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1 Effects of SAN on Non-stationary Time Series Forecasting

1.1 Discussions

As illustrated in the main paper, our proposed SAN is a compact plug-and-play framework. We will
first give a brief discussion in this section on how SAN can be effective.

It is of utmost importance that SAN can well alleviate the impact of the non-stationary nature of time
series data. Forecasting models may encounter a non-i.i.d problem with non-stationary data, that is,
the marginal distribution of each input instance can be different, which may lead to a huge difference
between the distribution of the training set and the test set. Thus the models can not generalize well
in future predictions. However, SAN will normalize all the input instances into a standard normal
distribution and force the mean and variance of the training and test data distributions to be identical.
In this way, all the data instances are from the same distribution, therefore the forecasting task is
simplified as the models can get rid of the noises caused by non-stationary factors and only focus
on mining the time-invariant patterns. Moreover, compared to existing normalization methods for
forecasting, our modeling of the non-stationary property in a time slice view is more in-depth and
realistic, so SAN can better remove the non-stationary factors in input sequences while keeping their
instinct information in the normalization phase. Hence, SAN is theoretically expected to perform
better in non-stationary time series forecasting.

Another part that contributes to the effectiveness of SAN is the statistics prediction module and the
two-stage training schema. With the statistics prediction module independently modeling the evolving
trends of statistical properties, SAN adopts more precise statistics for adaptive denormalization
than existing solutions. Moreover, the proposed two-stage strategy actually simplifies the original
forecasting task by divide and conquer: In the first stage we try to learn the general direction and
dispersion of the future data, which is easy to fit and is conducted by the light statistics prediction
module. Next, we utilize the powerful backbone model to discover the scale-free periodic-like
features to estimate future values under the guidance of the well-trained statistics prediction module.
Therefore, backbone models in SAN are actually responsible for an easier subtask. Considering that
SAN can usually give reliable estimations on future distributions, SAN is expected to perform well
on non-stationary time series forecasting by splitting the task into two simpler subtasks.

1.2 Theoretical Analysis
Using the same notation in the paper, we prove that all the inputs after SAN’s normalization follow

a standard normal distribution, validating SAN’s capability to remove the non-stationary factors
theoretically.
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In detail, for arbitrary input sequence «’, SAN first split it into M non-overlapping slices {a }}1

i=1
and normalizes them according to their statistics. Therefore we will get: !
Vi, j E[Z}] =0, Var[E] =1 (1)
And as for the statistics of normalized input &', it satisfies the following equations:
E[z'] = E,[E[Z]]]
— K, 0] @
=0
Lin (=i =1])2
; So(@l, — E[x'])
Var[z'] = =505
[ ] Lin
Lin (i
_ t=0 (x:,t)2
MT 3)
i i MT —i
_ 1 N (Z;f:o@it)Q n ?ET(x?,t)2+ Zt:(Mfl)T(x:,tP)
M T T T
=E; [Var[a_:;-]]
=1

Here z!, € RV*! denotes all the normalized variables in time step ¢. From the above equations,
we can learn that any input sequence follows a standard normal distribution after the normalization
operation of SAN, which meets our expectations.

2 Supplementary Experiments
2.1 Full Benchmark on the ETT Dataset

Table 1: Multivariate forecasting results on full ETT dataset.

Methods DLinear + SAN FEDformer + SAN Autoformer + SAN SCINet + SAN
Metric | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 10.377 0.399 0.383 0.399 |0.371 0.411 0.383 0.409 |0.458 0.448 0.488 0.464 |0.470 0.479 0.391 0.405
192 [0.417 0.426 0.419 0.419 [0.420 0.443 0.431 0.438 |0.481 0.474 0.498 0.472 |0.541 0.520 0.438 0.433
336 | 0.464 0.461 0.437 0.432 (0.446 0.459 0.471 0.456 |0.508 0.485 0.530 0.498 |0.643 0.587 0.477 0.451
720 | 0.493 0.505 0.446 0.459 [0.482 0.495 0.504 0.488 |0.525 0.516 0.555 0.514 |0.774 0.669 0.489 0.474

