

Discovery of Unexpected Synergy Between Modalities: It is commonly assumed that not every
modality can effectively assist another. The prevailing notion is that unrelated modalities may not
provide meaningful assistance to one another. However, our experiments on [V→A] and [A→V]
reveal that cross-modality interactions, even between seemingly unrelated domains, can lead to sig-
nificant performance improvements. These results demonstrate that integrating seemingly unrelated
modalities can still yield benefits, uncovering hidden correlations and unexpected synergies between
them. This approach opens new possibilities for exploring multimodal combinations that were pre-
viously considered non-beneficial, such as integrating language with signal-based sensory data. Ex-
panding the scope of multimodal learning may reveal hidden synergies between multiple modalities,
leading to improved overall performance.

Broad Impacts on Wide Range of Tasks: Recent works has focused on addressing the general-
ization problem, such as out-of-distribution (OOD), adverserial, and robustness. We validated that
our method not only achieves strong performance on the ImageNet-1K but also shows significant
improvements in OOD, adversarial, and robustness scenarios, as shown in Table 1. These find-
ings suggest that our approach could be extended to further tackle the generalization problem by
incorporating additional guidance from imperfect data across other modalities.

Limitations: While our experiments demonstrate the effectiveness of the proposed approach, certain
limitations remain. One key challenge is scalability, both in terms of computational feasibility, and
the other is theoretical extensions to multiple modalities.

Primarily, due to resource constraints, it is limited to conduct large-scale evaluations on larger archi-
tecture size, leaving empirical model scalability of our method an open challenge for future research.
However, it is important to emphasize that our theoretical framework is not inherently restricted by
model size. We expect the core principles of our approach to generalize effectively to larger models.

The other limitation, as mentioned on the previous discussion, is that our method has been evaluated
only on the paired modalities. Extending it to incorporate more than two modalities could unlock
further performance gains for individual modalities. Nonetheless, aligning latent vector dimensions
across multiple modalities introduces additional complexity, which may impact performance and
requires further investigation.

7 CONCLUSIONS

We presented both theoretical and empirical frameworks demonstrating that one modality with im-
perfect representation can still enhance learning in the other modality. Our results and extensive
analyses support proposed hypotheses and reinforce theoretical foundations of this approach. No-
tably, we showed that paired supervision between datasets is unnecessary, as weakly related super-
vision or even mismatched setting across modalities can still lead to improvements. In last, we then
propose future research to explore more complex multimodal settings, such as leveraging more than
two modalities or scaling to larger models, which may drive significant advancements in this field.

3Additional details providing more precise information are included in the Appendix. B.
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Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux, and Frédéric Jurie. Centralnet: a multilayer
approach for multimodal fusion. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, pp. 0–0, 2018.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
tions by penalizing local predictive power. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 10506–10518, 2019.

Hu Wang, Yuanhong Chen, Congbo Ma, Jodie Avery, Louise Hull, and Gustavo Carneiro. Multi-
modal learning with missing modality via shared-specific feature modelling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15878–15887,
2023.

Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification networks
hard? In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12695–12705, 2020.

14

https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=4uflhObpcp
https://openreview.net/forum?id=4nPswr1KcP
https://openreview.net/forum?id=4nPswr1KcP
https://aclanthology.org/N19-1421/
https://openreview.net/forum?id=rygqqsA9KX
https://openreview.net/forum?id=rygqqsA9KX
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Published as a conference paper at ICLR 2025

Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Bin Xiao, Ce Liu, Lu Yuan, and Jianfeng Gao. Uni-
fied contrastive learning in image-text-label space. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 19163–19173, 2022.

Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Ten-
sor fusion network for multimodal sentiment analysis. In Martha Palmer, Rebecca Hwa, and
Sebastian Riedel (eds.), Proceedings of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 1103–1114, Copenhagen, Denmark, September 2017. Asso-
ciation for Computational Linguistics (ACL). doi: 10.18653/v1/D17-1115. URL https:
//aclanthology.org/D17-1115.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empir-
ical risk minimization. In International Conference on Learning Representations (ICLR), 2018.
URL https://openreview.net/forum?id=r1Ddp1-Rb.

