
A QD-PG Pseudo Code519

Algorithm 1: QD-PG
Given: N, max_steps, gradient_steps_ratio, BD extraction function ξ, state descriptor extraction function ψ
Initialize: MAP-Elites grid M, Replay Buffer R, N actors {πθi}i={1,...,N}, 2 critics QDw and QQw , state

descriptors archive A

total_steps, actor_steps = 0, 0 // Step counters

// Parallel evaluation of the initial population
for j ← 1 to N do

Play one episode with actor πθj and store all transitions in R
Get episode length T , discounted return R and state descriptors {ψ(s1), . . . , ψ(sT )}
Store state descriptors {ψ(s1), . . . , ψ(sT )} in A
Compute ξ(θj) and add the tuple (R, ξ(θj), θj) in the MAP-Elites grid M
actor_steps← actor_steps+ T

end

// Main loop
while total_steps < max_steps do

// Select new generation
Get N actors πθi , i ∈ {1, . . . , N} from M
gradient_steps = int(actor_steps× gradient_steps_ratio)
actor_steps = 0

// Perform in parallel population update and evaluation
for j ← 1 to N do

// Update the population
for i← 1 to gradient_steps do

Sample batch of (st, at, rt, st+1, ψ(st)) from R

// First half is updated to maximise diversity
if j ≤N//2 then

Compute novelty reward as rDt from ψ(st) and A
Update πθj for diversity
Compute the novelty critic gradient locally
Average novelty critic gradients between threads
Update novelty critic QDw

end

// Second half is updated to maximise quality
else

Update πθj for quality
Compute the quality critic gradient locally
Average quality critic gradients between threads
Update quality critic QQv

end
end

// Evaluate the updated actors
Play one episode with actor πθj and store all transitions in R
Get episode length T , discounted return R and state descriptors {ψ(s1), . . . , ψ(sT )}
Store state descriptors {ψ(s1), . . . , ψ(sT )} in A
Compute ξ(θj) and add the tuple (R, ξ(θj), θj) in the MAP-Elites grid M
actor_steps← actor_steps+ T

end

total_steps← total_steps+ actor_steps // Update total time steps

end
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B The TD3 Agent520

The Twin Delayed Deep Deterministic (TD3) agent Fujimoto et al. (2018) builds upon the Deep521

Deterministic Policy Gradient (DDPG) agent Lillicrap et al. (2015). It trains a deterministic actor522

πφ : S → A directly mapping observations to continuous actions and a critic Qθ : S×A → R which523

takes a state s and an action a and estimates the average return from selecting action a in state s and524

then following policy πφ. As DDPG, TD3 alternates between policy evaluation and policy improvement525

so as to maximise the average discounted return. In DDPG, the critic is updated to minimize a temporal526

difference error during the policy evaluation step which induces an overestimation bias. TD3 corrects527

for this bias by introducing two critics Qθ1 and Qθ2 . TD3 plays one step in the environment using its528

deterministic policy and then stores the observed transition (st, at, rt, st+1) into a replay bufferM.529

Then, it samples a batch of transitions fromM and updates the critic networks. Half the time it also530

samples another batch of transitions to update the actor network.531

Both critics are updated so as to minimize a loss function which is expressed as a mean squared error532

between their predictions and a target:533

Lcritic(θ1, θ2) =
∑
batch

∑
i=1,2

(Qθi(st, at)− yt)2, (6)

where the common target yt is computed as:534

yt = rt + γ min
i=1,2

Qθi(st+1, πφ(st+1) + ε), (7)

where ε ∼ N (0, I).535

The Q-value estimation used to compute target yt is taken as minimum between both critic predictions536

thus reducing the overestimation bias. TD3 also adds a small perturbation ε to the action πφ(st+1) so537

as to smooth the value estimate by bootstrapping similar state-action value estimates.538

Every two critics updates, the actor πφ is updated using the deterministic policy gradient also used539

in DDPG Silver et al. (2014). For a state s, DDPG updates the actor so as to maximise the critic540

estimation for this state s and the action a = πφ(s) selected by the actor. As there are two critics541

in TD3, the authors suggest to take the first critic as an arbitrary choice. The actor is updated by542

minimizing the following loss function:543

Lactor(φ) = −
∑
batch

Qθ1(st, πφ(st)). (8)