96 |0.292 0356 0.277 0.338 | 0.341 0.382 0.300 0.355 | 0.384 0.420 0.316 0.366 |0.690 0.625 0.294 0.347
192 | 0.383 0.418 0.340 0.378 | 0.426 0.436 0.392 0.413 | 0.457 0.454 0.413 0.426 |0.991 0.742 0.374 0.398
336 | 0.473 0477 0.356 0.398 | 0.481 0.479 0.459 0.462 | 0.468 0.473 0.446 0.457 |1.028 0.759 0.412 0.430
720 | 0.708 0.599 0.396 0.435 [0.458 0.477 0.462 0.472 | 0.473 0.485 0.471 0.474 |1.363 0.885 0.437 0.461

96 |0.301 0.344 0.288 0.342 | 0.362 0.408 0.311 0.355 | 0.493 0.470 0.343 0.378 |0.444 0.464 0.321 0.360
192 1 0.335 0.366 0.323 0.363 | 0.395 0.427 0.351 0.383 | 0.546 0.498 0.390 0.400 |0.491 0.500 0.347 0.380
336 | 0.370 0.387 0.357 0.384 | 0.441 0.454 0.390 0.407 | 0.658 0.543 0.415 0.418 |0.572 0.556 0.385 0.403
720 | 0.425 0.421 0.409 0.415 | 0.4838 0.481 0.456 0.444 | 0.626 0.532 0.476 0.453 |0.728 0.654 0.450 0.441

96 |0.169 0.263 0.166 0.258 | 0.191 0.283 0.175 0.266 | 0.261 0.329 0.236 0.317 |0.303 0.404 0.176 0.267
192 1 0.232 0.310 0.223 0.302 | 0.261 0.326 0.246 0.315 | 0.282 0.339 0.260 0.329 [0.568 0.569 0.240 0.311
336 | 0.303 0.361 0.272 0.330 | 0.327 0.365 0.315 0.362 | 0.350 0.378 0.330 0.376 |0.793 0.689 0.300 0.351
720 | 0.403 0.424 0.360 0.384 | 0.428 0.423 0.412 0.422 | 0.438 0.428 0.417 0.428 |1.200 0.851 0.391 0.405

ETThl

ETTh2

ETTml

ETTm2

We provide the full multivariate forecasting results on the ETT dataset in Table [1} which includes
the hourly datasets ETTh1&ETTh2 and the 15-minutes datasets ETTm1&ETTm?2. It is obvious that
SAN also achieves significant improvements on these datasets on various backbone models.

2.2 Univariate Forecasting Results

Following the same settings of our main experiment, we provide the univariate forecasting results
in Table[2] Similar to the results of multivariate forecasting, SAN can boost the performance of
mainstream forecasting models in most cases. On average of all the benchmark settings, DLinear
enhanced by SAN reduces MSE by 6.04% (from 0.230 to 0.214). The improvements for FEDformer,
Autoformer and SCINet are 15.40%, 29.27 % and 36.29 % respectively.
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Table 2: Univariate forecasting results. The bold values indicate better performance.

Methods DLinear + SAN FEDformer + SAN Autoformer + SAN SCINet + SAN
Metric | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 10.203 0.315 0.204 0.317 | 0.302 0.413 0.248 0.363 | 0.442 0.490 0.283 0.386 | 0.364 0.435 0.321 0.412
192 10.233 0.336 0.238 0.341 | 0.377 0.459 0.278 0.379 | 0.555 0.550 0.296 0.393 | 0.345 0.419 0.328 0.412
336 [0.268 0.363 0.278 0.371|0.673 0.636 0.324 0.411 | 0.617 0.620 0.359 0.440 | 0.368 0.435 0.363 0.436
720 | 0.330 0.425 0.325 0.420 | 0.575 0.575 0.502 0.514 | 0.645 0.624 0.443 0.503 | 0.420 0.478 0.410 0.477