Xue Zhang, Ming-Jiang Wang, and Xing-Da Guo. Multi-modal emotion recognition based on deep
learning in speech, video and text. In 2020 IEEE 5th International Conference on Signal and
Image Processing (ICSIP), pp. 328–333, 2020. doi: 10.1109/ICSIP49896.2020.9339464.

Andy Zhou, Jindong Wang, Yu-Xiong Wang, and Haohan Wang. Distilling out-of-distribution ro-
bustness from vision-language foundation models. In Advances in Neural Information Processing
Systems (NeurIPS), 2023. URL https://openreview.net/forum?id=iwp3H8uSeK.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. In International booktitle of Computer Vision (IJCV), volume 130, pp. 2337–
2348. Springer, 2022b.

15

https://aclanthology.org/D17-1115
https://aclanthology.org/D17-1115
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=iwp3H8uSeK


Published as a conference paper at ICLR 2025

A MATHEMATICAL DETAILS FOR THEORETICAL FRAMEWORKS

A.1 PROOF OF THEOREM 1 AND COROLLARY 1.1

Theorem 1. The optimal α∗ that minimizes ∆k is formulated as follows:

α∗ =
∆2

i −∆2
j +∆2

ij

2∆2
ij

Moreover, the resulting interpolated representation satisfies ∆k ≤ ∆i and ∆k ≤ ∆j .

Proof. Given that Wasserstein distance is symmetric and satisfies triangle inequality (Villani et al.,
2009; Peyré & Cuturi, 2019), we can define the relationship each distribution of latent spaces:

W2(Pi,Pj) ≤W2(P⋆,Pi) +W2(P⋆,Pj) (10)

and this could be simplified via notations provided on Definitions at Section 3.2:

∆ij ≤ ∆i +∆j (11)

According to prior works (Villani et al., 2009; Peyré & Cuturi, 2019; Mahey et al., 2024), we can
define a new equation as follows about the relation between wasserstein distances:

Definition 5 (Generalized Geodesics (Mahey et al., 2024)). According to the convexity property of
2-Wasserstein distance, squared 2-Wasserstein distance between Pk and P⋆ is bounded by:

W 2
2 (Pk,P⋆) ≤ (1− α)W 2

2 (P⋆,Pi) + αW 2
2 (P⋆,Pj)− α(1− α)W 2

2 (Pi,Pj) (12)

= (1− α)∆2
i + α∆2

j − α(1− α)∆2
ij (13)

Considering that our primary goal is to determine the optimal α, we can express Equation 13 as the
quadratic function of α, i.e., f(α) = (1−α)∆2

i +α∆2
j −α(1−α)∆2

ij . The optimal value of α can
then be determined by taking the derivative of the function f(α):

∂f(α)

∂α
= −∆2

i +∆2
j − (1− 2α)∆2

ij = 0 (14)

Changing into the term of α is then :

α∗ =
1

2

(
1 +

∆2
i −∆2

j

∆2
ij

)
=

1 + C

2
where C =

(∆i +∆j)(∆i −∆j)

∆2
ij

(15)

where α∗ = argmin
α

f(α). This optimal α∗ remains valid under the Assumption 1 that ∆ij is bigger
than 0, ensuring that α∗ does not diverge.

