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Here, we explain things in details about pretext task, architecture setup, provide some more results1

and include more visual analysis. We also include tables which we were not able to include in main2

paper due to space limitations.3

• Section 1: describes challenges and future work based on our study.4

• Section 2: Pretext tasks explanation used in our analysis.5

• Section 3: Training details about architectures, datasets, and, other hyperparameters.6

• Section 4: We show additional CKA maps, more results on HMDB51 dataset and more7

analysis on noise robustness. We added some tables for Knowledge distillation experiments8

that were promised in the main paper.9

1 Challenges and future work10

There are several key challenges in video SSL and we believe 1) long-term video understanding, 2)11

multi-modal learning, and 3) robust learning are some of the less studied aspects. The novel insights12

in our study regarding training dataset size, model architectures, and robustness will play a crucial13

role in guiding future work on these research directions.14

2 Pretext Tasks Details15

In this section, we go through each pretext task in more detail that are used in our main work for16

analysis.17

2.1 Spatial Transformation18

Rotation Net (13) (RotNet) applies geometrical transformation on the clips. The videos are rotated19

by various angles and the network predicts the class which it belongs to. Since the clips are rotated, it20

helps the network to not converge to a trivial solution.21

Contrastive Video Representation Learning (21) (CVRL) technique applies temporally coherent22

strong spatial augmentations to the input video. The contrastive framework brings closer the clips23

from same video and repels the clip from another video. With no labels attached, the network learns24

to cluster the videos of same class but with different visual content.25

2.2 Temporal Transformation26
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Figure 1: Architecture Performance Analysis: Variation in performance for different architectures.
X-axis shows the relative floating point operations and Y-axis shows the Top-1 Accuracy.

Video Clip Order Prediction (32) (VCOP) learns the representation by predicting the permutation27

order. The network is fed N clips from a video and then it predicts the order from N! possible28

permutations.29

Temporal Discriminative Learning (30) (TDL) In contrast to CVRL, TDL works on temporal30

triplets. It looks into the temporal dimension of a video and targets them as unique instances. The31

anchor and positive belongs to same temporal interval and has a high degree of resemblance in visual32

content compared to the negative.33

2.3 Spatio-Temporal Transformation34

Playback Rate Prediction (33) (PRP) has two branch, generative and discriminative. Discrimina-35

tive focuses on the classifying the clip’s sampling rate, whereas, generative reconstructs the missing36

frame due to dilated sampling. Thus, the first one concentrates on temporal aspect and second one on37

spatial aspect.38

Relative Speed Perception Network (5) (RSPNet) applies contrastive loss in both spatial and39

temporal domain. Clips are samples from a same video to analyze the relative speed between them.40

A triplet loss pulls the clips with same speed together and pushes clips with different speed apart in41

the embedding space. To learn spatial features, InfoNCE loss (29) is applied. Clip from same video42

are positives whereas clips from different videos are negatives.43

3 Implementation Details44

3.1 Architecture Details45

Preliminary research has shown that 3D networks (28; 10) have outperformed 2D CNN variants on46

video recognition tasks. We looked into three types of capacity - small, medium and big on the basis47

of number of trainable parameters. Fig. 1 shows comparison of multiple architectures in terms of48

GFLOPs and Top-1 accuracy.49

Small capacity networks: are resource efficient, implying they can be trained in larger batches50

within short span of time. The network selection is done on the basis of supervised training scores on51

Kinetics(14) and UCF101(15). ShuffleNet V1 2.0X (34) utilizes point-wise group convolutions and52

channel shuffling. SqueezeNet (12) reduces the filter size and input channels to reduce the number of53
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parameters. MobileNet (23) has ResNet like architecture. With its depthwise convolution, there’s a54

reduction in model size and the network can go more deep.55

Medium capacity networks: Following the conventional 3D architectures for self-supervised56

learning approaches, C3D, R21D and R3D are used in this study.57

Large Capacity networks: ViViT (2) Timesformer (3), VideoSwin (19) and MViT (7) fall under58

this category.59

In samll capacity networks, based on (15), we probed into the performance comparison of several60

versions of these architectures. We choose 3D-ShuffleNet V1 2.0X, 3D-SqueezeNet, and 3D-61