Electricity

96 |0.108 0.254 0.138 0.288 | 0.134 0.272 0.113 0.252 | 0.155 0.305 0.097 0.233 | 0.167 0.332 0.090 0.226
192 {0.193 0.350 0.287 0.436(0.290 0.418 0.307 0.404 | 0.405 0.495 0.208 0.358 | 0.486 0.552 0.185 0.335
336 | 0.428 0.511 0.416 0.523|0.490 0.542 0.431 0.501 | 0.874 0.728 0.401 0.495 | 0.579 0.608 0.396 0.434
720 | 1.137 0.848 0.859 0.719 | 1.302 0.883 1.188 0.835 | 1.193 0.845 1.071 0.787 |0.853 0.740 1.106 0.797

96 |0.124 0.197 0.123 0.199 | 0.179 0.282 0.144 0.236 | 0.265 0.375 0.172 0.273 | 0.352 0.430 0.267 0.364
192 [ 0.125 0.200 0.124 0.200 | 0.211 0.316 0.141 0.232 | 0.266 0.372 0.211 0.316 | 0.291 0.377 0.240 0.338
336 {0.126 0.206 0.228 0.269 | 0.369 0.458 0.207 0.318 | 0.284 0.371 0.164 0.259 [0.298 0.387 0.347 0.396
720 | 0.141 0.226 0.138 0.223 | 0.300 0.407 0.477 0.526 | 0.260 0.369 0.179 0.286 | 0.339 0.417 0.311 0.384

Exchange

Traffic

96 | 0.004 0.047 0.002 0.032 [0.002 0.037 0.003 0.042|0.004 0.047 0.002 0.038 | 0.005 0.060 0.003 0.039
192 | 0.005 0.057 0.002 0.037 | 0.005 0.058 0.004 0.049 [0.003 0.045 0.003 0.047 | 0.006 0.065 0.002 0.036
336 | 0.006 0.068 0.003 0.047 | 0.003 0.045 0.004 0.052|0.008 0.068 0.003 0.046 | 0.007 0.068 0.004 0.049
720 | 0.007 0.070 0.004 0.050 | 0.011 0.080 0.004 0.048 | 0.058 0.176 0.004 0.049 | 0.007 0.070 0.003 0.045

24 10.741 0.681 0.663 0.626 | 0.910 0.825 0.798 0.688 | 0.865 0.800 0.765 0.721 | 6.336 2.130 0.707 0.665
36 |0.570 0.634 0.552 0.599 | 0.873 0.823 0.697 0.691 | 0.984 0.855 0.660 0.693 | 6.159 1.998 0.743 0.706
0.740 0.742 0.647 0.669 | 1.027 0.904 0.820 0.761 | 1.105 0.925 0.753 0.752 | 6.597 2.082 0.783 0.744
60 | 0911 0.848 0.765 0.743 | 1.221 1.002 0.981 0.839 | 1.222 0.982 1.024 0.904 | 7.556 2.418 0.902 0.801

Weather

LI

1
'S
3

96 | 0.058 0.180 0.056 0.181|0.097 0.241 0.067 0.195 | 0.093 0.241 0.062 0.188 | 0.110 0.262 0.057 0.180
192 | 0.078 0.216 0.076 0.212 | 0.109 0.257 0.081 0.215 | 0.121 0.290 0.082 0.216 | 0.152 0.312 0.075 0.209
0.099 0.246 0.092 0.240 | 0.103 0.251 0.098 0.240 | 0.115 0.271 0.089 0.232 | 0.183 0.350 0.093 0.238
720 | 0.158 0.322 0.092 0.240 | 0.130 0.290 0.103 0.248 | 0.108 0.259 0.106 0.249 | 0.252 0.432 0.096 0.245