It still remains to be proven that the optimal value of α∗ indeed minimizes ∆k and satisfies the
condition that ∆k is smaller than both ∆i and ∆j . To establish this, we begin by verifying if ∆k is
truly minimized. Let the minimized value of ∆k be denoted as ∆∗

k. Assume that zk ∼ Pk lies on
the geodesic between zi ∼ Pi and zj ∼ Pj , representing a projection onto the true latent space.4

To demonstrate this, we can apply the Pythagorean theorem. Under the above assumption, ∆∗
k can

be expressed as:

∆∗
k
2 = ∆2

i − (α∆ij)
2 (16)

= ∆2
j − ((1− α)∆ij)

2 (17)

We can further rearrange the above equations as:

∆2
i −∆2

j = (2α− 1)∆2
ij (18)

4This concept is detailed in the min-SWDD paper (Mahey et al., 2024).
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From this, we solve for optimal α, denoted as α∗:

α∗ =
1

2

(
1 +

∆2
i −∆2

j

∆2
ij

)
(19)

This expression corresponds to the optimal value α∗ from Equation 4 and satisfies the Pythagorean
theorem, which we assumed to hold when minimizing ∆k. This minimized value of ∆k represents
the distance between P⋆ and the distribution Pk, projected directly onto the geodesic connecting
Pi and Pj . Moreover, we conclude that the minimized ∆∗

k is indeed smaller than both ∆i and ∆j ,
where ∆∗

k
2 ≤ ∆2

i as related to Equation 16 and ∆∗
k
2 ≤ ∆2

j as related to Equation 17. Therefore,
result is formally expressed as:

∆∗
k ≤ min(∆i,∆j) (20)

where it satisfies the Theorem 1.

Corollary 1.1 The optimal α∗ is bounded as follows:

α∗ =



[
∆i

∆i +∆j
, 1

]
if ∆i > ∆j

[
0,

∆i

∆i +∆j

]
otherwise

Proof. To establish the validity of the optimal α∗ under different conditions for ∆i and ∆j , we
begin by examining the relationship between these two quantities.

• Condition 1.1: (∆i > ∆j) : This scenario implies that the difference between ∆i and ∆j is
positive, meaning C =

∆i−∆j

∆i+∆j
exhibits a positive value. In this case, the constant C is bounded

by the inequality:

C ≥ ∆i −∆j

∆i +∆j
(21)

Substituting this bound into Equation 15, we have the following inequality for the optimal value
of α∗:

α∗ ≥ 1

2

(
1 +

∆i −∆j

∆i +∆j

)
(22)

=
∆i

∆i +∆j
(23)

As we know that α∗ is constrained by 0 ≤ α∗ ≤ 1, this inequality confirms that α∗ = ∆i

∆i+∆j

satisfies the first condition of optimality, as given by Equation 5. This ensures that when ∆i > ∆j ,
the chosen value of α∗ lies within the allowable range and maintains the necessary relationship
between the distances.

• Condition 1.2: (∆i ≤ ∆j) : In this case, the difference between ∆i and ∆j is non-positive, and
consequently, the value of C becomes negative. Thus, the constant C is bounded by the inequality:

C ≤ ∆i −∆j

∆i +∆j
(24)

By applying the same process as in Condition 1, we substitute this bound into the formula for α∗,
yielding:

α∗ ≤ ∆i

∆i +∆j
(25)

Given that α∗ must satisfy 0 ≤ α∗ ≤ 1, this condition is similarly met. Moreover, as α∗ ≥ 0, this
value conforms to the second condition of optimality in Equation 5. Hence, when ∆i ≤ ∆j , the
optimal value of α∗ continues to fulfill the constraints of the inequality, ensuring that the geometric
relationship between the distances is preserved.
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Thus, the optimal value α∗ satisfies both conditions for the two possible relationships between ∆i

and ∆j , concluding the proof.