MobileNet V2 1.0X networks based on their performance on Kinetics and UCF-101.62

3D-ShuffleNet V1 2.0X (34): It utilize point-wise group convolutions and channel shuffling and has63

3 different stages. Within a stage, the number of output channel remains same. As we proceed to64

successive stage, the spatiotemporal dimension is reduced by a factor of 2 and the number of channels65

are increased by a factor of 2. V1 denotes version 1 of ShuffleNet and 2.0X denotes the 2 times66

number of channels compared to original configuration.67

3D-SqueezeNet (12): It uses different alteration to reduce the number of parameters as compared to68

the 2D version which employs depthwise convolution. Those three modifications are: 1) Change the69

shape of filters from 3x3 to 1x1, 2) Input channels to 3x3 filters is reduced, and, 3) to maintain large70

activation maps high resolution is maintained till deep layers.71

3D-MobileNet V2 1.0X (23): This network employs skip connections like ResNet architecture in72

contrast to version 1. It helps the model in faster training and to build deeper networks. There are73

also linear bottlenecks present in the middle of layers. It helps in two ways as we reduce the number74

of input channels: 1) With depthwise convolution, the model size is reduced, and 2) at inference75

time, memory usage is low. V2 denotes version 2 of mobilenet and 1.0X uses the original parameter76

settings.77

The architectures of medium capacity networks are described as follows:78

C3D (27): This follows a simple architecture where two dimensional kernels have been extended79

to three dimensions. This was outlined to capture spatiotemporal features from videos. It has 880

convolutional layers, 5 pooling layers and 2 fully connected layers.81

R3D (10): The 2D CNN version of ResNet architecture is recasted into 3D CNNs. It has skip82

connections that helps make the gradient flow better as we build more deeper networks.83

R(2+1)D (28): In this architecture, 3D convolution is broken down into 2D and 1D convolution.84

2D convolution is in spatial dimension and 1D convolution is along the temporal dimension. There85

are two benefits of this decomposition: 1) Increase in non-linearity as the number of layers have86

increased, and, 2) Due to factorization of 3D kernels, the optimization becomes easier.87

The architectures of large capacity networks are described as follows:88

VideoSwin (19): It is an inflated version of original Swin (18) transformer architecture. The attention89

is now spatio-temporal compared to previous which is only spatial. 3D tokens are constructed from90

the input using patch partition and sent to the network. The architecture includes four stages of91

transformer block and patch merging layers.92

The performance across different architectures are shown in Table 1 and Figure 1. ShuffleNet and93

R21D performs the best across small and medium capacity networks in most of the pretext tasks.94

Thus, we choose ShuffleNet and R21D for our benchmark analysis.95

3.2 Clip Length96

Different pretext tasks take 16 or 32 frames as input clip length. We experimented with both 16 and97

32 clips length and observe that 32 frames mostly provide better performance. However, to maintain98
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Table 1: Comparison of FLOPs and trainable parameters for each network on UCF101 dataset. † -
pretraining on Kinetics 700 (4) (%).

Networks Parameters GFLOPs Rot† VCOP † PRP† RSPNet
ShuffleNet 4.6M 1.1 42.2 41.6 41.1 68.8
MobileNet 3.1M 1.1 38.0 40.0 37.4 63.1

SqueezeNet 1.9M 1.8 41.3 41.4 39.2 62.9

C3D 27.7M 77.2 57.7 54.5 58.1 67.6
R3D 14.4M 39.8 51.1 50.7 52.1 62.1

R(2+1)D 14.4M 42.9 46.9 56.8 58.9 78.0

Table 2: Downstream accuracy classification on UCF-101 dataset. FT: Finetuning LP: Linear
Probing (%).