96 [0.132 0.280 0.133 0.281|0.145 0.301 0.141 0.286 | 0.181 0.332 0.141 0.288 | 0.149 0.306 0.129 0.274
192 1 0.177 0.330 0.174 0.327 | 0.188 0.339 0.184 0.331 | 0.213 0.371 0.196 0.350 | 0.187 0.340 0.178 0.326
0.207 0.366 0.200 0.359 |0.220 0.380 0.224 0.371 | 0.232 0.391 0.221 0.370 | 0.236 0.385 0.222 0.374
720 | 0.301 0.447 0.237 0.391 | 0.279 0.427 0.257 0.407 | 0.267 0.417 0.289 0.431 | 0.326 0.468 0.272 0.421

ETThl
w
2
=N

ETTh2
w
(9%
>

96 |0.027 0.123 0.026 0.123 | 0.060 0.193 0.028 0.125 | 0.059 0.193 0.027 0.125 | 0.065 0.204 0.032 0.135
192 | 0.045 0.156 0.040 0.151 | 0.065 0.202 0.044 0.159 | 0.083 0.231 0.042 0.155 | 0.198 0.342 0.049 0.168
0.059 0.178 0.055 0.176 | 0.066 0.199 0.059 0.189 | 0.069 0.205 0.057 0.181 | 0.221 0.382 0.068 0.199
720 | 0.081 0.212 0.077 0.208 | 0.084 0.230 0.098 0.234 | 0.095 0.243 0.081 0.213 | 0.303 0.466 0.093 0.231

96 10.063 0.183 0.063 0.186 | 0.097 0.244 0.060 0.183 | 0.128 0.278 0.068 0.195 | 0.073 0.200 0.069 0.193
192 {0.093 0.229 0.093 0.230|0.129 0.281 0.093 0.233 | 0.145 0.298 0.099 0.240 | 0.107 0.248 0.103 0.240
0.120 0.263 0.119 0.264 | 0.174 0.326 0.129 0.276 | 0.148 0.303 0.123 0.269 | 0.163 0.314 0.135 0.281
720 | 0.173 0.318 0.171 0.319]0.201 0.354 0.193 0.337 | 0.208 0.359 0.174 0.320 | 0.325 0.441 0.191 0.337

ETTml
w
2
=N

ETTm2
w
(9%
=N

2.3 Validation on Various Input Lengths

The input length plays an essential role in time series forecasting tasks as it determines how much
historical temporal information the model can mine. One may hope that for powerful deep models,
the longer the input length, the better the forecasting results. However, a recent study on this question
reveals that deep Transformer-based models are not capable of capturing temporal dependencies in
the long-term input sequences [6]. That is, the performance of these deep models stays stable or even
degrades when the input length increases.

Apart from the design of these deep models, we hold that such a phenomenon can be raised by
the non-stationary property of time series. As the input length increases, the variance among input
sequences grows larger and ultimately makes it harder for deep models to discover the time-invariant
patterns. Therefore, by removing the non-stationary factors in the input by SAN, deep models are
expected to exhibit a steady decline in metrics with longer input lengths.

To evidence our thoughts, we conduct long-term forecasting experiments, i.e., Lo,; = 720, with vari-
ous input lengths L;,, € {24,48,72,96, 120, 144,168, 192, 336, 504,672, 720} on the Transformer-
based models. Here we choose Transformer [4]], Informer [7], Autoformer [5] and FEDformer [8]] as
the backbone models. The MSE evaluations are plotted in Fig. [T} Note that we omit large values in the
line chart to better demonstrate the trend of the overall results. From the figure, we can see that with
the assistance of SAN, the performance of deep models with long sequence input is largely improved.
When the input length is set to 720 on the Electricity dataset, the performance of Informer has been
boosted by 77.83% (from 0.9426 to 0.2090), and the average improvement on four backbones under
the same setting is 52.55%. Moreover, all of the backbones enhanced by SAN tend to produce more
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Figure 1: The long-term forecasting MSE evaluations of different Transformer-based models under
various input lengths. Large values are discarded to illustrate the overall trend better.

accurate forecasting as the length increases. To be specific, on the Weather dataset, Transformer
achieves a reduction on MSE of 29.40% when prolonging input from 24 steps to 720 steps, and the
average improvement on four backbones is 33.11%. These results greatly meet our expectations and
also validate the effectiveness of SAN on various input lengths.