Policy evaluation and policy improvement steps are repeated until convergence. TD3 demonstrates544

state of the art performance on several MUJOCO benchmarks.545

C QD-PG Details546

C.1 Computational details547

We consider populations of N = 4 actors for the POINT-MAZE environment and N = 10 actors for548

ANT-MAZE and ANT-TRAP. We use 1 CPU thread per actor and parallelization is implemented with549

the Message Passing Interface (MPI) library. Our experiments are run on a standard computer with550

10 CPU cores and 100 GB of RAM, although the maximum RAM consumption per experiment at551

any time never exceeds 10GB due to an efficient and centralized management of the MAP-Elites grid552

which stores all solutions. An experiment on POINT-MAZE typically takes between 2 and 3 hours553

while an experiment on ANT-MAZE or ANT-TRAP takes about 2 days. Note that these durations can554

vary significantly depending on the type of CPU used. We did not use any GPU.555

Computational costs of QD-PG mainly come from backpropagation during the update of each agent,556

and to the interaction between agents and the environment. These costs scale linearly with the557

population size but, as many other population-based methods, the structure of QD-PG lends itself558

very well to parallelization. We leverage this property and parallelize our implementation to assign559
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one agent per CPU thread. Memory consumption also scales linearly with the number of agents.560

To reduce this consumption, we centralize the MAP-Elites grid on a master worker and distribute561

data among workers when needed. With these implementation choices, QD-PG only needs a very562

accessible computational budget for all experiments.563

C.2 MAP-Elites Implementation details564

QD-PG uses a MAP-Elites grid as archive of solutions. We assume that the BD space is bounded and565

can be discretized into an Cartesian grid. We discretize each dimension into m meshes, see Table 2566

for the value of m depending on the environment. Hence, the number of cells in the MAP-Elites567

grid equals m times the number of dimensions of the BD space. When a new solution θ is obtained568

after the mutation phase, we look for the cell corresponding to its BD, ξ(θ). If the cell is empty, the569

solution is added, otherwise the new solution replaces the solution already contained in the cell if its570

score F (θ) is better than the score of the already contained solution. During selection, we sample571

solutions uniformly from the MAP-Elites grid.572

C.3 Diversity reward computation573

QD-PG optimizes solutions for quality but also for diversity at the state level. The diversity policy574

gradient updates the solutions so as to encourage them to visit states with novel state descriptors. The575

novelty of a state descriptor ψ(st) is expressed through a diversity reward rDt . In practice, we maintain576

a FIFO archive A of the state descriptors encountered so far. When a transition (st, at, rt, st+1, ψ(st))577

is stored in the replay buffer, we also add ψ(st) to A. We only add a state descriptor in A if its mean578

Euclidean distance to its K nearest neighbors is greater than an acceptance threshold. This filtering579

step enables to keep the archive size reasonable and to facilitate the computation of the K nearest580

neighbors. The values of K and of the threshold are given in Table 2. When a batch of transitions is581

collected during the update phase, we recompute fresh diversity rewards rDt as the mean Euclidean582

distance between the sampled state descriptors ψ(st) and their K nearest neighbors in A. These583

diversity rewards are used instead of standard rewards in sampled transitions (st, at, r
D
t , st+1, ψ(st))584

to compute the diversity policy gradient.585

C.4 QD-PG Hyper-parameters586

Table 2 summarizes hyper-parameters used in experiments. Most of these hyper-parameter values are587

taken from TD3.588

(a) POINT-MAZE (b) ANT-MAZE (c) ANT-TRAP

Figure 4: Evaluation environments. Though they may look similar, the state and action spaces in
POINT-MAZE are two-dimensional, whereas they are 29× 8 in ANT-MAZE and 113× 8 in ANT-TRAP.