A.2 PROOF OF THEOREM 2 AND COROLLARY 2.1

Theorem 2. Let ẑk ∈ Ẑk be the interpolated latent space between the Mi and the restricted Mj ,
defined by the interpolation coefficient α as: Ẑk = {ẑk = (1 − α)zi + αẑj | zi ∈ Zi, ẑj ∈ Ẑj},
where P̂k represents its distribution. Let the 2-Wasserstein distance between P̂k and P⋆ be denoted
as W2(P⋆, P̂k) = ∆̂k. Then the optimal α̂∗ that minimizes ∆̂k is formulated as follows: ∆̂k:

α̂∗ =
∆2

i − ∆̂2
j + ∆̂2

ij

2∆̂2
ij

Moreover, the resulting interpolated representation satisfies ∆̂k ≤ ∆i and ∆̂k ≤ ∆̂j .

Proof. Similar to the approach in Appendix A.1, ∆̂k can be defined with following Definition 5:

W 2
2 (P⋆, P̂k) ≤ (1− α)W 2

2 (P⋆,Pi) + αW 2
2 (P⋆, P̂j)− α(1− α)W 2

2 (Pi, P̂j) (26)

= (1− α)∆2
i + α∆̂2

j − α(1− α)∆̂2
ij (27)

To determine the optimal α that minimizes the left-hand side of Equation 27, we can utilize the
derivative of the function f(α) = (1 − α)∆2

i + α∆̂2
j − α(1 − α)∆̂2

ij and set it equal to zero, as
demonstrated in Equation 14:

∂f(α)

∂α
= −∆2

i + ∆̂2
j − (1− 2α)∆̂2

ij = 0. (28)

This can be rephrased in terms of α, analogous to Equation 15:

α̂∗ =
1

2

(
1 +

∆2
i − ∆̂2

j

∆̂2
ij

)
=

1 + C ′

2
, where C ′ =

(∆i + ∆̂j)(∆i − ∆̂j)

∆̂2
ij

(29)

Additionally, the optimal α̂∗ is valid, similar to the validity of α∗, under Assumption 1 and the
property of ∆̂ij , where ∆ij ≤ ∆̂ij .

To achieve the goal of minimizing ∆̂k, we need to demonstrate that applying the optimal α̂∗ results
in a value of ∆̂k smaller than both ∆i and ∆̂j . Following the previous steps outlined in the proof of
Theorem 1, we can proceed as follows.

Let the minimized distance be denoted as ∆̂∗
k, with the optimal coefficient being α̂∗. Using the

Pythagorean Theorem, we relate the distances ∆i, ∆̂j , and ∆̂ij through the following expressions:

∆̂∗2
k = ∆2

i − (α̂∗∆̂ij)
2 (30)

= ∆̂2
j − ((1− α̂∗)∆̂ij)

2 (31)

These two equations can be rearranged in terms of α̂∗, leading to the expression:

∆2
i − ∆̂2

j = (2α̂∗ − 1)∆̂2
ij (32)

From this, solving for α̂∗ yields:

α̂∗ =
1

2

(
1 +

∆2
i − ∆̂2

j

∆̂2
ij

)
(33)

This expression is equivalent to Equation 8 in Theorem 2. The assumption that the optimal α̂∗

minimizes ∆̂∗
k, which denotes the geodesic projection of the distribution P̂k between Pi and P̂j ,

aligns with the closed-form solution for α̂∗ given in Definition 5 and Equation 29.
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Furthermore, by substituting into Equations 30 and 31, the minimization of ∆̂2
k implies:

∆̂2
k ≤ min(∆2

i , ∆̂
2
j ) (34)

⇒ ∆̂k ≤ min(∆i, ∆̂j) (35)

Based on Definition 4 and the triangle inequality, ∆̂j can be further bounded as ∆̂j ≤ ∆j + δ.
However, as discussed in Remark 2.1, the term δ is expected to have a negligible effect on the
Wasserstein distance between the distributions, resulting in only a minor constant offset. Therefore,
this does not significantly impact the Wasserstein distance between the distributions, which Equation
35 will approximately similar to Equation 20.

