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A RELATED WORKS

We shall focus on the closely related works on offline RL and distributionally robust RL.

Offline RL. Focusing on the task of learning an optimal policy from offline data, a significant
amount of prior arts sets to understand the sample complexity and efficacy of offline RL under
different assumptions of the history dataset. A bulk of prior results requires the history data to cover
all the state-action pairs, under assumptions such as uniformly bounded concentrability coefficients
(Chen & Jiang, 2019; Munos, 2005) and uniformly lower bounded data visitation distribution (Yin &
Wang, 2021; Yin et al., 2021), where the latter assumption is also related to studies of asynchronous
Q-learning (Li et al., 2021). More recently, the principle of pessimism has been investigated for
offline RL in both model-based (Jin et al., 2021; Xie et al., 2021; Rashidinejad et al., 2021; Li et al.,
2022) and model-free algorithms (Kumar et al., 2020; Shi et al., 2022; Yan et al., 2022), without the
stringent requirement of full coverage. In particular, Li et al. (2022) established the near-minimax
optimality of a pessimistic variant of value iteration under the single-policy clipped concentrability
of history data, which inspired our algorithm design in the distributionally robust setting.
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Distributionally robust RL. While distributionally robust optimization has been mainly inves-
tigated in the context of supervised learning (Rahimian & Mehrotra, 2019; Gao, 2020; Bertsimas
et al., 2018; Duchi & Namkoong, 2018; Blanchet & Murthy, 2019), distributionally robust dynamic
programming has also attracted considerable amount of attention, e.g. Iyengar (2005); Nilim &
Ghaoui (2003); Xu & Mannor (2012); Nilim & El Ghaoui (2005), where natural robust extensions
to the standard Bellman machineries are developed under mild assumptions. Targeting robust MDPs,
empirical and theoretical works have been widely explored under different forms of uncertainty sets
(Iyengar, 2005; Xu & Mannor, 2012; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al.,
2018; Smirnova et al., 2019; Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor,
2020; Tamar et al., 2014; Badrinath & Kalathil, 2021). Nonetheless, the majority of prior theoretical
analyses focus on planning with an exact knowledge of the uncertainty set (Iyengar, 2005; Xu &
Mannor, 2012; Tamar et al., 2014), or are asymptotic in nature (Roy et al., 2017).

A number of robust RL algorithms were proposed recently with an emphasis on finite-sample per-
formance guarantees under different data generating mechanisms. Wang & Zou (2021) proposed
a robust Q-learning algorithm with an R-contamination uncertain set for the online setting, which
achieves a similar bound as its non-robust counterpart. Badrinath & Kalathil (2021) proposed a
model-free algorithm for the online setting with linear function approximation to cope with large
state spaces. Yang et al. (2021); Panaganti & Kalathil (2022) developed sample complexities for
a model-based robust RL algorithm with a variety of uncertainty sets where the data are collected
using a generative model. In addition, Zhou et al. (2021) examined the uncertainty set defined by
the KL divergence for offline data with uniformly lower bounded data visitation distribution. These
works all require full coverage of the state-action space, whereas ours is the first one to leverage the
principle of pessimism in robust offline RL.

B PRELIMINARIES

Before starting, let’s introduce some additional notation useful throughout the theoretical analysis.
Let ess infX denote the essential infimum of a function/variable X .

B.1 PROPERTIES OF THE ROBUST BELLMAN OPERATOR

To begin with, we introduce the following strong duality lemma which is widely used in distribu-
tionally robust optimization when the uncertainty set is defined with respect to the KL divergence.
Lemma 2 ((Hu & Hong, 2013), Theorem 1). Suppose f(x) has a finite moment generating function
in some neighborhood around x = 0, then for any � > 0 and a nominal distribution P 0, we have

sup
P2U�(P 0)

EX⇠P [f(X)] = inf
��0

⇢
� logEX⇠P 0


exp

✓
f(X)

�

◆�
+ ��

�
. (30)

Armed with the above lemma, it is easily verified that for any positive constant M and a nominal
distribution vector P 0 2 R1⇥S supported over the state space S , if X(s) 2 [0,M ] for all s 2 S ,
then

inf
P2U�(P 0)

PX = sup
��0

⇢
�� log

✓
P 0 exp

✓
�X

�

◆◆
� ��

�
. (31)

For convenience, we introduce the following lemma, paraphrased from Zhou et al. (2021, Lemma 4)
and its proof, to further characterize several essential properties of the optimal dual value.
Lemma 3 ((Zhou et al., 2021)). Let X ⇠ P be a bounded random variable with X 2 [0,M ]. Let
� > 0 be any uncertainty level and the corresponding optimal dual variable be

�? 2 argmax
��0

f(�, P ), where f(�, P ) :=

⇢
�� logEX⇠P


exp

✓
�X

�

◆�
� ��

�
. (32)

Then the optimal value �? obeys

�? 2

0,

M

�

�
, (33)
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where �? = 0 if and only if

log
�
P(X = essinfX)

�
+ � � 0. (34)

Moreover, when �? = 0, we have

lim
�!0

f(�, P ) = lim
�!0

⇢
�� logEX⇠P


exp

✓
�X

�

◆�
� ��

�
= essinfX. (35)

B.2 CONCENTRATION INEQUALITIES

In light of Lemma 3 (cf. 35), we are interested in comparing the values of essinfX when X is drawn
from the population nominal distribution or its empirical estimate. This is supplied by the following
lemma from Zhou et al. (2021).
Lemma 4 ((Zhou et al., 2021)). Let X ⇠ P be a discrete bounded random variable with
X 2 [0,M ]. Let Pn denote the empirical distribution constructed from n independent sam-
ples X1, X2, · · · , Xn, and let bX ⇠ Pn. Denote Pmin,X as the smallest positive probability
Pmin,X := min{P(X = x) : x 2 supp(X)}, where supp(X) is the support of X . Then for
any � 2 (0, 1), with probability at least 1� �, we have

min
i2[n]

Xi = essinf bX = essinfX, (36)

as long as

n � � log(2/�)

log(1� Pmin,X)
. (37)

We next gather a few elementary facts about the Binomial distribution, which will be useful through-
out the proof.
Lemma 5 (Chernoff’s inequality). Suppose N ⇠ Binomial(n, p), where n � 1 and p 2 [0, 1). For
some universal constant cf > 0, we have

P (|N/n� p| � pt)  exp
�
�cfnpt

2
�
, 8t 2 [0, 1]. (38)

Lemma 6 ((Shi et al., 2022, Lemma 8)). Suppose N ⇠ Binomial(n, p), where n � 1 and p 2 [0, 1].
For any � 2 (0, 1), we have

N � np

8 log
�
1
�

� if np � 8 log

✓
1

�

◆
, (39a)

N 
⇢
e2np if np � log

�
1
�

�
,

2e2 log
�
1
�

�
if np  2 log

�
1
�

� (39b)

hold with probability at least 1� 4�.

B.3 KULLBACK-LEIBLER (KL) DIVERGENCE

We next introduce some useful facts about the Kullback-Leibler (KL) divergence for two distribu-
tions P and Q, denoted as KL(P k Q). Denoting Ber(p)(resp. Ber(q)) as the Bernoulli distribution
with mean p (resp. q), we introduce

KL
�
Ber(p) k Ber(q)

�
:= p log

p

q
+ (1� p) log

1� p

1� q
, (40)

which represents the KL divergence from Ber(p) to Ber(q). We now introduce the following lemma.
Lemma 7. For any p, q 2

⇥
1
2 , 1

�
and p > q, it holds that

KL
�
Ber(p) k Ber(q)

�
 KL

�
Ber(q) k Ber(p)

�
 (p� q)2

p(1� p)
. (41)

Moreover, for any 0  x < y < q, it holds

KL (Ber (x) k Ber(q)) > KL (Ber (y) k Ber(q)) . (42)
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Proof. The first half of this lemma is proven in (Li et al., 2022, Lemma 10). For the latter half, it
follows from that the function

f(x, q) := KL (Ber (x) k Ber(q))

is monotonically decreasing for all x 2 (0, q], since its derivative with respect to x satisfies @f(x,q)@x =

log x
q + log 1�q

1�x < 0.

C ANALYSIS: EPISODIC FINITE-HORIZON RMDPS

C.1 PROOF OF THE UPPER BOUND: THEOREM 1

In this section, we outline the proof of Theorem 1. Before starting, we introduce several additional
notation that will be useful in the analysis. First, we denote the state-action space covered by the
behavior policy ⇡b in the nominal model P 0 as

Cb =
n
(h, s, a) : db,P

0

h (s, a) > 0
o
. (43)

Moreover, we recall the definition in (22) and define a similar one based on the exact nominal model
P 0 as

Pmin,h(s, a) := min
s0

n
P 0
h (s

0 | s, a) : P 0
h (s

0 | s, a) > 0
o
. (44)

Clearly, by comparing with the definitions (23) and (24), it holds that

P ?min = min
h,s

Pmin,h(s,⇡
?
h(s)), P b

min = min
(h,s,a)2Cb

Pmin,h(s, a). (45)

For any time step h 2 [H], we denote the set of possible state occupancy distributions associated
with the optimal policy ⇡? in a model within the uncertainty set P 2 U�

�
P 0

�
as

D?
h :=

⇢h
d?,Ph (s)

i

s2S
: P 2 U�

�
P 0

��
=

⇢h
d?,Ph

�
s,⇡?h(s)

�i

s2S
: P 2 U�

�
P 0

��
, (46)

where the second equality is due to the fact that ⇡? is chosen to be deterministic.

With these in place, the proof of Theorem 1 is separated into several key steps, as outlined below.

Step 1: establishing the pessimism property. To achieve this claim, we heavily count on the
following lemma whose proof can be found in Appendix C.2.
Lemma 8. Instate the assumptions in Theorem 1. Then for all (h, s, a) 2 [H] ⇥ S ⇥ A, consider
any vector V 2 RS independent of bP 0

h,s,a obeying kV k1  H . With probability at least 1� �, one
has ����� inf

P2U�( bP 0
h,s,a

)
PV � inf

P2U�(P 0
h,s,a

)
PV

�����  bh(s, a) (47)

with bh(s, a) given in (21). Moreover, for all (h, s, a) 2 Cb, with probability at least 1� �, one has

Pmin,h(s, a)

8 log(KHS/�)
 bPmin,h(s, a)  e2Pmin,h(s, a). (48)

Armed with the above lemma, with probability at least 1 � �, we shall show the following relation
holds

8(s, a, h) 2 S ⇥A⇥ [H + 1] : bQh(s, a)  Qb⇡,�
h (s, a), bVh(s)  V b⇡,�

h (s), (49)

which means that bQh (resp. bVh) is a pessimistic estimate of Qb⇡,�
h (resp. V b⇡,�

h ). Towards this, it is
easily verified that the latter assertion concerning V b⇡,�

h is implied by the former, since

bVh(s) = max
a

bQh(s, a)  max
a

Qb⇡,�
h (s, a) = V b⇡,�

h (s). (50)

Therefore, the remainder of this step focuses on verifying the former assertion in (49) by induction.

16



Under review as a conference paper at ICLR 2023

• To begin, the claim (49) holds at the base case when h = H + 1, by invoking the trivial fact
bQH+1(s, a) = Qb⇡,�

H+1(s, a) = 0.

• Then, suppose that bQh+1(s, a)  Qb⇡,�
h+1(s, a) holds for all (s, a) 2 S ⇥ A at some time step

h 2 [H], it boils down to show bQh(s, a)  Qb⇡,�
h (s, a).

By the update rule of bQh(s, a) in Algorithm 1 (cf. line 7), the above relation holds immediately
if bQh(s, a) = 0 since bQh(s, a) = 0  Qb⇡,�

h (s, a). Otherwise, bQh(s, a) is updated via

bQh(s, a) = rh(s, a) + sup
��0

(
�� log

 
bP 0
h,s,a · exp

 
�bVh+1

�

!!
� ��

)
� bh(s, a)

(i)
= rh(s, a) + inf

P2U�( bP 0
h,s,a

)
P bVh+1 � bh(s, a)

 rh(s, a) + inf
P2U�(P 0

h,s,a
)
P bVh+1 � bh(s, a) (51)

+

����� inf
P2U�( bP 0

h,s,a
)
P bVh+1 � inf

P2U�(P 0
h,s,a

)
P bVh+1

�����
(ii)
 rh(s, a) + inf

P2U�(P 0
h,s,a

)
PV b⇡,�

h+1 + 0
(iii)
= Qb⇡,�

h (s, a), (52)

where (i) rewrites the update rule back to its primal form (cf. (18)), (ii) holds by applying (47) with
the condition (27) satisfied and the induction hypothesis bVh+1  V b⇡,�

h+1, and lastly, (iii) follows by
the robust Bellman consistency equation (8).

Putting them together, we have verified the claim (49) by induction.

Step 2: bounding V ?,�
h (s)�V b⇡,�

h (s). With the pessimism property (49) in place, we observe that
the following relation holds

0  V ?,�
h (s)� V b⇡,�

h (s)  V ?,�
h (s)� bVh(s)  Q?,�

h

�
s,⇡?h(s)

�
� bQh

�
s,⇡?h(s)

�
, (53)

where the last inequality follows from bQh

�
s,⇡?h(s)

�
 maxa bQh(s, a) = bVh(s). Then, by the

robust Bellman optimality equation in (9) and the primal version of the update rule (cf. (18))

Q?,�
h

�
s,⇡?h(s)

�
= rh

�
s,⇡?h(s)

�
+ inf

P2U�

�
P 0

h,s,⇡
?

h
(s)

�PV ?,�
h+1,

bQh

�
s,⇡?h(s)

�
= rh

�
s,⇡?h(s)

�
+ inf

P2U�

�
bP 0
h,s,⇡

?

h
(s)

�P bVh+1 � bh (s,⇡
?
h(s)) ,

we arrive at

V ?,�
h (s)� bVh(s)  Q?,�

h

�
s,⇡?h(s)

�
� bQh

�
s,⇡?h(s)

�

= inf
P2U�

�
P 0

h,s,⇡
?

h
(s)

�PV ?,�
h+1 � inf

P2U�

�
bP 0
h,s,⇡

?

h
(s)

�P bVh+1 + bh
�
s,⇡?h(s)

�

 inf
P2U�

�
P 0

h,s,⇡
?

h
(s)

�PV ?,�
h+1 � inf

P2U�

�
P 0

h,s,⇡
?

h
(s)

�P bVh+1

+

������
inf

P2U�

�
bP 0
h,s,⇡

?

h
(s)

�P bVh+1 � inf
P2U�

�
P 0

h,s,⇡
?

h
(s)

�P bVh+1

������
+ bh

�
s,⇡?h(s)

�

(i)
 inf

P2U�

�
P 0

h,s,⇡
?

h
(s)

�PV ?,�
h+1 � inf

P2U�

�
P 0

h,s,⇡
?

h
(s)

�P bVh+1 + 2bh
�
s,⇡?h(s)

�

(ii)
 bP inf

h,s,⇡?

h
(s)

�
V ?,�
h+1 � bVh+1

�
+ 2bh

�
s,⇡?h(s)

�
, (54)
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where (i) holds by applying Lemma 2 (cf. (47)) since bVh+1 is independent of P 0
h,s,⇡?

h
(s) by con-

struction, and (ii) arises from introducing the notation

bP inf
h,s,⇡?

h
(s) := argmin

P2U�

�
P 0

h,s,⇡
?

h
(s)

� P bVh+1 (55)

and consequently,

inf
P2U�

�
P 0

h,s,⇡
?

h
(s)

�PV ?,�
h+1  bP inf

h,s,⇡?

h
(s)V

?,�
h+1, and inf

P2U�

�
P 0

h,s,⇡
?

h
(s)

�P bVh+1 = bP inf
h,s,⇡?

h
(s)

bVh+1.