2.4 Additional Prediction Showcases

We provide the additional comparison between SAN and other normalization methods in Fig. 2] with
FEDformer on various datasets. Clearly, SAN can better estimate the future distribution so as to
help the backbone model to achieve superior performance, where the forecasting results are better
aligned with the groundtruth.

LI

ETTh2

Exchange

(2) SAN (b) RevIN (c) NST (d) Dish-TS

Figure 2: Illustration of the additional prediction showcases comparing SAN and baseline models.
The experiment is conducted on the ILI, ETTh2, and Exchange dataset. Following the same input
sequence length setting in our main experiments, the target sequence length is set to 24, 192, and 336
respectively.
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2.5 Ablation Study

Statistic Prediction Module In this section, we aim to analyze the effectiveness of our designs in
the statistic prediction module. We instantiate our method and its variants on Autoformer and test
their performance on two typical non-stationary datasets: Exchange and ETTh2. Similarly, we repeat
the experiments three times with fixed seed and report the evaluations with standard deviation in
Table

Table 3: Forecasting errors under the multivariant setting with respect to variants of SAN. The best
performance are highlighted in bold.

SAN
MSE MAE

0.082+0.001 0.208x0.001
0.157+0.001 0.296=+0.003
0.262+0.004 0.385+0.002
0.689+0.043 0.629+0.020

0.316+0.001 0.366=0.001
0.413+0.013 0.42620.007
0.446+0.004 0.457+0.003
0.471+0.009 0.474+0.005

w/o SAN
MSE MAE

0.152+0.006 0.283+0.007
0.369+0.055 0.437+0.033
0.534+0.130 0.544+0.066
1.222+0.099 0.848+0.021

0.384+0.021 0.420+0.013
0.457+0.020 0.454+0.014
0.468+0.010 0.473+0.005
0.473+0.005 0.485+0.005

w/o residual
MSE MAE

0.135+0.003 0.264+0.001
0.331+0.044 0.416+0.025
0.658+0.044 0.593+0.024
1.456+0.011 0.882+0.009

0.383+0.020 0.413+0.012
0.463+0.030 0.469+0.020
0.586+0.025 0.541+0.009
0.889+0.007 0.682+0.001

w/o individual
MSE MAE

0.089+0.005 0.209+0.007
0.184+0.009 0.306+0.010
0.340+0.001 0.422+0.001
0.982+0.001 0.753+0.002

0.321+0.013 0.367+0.008
0.41420.023 0.422+0.012
0.448+0.003 0.453+0.001
0.48320.012 0.477+0.005

Variants
Metric

96
192
336
720

96
192
336
720

Exchange

ETTh2

Obviously, with the proposed two techniques combined, the statistic prediction module can achieve
the best accuracy, leading to optimal forecasting performance. Besides, both residual learning
and individual preference contribute positive effects and the former one is much more important,
without which SAN can even bring negative effects to the backbone model. These results validate
the rationality of our thoughts about the characteristics of the mean value and also reveal the
importance of accurate modeling of future statistics to SAN. Besides, SAN without individual
modeling performs well on the ETT2 dataset but performs poorly on the Exchange dataset. Such a
phenomenon reveals that the evolving trends of different scenarios vary, and it is required to model the
complex relationships among multiple variables individually. Moreover, since we only incorporate
the properties of mean values into a simple MLP network, how to design a proper mechanism or
network architecture for statistics modeling is a promising direction for optimizing our method, and
we leave such explorations for future work.

Slicing Length The slicing length is a key parameter of SAN. We aim to study the effect of different
slicing lengths on our method. Ablation experiments are conducted by using SCINet as the backbone
model under the long-term forecasting setting (L, = 60 for the ILI dataset and L,,; = 720 for the
rest datasets). Each experiment is conducted three times with a fixed random seed. The forecasting
errors and the corresponding standard deviation are presented in Table ]

Table 4: Forecasting errors under the multivariant setting with respect to different slicing lengths.
The best performance are highlighted in bold.