Corollary 2.1 The optimal α̂∗ is bounded as follows:

α̂∗ =



[
∆i

∆i +∆j + δ
, 1

]
if ∆i > ∆̂j

[
0,

∆i

∆i +∆j

]
otherwise

Proof. We analyze the bounds on α̂∗ by considering two conditions based on ∆i and ∆̂j :

• Condition 2.1 (∆i > ∆̂j): In this case, C ′ is positive. From the triangle inequality for the
2-Wasserstein distance, we obtain the following lower bound:

C ′ ≥ ∆i − ∆̂j

∆i + ∆̂j

(36)

Substituting this bound into Equation 29, we derive:

α̂∗ ≥ ∆i

∆i + ∆̂j

(37)

≥ ∆i

∆i +∆j + δ
(38)

where δ is a small constant, accounting for minor deviations between ∆̂j and ∆j , as discussed in
Remark 2.1. Since α̂∗ ≤ 1, this satisfies the first condition in Equation 9.

• Condition 2.2 (∆i ≤ ∆̂j): In this scenario, C ′ becomes negative. Using a similar approach as
in Case 1, the upper bound for C ′ is:

C ′ ≤ ∆i − ∆̂j

∆i + ∆̂j

(39)

Substituting this into Equation 29, we get:

α̂∗ ≤ ∆i

∆i + ∆̂j

(40)

Since ∆̂j ≥ ∆j , we can substitute ∆̂j with ∆j , resulting in a looser bound:

α̂∗ ≤ ∆i

∆i +∆j
(41)

Thus, this bound satisfies the second condition of Equation 9.

Therefore, we find that the derived bounds on α̂∗ fulfill the both conditions stated in Equation 9.
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B IMPLEMENTATION DETAILS

B.1 DATASETS

ImageNet-1K and Evaluation Benchmarks ImageNet-1K (Krizhevsky et al., 2012) is the image
datasets that contains 1000 classes with 1,281,167 training images and 50,000 validation images.
ImageNet has been widely used in image classification benchmarks in various methoods, especially
in computer vision task (Dosovitskiy et al., 2021; Steiner et al., 2022; Zhou et al., 2023; Pang et al.,
2024). In our evaluation, we also assessed ImageNet-related validation benchmarks focusing on
out-of-distribution (OOD) and robustness scenarios. These benchmarks can be categorized into
three types: in-domain, OOD, and robustness.

For the in-domain category, we utilized ImageNet-V2 (Recht et al., 2019), which consists of 10
images per class from the original ImageNet-1K, with total 10,000 images. The OOD benchmarks
contains ImageNet-Rendition (Hendrycks et al., 2020), ImageNet-Sketch (Wang et al., 2019), and
ImageNet-Stylized (Geirhos et al., 2019). ImageNet-Rendition features 200 classes with a total
of 30,000 images, while ImageNet-Sketch contains approximately 50 images per class, totaling
50,889 images sourced from Google image queries labeled as "sketch of {class name}."
Lastly, the robustness scenarios encompass ImageNet-A (Hendrycks et al., 2020) and ImageNet-
C (Hendrycks & Dietterich, 2019). ImageNet-A consists of images misclassified by the ResNet-50
model. ImageNet-C features a variety of generated corruptions, such as Gaussian noise and blurring,
and is commonly used in adversarial training approaches.

IEMOCAP The IEMOCAP dataset (Busso et al., 2008) contains video, language and audio modal-
ities. It consists of 151 recorded dialogue videos featuring two speakers per session, resulting in
a total of 302 videos. Each segment is annotated for nine emotions: angry, excited, fear, sad, sur-
prised, frustrated, happy, disappointed, and neutral. Recorded across five sessions with five pairs of
speakers. It also contains the audio and script for each video data. IEMOCAP dataset is a valuable
resource for research in multimodal emotion recognition and has been widely employed in various
multimodal methods (Zhang et al., 2020; Li et al., 2018) for the emotion sentiment classification.