To continue, let us introduce some additional notation for convenience. Define a sequence of matri-
ces bP inf

h 2 RS⇥S and vectors b?h 2 RS for h 2 [H], where their s-th rows (resp. entries) are given
by

h
bP inf
h

i

s,·
= bP inf

h,s,⇡?

h
(s), and b?h(s) = bh

�
s,⇡?h(s)

�
. (56)

Applying (54) recursively over the time steps h, h+ 1, · · · , H using the above notation gives

0  V ?,�
h � bVh  bP inf

h

�
V ?,�
h+1 � bVh+1

�
+ 2b?h

 bP inf
h

bP inf
h+1

�
V ?,�
h+2 � bVh+2

�
+ 2 bP inf

h b?h+1 + 2b?h  · · ·  2
HX

i=h

0

@
i�1Y

j=h

bP inf
j

1

A b?i ,

(57)

where we let
⇣Qi�1

j=i
bP inf
j

⌘
= I for convenience.

For any d?h 2 D?
h (cf. (46)), taking inner product with (57) leads to

D
d?h, V

?,�
h � bVh

E

*
d?h, 2

HX

i=h

0

@
i�1Y

j=h

bP inf
j

1

A b?i

+
= 2

HX

i=h

hd?i , b?i i , (58)

where

d?i :=

2

4�d?h
�>

0

@
i�1Y

j=h

bP inf
j

1

A

3

5
>

2 D?
i (59)

by the definition of D?
i (cf. (46)) for all i = h+ 1, · · · , H .

Step 3: controlling hd?i , b?i i using concentrability. Since hd?i , b?i i =
P

s2S d?i (s)b
?
i (s), we shall

divide the discussion in two different cases.

• For s 2 S where maxP2U�(P 0) d
?,P
i

�
s,⇡?i (s)

�
= maxP2U�(P 0) d

?,P
i (s) = 0, it follows from the

definition (cf. (46)) that for any d?i 2 D?
i , it satisfies that

d?i (s) = 0. (60)

• For s 2 S where maxP2U�(P 0) d
?,P
i

�
s,⇡?i (s)

�
= maxP2U�(P 0) d

?,P
i (s) > 0, by the assumption

in (12)

max
P2U�(P 0)

min
�
d?,Pi

�
s,⇡?i (s)

�
, 1
S

 

db,P
0

i

�
s,⇡?i (s)

� = max
P2U�(P 0)

min
�
d?,Pi (s), 1

S

 

db,P
0

i

�
s,⇡?i (s)

�  C?
rob < 1,

it implies that

db,P
0

i

�
s,⇡?i (s)

�
> 0 and

�
i, s,⇡?i (s)

�
2 Cb. (61)
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Lemma 1 tells that with probability at least 1� 8�,

Ni

�
s,⇡?i (s)

�
�

Kdb,P
0

i

�
s,⇡?i (s)

�

8
� 5

r
Kdb,P

0

i

�
s,⇡?i (s)

�
log

KH

�

(i)
�

Kdb,P
0

i

�
s,⇡?i (s)

�

16

(ii)
�

KmaxP2U�(P 0) min
n
d?,Pi

�
s,⇡?i (s)

�
, 1
S

o

16C?
rob

�
Kmin

�
d?i (s),

1
S

 

16C?
rob

, (62)

where (i) holds due to

Kdb,P
0

i

�
s,⇡?i (s)

�
� c1

db,P
0

i

�
s,⇡?i (s)

�
log(KHS/�)

dbminP
b
min

�
c1 log

KH
�

P b
min

� c1 log
KH

�
(63)

for some sufficiently large c1, where the first inequality follows from Condition (27), the second
inequality follows from

dbmin = min
h,s,a

n
db,P

0

h (s, a) : db,P
0

h (s, a) > 0
o
 db,P

0

i

�
s,⇡?i (s)

�
(64)

and the last inequality follows from P b
min  1. In addition, (ii) follows from Assumption 1.

With this in place, we observe that the pessimistic penalty (see (21)) obeys

b?i (s)  cb
H

�

vuut log(KHS
� )

bPmin,i

�
s,⇡?i (s)

�
Ni

�
s,⇡?i (s)

�
(i)
 4cb

H

�

s
log2(KHS

� )

Pmin,i

�
s,⇡?i (s)

�
Ni

�
s,⇡?i (s)

�

 16cb
H

�

s
C?

rob log
2 KHS

�

Pmin,i

�
s,⇡?i (s)

�
Kmin

�
d?i (s),

1
S

 , (65)

where (i) holds by applying (48) in view of the fact that
�
i, s,⇡?i (s)

�
2 Cb by (61), and the last

inequality holds by (62).

Combining the results in the above two cases leads to

X

s2S
d?i (s)b

?
i (s) 

X

s2S
16d?i (s)cb

H

�

s
C?

rob log
2 KHS

�

Pmin,i

�
s,⇡?i (s)

�
Kmin

�
d?i (s),
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 16cb
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�

Pmin,i
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s
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rob log
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�

Pmin,i

�
s,⇡?i (s)

�
K

, (66)

where (i) follows from the Cauchy-Schwarz inequality and the last inequality hold by the trivial fact

X

s2S

d?i (s)

min
�
d?i (s),

1
S

 
X

s2S
d?i (s)

✓
1

d?i (s)
+

1

1/S

◆
=
X

s2S
1 +

1

S

X

s2S
d?i (s)  2S. (67)

Step 4: finishing up the proof. Then, inserting (66) back into (58) with h = 1 shows

D
d?1, V

?,�
1 � bV1

E
 2

HX

i=1

hd?i , b?i i 
HX

i=1

64cb
H

�

s
SC?

rob log
2 KH

�

Pmin,i

�
s,⇡?i (s)

�
K

 c2
H2

�

s
SC?

rob log
2 KH

�

P ?minK
,

(68)

where the last inequality holds by plugging in the relation P ?min  Pmin,i

�
s,⇡?i (s)

�
for i = 1, . . . , H

by the definition in (23) (see also (45)), and choosing c2 to be large enough. The proof is completed.
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C.2 PROOF OF LEMMA 8

To begin, we shall introduce the following fact that

8(h, s, a) 2 Cb : Nh(s, a) �
c1 log

KHS
�

16Pmin,h(s, a)
� �

log 2KHS
�

log(1� Pmin,h(s, a))
, (69)

as long as Condition (27) holds. The proof is postponed to Appendix C.2.3. With this in mind, we
shall first establish the simpler bound (48) and then move on to show (47).

C.2.1 PROOF OF (48)

To begin, recall that (69) is satisfied for all (h, s, a) 2 Cb. By Lemma 6 and the union bound, it
holds that with probability at least 1� � that for all (h, s, a) 2 Cb:

8s0 2 S : P 0
h (s

0 | s, a) �
bP 0
h (s

0 | s, a)
e2

� P 0
h (s

0 | s, a)
8e2 log(KHS

� )
. (70)

To characterize the relation between Pmin,h(s, a) and bPmin,h(s, a) for any (h, s, a) 2 Cb, we
suppose—without loss of generality—that Pmin,h(s, a) = P 0

h (s1 | s, a) and bPmin,h(s, a) =
bP 0
h (s2 | s, a) for some s1, s2 2 S . Then, it follows that

Pmin,h(s, a) = P 0
h (s1 | s, a)

(i)
�

bP 0
h (s1 | s, a)

e2
�

bPmin,h(s, a)

e2
=

bP 0
h (s2 | s, a)

e2
(ii)
� P 0

h (s2 | s, a)
8e2 log(KHS

� )
� Pmin,h(s, a)

8e2 log(KHS
� )

,

where (i) and (ii) follow from (70).

C.2.2 PROOF OF (47)

The main goal of (47) is to control the gap between robust Bellman operations based on the nominal
transition kernel P 0

h,s,a and the estimated kernel bP 0
h,s,a by the constructed penalty term. Towards

this, first consider (h, s, a) /2 Cb, which corresponds to the state-action pairs (s, a) that haven’t been
visited at step h by the behavior policy. In other words, Nh(s, a) = 0. In this case, (47) can be
easily verified that

����� inf
P2U�( bP 0

h,s,a
)
PV � inf

P2U�(P 0
h,s,a

)
PV

�����
(i)
= inf

P2U�(P 0
h,s,a

)
PV  kV k1

(ii)
 H

(iii)
= bh(s, a), (71)

where (i) follows from the fact bP 0
h,s,a = 0 when Nh(s, a) = 0 (see (15)), (ii) arises from the as-

sumption kV k1  H , and (iii) holds by the definition of bh(s, a) in (21). Therefore, the remainder
of the proof will focus on verifying (47) for (h, s, a) 2 Cb. Rewriting the term of interest via duality
(cf. Lemma 2) yields
����� inf
P2U�( bP 0

h,s,a
)
PV � inf

P2U�(P 0
h,s,a

)
PV

�����

=

����sup
��0

⇢
�� log

✓
bP 0
h,s,a exp

✓
�V

�

◆◆
� ��

�
� sup
��0

⇢
�� log

✓
P 0
h,s,a exp

✓
�V

�

◆◆
� ��

����� .

(72)

Denoting

b�?h,s,a := argmax
��0

⇢
�� log

✓
bP 0
h,s,a exp

✓
�V

�

◆◆
� ��

�
, (73a)

�?h,s,a := argmax
��0

⇢
�� log

✓
P 0
h,s,a exp

✓
�V

�

◆◆
� ��

�
, (73b)
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Lemma 3 (cf. (33)) then gives that

�?h,s,a 2

0,

H

�

�
, b�?h,s,a 2


0,

H

�

�
, (74)

due to kV k1  H . We shall control (72) in three different cases separately: (a) �?h,s,a = 0 and
b�?h,s,a = 0; (b) �?h,s,a > 0 and b�?h,s,a = 0 or �?h,s,a = 0 and b�?h,s,a > 0; and (c) �?h,s,a 6= 0 or
b�?h,s,a 6= 0.

Case (a): �?h,s,a = 0 and b�?h,s,a = 0. Applying Lemma 3 and Lemma 4 to (72) gives that, with
probability at least 1� �

KH ,
����� inf
P2U�( bP 0

h,s,a
)
PV � inf

P2U�(P 0
h,s,a

)
PV

�����
(i)
=
���essinfs⇠ bP 0

h,s,a

V (s)� essinfs⇠P 0
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V (s)
���

(ii)
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���essinfs⇠P 0
h,s,a

V (s)� essinfs⇠P 0
h,s,a

V (s)
���

= 0  bh(s, a). (75)

where (i) holds by Lemma 3 (cf. (35)) and (ii) arises from Lemma 4 (cf. (36)) given (69).

Case (b): �?h,s,a > 0 and b�?h,s,a = 0 or �?h,s,a = 0 and b�?h,s,a > 0. Towards this, note that two
trivial facts are implied by the definition (73):
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��0
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�� log
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P 0
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�V
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(76a)
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� �?h,s,a�.

(76b)

To continue, first, we consider a subcase when �?h,s,a = 0 and b�?h,s,a > 0. With probability at least
1� �

KH , it follows from Lemma 3 (cf. (35)) and Lemma 4 (cf. (36)) that
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leading to
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where (i) follows from the definition of b�?h,s,a in (73) and the fact in (76a).
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We pause to claim that with probability at least 1� �, the following bound holds
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 1

2
.

(79)
The proof is postponed to Appendix C.2.4. With (79) in place, we can further bound (78) (which is
plugged into (72)) as
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, (80)

where (i) follows from log(1 + x)  2|x| for any |x|  1
2 in view of (79), (ii) follows from (74) as

well as (79), and the last line follows from (48) and choosing cb to be sufficiently large.

Moreover, note that it can be easily verified that
����� inf
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)
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h,s,a

)
PV

�����  H

due to the assumption kV k1  H . Plugging in the definition of bh(s, a) in (21), combined with the
above bounds, we have that with probability at least 1� �,
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(81)

The other subcase when �?h,s,a > 0 and b�?h,s,a = 0 follows similarly from the bound
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and therefore, will be omitted for simplicity.

Case (c): �?h,s,a > 0 and b�?h,s,a > 0. It follows that
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✓
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✓
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�V
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where (i) can be verified by applying the facts in (76). Hence, the above term (83) can be controlled
again in a similar manner as (78); we omit the details for simplicity.

Summing up. Combining the previous results in different cases by the union bound, with proba-
bility at least 1� 10�, it is satisfied that for all (h, s, a) 2 Cb:

����� inf
P2U�( bP 0

h,s,a
)
PV � inf

P2U�(P 0
h,s,a

)
PV

�����  bh(s, a),

which concludes the proof.

C.2.3 PROOF OF (69)

Observe that for all (h, s, a) 2 Cb:

Kdb,P
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h
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� (i)
�
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�
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, (84)

where (i) follows from Condition (27), (ii) follows from the definition that dbmin  db,P
0

h (s, a) for
(h, s, a) 2 Cb, and (iii) comes from (45).

Lemma 1 then tells that with probability at least 1� 8�,
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16
�

c1 log
KH
�

16Pmin,h(s, a)
, (85)

where the second line follows from the above relation as long as c1 is sufficiently large. The last
inequality of (69) then follows from

c1 log
KHS
�

16Pmin,h(s, a)
� �

log 2KHS
�

log(1� Pmin,h(s, a))
, (86)

since x  � log(1� x) for all x 2 [0, 1].

C.2.4 PROOF OF (79)
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where the second line follows from
P
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P

i bi
ai
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 (maxi

ai

bi
)
P

i bi for any positive sequences
{ai, bi}i obeying ai, bi > 0.
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To continue, note that for any (h, s, a) 2 Cb and s0 2 supp
�
P 0
h,s,a

�
, Nh(s, a) bP 0

h (s
0 | s, a) follows

the binomial distribution Binomial
�
Nh(s, a), P 0

h (s
0 | s, a)

�
. Thus, applying Lemma 5 with t =r

log(KHS

� )
cfNh(s,a)P 0
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(88)

as soon as t  1
2 , which can be verified by the fact (69) and Pmin,h(s, a)  P 0

h (s
0 | s, a) (cf. (44)),

namely,
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4cfP 0
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0 | s, a) (89)

as long as c1 is sufficiently large.

Applying (88) and taking the union bound over s 2 supp
�
P 0
h,s,a

�
lead to that with probability at

least 1� �
KH ,
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0 | s, a)
���

P 0
h (s

0 | s, a)  max
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s
log(KHS

� )

cfNh(s, a)Pmin,h(s, a)
 1

2
,

where the last line uses again (89). Plugging this back into (87) and applying the union bound over
(h, s, a) 2 Cb then completes the proof.

C.3 PROOF OF THE LOWER BOUND: THEOREM 2

The proof of Theorem 2 is inspired by the construction in Li et al. (2022) for standard MDPs, but
is considerably more involved to handle the uncertainty set unique in robust MDPs. We shall first
construct some hard instances and then characterize the sample complexity requirements over these
instances.