D Environments analysis589

In POINT-MAZE, the state and action spaces are two-dimensional. By contrast, in ANT-MAZE and590

ANT-TRAP, the dimensions of their observation spaces are respectively equal to 29 and 113 while the591

dimensions of their action spaces are both equal to 8, making these two environments much more592

challenging as they require larger controllers. The ANT-TRAP environment also differs from mazes593

as it is open-ended, i.e., the space to be explored by the agent is unlimited, unlike mazes where this594
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Table 2: QD-PG Hyper-parameters: ANT-MAZE and ANT-TRAP hyper-parameters are identical and
grouped under the Ant column

Parameter PointMaze Ant

TD3
Optimizer SGD SGD
Learning rate 6.10−3 3.10−4

Discount factor γ 0.99 0.99
Replay buffer size 106 5.105

Hidden layers size 64/32 256/256
Activations ReLU ReLU
Minibatch size 256 256
Target smoothing coeff. 0.005 0.005
Delay policy update 2 2
Target update interval 1 1
Gradient steps ratio 4 0.1

State Descriptors Archive
Archive size 10000 10000
Threshold of acceptance 0.0001 0.1
K-nearest neighbors 10 10

MAP-Elites
Nb. of bins per dimension 5 7

space is restricted by the walls. In this case, a state descriptor corresponds to the ant position that is595

clipped to remain in a given range. On the y-axis, this range is defined as three times the width of596

the trap. On the x-axis, this range begins slightly behind the starting position of the ant and is large597

enough to let it accelerate along this axis. Figure 7b depicts the BD space in ANT-TRAP.598

In all environments, state descriptors ψ(st) are defined as the agent’s position at time step t and599

behavior descriptors ξ(θ) are defined as the agent’s position at the end of a trajectory. Therefore, we600

have B = D = R2, ψ(st) = (xt, yt) and ξ(θ) = (xT , yT ) where T is the trajectory length. We also601

take ||.||B and ||.||D as Euclidean distances. This choice does not always satisfy Equation (3) but is602

convenient in practice and led to satisfactory results. The peculiarity of ANT-TRAP lies in the fact603

that the reward is expressed as the forward velocity of the ant, thus making the descriptors not totally604

aligned with the task.605

Figure 5 highlights the deceptive nature of the POINT-MAZE and the ANT-MAZE objective functions by606

depicting gradient fields in both environments. Similarly, the reward is also deceptive in ANT-TRAP.607

(a) POINT-MAZE (b) ANT-MAZE

Figure 5: Gradients maps on POINT-MAZE and ANT-MAZE. Black lines are maze walls, arrows depict
gradient fields and the square indicates the maze exit. Both settings present deceptive gradients as
naively following them leads into a wall.
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E Detailed results608

In this section, we provide performance charts corresponding to Table 1b and Table 1a, coverage609

maps highlighting the exploration capabilities of QD-PG, and detailed results of the fast adaptation610

experiment. Table 3 summarizes the different components present in QD-PG, its ablations and all611

baselines.612

E.1 Performance charts613

Figure 6 compares QD-PG to competitors on all environments. In QD-PG, the current population614

of solutions is evaluated every 150.000 time steps in ANT-MAZE and ANT-TRAP, and every 5000615

time steps in POINT-MAZE. At evaluation time, agents are set to be deterministic and stop exploring.616

Figure 6 reports the performance obtained by the best agent in the population at a given time step.617

Table 3: Ablations and baselines summary. Selec. stands for selection. The last column assesses
whether the method optimizes for a collection instead of a single solution.

Algorithm QPG DPG Q Selec. D Selec. Collection

A
bl

at
io

ns QD-PG

QD-PG SUM

D-PG X
Q-PG X

PG

SAC X X X X
TD3 X X X X
RND X X X
CEM-RL X X

Q
D

ME-ES X X
NSR-ES X X
NSRA-ES X X

(a) POINT-MAZE (b) ANT-TRAP

(c) ANT-MAZE: Comparison to PG methods (d) ANT-MAZE: Comparison to Evo methods

Figure 6: Learning curves of QD-PG versus ablations and baselines. In POINT-MAZE and ANT-TRAP,
the performance is the highest return. In ANT-MAZE, it is the negative lowest distance to the goal. We
separate the comparison on ANT-MAZE into two graphs for better readability.
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E.2 Coverage Maps618

Figure 7a shows coverage maps of the POINT-MAZE environment obtained with one representative619

seed by the different algorithms presented in the ablation study (see Table 1a). A dot in the figure620

corresponds to the final position of an agent after an episode. The color spectrum highlights the621

course of training: agents evaluated early in training are in blue while newer ones are represented in622

purple.623

(a) POINT-MAZE (b) ANT-MAZE

Figure 7: Coverage map of the POINT-MAZE and ANT-TRAP environments for all ablations. Each dot
corresponds to the final position of an agent.