Slicing Length 6 12 24 48
Metric MSE MAE MSE MAE MSE MAE MSE MAE
Electricity |0.210+0.002 0.305+0.002|0.2070.002 0.3050.002 | 0.206+0.004 0.307+0.003 | 0.208+0.002 0.307+0.001
Exchange |0.892:0.028 0.712+0.013|0.895+0.037 0.712+0.017|0.901+0.005 0.715+0.002|0.898+0.037 0.714+0.015
Traffic  [0.612+0.001 0.376+0.001|0.6080.002 0.373+0.001|0.607+0.001 0.381+0.001|0.611+0.002 0.382+0.002
Weather |0.338+0.002 0.366+0.002 | 0.338+0.001 0.365+0.002|0.340+0.001 0.367+0.001|0.339+0.001 0.366+0.001
ILI 2.487+0.034 1.063+0.008|2.680+0.055 1.1180.015 n/a n/a n/a n/a
ETThl |0.49120.002 0.475+0.001 |0.488+0.001 0.474+0.001|0.489+0.004 0.473+0.001|0.492+0.004 0.474+0.002
ETTh2 |0.440+0.001 0.465+0.001 |0.435+0.002 0.460+0.002|0.437+0.007 0.459+0.006|0.443+0.007 0.462+0.004
ETTml |0.495+0.043 0.469+0.024 | 0.450+0.001 0.441+0.001|0.611+0.218 0.503+0.084 |0.463+0.006 0.448+0.003
ETTm2 |0.391+0.001 0.406+0.001 [0.391+0.001 0.405+0.001|0.392+0.001 0.405+0.001 | 0.403+0.009 0.415+0.006

Our heuristic selection of slicing length appears to be effective among the candidates, indicating that
both artificially defined and actual periods are useful in selecting the optimal setting. Additionally,
there were no significant performance differences observed under various settings, suggesting that
SAN is resilient to changes in slicing length.
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2.6 Detailed Results of the Comparison between SAN and Normalization Methods

In Table 5] we provide the detailed experimental results of the comparison between SAN and state-of-
the-art normalization methods for non-stationary time series forecasting: RevIN [2], NST [3] and
Dish-TS [[1]. We re-implement the former two methods and Dish-TS is implemented by its official
cod

The table clearly shows that SAN outperforms existing approaches in most cases, except for the
Weather dataset. Considering that the Weather dataset is the most stationary dataset, the results
suggest that SAN can better remove the non-stationary factors in the raw data, even leading to an
over-stationary issue that degrades the performance.

Besides, Dish-TS performs poorly in the benchmark. While it addresses the distribution shift between
input and horizon series, it fails to optimize both the coefficient network and backbone network for
overlooking the intrinsic bi-level optimization target of distribution estimation and forecasting tasks.
By adopting a joint training schema, Dish-TS disturbs both networks and results in poor performance
in certain cases. On the opposite, SAN benefits from the proposed two-stage schema which decouples
the two tasks. This allows for proper optimization of each component and leads to improved overall
performance.

Table 5: Detailed results of the comparison between SAN and normalization methods. The best
results are highlighted in bold.

FEDformer Autoformer
Methods | | gAN +RevIN +NST +Dish-TS +SAN +RevIN +NST +Dish-TS
Metric | MSE  MAE MSE MAE MSE MAE MSE MAE|MSE MAE MSE MAE MSE MAE MSE MAE

96 10.164 0.272 0.172 0278 0.172 0.279 0.175 0.284|0.172 0.281 0.179 0.286 0.179 0.285 0.179 0.290
192 {0179 0.286 0.185 0.289 0.187 0.291 0.188 0.296|0.195 0.300 0.216 0.316 0.209 0.309 0.215 0.318
336 {0.191 0.299 0.200 0.304 0.202 0.307 0.209 0.319]0.211 0.316 0.233 0.331 0.246 0.335 0.244 0.343
720 {0.230 0.334 0.243 0.337 0.230 0.326 0.239 0.343]0.236 0.335 0.246 0.341 0.252 0.345 0.286 0.370