C.3.1 CONSTRUCTION OF HARD PROBLEM INSTANCES

Construction of a collection of hard MDPs. Let us introduce two MDPsn
M� =

⇣
S,A, P� = {P�h }

H
h=1, {rh}Hh=1, H

⌘
|� = {0, 1}

o
, (90)

where the state space is S = {0, 1, . . . , S � 1}, and the action space is A = {0, 1}. The transition
kernel P� of the constructed MDP M� is defined as

P�1 (s
0 | s, a) =

8
><

>:

p1(s0 = 0) + (1� p)1(s0 = 1) if (s, a) = (0,�)
q1(s0 = 0) + (1� q)1(s0 = 1) if (s, a) = (0, 1� �)
1(s0 = 1) if s = 1
q1(s0 = s) + (1� q)1(s0 = 1) if s > 1

(91a)

and
P�h (s

0 | s, a) = 1(s0 = s), 8(h, s, a) 2 {2, . . . , H}⇥ S ⇥A. (91b)
In words, except at step h = 1, the MDP always stays in the same state. Additionally, the MDP will
always stay in the state subset {0, 1} if the initial distribution is supported only on {0, 1}, in view of
(91). Here, p and q are set to be

p = 1� 1

H
+� and q = 1� 1

H
(92)
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for some H � e8 and � (whose value will be specified later) obeying

1

H
 1

H1�3/�
 1

2
and �  1

2H
, (93)

where � is set as

� :=
logH

2
� 4. (94)

The assumption (93) immediately indicates the facts

1 > p > q � 1

2
. (95)

Moreover, for any (h, s, a) 2 [H]⇥ S ⇥A, the reward function is defined as

rh(s, a) =

⇢
1 if s = 0
0 otherwise . (96)

Construction of the history/batch dataset. In the nominal environment M�, a batch dataset is
generated consisting of K independent sample trajectories each of length H , where each trajectory
is generated according to (10), based on the following initial state distribution ⇢b and behavior policy
⇡b = {⇡b

h}Hh=1:

⇢b(s) = µ(s) and ⇡b
h(a | s) =

1

2
, 8(s, a, h) 2 S ⇥A⇥ [H]. (97)

Here, µ(s) is defined as the following state distribution supported on the state subset {0, 1}:

µ(s) =
1

CS
1(s = 0) +

⇣
1� 1

CS

⌘
1(s = 1), (98)

where 1(·) is the indicator function, and C > 0 is some constant that will determine the concentra-
bility coefficient C?

rob (as we shall detail momentarily) and obeys

1

CS
 1

4
. (99)

As it turns out, for any MDP M�, the occupancy distributions of the above batch dataset are the
same (due to symmetry) and admit the following simple characterization:

db,P
�

1 (0, a) =
1

2
µ(0), 8a 2 A, (100a)

µ(s)

2
 db,P

�

h (s)  2µ(s),
µ(s)

4
 db,P

�

h (s, a)  µ(s), 8(s, a, h) 2 S ⇥A⇥ [H].

(100b)

In addition, we choose the following initial state distribution

⇢(s) =

⇢
1, if s = 0
0, if s > 0

. (101)

The proof of the claim (100) is postponed to Appendix C.4.1.

Uncertainty set of the transition kernels. Denote the transition kernel vector as

P�h,s,a := P�h (· | s, a) 2 [0, 1]1⇥S . (102)

For any (s, a, h) 2 S ⇥A⇥ [H], the perturbation of the transition kernels in M� is restricted to the
following uncertainty set

U�(P�) := ⌦ U�
⇣
P�h,s,a

⌘
, U�(P�h,s,a) :=

n
Ph,s,a 2 �(S) : KL

⇣
Ph,s,a k P�h,s,a

⌘
 �

o
,

(103)
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where the radius of the uncertainty set � obeys
✓
1� 3

�

◆
log(H)  � 

✓
1� 2

�

◆
log(H). (104)

Before continuing, we shall introduce some notation for convenience. For any P�h (· | s, a) in (91),
we define the limit of the perturbed kernel transiting to the next state s0 from the current state-action
pair (s, a) by

P�h(s
0 | s, a) := inf

Ph,s,a2U�(P�

h,s,a
)
Ph(s

0 | s, a), (105)

and in particular, denote

p := P�1 (0 | 0,�), q := P�1 (0 | 0, 1� �). (106)
Armed with the above definitions, we introduce the following lemma which implies some useful
properties of the uncertainty set.
Lemma 9. When � satisfies (94) and the uncertainty level � satisfies (234), the perturbed transition
kernels obey

p � q � 1

�
. (107)

Proof. See Appendix C.4.2.

Value functions and optimal policies. We take a moment to derive the corresponding value func-
tions and identify the optimal policies. With some abuse of the notation, for any MDP M�, we
denote ⇡?,� = {⇡?,�h }Hh=1 as the optimal policy, and let V ⇡,�,�

h (resp. V ?,�,�
h ) represent the robust

value function of policy ⇡ (resp. ⇡?,�) at step h with uncertainty radius �. Armed with these nota-
tion, we introduce the following lemma which collects the properties concerning the value functions
and optimal policies.
Lemma 10. For any � = {0, 1} and any policy ⇡, defining

z⇡� := p⇡1(� | 0) + q⇡1(1� � | 0), (108)
it holds that

V ⇡,�,�
1 (0) = 1 + z⇡�(H � 1). (109)

In addition, the optimal policies and the optimal value functions obey

V ?,�,�
1 (0) = 1 + p(H � 1), (110a)

8h 2 [H] \ {1} : V ?,�,�
h (0) = H � h+ 1, (110b)

8h 2 [H] : ⇡?,�h (� | 0) = 1, ⇡?,�h (� | 1) = 1, V ?,�,�
h (1) = 0. (110c)

The robust single-policy clipped concentrability coefficient C?
rob obeys

2C  C?
rob  4C. (111)

Proof. See Appendix C.4.3.

In view of Lemma 10, we note that the smallest positive state transition probability of the optimal
policy ⇡? under any MDP M� with � 2 {0, 1} thus can be given by

P ?min := min
h,s,s0

n
P�h

⇣
s0|s,⇡?,�h (s)

⌘
: P�h

⇣
s0|s,⇡?,�h (s)

⌘
> 0

o
= P�1 (1|0,�) = 1� p. (112)

C.3.2 ESTABLISHING THE MINIMAX LOWER BOUND

We are now ready to establish the sample complexity lower bound. With the choice of the initial
distribution ⇢ in (101), for any policy estimator b⇡ computed based on the batch dataset, we plan to
control the quantity ⌦

⇢, V ?,�,�
1 � V b⇡,�,�

1

↵
= V ?,�,�

1 (0)� V b⇡,�,�
1 (0).
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Step 1: converting the goal to estimate �. We make the following claim which shall be verified
in Appendix C.4.4: given "  H

256e6 logH , choosing

� =
128e6�(1� q)"

H
 �

2H logH
 1

2H
, (113)

which satisfies (93) with the aid of (234) and (92), it holds that for any policy b⇡,
⌦
⇢, V ?,�,�

1 � V b⇡,�,�
1

↵
� 2"

�
1� b⇡1(� | 0)

�
. (114)

Armed with this relation between the policy b⇡ and its sub-optimality gap, we are positioned to
construct an estimate of �. We denote P� as the probability distribution when the MDP is M�, for
any � 2 {0, 1}.

Suppose for the moment that a policy estimate b⇡ achieves

P�
n⌦
⇢, V ?,�,�

1 � V b⇡,�,�
1

↵
 "

o
� 7

8
, (115)

then in view of (114), we necessarily have b⇡1(� | 0) � 1
2 with probability at least 7

8 . With this in
mind, we are motivated to construct the following estimate b� for � 2 {0, 1}:

b� = arg max
a2{0,1}

b⇡1(a | 0), (116)

which obeys

P�
�b� = �

 
� P�

�
b⇡1(� | 0) > 1/2

 
� 7

8
. (117)

In what follows, we would like to show (117) cannot happen without enough samples, which would
in turn contradict (114).

Step 2: probability of error in testing two hypotheses. Armed with the above preparation, we
shall focus on differentiating the two hypotheses � 2 {0, 1}. Towards this, consider the minimax
probability of error defined as follows:

pe := inf
 

max
�
P0( 6= 0), P1( 6= 1)

 
, (118)

where the infimum is taken over all possible tests  constructed from the batch dataset.

Let µb,� (resp. µb,�
h (sh)) be the distribution of a sample trajectory {sh, ah}Hh=1 (resp. a sample

(ah, sh+1) conditional on sh) for the MDP M�. Following standard results from Tsybakov &
Zaiats (2009, Theorem 2.2) and the additivity of the KL divergence (cf. Tsybakov & Zaiats (2009,
Page 85)), we obtain

pe �
1

4
exp

⇣
�KKL

�
µb,0 k µb,1

�⌘

� 1

4
exp

⇢
� 1

2
Kµ(0)

⇣
KL

�
P 0
1 (· | 0, 0) k P 1

1 (· | 0, 0)
�
+ KL

�
P 0
1 (· | 0, 1) k P 1

1 (· | 0, 1)
�⌘�

,

(119)

where we also use the independence of the K trajectories in the batch dataset in the first line. Here,
the second line arises from the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) and the
Markov property of the sample trajectories (recall that db,P

0

h = db,P
1

h ) according to

KL
�
µb,0 k µb,1

�
=

HX

h=1

E
sh⇠db,P0

h

h
KL

�
µb,0
h (sh) k µb,1

h (sh)
�i

=
X

a2{0,1}

db,P
0

1 (0, a)KL
�
P 0
1 (· | 0, a) k P 1

1 (· | 0, a)
�

=
1

2
µ(0)

X

a2{0,1}

KL
�
P 0
1 (· | 0, a) k P 1

1 (· | 0, a)
�
,
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where the penultimate equality holds by the fact that P 0
h (· | s, a) and P 1

h (· | s, a) only differ when
h = 1 and s = 0, and the last equality follows from (100).

It remains to control the KL divergence terms in (119). Given p � q � 1/2 (cf. (95)), applying
Lemma 7 (cf. (41)) yields

KL
�
P 0
1 (· | 0, 0) k P 1

1 (· | 0, 0)
�
= KL (p k q)  (p� q)2

(1� p)p

(i)
=

�2

p(1� p)

(ii)
=

1282e12�2(1� q)2"2

H2p(1� p)
(iii)
 c1�2P ?min"

2

H2
, (120)

where (i) follows from the definition (92), (ii) holds by plugging in the expression of � in (113),
(iii) arises from 1 � q  2(1 � p) = 2P ?min (see (93) and (112)), p > 1

2 , as long as c1 is a large
enough constant. It can be shown that KL

�
P 0
1 (· | 0, 1) k P 1

1 (· | 0, 1)
�

can be upper bounded in the
same way. Substituting (120) back into (119) demonstrates that: if the sample size is chosen as

KH  H3SC?
rob log 2

4c1P ?min�
2"2

, (121)

then one necessarily has

pe �
1

4
exp

⇢
� 1

2
Kµ(0) · 2c1�

2P ?min"
2

H2

�
(i)
=

1

4
exp

⇢
�K

c1�2P ?min"
2

SCH2

�

(ii)
� 1

4
exp

⇢
�K

4c1�2P ?min"
2

SC?
robH

2

�
� 1

8
, (122)

where (i) follows from (98) and (ii) holds by (111).

Step 3: putting things together. Finally, suppose that there exists an estimator b⇡ such that

P0

�⌦
⇢, V ?,�,0

1 � V b⇡,�,0
1

↵
> "

 
<

1

8
and P1

�⌦
⇢, V ?,�,1

1 � V b⇡,�,1
1

↵
> "

 
<

1

8
.

Then Step 1 tells us that the estimator b� defined in (116) must satisfy

P0

�b� 6= 0
�
<

1

8
and P1

�b� 6= 1
�
<

1

8
,

which cannot happen under the sample size condition (121) to avoid contradition with (122). The
proof is thus finished.

C.4 PROOF OF AUXILIARY RESULTS

C.4.1 PROOF OF (100)

With the initial state distribution and behavior policy defined in (97), we have for any MDP M�

with � 2 {0, 1},

db,P
�

1 (s) = ⇢b(s) = µ(s),

which leads to

8a 2 A : db,P
�

1 (0, a) =
1

2
µ(0). (123)

In view of (91a), the state occupancy distribution at step h = 2 obeys

db,P
�

2 (0) = P
n
s2 = 0 | s1 ⇠ db,P

�

1 ;⇡b
o
= µ(0)

⇥
⇡b
1(� | 0)p+ ⇡b

1(1� � | 0)q
⇤
=

(p+ q)µ(0)

2
,

and

db,P
�

2 (1) = P
n
s2 = 1 | s1 ⇠ db,P

�

1 ;⇡b
o
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= µ(0)
⇥
⇡b
1(� | 0)(1� p) + ⇡b

1(1� � | 0)(1� q)
⇤
+ µ(1) = µ(1) +

(2� p� q)µ(0)

2
.

With the above result in mind and recalling the assumption in (95), we arrive at

µ(0)

2
 db,P

�

2 (0)  µ(0), µ(1)  db,P
�

2 (1)
(i)
 2µ(1), (124)

where (i) holds by applying (95) and (99) (which implies µ(0)  µ(1) by the assumption in (99))

db,P
�

2 (1) = µ(1) +
(2� p� q)µ(0)

2
 µ(1) + µ(0)  2µ(1).

Finally, from the definitions of P�h (· | s, a) in (91b) and the Markov property, we arrive at for any
(h, s) 2 [H]⇥ S ,

µ(s)

2
 db,P

�

h (s)  2µ(s), (125)

which directly leads to

µ(s)

4
 db,P

�

h (s, a) = ⇡b
1(a | s)d

b,P�

h (s)  µ(s). (126)

C.4.2 PROOF OF LEMMA 9

Note that p � q can be easily verified since p > q, which indicates that the first assertion is true. So
we will focus on the second assertion in (107). Towards this, invoking the definition in (40), let �0

be the KL divergence from Ber
�
1
�

�
to Ber(q), defined as follows

�0 := KL

✓
Ber

✓
1

�

◆
k Ber(q)

◆
=

1

�
log

1
�

q
+

✓
1� 1

�

◆
log

⇣
1� 1

�

⌘

1� q

=

✓
1

�

◆
log

✓
1

�

◆
�
✓
1

�

◆
log(q) +

✓
1� 1

�

◆
log(H) +

✓
1� 1

�

◆
log

✓
1� 1

�

◆
, (127)

where the second line uses the definition of q in (92). We claim that �0 satisfies the following relation
with �, which will be proven at the end of this proof:

✓
1� 3

�

◆
log(H)  � 

✓
1� 2

�

◆
log(H)  �0 

✓
1� 1

�

◆
log(H). (128)

Recalling the definition of the transition kernel in (91a)

P�1 (0 | 0, 1� �) = q, P�1 (1 | 0, 1� �) = 1� q, P�1 (s | 0, 1� �) = 0, 8s 2 S \ {0, 1},

the uncertainty set of the transition kernel with radius � is thus given as

U�(P�1,0,1��)
= {P1,0,1�� 2 �(S) : P (0 | 0, 1� �) = q0, P (1 | 0, 1� �) = 1� q0,KL (Ber (q0) k Ber(q))  �} .