QD-PG and D-PG almost cover the whole BD space including the objective. Unsurprisingly, Q-PG and624

TD3 present very poor coverage maps, both algorithms optimize only for quality and the MAP-Elites625

selection mechanism in Q-PG contributes nothing in this setting. By contrast, algorithms optimizing626

for diversity (QD-PG and D-PG) find the maze exit. However, as shown in Table 1a, QD-PG which627

also optimizes for quality, is able to refine trajectories through the maze and obtains significantly628

better performance.629

Figure 7b depicts the coverage maps of the ANT-TRAP environment by QD-PG and TD3. Only QD-PG630

is able to bypass the trap and to cover a large part of the BD space.631

E.3 Fast adaptation632

The fast adaptation experiment described in Section 7 uses a Bayesian optimization process to quickly633

find a high-performing solution for a new randomly sampled goal. Browsing the MAP-Elites grid in634

an exhaustive way is another option to find a good solution for a new objective. However, the number635

of solutions to be tested with this option increases quadratically w.r.t. the number of meshes used to636

discretize the dimensions of the BD space. As shown in Table 2, we use a 7× 7 grid to train QD-PG637

in the ANT-MAZE environment, containing a maximum of 49 solutions. In this setting, the difference638

in computation cost between exhaustive search and Bayesian optimization is negligible.639

To ensure that fast adaptation scales to finely discretized MAP-Elites grids, we reproduce this experi-640

ment with a 100× 100 grid, thus containing thousands of solutions. We first train QD-PG again on the641

standard objective of ANT-MAZE and obtain a 100× 100 grid of solutions. Then, we repeat the fast642

adaptation experiment described in Section 7 using this large grid. With a budget of only 50 solutions643

to be tested during the Bayesian optimization process among the thousands of solutions contained in644

the grid, we are able to recover a good solution for the new objective. We repeat this experiment 100645

times, each time with a new random goal, and obtain an average performance of −9 with a standard646

deviation of 7.647
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Figure 8 maps these 100 fast adaptation experiments to their respective goal location and performance.648

In each square, we display the score of the best experiment whose goal was sampled in this region of649

the maze. For instance, the square in the top left corner of the performance map corresponds to one650

of the 100 fast adaptation experiments that sampled its goal in this part of the maze, and obtained651

a performance of −12 after testing 50 solutions from the MAP-Elites grid during the Bayesian652

optimization process. Some squares do not have a score when no experiment sampled its goal in this653

region of the maze.654

Figure 8: Performance map of 100 fast adaptation experiments in ANT-MAZE. In each square, we
display the score of the best experiment whose goal was sampled in this region of the maze, as several
experiments may have goals in the same square. White squares correspond to regions where no goal
was sampled during the experiments. The black circle shows the agent’s starting position.

F An alternative Pareto Front approach655

QD-PG uses a MAP-Elites grid as a convenient and powerful way to store and select solutions that656

are both novel and high-performing. Inspired from Cully & Demiris (2017), we also considered the657

Pareto front as an alternative structure to store and select solutions according to quality and diversity658

criteria. In this setting, the MAP-Elites grid (see Figure 2b) is replaced by an archive storing all659

solutions encountered so far with their respective performance and behavior descriptor. At each660

iteration of the QD-PG algorithm, a quality-diversity Pareto front is computed on the solutions present661

in the archive, and the N most novel and high-performing solutions are selected to be updated. Since662

the archive is evolving at each iteration, the novelty of a solution is recomputed from its behavior663

descriptor before the computation of the Pareto front.664

Results obtained via this alternative method are presented in Table 4. QD-PG PARETO performs665

similarly to QD-PG MAP-Elites on all environments, but the additional computational cost induced by666

the Pareto front calculation makes it a slower method than QD-PG MAP-Elites.667

Table 4: Comparison of QD-PG MAP-Elites and QD-PG PARETO on all environments.
Final Perf. (± std)

Algorithm POINT-MAZE ANT-MAZE ANT-TRAP
QD-PG MAP-Elites −24(±0) −7(±7) 1541(±86)
QD-PG PARETO −27(±1) −4(±3) 1416(±47)