Electricity

96 10.079 0.205 0.148 0.279 0.145 0.275 0.131 0.263|0.082 0.208 0.166 0.295 0.177 0.304 0.225 0.341
192 {0.156 0.295 0.266 0.377 0.274 0.383 0.538 0.523|0.157 0.296 0.299 0.404 0.275 0.385 0.760 0.610
336 |0.260 0.384 0.428 0.484 0.437 0.488 0.667 0.591|0.262 0.385 0.448 0.496 0.442 0.490 0.707 0.628
720 [0.697 0.633 1.056 0.789 1.064 0.787 1.480 0.954|0.689 0.629 1.068 0.791 1.049 0.784 2.341 1.063

96 10.536 0.330 0.613 0.347 0.612 0.348 0.613 0.350|0.569 0.350 0.643 0.354 0.645 0.354 0.652 0.363
192 |0.565 0.345 0.637 0.356 0.641 0.357 0.644 0.362]0.594 0.364 0.659 0.373 0.643 0.367 0.669 0.374
336 [0.580 0.354 0.652 0.363 0.654 0.363 0.659 0.370(0.591 0.363 0.662 0.371 0.665 0.363 0.683 0.376
720 |0.607 0.367 0.686 0.382 0.688 0.380 0.693 0.388]0.623 0.380 0.700 0.384 0.667 0.373 0.703 0.392

Exchange

Traffic

96 |0.179 0.239 0.187 0.234 0.187 0.234 0.244 0.317|0.194 0.256 0.212 0.257 0.211 0.254 0.268 0.338
192 1 0.234 0.296 0.235 0.272 0.235 0.272 0.320 0.380(0.258 0.316 0.264 0.300 0.265 0.301 0.376 0.421
336 | 0.304 0.348 0.287 0.307 0.289 0.308 0.424 0.452|0.329 0.367 0.309 0.329 0.303 0.324 0.476 0.486
720 | 0.400 0.404 0.361 0.353 0.359 0.352 0.604 0.553|0.440 0.438 0.377 0.367 0.366 0.357 0.612 0.560

24 2461 1.075 3.152 1.141 3.190 1.145 2.829 1.074|2.548 1.098 3.623 1.244 3.652 1.269 3.283 1.174
36 [2.095 0937 2498 0990 2.615 1.026 2.595 0.972(2.102 0.942 2.767 1.074 2.394 1.005 2.792 1.054
0.936 2.430 0977 2.526 1.003 2.547 0.969|2.103 0.932 2.585 1.039 2.303 0.990 2.401 0.969
60 |2.234 0981 2.822 1.084 2.891 1.109 2.866 1.066|2.313 0.994 2.693 1.068 2.489 1.008 2.681 1.042

Weather

ILI
I
3
N
—
)
3

96 |0.383 0.409 0.392 0413 0394 0.414 0.390 0.424|0.522 0.474 0.491 0.463 0.550 0.503 0.456 0.454
192 {0.431 0.438 0.443 0.444 0.441 0.442 0441 0.458|0.498 0.472 0513 0.478 0.530 0.492 0.495 0.480
X 0.456 0.495 0.467 0.485 0.466 0.495 0.486|0.571 0.509 0.528 0.485 0.524 0.484 0.539 0.496
720 |0.504 0.488 0.520 0.498 0.505 0.496 0.519 0.509|0.555 0.514 0.543 0.510 0.510 0.491 0.563 0.522

96 10.300 0.355 0.380 0.402 0.381 0.403 0.806 0.589[0.316 0.366 0.411 0.410 0.394 0.398 1.100 0.670
192 (0.392 0.413 0.457 0.443 0478 0.453 0.936 0.659|0.413 0.426 0.478 0.450 0.473 0.450 0.976 0.672
0.462 0.515 0.479 0.561 0.499 1.039 0.702|0.446 0.457 0.545 0.493 0.528 0.490 1.521 0.783
720 |0.462 0.472 0.507 0.487 0.502 0.481 1.237 0.759]|0.471 0.474 0.523 0.490 0.524 0.498 1.105 0.745