(129)

Recalling the definition of q in (106), we can bound

q = inf
P1,0,1��2U�(P�

1,0,1��
)
P (0 | 0, 1� �) = inf

q0:KL(Ber(q0)kBer(q))�
q0

(i)
� inf

q0:KL(Ber(q0)kBer(q))�0
q0 =

1

�
,

where (i) holds by �  �0 (cf. (128)) and the last equality follows from applying Lemma 7 (cf. (42))
and (127) to arrive at

80  q0 <
1

�
: KL (Ber (q0) k Ber(q)) > KL

✓
Ber

✓
1

�

◆
k Ber(q)

◆
= �0.
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Proof of (128). To control �0, we plug in the assumptions in (95) and � � 4 and arrive at the trivial
facts

✓
1

�

◆
log

✓
1

�

◆
�
✓
1

�

◆
log(q) < 0,

✓
1� 1

�

◆
log

✓
1� 1

�

◆
< 0.

The above facts directly lead to

�0 
✓
1� 1

�

◆
log(H). (130)

Similarly, observing

�1 
✓
1

�

◆
log

✓
1

�

◆
+

✓
1� 1

�

◆
log

✓
1� 1

�

◆
 0, �

✓
1

�

◆
log(q) � 0,

we arrive at

�0 � �1 +

✓
1� 1

�

◆
log(H) �

✓
1� 2

�

◆
log(H) (131)

as long as logH � � (cf. (94)). With (130) and (131) in hand, it is straightforward to see that the
choice of the uncertainty radius � in (234) obeys the advertised bound (128).

C.4.3 PROOF OF LEMMA 10

For notational conciseness, we shall drop the superscript � and use the shorthand V ⇡,�
h = V ⇡,�,�

h

and V ?,�
h = V ?,�,�

h whenever it is clear from the context. We begin by deriving the robust value
function for any policy ⇡. Starting with state 1, at any step h 2 [H], it obeys

V ⇡,�
h (1) = Ea⇠⇡h(· | 1)

"
rh(1, a) + inf

P2U�(P�

h,1,a)
PV ⇡,�

h+1

#
= 0 + V ⇡,�

h+1(1),

where the first equality follows from the robust Bellman consistency equation (cf. (8)), and the
second equality follows from the observation that the distribution P�h,1,a is supported solely on state
1 in view of (91a), therefore U�(P�h,1,a) = P�h,1,a. Leveraging the terminal condition V ⇡,�

H+1(1) = 0,
and recursively applying the previous relation, we have

V ?,�
h (1) = V ⇡,�

h (1) = 0, 8h 2 [H]. (132)

Similarly, turning to state 0, at any step h > 1, the robust value function satisfies

V ⇡,�
h (0) = Ea⇠⇡h(· | 0)

"
rh(0, a) + inf

P2U�(P�

h,0,a)
PV ⇡,�

h+1

#
= 1 + V ⇡,�

h+1(0),

which again uses the fact that the distribution P�h,0,a is supported solely on state 0 in view of (91b),
therefore U�(P�h,0,a) = P�h,0,a. Leveraging the terminal condition V ⇡,�

H+1(0) = 0, and recursively
applying the previous relation, we have

V ?,�
h (0) = V ⇡,�

h (0) = H � h+ 1, 2  h  H. (133)

Taking (132) and (133) together, it follows that

8 2  h  H : V ⇡,�
h (0) > V ⇡,�

h (1). (134)

Consequently, the robust value function of state 0 at step h = 1 satisfies

V ⇡,�
1 (0) = Ea⇠⇡1(· | 0)

"
r1(0, a) + inf

P2U�(P�

1,0,a)
PV ⇡,�

2

#

(i)
= 1 + ⇡1(� | 0)

⇣
inf

P2U�(P�

1,0,�)
PV ⇡,�

2

⌘
+ ⇡1(1� � | 0)

⇣
inf

P2U�(P�

1,0,1��
)
PV ⇡,�

2

⌘
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(ii)
= 1 + ⇡1(� | 0)

h
pV ⇡,�

2 (0) +
�
1� p

�
V ⇡,�
2 (1)

i

+ ⇡1(1� � | 0)
h
qV ⇡,�

2 (0) +
�
1� q

�
V ⇡,�
2 (1)

i

(iii)
= 1 + V ⇡,�

2 (1) + z⇡� [V
⇡,�
2 (0)� V ⇡,�

2 (1)]

= 1 + z⇡�V
⇡,�
2 (0) (135)

where (i) uses the definition of the reward function in (96), (ii) uses (134) so that the infimum is
attained by picking the choice specified in (106) with a smallest probability mass imposed on the
transition to state 0. Finally, we plug in the definition (108) of z⇡� in (iii), and the last line follows
from (132).

Therefore, taking ⇡ = ⇡?,� in the previous relation directly leads to

V ?,�
1 (0) = 1 + z⇡

?,�

� V ?,�
2 (0) = 1 + z⇡

?,�

� (H � 1), (136)

where the second equality follows from (133). Observing that the function (H � 1)z is increasing
in z and that z⇡� is increasing in ⇡1(� | 0) (due to the fact p � q in (107)). As a result, the optimal
policy obeys

⇡?,�1 (� | 0) = 1 (137)

at state 0, and plugging back to (136) gives

V ?,�
1 (0) = 1 + z⇡

?,�

� (H � 1) = 1 + p(H � 1),

where z⇡
?,�

� = p⇡?,�1 (� | 0) + q⇡?,�1 (1 � � | 0) = p. For the rest of the states, without loss of
generality, we choose the optimal policy obeying

8h 2 [H] : ⇡?,�h (� | 0) = 1, ⇡?,�h (� | 1) = 1. (138)

Proof of claim (111). Given that ⇡?,�h (� | 0) = 1 for all h 2 [H] and ⇢(0) = 1, for any P 2
U�(P�), we have

d?,P2 (0,�) = d?,P2 (0)⇡?,�2 (� | 0) = d?,P2 (0) = Ps2⇠P (· | s1,⇡?,�

1 (s1))

�
s2 = 0 | s1 ⇠ ⇢;⇡?,�

 

= P1(0 | 0,�)
(i)
� P�1 (0 | 0,�)

(ii)
= p � 1

�
, (139)

which (i) holds by plugging in the definition (105), (ii) follows from the definition (106), and the
final inequality arises from Lemma 9. Hence, for all 2  h  H , by the Markov property and
P�h (0 | 0,�) = 1, we have

d?,Ph (0,�) = d?,P2 (0,�) � 1

�
. (140)

Examining the definition of C?
rob in (12), we make the following observations.

• For h = 1, we have

max
(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,P1 (s, a), 1

S

 

db,P
�

1 (s, a)

(i)
= max

P2U�(P�)

min
�
d?,P1 (0,�), 1

S

 

db,P
�

1 (0,�)

(ii)
= max

P2U�(P�)

1

Sdb,P
�

1 (0,�)

(iii)
=

2

Sµ(0)
= 2C,

(141)

where (i) holds by d?,P1 (s) = ⇢(s) = 0 for all s 2 S \ {0} (see (101)) and ⇡?,�h (� | 0) = 1 for all
h 2 [H], (ii) follows from the fact d?,P1 (0,�) = 1, (iii) is verified in (100), and the last equality
arises from the definition in (98).
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• Similarly, for h = 2, we arrive at

max
(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,P2 (s, a), 1

S

 

db,P
�

2 (s, a)

(i)
= max

s2{0,1},P2U�(P�)

min
�
d?,P2 (s,�), 1

S

 

db,P
�

2 (s,�)

 max
s2{0,1},P2U�(P�)

1

Sdb,P
�

2 (s,�)

(ii)
 4

Sµ(0)
= 4C,

(142)

where (i) holds by the optimal policy in (110) and the trivial fact that d?,P2 (s) = 0 for all s 2
S \ {0, 1} (see (101) and (91a)), (ii) arises from (100), and the last equality comes from (98).

• For all other steps h = 3, . . . , H , observing from the deterministic transition kernels in (91b), it
can be easily verified that

max
(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,Ph (s, a), 1

S

 

db,P
�

h (s, a)
= max

(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,P2 (s, a), 1

S

 

db,P
�

2 (s, a)
 4C.

(143)

Combining the above cases, we complete the proof by

2C  C?
rob = max

(h,s,a,P )2[H]⇥S⇥A⇥U�(P�)

min
�
d?,Ph (s, a), 1

S

 

db,P
�

h (s, a)
 4C.

C.4.4 PROOF OF THE CLAIM (114)

Recall that by virtue of (108) and (110), we arrive at

z?� := z⇡
?,�

� = p⇡?,�1 (� | 0) + q⇡?,�1 (1� � | 0) = p.

Applying (109) yields
⌦
⇢, V ?,�,�

1 �V ⇡,�,�
1

↵
= V ?,�,�

h (0)�V ⇡,�,�
h (0) =

�
p� z⇡�

�
(H�1) =

�
p� q

�
(H�1) (1� ⇡1(� | 0)) ,

(144)
where the last equality uses the definition (108). Therefore, it boils down to control p� q.

To continue, we define an auxiliary value function vector V 2 RS⇥1 obeying

V (0) = H � 1 and V (s) = 0, 8s 2 S \ {0}. (145)

With this in hand, applying Lemma 2 gives

(H � 1)
�
p� q

� (i)
= inf

P2U�(P�

1,0,�)
PV � inf

P2U�(P�

1,0,1��
)
PV

= sup
��0

⇢
�� log

✓
P�1,0,� · exp

✓
�V

�

◆◆
� ��

�
� sup
��0

⇢
�� log

✓
P�1,0,1�� · exp

✓
�V

�

◆◆
� ��

�

(ii)
�

⇢
��? log

✓
P�1,0,� · exp

✓
�V

�?

◆◆
� �?�

�
�
⇢
��? log

✓
P�1,0,1�� · exp

✓
�V

�?

◆◆
� �?�

�

= ��?

log

✓
P�1,0,� · exp

✓
�V

�?

◆◆
� log

✓
P�1,0,1�� · exp

✓
�V

�?

◆◆�
, (146)

where (i) follows from (see the definition of p in (106))

inf
P2U�(P�

1,0,�)
PV = P�1 (0 | 0,�)V (0) = (H � 1)p,

inf
P2U�(P�

1,0,1��
)
PV = P�1 (0 | 0, 1� �)V (0) = (H � 1)q.

Here, (ii) holds by letting

�? := argmax
��0

f(�) := argmax
��0

⇢
�� log

✓
P�1,0,1�� · exp

✓
�V

�

◆◆
� ��

�
. (147)
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The rest of the proof is then to control (146). We start with the observation that �? > 0; this is
because in view of Lemma 3 (cf. (34)), it suffices to verify that

log(1� q) + �
(i)
 log

✓
1

H

◆
+

✓
1� 2

�

◆
logH = � 2

�
logH < 0, (148)

where (i) holds by (234). We now claim the following bound for �? holds, whose proof is postponed
to the end:

H

16�
 H � 1

log(�H)
 �?  H � 1⇣

1� 3
�

⌘
log(H)

, (149)

which immediately implies the following by taking exponential maps given �? > 0:
1

�H
 e�(H�1)/�?

 1

H1�3/�
. (150)

Moving to the second term of (146), it follows that

log

✓
P�1,0,� · exp

✓
�V

�?

◆◆
� log

✓
P�1,0,1�� · exp

✓
�V

�?

◆◆

(i)
= log

pe�(H�1)/�?

+ (1� p)

qe�(H�1)/�? + (1� q)

= log

 
1 +

(p� q)
�
e�(H�1)/�? � 1

�

qe�(H�1)/�? + (1� q)

!

(ii)
< �

�
�
1� e�(H�1)/�?�

qe�(H�1)/�? + (1� q)
(iii)
 �1

2

�

H
3
� (1� q) + (1� q)

 � �

4e6(1� q)
, (151)

where (i) follows from the definitions in (91) and (145), (ii) holds by log(1 + x) < x for x 2
(�1,1), (iii) can be verified by (150) and (93):

1� e�(H�1)/�?

� 1� 1

H1�3/�
� 1

2
,

and the last line uses H3/� = H6/ logH = e6 by the definition of � in (94). Plugging (149) and
(151) back into (146) and (144), we arrive at

⌦
⇢, V ?,�,�

1 � V ⇡,�,�
1

↵
= (H � 1)

�
p� q

�
(1� ⇡1(� | 0))

� H�

64e6�(1� q)
(1� ⇡1(� | 0)) � 2" (1� ⇡1(� | 0)) ,

where (i) holds by the definition of � in (94) and the last inequality follows directly from the choice
of � in (113).

Proof of inequality (149). Applying (33) in Lemma 3 to �? in (147) leads to the upper bound in
(149):

�?  H � 1

�
 H � 1⇣

1� 3
�

⌘
log(H)

, (152)

where the last inequality holds by (234). As a result, we shall focus on showing the lower bounds in
(149) in the remainder of the proof.

Recalling the definition of q in (92), we can reparameterize 1� q using two positive variables cq and
�q (whose choices will be made clearer soon) as follows:

1� q =
1

H
= cqe

�(H�1)/�q . (153)
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Deriving the first derivative of the function of interest f(�) in (147) as follows:

r�f(�) = r�

✓
�� log

✓
P�1,0,1�� · exp

✓
�V

�

◆◆
� ��

◆

(i)
= r�

⇣
�� log

⇣
qe�(H�1)/� + 1� q

⌘
� ��

⌘

= �� � log
⇣
qe�(H�1)/� + 1� q

⌘
� 1

�
· q(H � 1)e�(H�1)/�

qe�(H�1)/� + 1� q
, (154)

where (i) holds by the chosen transition kernels in (91) and the last line arises from basic calculus.
To continue, when � = �q , the derivative of the function f(�) can be expressed as

r�f(�) | �=�q
= �� � log

✓
(1� q)

q

cq
+ 1� q

◆
+
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◆
+

q
cq

log 1�q
cq

q
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+ 1
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✓
1� q/cq

q/cq + 1

◆
� log

✓
1 +

q

cq

◆
�

q
cq

log(cq)

1 + q/cq

(i)
= �� + logH

✓
1� q/cq

q/cq + 1

◆
� log

✓
1 +

q

cq

◆
�

q
cq

log(cq)

1 + q/cq
(155)

(ii)
� logH

✓
2

�
� q/cq

q/cq + 1

◆
� log

✓
1 +

q

cq

◆
�

q
cq

log(cq)

1 + q/cq
(iii)
� 1

�
logH � log(1 +

1

�
)� 1

� 1

�
logH � 2 = 0, (156)

where (i) holds by (153), (ii) follows from the bound of � in (234), (iii) arises from letting cq = � �
4 and noting the fact 1/2  q < 1 (see (95)), leading to

1

2�
 q

cq
<

1

�
,

q/cq
q/cq + 1

 1

�
,

q
cq

log(cq)

1 + q/cq
< 1. (157)

Finally, the last line holds by 1/�  1
4 and logH = 2� (see (94)).

To proceed, note that the function f(�) is concave with respect to �. Therefore, observing
r�f(�) | �=�q

� 0 with cq = �, we have �q  �?, which implies (see (153))

1� q =
1

H
= �e�(H�1)/�q  �e�(H�1)/�?

. (158)

The above assertion directly gives

�? � H � 1

log(�H)
.

The proof is completed by noticing

H � 1

log(�H)
=

H � 1

log(H) + log �

(i)
� H � 1

2 logH
�

⇣
1� 3

�

⌘
(H � 1)

2�
� H

16�
,

where (i) follows from (94), the penultimate inequality follows from (234), and the last inequality
follows from � 2 [4,1).