As mentioned in Section 4.1, our implementation focused solely on the script and audio components,
emphasizing the language and audio modalities. For convenience, we narrowed our analysis to six
specific emotions: neutral, happy, angry, sad, excited, and frustrated, employing the official PyTorch
framework (Paszke et al., 2019) for dataloader.

AVMNIST The AVMNIST dataset (Vielzeuf et al., 2018) contains digit images (0 to 9) from the
MNIST dataset (Lecun et al., 1998), where each image has dimensions of 28 × 28 × 1. These
images have been subjected to PCA projection, resulting in a reduced information representation
compared to the original MNIST dataset. In addition to the visual modality, the dataset includes an
audio modality from the Free Spoken Digits Dataset (FSDD) (Jackson et al., 2018). The audio data
has been preprocessed into mel-frequency spectrograms, sampled at a resolution of 112 × 112 × 1.

In the context of the audio modality [A], we approach the two cases, [V→A] and [A→V], using
distinct strategies. For the [V→A] case, the audio modality is processed using convolutional neural
networks (CNNs), outlined in AGM (Li et al., 2023). In contrast, for the [A→V] case, we utilize
raw audio data from the FSDD dataset rather than mel-spectrogram images, as pretrained models
specifically trained on spectrogram data are not readily available for this task.

Representation of zj In Section 5.2, we discussed the representation of zj . As ImageNet-1K does
not contains any supervision related to the [L] modality, except class label, we employed a new
description for each image generated by LLaVA (Liu et al., 2024).

Specifically, we input images from ImageNet along with the following prompt:
"USER: <image>\nWhat does this image represent? Explain in a
sentence.\nASSISTANT:". LLaVA generates a descriptive prompt for each image,
which provides a description that is closer to the true supervision of the language modality, zj ,
compared to our original prompt, "This is a class about #.", ẑj . As demonstrated in
Table 4, this change does not result in significant performance differences, where it aligns to our
theoretical perspective in Theorem 2 and Remark 2.1 that δ does not substantially affect the distance
between the distributions of each modality.
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B.2 EXPERIMENTAL DETAILS

Pseudo Code and Detail Implementation of ẑj We provide the pseudo-code on Algorithm 1 and
implementation details for ẑjm in all cases in Table 5 as follows:

Table 5: Implementation details of ẑjm across different datasets and cases

Datasets & Cases Implementation of ẑj
m

ImageNet-1k [L→V] [L]⇒ This is about Class #.†

IEMOCAP [L→A] [L]⇒ This is about Emotion #.†

IEMOCAP [A→L] [A]⇒ Add Gaussian Noise: ξ ∼ N (0, λI)†† & Random Shuffling

AVMNIST [V→A] [V]⇒ Random Shuffled Image (mismatch paired sets)

AVMNIST [A→V] [A]⇒ Add Gaussian Noise: ξ ∼ N (0, λI)†† & Random Shuffling
†: # is a random number that does not directly correspond to the actual label.

††: λ is a parameter that controls the variance of the Gaussian noise. We applied λ = 10−3

Algorithm 1 Traininig Procedures for [Mj →Mi]
Hyperparameter: α: interpolate coefficients, B: batch size
Input: {(xi

m, yim)}Mm=1 ∼ Si: input data from Mi modality sampled in batch size B for each,
{x̂j

m}Mm=1 ∼ Sj : imperfect input data from Mj modality sampled in batch size B for each
Required: LCE : Cross-Entropy Loss, θi: Mi modality model parameters
Function: gi(·; θi): latent feature mapping function of Mi modality, gj(·; θj): latent feature map-
ping function of Mj modality, hi(·; θi): hypothesis function of Mi modality

1: while not done do
2: for m = 1, . . . ,M do
3: ẑjm = gj(x̂

j
m; θj)

4: Lcls = LCE(hi(gi(x
i
m; θi); θi), y

i
m)

5: Lz = E
[
||gi(xi

m; θi)− ẑjm||22
]