96 |0.311 0.355 0.340 0.385 0.336 0.382 0.348 0.397(0.343 0.378 0.458 0.446 0.468 0.448 0.477 0.460
192 {0.351 0.383 0.390 0.411 0.386 0.409 0.406 0.428)0.390 0.400 0.560 0.491 0.526 0.468 0.545 0.488
0.407 0432 0.436 0438 0.441 0.438 0.450|0.415 0.418 0.607 0.508 0.786 0.559 0.650 0.533
720 |0.456 0.444 0.497 0.466 0.483 0.460 0.497 0.481|0.476 0.453 0.623 0.526 0.564 0.501 0.595 0.518

96 [0.175 0.266 0.192 0272 0.191 0.272 0.394 0.395|0.236 0.317 0.233 0.307 0.253 0.323 0.976 0.572
192 {0.246 0.315 0.270 0.320 0.270 0.321 0.552 0.472/0.260 0.329 0.288 0.337 0.289 0.335 0.532 0.485
0.362 0.348 0.367 0.353 0.371 0.808 0.601|0.330 0.376 0.345 0.370 0.339 0.365 0.795 0.592
720 |0.412 0.422 0.430 0.415 0.445 0422 1.282 0.771|0.417 0.428 0.434 0419 0.426 0432 1.271 0.768
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"https://github.com/weifantt/Dish-TS
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3 Implementation Details

3.1 Architecture of Statistic Prediction Module
The computation of MLP(z1, x2) in our paper can be summarized as follows:

x1 = acty (W1 * 1)
xo = acty(Wa * z2)

“

x = |z1; 23]
output = acta (W3 * x)

Here, the symbol [*;*] represents the concatenate operation. We set act; (), acta() = Relu(), Relu()
for standard deviation and the activate function of the mean is set to Tanh(), Identity() respectively.
Wy, Wy, W3 are learnable transformation matrices with hidden sizes of {512,512,1024}.

3.2 Algorithm of The Two-stage Training Schema

To apply SAN to backbone forecasting models, we propose a two-stage training schema to tackle
the challenge of the bi-level optimization target. The statistics prediction module is first trained into
convergence, which is then frozen and treated as a plugin during the second stage of training the
forecasting model. We provide the pseudo-code of such a procedure in Alg. [I]

Algorithm 1 Two-stage Training Schema.

Require: Input series X = {x}Y,; Horizon series Y = {y*}Y,; Slicing length T’
1: Initialize parameters ¢, 0
2: while not converge do
3: for all input ! € X, horizon y’ € Y do
4: Compute input statistics 15, 0% by Eq. 1 with T
5: Predict future statistics 1%, &% by Eq. 3 using f,(*)
6: Update ¢ using loss function I,
7: end for
8: end while > Training of the statistics prediction module
9:
10: while not converge do
11: for all input =* € X, horizon y* € Y do
12: Compute input statistics 15, 0% by Eq. 1 with T’
13: Normalize input series to Z* by Eq. 2
14: Forecast §* = go(Z?)
15: Predict future statistics 1%, &% by Eq. 3 using f,(*)
16: fi*.detach(), &.detach() > Stop-gradient, freeze the statistics prediction module
17: Denormalize %° to §j° by Eq. 4
18: Update 6 using loss function /.
19: end for
20: end while > Training of the forecasting model

4 Limitations

Though SAN shows promising performance on the benchmark dataset, there are still some limitations
of this method. First is that we mainly select the slicing length heuristically or search in predefined
candidates and the current design cannot handle indivisible length or the multi-period characteristic of
time series. Such a solution works for the experiments but lacks generality in real-world applications.
Second is that SAN may lead to an over-stationary issue, leading to sub-optimal performance.
Therefore, a more flexible solution with automatic slicing length selection and normalization intensity
control will be our exploring direction.
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