D PROBLEM FORMULATION: DISCOUNTED INFINITE-HORIZON RMDPS

In this section, we turn to the studies of distributionally robust offline RL for discounted infinite-
horizon MDPs.
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D.1 BASICS ABOUT DISCOUNTED INFINITE-HORIZON MDPS

A discounted infinite-horizon MDP can be denoted by M = {S,A, �, P, r}. Here, S =
{1, 2, · · · , S} is the state space, A = {1, 2, · · · , A} is the action space, � 2 [0, 1) is the discounted
factor, P : S ⇥A ! �(S) represent the transition kernel of the MDP, and r : S ⇥A ! [0, 1] is the
intermediate reward function.

Policy, value/Q function and occupancy distribution. A (possibly random) stationary policy
⇡ : S ! �(A) represents the selection rule of the agent, namely, ⇡(a | s) denote the probability of
choosing a in state s. With some abuse of notation, let ⇡(s) represent the action chosen by ⇡ when
⇡ is a deterministic policy. With this in mind, let ⇢ be some initial state distribution. We denote
d⇡,P (s | ⇢) and d⇡,P (s, a | ⇢) respectively as the state occupancy distribution and the state-action
occupancy distribution induced by ⇡, namely

8s 2 S : d⇡,P (s) := (1� �)
1X

t=0

�tP(st = s | s0 ⇠ ⇢,⇡, P ), (159a)

8(s, a) 2 S ⇥A : d⇡,P (s, a) :=
1X

t=0

�tP(st = s | s0 ⇠ ⇢,⇡, P )⇡(a | s). (159b)

Here, the occupancy distributions are conditioned on s0 ⇠ ⇢ and the sequence of actions and states
are generated based on policy ⇡ and transition kernel P .

In addition, the value function V ⇡,P and Q-function Q⇡,P w.r.t. policy ⇡ and transition kernel P are
defined respectively by

8s 2 S : V ⇡,P (s) := E⇡,P

" 1X

t=0

�tr
�
st, at

� ��� s0 = s

#
, (160)

8(s, a) 2 S ⇥A : Q⇡,P (s, a) := E⇡,P

" 1X

t=0

�tr(st, at)
��� s0 = s, a0 = a

#
, (161)

where the expectation is taken over the randomness of the trajectory.

D.2 DISTRIBUTIONALLY ROBUST DISCOUNTED INFINITE-HORIZON MDPS

Before continuing, we introduce the vector of a transition kernel P at (s, a) as

Ps,a := P (· | s, a) 2 R1⇥S , (162)

which is used throughout Appendix D to Appendix F.

In this work, instead of the standard MDP introduced above, we consider the discounted infinite-
horizon robust MDPs (RMDPs) represented by Mrob = {S,A, �,U�(P 0), r}. Here, U�(P 0) de-
note the set of possible transition kernels within an uncertainty set centered around a nominal kernel
P 0 using the distance measured in terms of the KL divergence. In particular, given an uncertainty
level � > 0, the uncertainty set around P 0 is specified as

U�(P 0) := ⌦ U�(P 0
s,a), U�(P 0

s,a) :=
�
Ps,a 2 �(S) : KL

�
Ps,a k P 0

s,a

�
 �

 
. (163)

Armed with this, we define the robust value function V ⇡,� and the robust Q-function Q⇡,� in the
discounted infinite-horizon setting respectively as

8(s, a) 2 S ⇥A : V ⇡,�(s) := inf
P2U�(P 0)

V ⇡,P (s), Q⇡,�(s, a) := inf
P2U�(P 0)

Q⇡,P (s, a).

In words, the robust value/Q functions characterize the worst case over all the instances in the un-
certainty set.

Optimal policy and robust Bellman equation It is well-known that there exists at least one de-
terministic policy that maximizes the robust value function and Q-function simultaneously in the
infinite-horizon setting as well (Iyengar, 2005; Nilim & El Ghaoui, 2005). With this in mind, we
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denote the optimal policy as ⇡? and the corresponding optimal robust value function (resp. optimal
robust Q function) as V ?,� (resp. Q?,�), namely

8s 2 S : V ?,�(s) := V ⇡?,�(s) = max
⇡

V ⇡,�(s), (164a)

8(s, a) 2 S ⇥A : Q?,�(s, a) := Q⇡?,�(s, a) = max
⇡

Q⇡,�(s, a). (164b)

Next, applying (159) with ⇡ = ⇡?, we adopt the the following short-hand notation for the occupancy
distributions associated with the optimal policy:

8s 2 S : d?,P (s) := d⇡
?,P (s), (165a)

8(s, a) 2 S ⇥A : d?,P (s, a) := d⇡
?,P (s, a) = d?,P (s)1{a = ⇡?(s)}. (165b)

In addition, the Bellman’s optimality principle can also be extended to the infinite-horizon robust
MDPs, which is essential. Specifically, for any policy ⇡ (resp. optimal policy ⇡?), the robust value
function and Q-function obey the following robust Bellman consistency equation (resp. robust Bell-
man optimality equation):

8(s, a) 2 S ⇥A : Q⇡,�(s, a) = r(s, a) + � inf
P2U�(P 0)

V ⇡,�, (166)

8(s, a) 2 S ⇥A : Q?,�(s, a) = r(s, a) + � inf
P2U�(P 0)

V ?,�. (167)

D.3 DISTRIBUTIONALLY ROBUST OFFLINE RL

We observe a batch dataset D = {(si, ai, s0i)}1iN consisting of N sample transitions. These
transitions are independently generated based on some behavior distribution db 2 �(S ⇥ A) over
the nominal transition kernel P 0, i.e.,

(si, ai)
i.i.d.⇠ db and s0i

i.i.d.⇠ P 0(· | si, ai), 1  i  N. (168)

Similar to Assumption 1, we design the following robust single-policy clipped concentrability for
infinite-horizon RMDPs to characterize the quality of the history dataset.
Assumption 2 (Robust single-policy clipped concentrability for infinite-horizon MDPs). The be-
havior policy of the history dataset D satisfies

max
(s,a,P )2S⇥A⇥U�(P 0)

min
�
d?,P (s, a), 1

S

 

db,P 0(s, a)
 C?

rob (169)

for some finite quantity C?
rob 2

⇥
1
S ,1

�
. Following the convention 0/0 = 0, we denote C?

rob to be the
smallest quantity satisfying (169), and refer to it as the robust single-policy clipped concentrability
coefficient.

Armed with these, we are ready to introduce the goal in the infinite-horizon case. Given the history
dataset D obeying Assumption 2, for some target accuracy " > 0, we aim to find a near-optimal
robust policy b⇡, which satisfies

V b⇡,�(⇢) � V ?,�(⇢)� " (170)
in a sample-efficient manner.

E ALGORITHM AND THEORY: DISCOUNTED INFINITE-HORIZON RMDPS

In this section, we present both the model-based algorithm —DRVI-LCB—for robust offline RL and
its performance guarantees for the discounted infinite-horizon setting.

E.1 BUILDING AN EMPIRICAL NOMINAL MDP

Recalling that we have N independent samples in the dataset D = {(si, ai, s0i)}1iN . First, we
denote N(s, a) as the total number of sample transitions from (s, a) as

N(s, a) :=
NX

i=1

1
�
(si, ai) = (s, a)

 
. (171)
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Algorithm 2: Robust value iteration with LCB (DRVI-LCB) for infinite-horizon RMDPs.
1 input: a dataset D; reward function r; uncertainty level �.
2 initialization: bQ0(s, a) = 0, bV0(s) = 0 for all (s, a) 2 S ⇥A.
3 Compute the empirical nominal transition kernel bP 0 according to (172);
4 Compute the penalty term b(s, a) according to (176);
5 for m = 1, 2, · · · ,M do

6 for s 2 S, a 2 A do

7 Set bQm(s, a) according to (179);
8 for s 2 S do

9 Set bVm(s) = maxa bQm(s, a);

10 output: b⇡ s.t. b⇡(s) = argmaxa bQM (s, a) for all s 2 S .

Armed with N(s, a), we construct the empirical estimate bP 0 of the nominal kernel P 0 by the visiting
frequencies of state-action pairs as follows:

bP 0(s0 | s, a) :=

8
<

:
1

N(s,a)

NP
i=1

1
�
(si, ai, s0i) = (s, a, s0)

 
, if N(s, a) > 0

0, else
(172)

for any (s, a, s0) 2 S ⇥A⇥ S.

E.2 ALGORITHM: DRVI-LCB FOR INFINITE-HORIZON RMDPS

With the estimate bP 0 of the nominal transition kernel P 0 in hand, we are positioned to introduce our
algorithm DRVI-LCB for infinite-horizon RMDPs, which taking the uncertainty into consideration
by incorporating some penalty term inside the value estimation, summarized in Algorithm 2.

The pessimistic robust Bellman operator. To begin with, recall the classical distributionally ro-
bust Bellman operator (Zhou et al., 2021; Iyengar, 2005; Nilim & El Ghaoui, 2005) in the infinite-
horizon case T �(·) : RSA ! RSA,

8(s, a) 2S ⇥A : T �(Q)(s, a) := r(s, a) + � inf
P2U�(P 0

s,a
)
PV,

where V = [V (s)]s2S , V (s) := max
a

Q(s, a). (173)

The contraction property of the above robust Bellman operator plays a fundamental role in the
convergence and performance of prior works, e.g. Yang et al. (2021); Zhou et al. (2021); Panaganti &
Kalathil (2022). In view of this, to apply the pessimistic principle in RMDPs, we define a pessimistic
variant of the robust Bellman operator bT �

pe(·) w.r.t. the empirical nominal kernel bP 0 as follows:

8(s, a) 2 S ⇥A : bT �
pe(Q)(s, a) = max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
PV � b

�
s, a

�
, 0

)
, (174)

where b(s, a) denotes the new penalty term that measures the data-dependent uncertainty of the
value estimates.

To specify the tailored penalty term b(s, a) in (174), we first introduce an additional term

8(s, a) 2 S ⇥A : bPmin(s, a) := min
s0

n
bP 0(s0 | s, a) : bP 0(s0 | s, a) > 0

o
, (175)

which in words represents the smallest positive transition probability of the estimated nominal kernel
bP 0(s0 | s, a). Then for some � 2 (0, 1), some universal constant cb > 0 and any (s, a) 2 S ⇥ A,
b(s, a) is defined as

b(s, a) =

8
><

>:
min

(
cb

�(1��)

r
log

�
2N3S

(1��)�

�

bPmin(s,a)N(s,a)
+ 4

�N(1��) ,
1

1��

)
+ 2

�N if N(s, a) > 0,

1
1�� + 2

�N otherwise.
(176)
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Our proposed pessimistic robust Bellman operator bT �
pe(·) (cf. (174)) will play an important role in

DRVI-LCB. Encouragingly, although the pessimistic robust Bellman operator bT �
pe(·) involves an

additional penalty term b(s, a) compared to the classical robust Bellman operator T �(·) used in
DRVI (Zhou et al., 2021), it still enjoys the celebrated �-contractive property. Before continuing,
we summarize the contraction property below, whose proof is postponed to Appendix F.3.1.

Lemma 11 (�-Contraction). For any � 2
⇥
1
2 , 1

�
, the operator bT �

pe(·) (cf. (174)) is a �-contraction
w.r.t. k · k1. Namely, for any Q1, Q2 2 RSA s.t. Q1(s, a), Q2(s, a) 2

⇥
0, 1

1��
⇤

for all (s, a) 2
S ⇥A, one has

���bT �
pe(Q1)� bT �

pe(Q2)
���
1

 � kQ1 �Q2k1 . (177)

Additionally, there exists a unique fixed point bQ?,�
pe of the operator bT �

pe(·) obeying 0  bQ?,�
pe (s, a) 

1
1�� for all (s, a) 2 S ⇥A.

Our algorithm DRVI-LCB for infinite-horizon robust offline RL. Armed with the �-contraction
of the pessimistic robust Bellman operator bT �

pe(·), we are positioned to introduce DRVI-LCB for
infinite-horizon RMDPs, summarized in Algorithm 2. Specifically, DRVI-LCB can be seen as a
value iteration algorithm w.r.t. bT �

pe(·) (cf. (174)), whose update rule at the m-th iteration can be
formulated as

bQm(s, a) = bT �
pe( bQm�1)(s, a) = max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
P bVm�1 � b

�
s, a

�
, 0

)
(178)

for all m = 1, 2, · · · ,M . In view of strong duality (Hu & Hong, 2013), the above convex problem
can be translated into a dual formulation, leading to the following equivalent update rule:

bQm(s, a) = max

(
r(s, a) + sup

��0

(
�� log

 
bP 0
s,a · exp

 
�bVm�1

�

!!
� ��

)
� b

�
s, a

�
, 0

)
,

(179)

which can be solved efficiently (Iyengar, 2005; Yang et al., 2021; Panaganti & Kalathil, 2022).
The computational efficiency is due to the fact that the variable to be optimized is a scalar and the
dimension of it won’t explode as the size of the state space S increases (independent w.r.t. the size
of the state-action space).

To continue, we initialize the estimates of Q-function ( bQ0) and value function (bV0) to be zero and
output the greedy policy of the final Q-estimates ( bQM ) as the final policy b⇡, namely,

b⇡(s) = argmax
a

bQM (s, a) for all s 2 S. (180)

Finally, we introduce a useful fact that the iterates
� bQm

 
m�0

of our algorithm DRVI-LCB converge

linearly to the fixed point bQ?,�
pe , summarized in the following lemma; its proof is postponed to

Appendix F.3.2.

Lemma 12. Let bQ0 = 0. The iterates of Algorithm 2 obey

8m � 0 : bQm  bQ?,�
pe and k bQm � bQ?,�

pe k1  �m

1� �
. (181)

In addition, choosing M � log �N

1��

log 1
�

, one has

k bQM � bQ?,�
pe k1  1

�N
. (182)

E.3 PERFORMANCE GUARANTEES: INFINITE-HORIZON RMDPS

Before introducing the main theorems, we first define several essential metrics.
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• dbmin: the smallest positive state-action occupancy distribution of the dataset D under the nominal
model P 0, i.e.,

dbmin := min
s,a

n
db,P

0

(s, a) : db,P
0

(s, a) > 0
o
. (183)

• P b
min: the smallest positive state transition probability under the nominal kernel P 0 in the region

covered by dataset D, i.e.,

P b
min := min

s,a,s0

n
P 0 (s0 | s, a) : db,P

0

(s, a) > 0, P 0 (s0 | s, a) > 0
o
. (184)

Note that P b
min is determined only by the state-action pairs covered by the batch dataset D.

• P ?min: the smallest positive state transition probability of the optimal robust policy ⇡? under the
nominal kernel P 0, namely

P ?min := min
s,s0

n
P 0

�
s0 | s,⇡?(s)

�
: P 0

�
s0 | s,⇡?(s)

�
> 0

o
. (185)

We also note that P ?min is determined only by the state-action pairs covered by the optimal robust
policy ⇡? under the nominal model P 0.