G Random Network Distillation Details668

This section provides additional details on the RND baseline.669

G.1 Details about the agent670

The Random Network Distillation (RND) agent extends the Proximal Policy Optimization (PPO) agent671

to improve its exploration capabilities. RND computes an auxiliary reward rit called intrinsic motiva-672

tion reward or, in short, intrinsic reward. In opposition to the reward provided by the environment ret ,673

called in this case extrinsic reward, the intrinsic reward is used to encourage the agent to visit new674

states.675
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Proximal Policy Optimization676

PPO is an on-policy actor-critic algorithm using a stochastic policy πθ and a value function Vθ both677

parameterized by a neural network. It replaces the policy gradient by a surrogate loss to constrain the678

size of policy updates. More formally, the policy parameters are updated to maximise679

Lπ(θ) =
∑
batch

min
(
r(θ)Â, clip(r(θ), 1− ε, 1 + ε)Â

)
, (9)

where Â is an estimate of the advantage and is computed from the value network Vθ using the680

Generalized Advantage Estimation method (GAE) (Schulman et al., 2015). The r(θ) term denotes681

the policy ratio r(θ) = πθ(a|s)
πθold (a|s)

where θold are the parameters before the update.682

The value network is trained to minimize the mean squared error between its prediction and an683

estimation of the return. This estimation can be computed from the advantage estimate. More684

formally, the value function parameters are updated to minimize685

LV (θ) =
∑
batch

(
Vθ(s)− (Â+ Vθold(s))

)2
. (10)

Intrinsic reward computation686

To compute intrinsic rewards, RND introduces two additional functions fθ : S → RK and fθ∗ :687

S → RK where K is a hyper-parameter. Both functions are parameterized by a neural network.688

Parameters θ∗ are sampled randomly at the beginning of training and are never updated. During689

training, RND updates the parameters θ so that fθ imitates fθ∗ behavior for the states that has been690

visited by the agent. Every time RND updates the PPO policy and value networks, it also updates fθ691

so as to minimize692

Lf (θ) =
∑
batch

(fθ(s)− fθ∗(s))
2
. (11)

This way, if for a state s both functions fθ and fθ∗ provide close predictions, it means that the agent693

has already visited this state. Therefore, the intrinsic reward is computed as694

rit = (fθ(st)− fθ∗(st))
2
. (12)

RND is trained to maximise both the extrinsic rewards obtained from the environment and the intrinsic695

rewards computed by the agent to enhance exploration. RND maintains two value functions V i(s)696

and V e(s) and uses them to compute separately two advantages estimations Âi and Âe. Both value697

functions V i(s) and V e(s) are updated with Equation (10) where the rewards are respectively taken698

as the intrinsic and extrinsic rewards. The final advantage estimation used to update the policy, see699

Equation (9), is computed as the sum Â = Âe + Âi.700

Implementation tricks701

In this work, in order to facilitate the comparison between RND and QD-PG, we conditioned functions702

fθ and fθ∗ directly on the states descriptors rather than on the states. Formally, these functions are703

defined as fθ : D → RK and fθ∗ : D → RK and the intrinsic reward is computed as704

rit = (fθ(ψ(st))− fθ∗(ψ(st)))
2
. (13)

G.2 Additional Results705

As shown in Table 1a, the RND baseline achieves performance comparable to TD3 on both ANT-MAZE706

and ANT-TRAP environments. However, these results do not reveal that RND is able to extensively707

explore the BD space as depicted in Figure 9. As opposed to conventional RL agents (TD3 and708
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SAC), RND is able to bypass the trap in ANT-TRAP and to cover a large part of the BD space. We709

hypothesize that its poor performance comes from the fact that the agent, although able to bypass the710

trap, does not acquire a sufficient speed along the x-axis, which is the goal in ANT-TRAP.711

Figure 9: Coverage maps of ANT-TRAP.

G.3 RND Hyper-parameters712

Table 5: RND Hyper-parameters: ANT-MAZE and ANT-TRAP hyper-parameters are identical and
grouped under the Ant column

Parameter PointMaze Ant
PPO
Optimizer Adam Adam
Learning rate 5.10−4 5.10−5

Discount factor 0.99 0.99
Clipping epsilon 0.2 0.2
Lambda GAE 0.95 0.95
Hidden layers size 64/64 256/256
Activations ReLU ReLU
Minibatch size 512 512
Number of epochs 30 30

RND Networks
Output dimension K 16 16
Hidden layers size 64/64 256/256
Learning rate 5.10−6 5.10−5
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