6: Ltotal = (1− α)Lcls + αLz

7: θi ← θi −∇θiLtotal

8: end for
9: end while

Hyperparameters Settings In the [L→V] case for the ImageNet-1K classification task, we adhered
to the hyperparameter settings established by AugReg-ViT (Steiner et al., 2022) for all training
models, specifically ResNet-50, ViT-B/32, and ViT-B/16. For the baseline model, we trained for
300 epochs with a batch size of 1024, utilizing a learning rate of 1 × 10−3 and a weight decay of
5 × 10−2. We employed the AdamW optimizer (Loshchilov & Hutter, 2019) with cosine learning
rate scheduling (Loshchilov & Hutter, 2017) and implemented a linear warmup for 20 epochs. Data
augmentations, including MixUp (Zhang et al., 2018), RandAugment (Cubuk et al., 2020), and Au-
gReg (Steiner et al., 2022), were applied throughout the training process. Furthermore, we utilized
Automatic Mixed Precision (Micikevicius et al., 2018) in conjunction with 4 A6000 GPUs.

For the multimodal datasets, we customized two hyperparameter settings configuration based on the
datasets: IEMOCAP dataset for fine-tuning and AVMNIST dataset for training from scratch. In
the fine-tuning approach, particularly for the cases of [L→A] and [A→L] on IEMOCAP dataset,
we conducted training for 30 epochs with a batch size of 4. Given that the learning procedure is
fine-tuning, we adjusted the learning rate to 5 × 10−5 and the weight decay to 5 × 10−4, while
also applying cosine learning rate scheduling (Loshchilov & Hutter, 2017). The Adam optimizer
(Kingma & Ba, 2015) was employed, and no data augmentations were utilized. For training from
scratch, specifically in the cases of [L→V] and [A→V] on the AVMNIST dataset, we again trained
for 30 epochs with a batch size of 32. The learning rate was set to 1 × 10−3, with a reduction
factor of 0.1 applied at 25 epochs. The Adam optimizer (Kingma & Ba, 2015) was used, and data
augmentations were omitted during this training phase as well.
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C ADDITIONAL CASE STUDIES

C.1 DESIGN CHOICES IN LATENT LOSS FUNCTION Lz

In this section, we conduct an ablation study to assess the impact of different latent loss functions.
Our primary approach employs mean squared error (MSE) loss to directly align latent representation
vectors, we also explore the use of cosine embedding loss: Lz = E

[
1− cos (g(xi

m), ẑjm)
]
. For

comparison, we consider the best results of each cases from Table 1 and Table 2. As summarized
in Table 6, the performance remains consistent across both loss functions, with variations ranging
from −0.1% to +0.7%. These results suggest that adhering to the representation distribution of the
Mj modality effectively supports training of Mi modality, regardless of the choice of loss function.

Table 6: Performance comparison of different Lz across various datasets and cases

Datasets & Cases MSE Cosine Embedding Loss
ImageNet-1K [L→V] 81.90 81.97

IEMOCAP [L→A] 61.20 61.20

IEMOCAP [A→L] 56.49 56.77

AVMNIST [V→A] 42.44 42.67

AVMNIST [A→V] 66.69 66.25

C.2 ADDITIONAL RESULTS IN THE LARGER MODEL

We also conducted experiments with a larger model, focusing on the [L→V] case on the ImageNet-
1k dataset. Specifically, we utilized ViT-L/16, which requires approximately 5× FLOPs compared to
ViT-B/16. As the results are provied on Table 7, it demonstrate that our approach achieves significant
improvements even with this larger model, where it shows similar gap compare to Table 1. This
indicates that our method does not rely on the scalability of model size; instead, it leverages the
qualitative representations of the Mj modality to effectively synergize with or enhance the training
of the Mi modality.