We are now positioned to introduce the sample complexity upper bound of DRVI-LCB, together with
the minimax lower bound of solving infinite-horizon RMDPs. First, we present the performance
guarantees of DRVI-LCB for robust offline RL in the infinite-horizon case, with the proof deferred
to Appendix F.1.
Theorem 3. Let c0 and c1 be some sufficiently large universal constants. Given an uncertainty level
� > 0, suppose that the penalty terms in Algorithm 2 are chosen as (176) for sufficiently large cb.
With probability at least 1� �, the output b⇡ of Algorithm 2 obeys

V ?,�(⇢)� V b⇡,�(⇢)  c0
�(1� �)2

vuutSC?
rob log

2
⇣

(1+�)N3S
(1��)�

⌘

P ?minN
, (186)

as long as the number of samples N satisfies

N � c1 log(NS/�)

dbminP
b
min

. (187)

The result directly indicates that DRVI-LCB can finds an "-optimal policy as long as the sample size
in dataset D exceeds the order of (ignoring the logarithmic factor)

SC?
rob

P ?min(1� �)4�2"2
| {z }

"-dependent

+
log(NS/�)

dbminP
b
min| {z }

burn-in cost

. (188)

Note that the burn-in cost is independent with the accuracy level ", which tells us that the sample
complexity is on the order of

eO
✓

SC?
rob

P ?min(1� �)4�2"2

◆
(189)

as long as " is small enough.

The sample complexity of DRVI-LCB dramatically outperforms prior works, which has been com-
pared in detail in Section 1.2 (cf. Table 1). We highlight that our sample complexity depends linearly
on the state space S, in sharp contrast to prior works that all suffer from a quadratic dependency S2.
To achieve this, we resort to a delicate technique called leave-one-out analysis (Agarwal et al., 2020;
Li et al., 2020; 2022) to decouple the statistical dependency introduced across the iterates of robust
value iteration, which has potential to be used in deriving tighter sample complexity of other RMDP
problems.

In addition, we develop an information-theoretic lower bound for robust offline RL as provided in
the following theorem whose proof can be found in Appendix F.2.
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Theorem 4. Suppose (S,C?rob, �,�, ") obeying 1
1�� � e8, S � log( 1

1�� )/2, C?
rob � 8/S, " 

1
256e6(1��) log 1

1��

, and log 1
1�� � 6  �  log 1

1�� � 4, we consider two infinite-horizon robust
MDPs M0,M1, an initial state distribution ⇢, and a batch dataset with N independent samples.
Consequently, denoting P0 (resp. P1) as the probability when the MDP is M0 (resp. M1), one has

inf
b⇡

max
n
P0

�
V ?,�(⇢)� V b⇡,�(⇢) > "

�
, P1

�
V ?,�(⇢)� V b⇡,�(⇢) > "

�o
� 1

8
,

as long as

N  c1SC?
rob

P ?min(1� �)2�2"2
.

Here, the infimum is taken over all estimator b⇡ and c1 > 0 is some universal constant.

The sample complexity minimax lower bound shown above indicates that no any algorithm can
find an "-optimal policy if the sample complexity is below the order of ⌦

⇣
SC?

rob
P?

min(1��)2�2"2

⌘
. It

directly confirms that DRVI-LCB is near-optimal up to a polynomial factor of the effective horizon
length 1

(1��) (cf. (188)), which is the first provable algorithm with near-optimal sample complexity
for infinite-horizon robust offline RL. Moreover, the requirement of the offline history dataset is also
much weaker than prior literature on robust offline RL (Yang et al., 2021; Zhou et al., 2021), without
the need of full coverage of the state-action space.

F ANALYSIS: DISCOUNTED INFINITE-HORIZON RMDPS

F.1 PROOF OF THE UPPER BOUND: THEOREM 3

In this section, we outline the proof of Theorem 3. Before moving to the main proof, we introduce
some notations and important properties that are useful throughout the analysis.

F.1.1 NOTATION AND PRELIMINARY FACTS

Notation. To begin with, we denote the state-action space covered by the batch dataset D gener-
ated in the nominal model P 0 as

Cb =
n
(s, a) : db,P

0

(s, a) > 0
o
. (190)

Armed with it, in view of the definition in (175), we define a similar one based on the exact nominal
model P 0 as

Pmin(s, a) := min
s0

n
P 0(s0 | s, a) : P 0(s0 | s, a) > 0

o
, (191)

which combined with (184) and (185) directly indicates that

P b
min = min

(s,a)2Cb
Pmin(s, a), P ?min = min

s
Pmin(s,⇡

?(s)). (192)

Finally, we denote the robust Q-value and robust value function outputed from Algorithm 2 as

bQ = bQM and bV = bVM . (193)

Properties of N(s, a). We recall a key property of the visiting times N(s, a) over the state-action
pair (s, a) which has been established as follows:
Lemma 13 ((Li et al., 2022), Lemma 7). For any � 2 (0, 1), with probability at least 1 � �, the
quantities {N(s, a)} in (171) obey

max

⇢
N(s, a),

2

3
log

NS

�

�
� Ndb,P

0

(s, a)

12
(194)

simultaneously for all (s, a) 2 S ⇥A.
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Armed with Lemma 13, we introduce another fact that is useful throughout the proof. With proba-
bility at least 1� �, we have

8(s, a) 2 Cb : N(s, a) � Ndb,P
0

(s, a)

12
� c1 log(NS/�)

12Pmin(s, a)
� �

log 2NS
�

log(1� Pmin(s, a))
, (195)

as long as c1 is some sufficient large universal constant and (187) holds. The proof is postponed to
Appendix F.3.4.

Properties of bQ and bV . Invoking Lemma 12 directly leads to
��� bQ� bQ?,�

pe

���
1

 1

�N
(196)

and therefore
���bV � bV ?,�

pe

���
1

= max
s

���max
a

bQ(s, a)�max
a

bQ?,�
pe (s, a)

��� 
��� bQ� bQ?,�

pe

���
1

 1

�N
, (197)

where the penultimate inequality arises from that the maximum operator is a 1-contraction.

F.1.2 PROOF OF THEOREM 3

We are now positioned to outline the proof of Theorem 3, which is separated into several key steps.

Step 1: controlling the estimation uncertainty. In view of the access to only finite and partial
coverage samples for estimating the nominal transition kernel P 0, we need to efficiently control
the uncertainty term infP2U�( bP 0

s,a
) P bV � infP2U�(P 0

s,a
) P bV . However, the statistical dependency

between the estimated value bV and the kernel estimation bP 0
s,a (since bP 0

s,a will be reused in the update
rule (cf. (179)) for all the iterations) adds daunting challenges of controlling it tightly. This is also
why the expensive quadratical dependency w.r.t. state space S appears in the sample complexity
of the prior works (Zhou et al., 2021; Panaganti & Kalathil, 2022; Yang et al., 2021), which was
addressed by the covering theory. To overcome this challenge, we count on a leave-one-out argument
motivated by (Agarwal et al., 2020; Li et al., 2020; 2022) to decouple the dependency. The results
are summarized as the following lemma with the proof deferred to Appendix F.3.3.
Lemma 14. Suppose the assumptions in Theorem 3 are satisfied and � 2

⇥
1
2 , 1

�
. Then for all vector

eV obeying
��eV � bV ?,�

pe

��
1  1

N and keV k1  1
1�� , with probability at least 1� �, one has

����� inf
P2U�( bP 0

s,a
)
P eV � inf

P2U�(P 0
s,a

)
P eV

�����

 min

8
><

>:
cb

�(1� �)

vuut log( 2(1+�)N
3S

(1��)� )

bPmin(s, a)N(s, a)
+

4

N�(1� �)
,

1

1� �

9
>=

>;
(198)

simultaneously for all (s, a) 2 S ⇥A. In addition, with probability at least 1� �, we have

8(s, a) 2 Cb :
Pmin(s, a)

8 log(NS/�)
 bPmin(s, a)  e2Pmin(s, a). (199)

Step 2: establishing the pessimism property. Armed with above lemma, we shall show that the
estimated bQ(s, a) is a lower bound of Qb⇡,�(s, a) for all (s, a) 2 S⇥A. Towards this, we first recall
that the fixed-point bQ?,�

pe of the pessimistic robust Bellman operator bT �
pe(·) (cf. (174)) obeys

bQ?,�
pe = bT �

pe( bQ?,�
pe ) = max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
P bV ?,�

pe � b
�
s, a

�
, 0

)
. (200)

With this in mind, we shall show bQ  Qb⇡,� in two different conditions of bQ?,�
pe . In the state-action

pairs obeying bQ?,�
pe (s, a) = 0, recalling that the initial bQ0 = 0 and the definition in (193) gives

bQ(s, a) = bQM  bQ?,�
pe (s, a) = 0, (201)
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where the inequality holds by applying Lemma 12. As a result, Qb⇡,�(s, a) � 0 directly indicates
bQ(s, a)  Qb⇡,�(s, a).

Consequently, we shall focus on the second case when bQ?,�
pe (s, a) > 0. To continue, we observe that

bQ(s, a)
(i)
 bQ?,�

pe (s, a) +
1

�N
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)
P bV ?,�

pe � b
�
s, a

�
+

1

�N
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)
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1

�N
+ �
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)
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(ii)
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2
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)
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)
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)
P bV

�����

 r(s, a) + � inf
P2U�(P 0

s,a
)
P bV , (202)

where (i) follows from (196), (ii) arises from (197) and the basic fact that infimum operator is a
1-contraction w.r.t. k · k1, and the final inequality holds by the definition of b(s, a) (see (176)) and
Lemma 14.

With above result in mind and invoking the robust Bellman equation Qb⇡,�(s, a) = r(s, a) +
� infP2U�(P 0

s,a
) PV b⇡,� (see (166)), we arrive at

Qb⇡,�(s, a)� bQ(s, a) � �

"
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P2U�(P 0
s,a

)
PV b⇡,� � inf

P2U�(P 0
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)
P bV

#

(i)
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)
P bV

#
� � ePs,a

⇣
V b⇡,� � bV

⌘
, (203)

where (i) holds by letting ePs,a := argminP2U�(P 0
s,a

) PV b⇡,� . Consequently, one has

min
s,a

h
Qb⇡,�(s, a)� bQ(s, a)

i
� min
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�
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(204)

where (i) follows from ePs,a 2 �(S) for all (s, a) 2 S ⇥ A. Noting that 0 < � < 1, we conclude
Qb⇡,�(s, a)� bQ(s, a) � 0 for all (s, a) 2 S ⇥A in this case, otherwise (204) won’t happen.

Summing up these two cases, we arrive at

8(s, a) 2 S ⇥A : Qb⇡,�(s, a) � bQ(s, a) (205)

and consequently

8s 2 S : V ?,�(s) � V b⇡,�(s) = max
a

Qb⇡,�(s, a) � max
a

bQ(s, a) = bV (s). (206)

Step 3: bounding V ?,�(s) � V b⇡,�(s). First, armed with above pessimistic property (cf. (206)),
we convert the goal to control another term in view of

V ?,�(s)� V b⇡,�(s)  V ?,�(s)� bV (s). (207)

Towards this, we observe that

bV (s) = max
a
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�
s,⇡?(s)

� (i)
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�
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�N
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(ii)
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where (i) follows from (196), (ii) holds by applying (200), (iii) arises from (197) and the basic
fact that the infimum operator is a 1-contraction w.r.t. k · k1, and the final inequality holds by the
definition of b(s, a) (see (176)) and Lemma 14.

To continue, invoking the robust Bellman optimality equation in (167) gives

V ?,�(s) = Q?,�
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s,⇡?(s)

�
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Armed with above results and (208), we arrive at
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where the final inequality holds by introducing the additional notation

bP inf
s,⇡?(s) := argmin

P2U�

�
P 0

s,⇡?(s)

� P bV (211)

and evidently,
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�P bV = bP inf
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bV .

Before continuing, for convenience, we introduce a matrix bP inf 2 RS⇥S and a vector b? 2 RS ,
where their s-th rows (resp. entries) are defined as

h
bP inf

i

s,·
= bP inf

s,⇡?(s), and b?(s) = b
�
s,⇡?(s)

�
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With these notation in mind, applying (210) leads to
D
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= �⇢> bP inf
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V ?,� � bV
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Applying the above result recursively gives
D
⇢, V ?,� � bV

E
 �⇢> bP inf

⇣
V ?,� � bV

⌘
+ 2⇢>b?

 �
⇣
�⇢> bP inf

⌘
bP inf

⇣
V ?,� � bV

⌘
+ 2

⇣
�⇢> bP inf

⌘
b? + 2⇢>b?

 · · · 
⇢
lim
i!1

�i⇢>
⇣
bP inf

⌘i ⇣
V ?,� � bV

⌘�
+ 2⇢>

1X

i=0

�i
⇣
bP inf

⌘i
b?

(i)
 2⇢>

1X

i=0

�i
⇣
bP inf

⌘i
b? = 2⇢>

⇣
I � � bP inf

⌘�1
b?, (214)

where (i) holds by
��⇢>

⇣
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⌘i ⇣
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⌘ ��  1
1�� for all i � 0 and the basic fact that
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⌘
= 0 since limi!1 �i = 0 for all 0  � < 1.

To further characterize the above performance gap, invoking the definition of d?,P (cf. (159) and
(165a)), we arrive at
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Combined with (207), plugging in above result back into (214) yields
D
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E
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Step 4: controlling

D
d?,

bP inf

, b?
E

using concentrability. Before continuing, note that bP inf 2

U�(P 0) (see (211) and (212)), which in words means bP inf is some transition kernel inside U�(P 0)
— the uncertainty set around the nominal kernel P 0.

Observing that we can express
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s2S d?,
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(s)b?(s), we divide the set of state into
two types and control them separately.
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which consequently indicates

d?,
bP inf

(s) = 0. (218)

• For s 2 S where max
P2U�
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� d?,P
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> 0. For such state s, we claim that
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which can be verified by recalling Assumption 2 which requires that the history dataset D obeys
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To continue, invoking the fact in (195) with
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where (i) holds by Assumption 2, and the last inequality holds by bP inf 2 U�(P 0). With this in
mind, we can control the pessimistic penalty b?(s) (cf. (176)) by
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 ,

where (i) arises from (199), the penultimate inequality follows from (221), and the last inequality
holds as long as cb is large enough.

Summing up the results in above two cases, we arrive at
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where (i) arises from applying the Cauchy-Schwarz inequality, and the last inequality holds by
Pmin

�
s,⇡?(s)

�
� P ?min for all s 2 S (see (192)) and the following fact that has been established in

(67):

X

s2S

d?,
bP inf

(s)

min
�
d?, bP inf (s), 1

S

  2S. (223)

Step 5: finishing up the proof. Finally, inserting (222) back into (216), we complete the proof:
with probability at least 1� 2�, one has

D
⇢, V ?,� � V b⇡,�

E
 2

1� �

D
d?,

bP inf

, b?
E
 80cb
�(1� �)2

vuutSC?
rob log

2
⇣

2(1+�)N3S
(1��)�

⌘

P ?minN
. (224)

F.2 PROOF OF THE LOWER BOUND: THEOREM 4

We shall first construct some hard discounted infinite-horizon MDP instances and then characterize
the sample complexity requirements over these instances.
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F.2.1 CONSTRUCTION OF HARD PROBLEM INSTANCES

Construction of a collection of hard MDPs. Suppose there are two MDPs
�
M� =

�
S,A, P�, r, �

�
|� = {0, 1}

 
. (225)

Here, � is the discount parameter, the state space is S = {0, 1, . . . , S � 1}, and the action space is
A = {0, 1}. The transition kernel P� of any constructed MDP M� is defined as

P�(s0 | s, a) =

8
><

>:

p1(s0 = 2) + (1� p)1(s0 = 1) if (s, a) = (0,�)
q1(s0 = 2) + (1� q)1(s0 = 1) if (s, a) = (0, 1� �)
1(s0 = s) if s = 1 or s = 2
q1(s0 = s) + (1� q)1(s0 = 1) if s > 2

(226)

where p and q are set as
p = � +� and q = � (227)

for some � and � obeying

1� �  1/e8  1

2
and �  1

2
(1� �). (228)

Here, � is some value that will be introduced later. Consequently, applying (227) directly leads to

1 � p � q � � � 1

2
. (229)

Regarding the introduced transition kernel, in words, state 1 and 2 are absorbing states, and states
s > 2 will stay without moving or go to state 1. The action will only influence the transitions in
state 0. In addition, if the initial distribution is supported on states {0, 1, 2}, the MDP will always
stay in the state {1, 2} after the first transition.

Finally, we define the reward function as

r(s, a) =

⇢
1 if s = 0 or s = 2
0 otherwise . (230)

Uncertainty set of the transition kernels. Then we introduce the considered robust MDPs with
some tailored radius � of the uncertainty set, along with some useful properties.

To begin with, we introduce an important constant � defined as

� :=
log 1

1��
2

� 4. (231)

Then, for any (s, a) 2 S ⇥A, we denote the transition kernel vector of M� as

P�s,a := P�(· | s, a) 2 [0, 1]1⇥S . (232)
Armed with these, the perturbed transition kernels in M� is limited to the following uncertainty set

U�(P�) := ⌦ U�
�
P�s,a

�
, U�(P�s,a) :=

�
Ps,a 2 �(S) : KL

�
Ps,a k P�s,a

�
 �

 
, (233)

where the radius of the uncertainty set � obeys
✓
1� 3

�

◆
log

1

1� �
 � 

✓
1� 2

�

◆
log

1

1� �
. (234)

Next, to introduce the properties, for any P�(· | s, a) in (226), we denote the minimum limit of the
perturbed distribution transiting from the current state-action pair (s, a) to the next state s0 as

P�(s0 | s, a) := inf
Ps,a2U�(P�

s,a)
P (s0 | s, a). (235)

As the transition from state 0 to state 2 plays an important role in the analysis, in particular, we
denote

p := P�(2 | 0,�), q := P�(2 | 0, 1� �). (236)
With these definitions in mind, we summarize some useful properties of the uncertainty set in the
following lemma.
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Lemma 15. Suppose � satisfies (231) and the uncertainty level � satisfies (234). The perturbed
transition kernels obey

p � q � 1

�
. (237)

Proof. The proof follows from exactly the pipeline in Appendix C.4.2 except replacing H with 1
1�� .

We omit the details for brevity.

Construction of the history/batch dataset. Before continuing, we define a useful state distribu-
tion (only supported on the state subset {0, 1, 2}):

µ(s) =
1

CS
1(s = 0) +

1

CS
1(s = 2) +

⇣
1� 2

CS

⌘
1(s = 1), (238)

where C > 0 is some constant that determines the robust concentrability coefficient C?
rob (will be

introduced momentarily) and obeys

1

CS
 1

4
. (239)

Generated over the nominal environment M�, a batch dataset consists of N i.i.d samples
{(si, ai, s0i)}1iN according to (168), with the occupancy state (resp. state action) distribution
chosen to be:

8(s, a) 2 S ⇥A : db,P
�

(s) = µ(s) and db,P
�

(s, a) =
µ(s)

2
. (240)

Additionally, we choose the following initial state distribution:

⇢(s) =

⇢
1, if s = 0
0, otherwise

. (241)

Value functions and optimal policies. Now we are positioned to derive the corresponding robust
value functions and identify the optimal policies. To clarify the notations, for any MDP M�, we
denote ⇡?� as the optimal policy. In addition, we denote the robust value function of any policy ⇡
(resp. optimal policy ⇡?�) as V ⇡,�

� (resp. V ?,�
� ) with uncertainty radius �. Then, we can introduce

the following lemma which describes some important properties of the robust value functions and
optimal policies.
Lemma 16. For any � = {0, 1} and any policy ⇡, one has

V ⇡,�
� (0) = 1 + �z⇡�

1

1� �
, (242)

where z⇡� is defined as

z⇡� := p⇡(� | 0) + q⇡(1� � | 0). (243)

In addition, the optimal value functions and the optimal policies obey

V ?,�
� (0) = 1 + �p

1

1� �
, V ?,�

� (2) =
1

1� �
, V ?,�

� (s) = 0 for s = 1 or s > 2 (244a)

⇡?�(� | 0) = 1, for s 2 S. (244b)

Moreover, choosing S � �, the robust single-policy clipped concentrability coefficient C?
rob obeys

C?
rob = 2C. (245)

Proof. See Appendix F.2.3.
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F.2.2 ESTABLISHING THE MINIMAX LOWER BOUND

Now we are positioned to provide the sample complexity lower bound. Before starting, we introduce
a useful notation representing the smallest positive state transition probability of the optimal policy
⇡?� under any robust MDP M� with � 2 {0, 1}:

P ?min := min
s,s0

n
P�

�
s0 | s,⇡?�(s)

�
: P�

�
s0 | s,⇡?�(s)

�
> 0

o
= P� (1|0,�) = 1� p. (246)

To continue, the goal is to control the quantity w.r.t. any policy estimator b⇡ based on the batch
dataset and chosen initial distribution ⇢ in (241)

D
⇢, V ?,�

� � V b⇡,�
�

E
= V ?,�

� (0)� V b⇡,�
� (0). (247)

Towards this, we first introduce the following lemma:
Lemma 17. Given ✏  1

256e6(1��) log( 1
1�� )

, choosing

� = 128e6�(1� q)✏(1� �), (248)

one has � obeys (satisfying (228))

�  �(1� �)

2 log
⇣

1
1��

⌘  1

2
(1� �), (249)

and for any policy b⇡,

V ?,�
� (0)� V b⇡,�

� (0) � 2✏
�
1� b⇡(� | 0)

�
. (250)

Proof. This lemma can be verified by following the same pipeline in Appendix C.4.4 except replac-
ing H with 1

1�� and with the additional condition � � 1
2 .

Armed with this lemma, following the same pipeline in Appendix C.3.2, we can complete the proof
by observing that: let c1 be some sufficient large constant, as long as the sample size is chosen as

N  SC?
rob log 2

4c1P ?min�
2(1� �)2"2

, (251)

then we necessarily has

inf
b⇡

max
�2{0,1}

P�
nD
⇢, V ?,�

� � V b⇡,�
�

Eo
� 1

8
, (252)

where P� denote the probability conditioned on that the MDP is M�. We omit the details for brevity
and complete the proof.

F.2.3 PROOF OF LEMMA 16

To start, for any M� with � 2 {0, 1}, it is easily observed that for any policy ⇡, the robust value
function of a state s > 0 obey

V ⇡,�
� (2) =

1X

t=0

�t · 1 =
1

1� �
, (253a)

V ⇡,�
� (s) =

1X

t=0

�t · 0 = 0, for s = 1 or s > 2. (253b)

Similarly, the robust value function of state 0 satisfies

V ⇡,�
� (0) = Ea⇠⇡(· | 0)

"
r(0, a) + � inf

P2U�(P�

0,a)
PV ⇡,�

�

#
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(i)
= 1 + �⇡(� | 0) inf

P2U�(P�

0,�)
PV ⇡,�

� + �⇡(1� � | 0) inf
P2U�(P�

0,1��
)
PV ⇡,�

�

(ii)
= 1 + �⇡(� | 0)

h
pV ⇡,�

� (2) +
�
1� p

�
V ⇡,�
� (1)

i

+ �⇡(1� � | 0)
h
qV ⇡,�

� (2) +
�
1� q

�
V ⇡,�
� (1)

i

(iii)
= 1 + �V ⇡,�

� (1) + �z⇡�

h
V ⇡,�
� (2)� V ⇡,�

� (1)
i

= 1 + �z⇡�V
⇡,�
� (2) (254)

where (i) holds by the reward function defined in (230), (ii) arises from (253) which indicates
V ⇡,�
� (2) � V ⇡,�

� (1) so that the infimum is obtained by picking the smallest possible mass on the
transition to state 2 which reaches (236), (iii) follows from plugging in the definition of z⇡� in (243),
and the last identity is due to (253). Consequently, taking ⇡ = ⇡?�, we directly arrive at

V ?,�
� (0) = 1 + �z⇡

?

� V ⇡,�
� (2) = 1 + �z⇡

?

�
1

1� �
, (255)

which holds by (253). Observing that the function z �
1�� is increasing in z and z⇡� is also increasing

in ⇡(� | 0) (see the fact p � q in (237)), the optimal policy in state 0 obeys

⇡?�(� | 0) = 1. (256)

Finally, plugging the above fact back into (243) leads to

z?� := z⇡
?

� = p⇡?�(� | 0) + q⇡?�(1� � | 0) = p, (257)

which combined with (255) yields

V ?,�
� (0) = 1 + �p

1

1� �
. (258)

For the rest of states s > 0, since the action does not influence the transition, without loss of
generality, we choose the optimal policy to obey

8s > 0 : ⇡?�(� | s) = 1. (259)

Proof of (245). To begin with, for any MDP M� with � 2 {0, 1}, recall the definition of C?
rob

C?
rob = max

(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,P (s, a), 1

S

 

db,P�(s, a)
. (260)

Regarding ⇡?�(� | s) = 1 for all s 2 S and the initial distribution ⇢(0) = 1, for any P 2 U�(P�),
we arrive at

d?,P (0,�) = (1� �)⇢(0)⇡?�(� | 0) = (1� �), (261)

which holds by that the agent transits from state 0 to some other states at the first step and then will
never go back to state 0. In addition, one has for any P 2 U�(P�),

d?,P (2,�) = (1� �)⇢(0)P (2 | 0,�)
1X

t=0

�t
�
P (2 | 2,�)

�t

= (1� �)P (2 | 0,�)
1X

t=0

�t
(i)
� p � 1

�
(262)

where (i) holds by (236) and the final inequality follows from (237). Armed with above facts, we
observe that

max
(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,P (s, a), 1

S

 

db,P�(s, a)
= max

s2{0,1,2},P2U�(P�)

min
�
d?,P (s,�), 1

S

 

db,P�(s,�)
(263)
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which follows from the properties of optimal policy in (259) and consequently d?,P (s) =
d?,P (s,�) = 0 for all s > 2 and all P 2 U�(P�).
To continue, we control the term in states {0, 1, 2} separately:

max
P2U�(P�)

min
�
d?,P (2,�), 1

S

 

db,P�(2,�)

(i)
=

1

Sdb,P�(2,�)

(ii)
=

2

Sµ(2)
= 2C, (264)

max
P2U�(P�)

min
�
d?,P (0,�), 1

S

 

db,P�(0,�)
 1

Sdb,P�(0,�)

(iii)
=

2

Sµ(0)
= 2C, (265)

max
P2U�(P�)

min
�
d?,P (1,�), 1

S

 

db,P�(1,�)
 1

Sdb,P�(1,�)

(iv)
=

2

S
�
1� 2

CS

�
(v)
 4

S
 C, (266)

where (i) holds by (262) by choosing S � �, (ii), (iii) and (iv) follow from the definition in (240)
and (238), and (v) and the final inequality of (266) arise from the assumption in (239). Plugging in
above result back into (263) directly completes the proof by

C?
rob = max

(s,a,P )2S⇥A⇥U�(P�)

min
�
d?,P (s, a), 1

S

 

db,P�(s, a)
= 2C. (267)

F.3 PROOF OF AUXILIARY LEMMAS

F.3.1 PROOF OF LEMMA 11

We shall provide the proof to show that the operator bT �
pe(·) (cf. (174)) is a �-contraction and the

existence of the unique fixed point of bT �
pe(·) subsequently.

Before starting, suppose Q,Q0, Q1, Q2 2 RSA obey Q(s, a), Q0(s, a), Q1(s, a), Q2(s, a) 2⇥
0, 1

1��
⇤

for all (s, a) 2 S ⇥A. Then we introduce the following notations:

8s 2 S : V (s) := max
a

Q(s, a), V 0(s) := max
a

Q0(s, a),

V1(s) := max
a

Q1(s, a), V2(s) := max
a

Q2(s, a). (268)

�-contraction. We first show that bT �
pe(·) is a �-contraction. Towards this, instead of bT �

pe(·), we
consider a simpler operator eT �

pe(·) firstly, defined as follows:

8(s, a) 2 S ⇥A : eT �
pe(Q)(s, a) = r(s, a) + � inf

P2U�( bP 0
s,a

)
PV � b

�
s, a

�
, (269)

which consequently leads to

8(s, a) 2 S ⇥A : bT �
pe(Q)(s, a) = max

n
eT �
pe(Q)(s, a), 0

o
. (270)

With this in mind, we observe that
���eT �

pe(Q1)� eT �
pe(Q2)

���
1

= �

����� inf
P2U�( bP 0

s,a
)
PV1 � inf

P2U�( bP 0
s,a

)
PV2

�����
1

(i)
 � kV1 � V2k1

(ii)
= �max

s

���max
a

Q1(s, a)�max
a

Q2(s, a)
���

 �max
(s,a)

|Q1(s, a)�Q2(s, a)| = � kQ1 �Q2k1 (271)

where the first equality holds by applying the definition of b(s, a) (cf. (176)) and (269), (i) follows
from that the infimum operator is a 1-contraction w.r.t. k·k1 and kPV1�PV2k1  kV1�V2k1 for
all P 2 �(S), (ii) arises from the definitions in (268), and the last inequality is due to the maximum
operator is also a 1-contraction w.r.t. k · k1.

Taking the above result with (270), we verify the desired assertion by���bT �
pe(Q1)� bT �

pe(Q2)
���
1


���eT �

pe(Q1)� eT �
pe(Q2)

���
1

 � kQ1 �Q2k1 , (272)

where the first inequality follows from the basic fact that the maximum operator is a 1-contraction
w.r.t. k · k1.
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Existence of the unique fixed-point. To continue, we shall firstly show that there exist at least
one fixed-point of bT �

pe(·). Recalling the definition of bT �
pe(·) (cf. (174))

bT �
pe(Q)(s, a) = max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
PV � b

�
s, a

�
, 0

)
, (273)

one has as long as 0  Q  1
1�� · 1, it is easily verified 0  bT �

pe(Q)  1
1�� · 1. Then, we construct

the following sequence of Q-function recursively

Q(0) = 0, and Q(t+1) = bT �
pe(Q

(t)) for all t � 0, (274)

which mimic the iterations of our algorithm DRVI-LCB. As a result, the proof for the Banach fixed-
point theorem (Agarwal et al., 2001, Theorem 1) gives that as t ! 1, Q(t) converges to some
point Q(1). It can also be verified that 0  Q(1)  1

1�� · 1, which indicates the existence of
the fixed points. Then, to prove the uniqueness of the fixed points of bT �

pe(·), we suppose that there
exists another point Q0 obeying Q0 = bT �

pe(Q
0). The definition of bT �

pe(·) directly gives Q0 � 0 and if
kQ0k1 > 1

1�� , then

kQ0k1 =
���bT �

pe(Q
0)
���
1

 krk1 + �max
(s,a)

����� inf
P2U�( bP 0

s,a
)
PV 0

�����

 1 + �kV 0k1  1 + �kQ0k1 < (1� �)kQ0k1 + �kQ0k1 = kQ0k1 (275)

gives contraction. Therefore, we have 0  Q0  1
1�� · 1, which yields

���Q0 �Q(1)
���
1

=
���bT �

pe(Q
0)� bT �

pe

⇣
Q(1)

⌘���
1

 �
���Q0 �Q(1)

���
1

. (276)

However, (276) can’t happen given � 2
⇥
1
2 , 1

�
, indicating the uniqueness of the fixed points of

bT �
pe(·).