Table 7: Large model classification results on ImageNet-1K and evaluation benchmarks

Model [L→V] IN V2 Rend. Sketch A Style. C (↓)

ViT-L/16 (reproduced) 80.04 70.75 51.33 39.73 31.01 25.63 44.85
+ RoBERTa (Liu et al., 2019) 81.63 71.76 53.00 40.87 32.33 28.50 41.61

C.3 DESIGN CHOICES FOR IMPERFECT SUPERVISION ẑj

In this section, we present additional experiments for the [L→V] case in ImageNet-1K classifica-
tion to evaluate how varying cases of imperfect supervision impact performance. We define three
different cases of imperfection setting to analyze its effects:

• Case 1 - Completely Imperfect Supervision: At this case, we generated 1,000 random sen-
tences using ChatGPT-4o and randomly matched them to the training data of the Mi modality
model. This represents a highly imperfect supervision setting, introducing significant noise into
the supervision of the Mi modality.

• Case 2 (Recap) - "This is about Class #.": This case corresponds to our main ap-
proach, where supervision is based on random number # assigned to the data.

• Case 3 (Recap) - Perfect Supervision: As described in Section 5.2 and Appendix B.1, this case
employs high-quality supervision generated by LLaVA for each image in the dataset.
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The results in Table 8 reveal that even when ẑj is entirely unrelated, representing a completely
imperfect paired dataset, it can still synergize effectively with the Mi modality. Notably, this setup
achieves an improvement of nearly 1.5% compared to training with a single modality and Case 1
supervision. These findings underscore the strength of our approach and strongly align with our
theoretical perspectives, as in Theorem 2.

Table 8: ImageNet-1K classification results with ViT-B/32 + RoBERTa under different cases of ẑj

Model [L→V] Single† Case 1 Case 2 Case 3
Accuracy 75.04 75.52 76.75 76.99

†: No RoBERTa, ViT-B/32 only.

C.4 ADDITIONAL ABLATION APPROACHES CONSTRUCTING Ẑk

Here, we conducted ablation studies to construct Ẑk using alternative multimodal learning ap-
proaches. While our method leverages Lz to enhance representation learning from the Mj modality,
we also evaluated traditional strategies such as concatenation and addition. For concatenation (late
fusion), we followed the standard late fusion approach (Wang et al., 2020), where the representations
from both modalities are concatenated into a single vector for joint training. Before concatenating,
we applied an interpolation term α, combining (1 − α) · zk and α · ẑj . For addition, we directly
combined the interpolated representations with the coefficient α by adding them.

As shown in Table 9, traditional approaches result in significant performance degradation compared
to our method, which utilizes the latent loss function Lz . Similarly, Table 10 further demonstrates
how our approach uses α to interpolate the representation space Ẑk between Zi and Ẑj , effectively
reducing the latent representation gap. In contrast, concatenation and addition primarily introduce
bias from the Mj modality into the Mi modality without effectively reducing the latent represen-
tation gap, where there are no additional loss term that reduces its gap. As the result, these con-
ventional methods fail to construct an optimal Ẑk, which, according to our theoretical hypothesis,
should be embedded in the interpolated space between Zi and Ẑj . Therefore, these findings under-
score the limitations of traditional multimodal learning approaches in our framework.

Table 9: Performance comparison of traditional
multimodal learning approaches and applyingLz

Datasets & Cases Lz Concatenation Addition
IEMOCAP [L→A] 61.20 60.68 59.68

IEMOCAP [A→L] 56.49 55.90 55.34

AVMNIST [V→A] 42.44 42.07 41.49

AVMNIST [A→V] 66.69 65.44 65.59

Table 10: Gap (MSE Loss) between ẑk and ẑj

across different approaches

Datasets & Cases Lz Concatenation Addition
IEMOCAP [L→A] 0.129 0.892 0.906

IEMOCAP [A→L] 0.270 0.516 0.762

AVMNIST [V→A] 0.017 0.453 0.774

AVMNIST [A→V] 0.033 0.481 0.360
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