F.3.2 PROOF OF LEMMA 12

To begin with, considering any Q,Q0 obeying Q  Q0, 0  Q  1
1�� · 1, and 0  Q0  1

1�� · 1,
we observe that the operator bT �

pe(·) (cf. (174)) has the monotone non-decreasing property, namely,

bT �
pe(Q) = max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
PV � b

�
s, a

�
, 0

)

= max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
Pmax

a0
Q(·, a0)� b

�
s, a

�
, 0

)

 max

(
r(s, a) + � inf

P2U�( bP 0
s,a

)
Pmax

a0
Q0(·, a0)� b

�
s, a

�
, 0

)
= bT �

pe(Q
0). (277)

In addition, armed with (277) and the initial rule bQ0 = 0, we also observe that the fixed-point bQ?,�
pe

of bT �
pe(·) obeys 0  bQ?,�

pe  1
1�� · 1. Consequently, we arrive at

bQ1 = bT �
pe( bQ0)  bT �

pe( bQ?,�
pe ) = bQ?,�

pe . (278)

Implementing the above result recursively gives

for all m � 0 : bQm  bQ?,�
pe . (279)

To continue, applying Lemma 11 yields that for any m � 0,

k bQm � bQ?,�
pe k1 =

���bT �
pe( bQm�1)� bT �

pe( bQ?,�
pe )

���
1

 �k bQm�1 � bQ?,�
pe k1 (280)
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 · · ·  �mk bQ0 � bQ?,�
pe k1 = �mk bQ?,�

pe k1  �m

1� �
, (281)

where the last inequality holds by the fact k bQ?,�
pe k1  1

1�� (see Lemma 11). The final assertion
can be directly achieved with the above result by observing

��� bQM � bQ?,�
pe

���
1

 �M

1� �
 1

�N
(282)

when M � log �N

1��

log 1
�

.

F.3.3 PROOF OF LEMMA 14

We first note that the second assertion in (199) is a counterpart of (48) which can be verified fol-
lowing the same argument in Appendix C.2.1 except the set of notations are adapted to the infinite-
horizon case. Therefore, the rest of the proof will focus on verifying (198).

To begin with, we consider the situation when N(s, a) = 0. In this case, (198) can be easily verified
that

����� inf
P2U�( bP 0

s,a
)
PV � inf

P2U�(P 0
s,a

)
PV

�����
(i)
= inf

P2U�(P 0
s,a

)
PV  kV k1

(ii)
 1

1� �
, (283)

where (i) follows from the fact bP 0
s,a = 0 when N(s, a) = 0 (see (172)), and (ii) arises from the

assumption kV k1  1
1�� . Consequently, in the remainder of the proof, we focus on verifying

(198) when N(s, a) > 0.

Before continuing, we introduce a counterpart of the fact (47) in Lemma 8 as follows:
Lemma 18. For all (s, a) 2 S ⇥A with N(s, a) > 0, consider any vector V 2 RS independent of
bP 0
s,a obeying kV k1  1

1�� . With probability at least 1� �, one has
����� inf
P2U�( bP 0

s,a
)
PV � inf

P2U�(P 0
s,a

)
PV

����� 
cb

�(1� �)

s
log(NS

� )

bPmin(s, a)N(s, a)
. (284)

Proof. The proof follows from the same pipeline of the proof in Appendix C.2.2. The only differ-
ence is the upper bound on kV k1 is 1

1�� (as opposed to H), the union bound is taken over N (as
opposed to KH), and some notations are exchanged to that of the infinite-horizon case. We omit
the proof details for conciseness.

Armed with above point-wise results, we are now ready to derive the union bound over all eV desired
in Lemma 14, counting on a leave-one-out argument separated into the following steps.

Step 1: construction of auxiliary robust MDPs with state-absorbing nominal transitions. To
begin with, we denote the empirical infinite-horizon robust MDP with the nominal transition kernel
bP 0 as cMrob. Then, for each state s and each scalar u � 0, we can construct an auxiliary robust
MDP cMs,u

rob so that it is the same as cMrob except the properties in state s. Specifically, the reward
function of the auxiliary robust MDP cMs,u

rob is denoted as rs,u which obeys
⇢
rs,u(s, a) = u for all a 2 A,
rs,u(es, a) = r(es, a) for all (es, a) 2 S ⇥A and es 6= s.

(285)

In addition, the nominal transition kernel of cMs,u
rob is denoted as P s,u such that

(
P s,u(s0 | s, a) = 1(s0 = s) for all (s0, a) 2 S ⇥A,

P s,u(· | es, a) = bP 0(· | es, a) for all (es, a) 2 S ⇥A and es 6= s.
(286)
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It can be observed that the nominal transition kernel P s,u of the auxiliary cMs,u
rob drops all the ran-

domness of bP 0
s,a for all a 2 A in state s and makes s an absorbing state, while keeps other parts the

same as bP 0.

With the robust MDP cMs,u
rob in hand, we can define the corresponding penalty term for all (s, a) 2

S ⇥A as follows

bs,u(s, a) :=

8
><

>:
min

(
cb

�(1��)

r
log

⇣
2(1+�)N3S

(1��)�

⌘

P s.u

min (s,a)N(s,a) + 4
N�(1��) ,

1
1��

)
+ 2

�N if N(s, a) > 0,

1
1�� + 2

�N otherwise,
(287)

where P s,u
min is defined as the smallest positive state transition probability over the nominal kernel

P s,u as follows:

8(s, a) 2 S ⇥A : P s,u
min (s, a) := min

s0

n
P s,u(s0 | s, a) : P s,u(s0 | s, a) > 0

o
. (288)

Armed with the penalty term, the pessimistic robust Bellman operator bT �
s,u(Q)(·) w.r.t. cMs,u

rob is
defined as

8(s, a) 2 S ⇥A : bT �
s,u(Q)(s, a) = max

⇢
r(s, a) + � inf

P2U�(P s,u

s,a )
PV � bs,u(s, a), 0

�
. (289)

Step 2: verifying the relation between cMrob and the auxiliary robust MDP cMs,u
rob . Recall that

bQ?,�
pe is the unique fixed-point of operator bT �

pe(·) with the corresponding value bV ?,�
pe . In particular,

given a state s, we introduce a special reward

u? := (1� �)bV ?,�
pe (s) + min

8
><

>:
cb

�(1� �)

vuut log
⇣

2(1+�)N3S
(1��)�

⌘

P s.u
min (s, a)N(s, a)

+
4

N�(1� �)
,

1

1� �

9
>=

>;
+

2

�N
.

(290)

With it in mind, we shall justify that there exists a fixed-point bQ?,�
s,u? of the operator bT �

s,u?(·) whose
corresponding value bV ?,�

s,u? is identical to bV ?,�
pe . Towards this, we shall show the facts in two different

cases:

• For state s0 6= s. In this case, for any s0 6= s and a 2 A, it can be verified that

max

(
rs,u

?

(s0, a) + � inf
P2U�(P s,u?

s0,a )
P bV ?,�

pe � bs,u
?

(s0, a), 0

)

= max

(
r(s0, a) + � inf

P2U�( bP 0
s0,a)

P bV ?,�
pe � b(s0, a), 0

)

= bT �
pe( bQ?,�

pe )(s0, a) = bQ?,�
pe (s0, a), (291)

where the first identity follows from the definitions in (285) and (286), the penultimate equality
arises from (174), and the final equality holds by that bQ?,�

pe is the fixed-point.

• For state s. In this case, for any u and a 2 A, observing that P s,u(s0 | s, a) has only one positive
entry equal to 1 (cf. (286)), applying (288) yields

P s,u
min (s, a) = 1. (292)

Plugging above fact into (287) leads to

bs,u(s, a) =

8
><

>:
min

(
cb

�(1��)

r
log

⇣
2(1+�)N3S

(1��)�

⌘

N(s,a) + 4
N�(1��) ,

1
1��

)
+ 2

�N if N(s, a) > 0,

1
1�� otherwise

(293)
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for all a 2 A. As a result, we have for any a 2 A:

max

(
rs,u

?

(s, a) + � inf
P2U�(P s,u?

s,a )
P bV ?,�

pe � bs,u
?

(s, a), 0

)

= max
n
u? + � bV ?,�

pe (s)� bs,u
?

(s, a), 0
o

(i)
= max

n
(1� �)bV ?,�

pe (s) + � bV ?,�
pe (s), 0

o
= bV ?,�

pe (s), (294)

where (i) follows from plugging in the definition of u? in (290) and bs,u
?

(s, a) in (293).

Summing up the above results, we observe that there exists a fixed point bQ?,�
s,u? of the operator

bT �
s,u?(·) if we let

(
bQ?,�
s,u?(s, a) = bV ?,�

pe (s) for all a 2 A
bQ?,�
s,u?(s0, a) = bQ?,�

pe (s0, a) for all s0 6= s and a 2 A.
(295)

Consequently, we already confirm the existence of a fixed point of the operator bT �
s,u?(·). In addition,

its corresponding value function bV ?,�
s,u? also coincides with bV ?,�

pe .

Step 3: building an "-net for all rewards u. Before continuing, it is easily verified that the reward
obeys

u?  1 + min

8
><

>:
cb

�(1� �)

vuut log
⇣

2(1+�)N3S
(1��)�

⌘

P s,u
min (s, a)N(s, a)

+
4

�N(1� �)
,

1

1� �

9
>=

>;
+

2

�N
 2

�
+

2

(1� �)
.

(296)

As a result, we construct an "-net (Vershynin, 2018) of the range
⇥
0, 2

� + 2
(1��)

⇤
with " = 1

�N as
follows:

U" :=
⇢

i

�N
| 1  i  �N

✓
2

�
+

2

(1� �)

◆�
. (297)

Armed with this covering net U", we can construct an auxiliary robust MDP cMs,u
rob and its corre-

sponding pessimistic robust Bellman operator for each u 2 U" (see Step 1). Following the same
pipeline in the proof of Lemma 11 (cf. Appendix F.3.1), for each u 2 U", it can be verified that
there exists a unique fixed-point bQ?,�

s,u of the operator bT �
s,u(·) which satisfies 0  bQ?,�

s,u  1
1�� · 1.

Consequently, the corresponding value function also satisfies kbV ?,�
s,u k1  1

1�� .

To continue, in view of the definitions in (285) and (286), we notice that for all u 2 U", cMs,u
rob is

statistically independent from bP 0
s,a, which indicates the independence between bV ?,�

s,u and bP 0
s,a. So

invoking Lemma 18 and taking the union bound over all samples N and u 2 U" give that, with
probability at least 1� �,

����� inf
P2U�( bP 0

s,a
)
P bV ?,�

s,u � inf
P2U�(P 0

s,a
)
P bV ?,�

s,u

����� 
cb

�(1� �)

vuut log
⇣

2(1+�)N3S
(1��)�

⌘

bPmin(s, a)N(s, a)
(298)

hold simultaneously for all (s, a, u) 2 S ⇥A⇥ U" with N(s, a) > 0.

Step 4: implementing a covering argument. To continue, we shall control the gap between the
value functions of the fixed-points of bT �

pe(·) and the auxiliary operator bT �
s,u(·), i.e.,

��bV ?,�
s,u � bV ?,�

pe

��
1.

First, recalling that u? 2
⇥
0, 2

� + 2
(1��)

⇤
(see (290)), we can always find some eu 2 U" such that

|eu� u?|  1
�N . Consequently, plugging in the operator in (289) yields

8Q 2 RSA :
���bT �

s,eu(Q)� bT �
s,u?(Q)

���
1

(i)
 |eu� u?|  1

�N
, (299)
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where (i) holds by bs,eu(s, a) = bs,u
?

(s, a) for s (see (293)) and bs,eu(s0, a) = bs,u
?

(s0, a) = b(s0, a)
for all s0 6= s.

With this in mind, we observe that the fixed-points obey
��� bQ?,�

s,eu � bQ?,�
s,u?

���
1

=
���bT �

s,eu( bQ
?,�
s,eu)� bT �

s,u?( bQ?,�
s,u?)

���
1


���bT �

s,eu( bQ
?,�
s,eu)� bT �

s,eu( bQ
?,�
s,u?)

���
1

+
���bT �

s,eu( bQ
?,�
s,u?)� bT �

s,u?( bQ?,�
s,u?)

���
1
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��� bQ?,�

s,eu � bQ?,�
s,u?

���
1

+
1

�N
, (300)

which directly indicates that
��� bQ?,�

s,eu � bQ?,�
s,u?

���
1

 1

(1� �)�N
(301)

and then ���bV ?,�
s,eu � bV ?,�

s,u?

���
1


��� bQ?,�

s,eu � bQ?,�
s,u?

���
1

 1

(1� �)�N
. (302)

Armed with above facts, invoking the identity between bV ?,�
pe and bV ?,�

s,u? established in Step 2 gives
����� inf
P2U�( bP 0

s,a
)
P bV ?,�

pe � inf
P2U�(P 0

s,a
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P bV ?,�

pe

����� =
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)
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�����

(i)


����� inf
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�����+
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2
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, (303)

where (i) holds by applying the triangle inequality, (ii) arises from (302) and the basic fact that
infimum operator is a 1-contraction w.r.t. k · k1, and the final inequality follows from (298).

Step 5: union bound for all eV . Now we are positioned to show the union bound for all vector eV
obeying

��eV � bV ?,�
pe

��
1  1

�N and keV k1  1
1�� . For any eV mentioned above, we invoke (303)

and apply the triangle inequality to reach
����� inf
P2U�( bP 0
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)
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P eV
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����� (304)

+

����� inf
P2U�( bP 0
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s,a
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P bV ?,�

pe
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4
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Finally, we complete the proof by verifying that
����� inf
P2U�( bP 0

s,a
)
P eV � inf

P2U�(P 0
s,a

)
P eV

����� 
���eV

���
1

 1

1� �
(306)

which holds by that the infimum operator is a 1-contraction w.r.t. k·k1 and the assumption keV k1 
1

1�� .
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F.3.4 PROOF OF (195)

For all (s, a) 2 Cb, one has

Ndb,P
0�
s, a

� (i)
�

c1db,P
0�
s, a

�
log(NS/�)

dbminP
b
min

(ii)
� c1 log(NS/�)

P b
min

(iii)
� c1 log(NS/�)

Pmin(s, a)
, (307)

where (i) follows from the condition (187), (ii) arises from the definition that dbmin  db,P
0

(s, a) for
all (s, a) 2 Cb, and (iii) follows from the definition in (192).

Armed with above result, when c1 is large enough, one has 2
3 log

NS
� < Ndb,P0

(s,a)
12 . Consequently,

Lemma 13 tells us that with probability at least 1� �,

N(s, a) � Ndb,P
0

(s, a)

12
� c1 log(NS/�)

12Pmin(s, a)
. (308)

Regarding the basic fact x  � log(1 � x) for all x 2 [0, 1], the last inequality of (195) can be
verified by

c1 log(NS/�)

12Pmin(s, a)
� �

log 2NS
�

log(1� Pmin(s, a))
. (309)
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