Network LP FT RotNet VCOP PRP

Shuffle ✓ 4.3 12.3 2.8
✓ 16.6 40.8 21.9

R21D ✓ 2.7 12.2 4.6
✓ 41.2 51.5 46.2

consistency with most of the approaches and reduce computation costs, we use 16 frames in our99

experiments.100

3.3 Linear probing vs Finetuning101

For linear probing, we train only the linear layers attached for classification while freezing other102

network weights, whereas in finetuning the whole network is trained end-to-end. In our preliminary103

experiments we use Kinetics-400 for pretraining and UCF-101 as the target dataset. From Table104

2, on several pretext tasks, we observe an average drop of 25% (ShuffleNet) and 40% (R21D) in105

performance when comparing linear probe with finetuning. However, we do not usually observe106

this significant drop when both the pretraining and target datasets are the same (24). It indicates107

that finetuning is important for the model to adapt to downstream dataset in case it is different.108

Therefore, some of the existing works (26) rely on finetuning when the source and target datasets109

are different. Since we are interested in cross-dataset learning, we perform finetuning on all our110

downstream datasets.111

3.4 Pretext Tasks112

Configurations: For VCOP, RotNet and PRP, we just manipulated the type of augmentation from the113

original work. We applied Random Rotation, Resizing, Random Crop, Color Jittering and Random114

Horizontal Flipping to the input clip. CVRL has some extra data augmentation compare to the115

previous ones we mentioned. It includes grayscale and gamma adjustment as well. RSPNet also uses116

some temporal augmentation. For finetuning the augmentations are Resize and Center Crop for all117

the approaches. The k-value for Momentum contrastive network is 16384 for RSPNet, it’s 500 for118

TDL.119

Evaluations: A comparison of pretext tasks on two different backbones is shown in Table 3. We120

observe that most of the contrastive tasks outperform non-contrastive tasks when they are trained121

under different constraints (row 3). However, that is not the case when we compare them under the122

same constraints (row 1-2). Similarly, spatial and spatio-temporal tasks have a similar performance123

from reported results. However, spatio-temporal pretext tasks outperform spatial ones by a large124

margin when we keep pre-training constraints similar. This supports our hypothesis that it is important125

to experiment under similar constraints for a fair evaluation of different approaches.126
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Table 3: Comparison across different pretext tasks pre-train on K400-50k subset and finetuned on
UCF101 dataset against reported results in the original paper (%).

Non-Contrastive Contrastive
Rot VCOP PRP CVRL TDL RSP
(S) (T) (ST) (S) (T) (ST)

Shuffle 16.6 40.8 21.9 62.3 12.4 68.8
R21D 41.2 51.5 46.2 61.2 31.7 78.0

Reported ∗ 72.1 68.4 72.4 94.4 84.9 93.7

Figure 2: Pretext tasks CKA maps for RSPNet, PRP, RotNet, VCOP, CVRL on K-400 50k subset
using R21D network (Left to right). R21D pretrained on K400 shows a semi-block structure for
VCOP, indicating near-saturation condition of the network on this pretext task. It shows a more
prominent grid-based structure on CVRL and RSPNet instead. These observations corroborate the
quantitative results, where pretraining on K400 for both CVRL and RSPNet gives better performance.

Additionally, Figure 2 depicts the hidden representations of R21D network pretrained on different127

pretext tasks. Here the 50k subset of K-400 was used for pretraining, and finetuned on UCF-101.128

3.5 Datasets129

Here we discuss datasets in detail. We use Kinetics-400 (K400) (14) and Something-Something V2130

(9) for our pre-training. For the downstream task evaluation, we perform our experiments on UCF-101131

(25), HMDB-51 (16), and Diving48 (17). Since, the pretraining and finetuning datasets are different,132

the performance variation will provide us a better picture about how much meaningful spatiotemporal133

features are learned by these networks. K400 has approximately 240k videos distributed evenly134

across 400 classes respectively. The approximate number of videos in finetuning datasets are: 1)135

UCF101-10k, 2) HMDB51-7k, and, 3)Diving48-16k. The datasets can be categorized into two ways:136

Appearance-based: Kinetics, UCF101 and HMDB51 comes under this category (6; 11). Kinetics137

videos length are generally 10s centered on human actions. It mainly constitutes singular person138

action, person-to-person actions and person-object action. For pre-training, we select a random subset139

of videos and maintain equal distribution from each class. Unless otherwise stated, pre-training is140

done on K400-50k subset for all experiments.141

Temporal-based: In Kinetics, we can estimate the action by looking at a single frame (6; 11). From142

Fig. 3, top two rows, we can see the person with a javelin and basketball. This information helps in143

class prediction. Looking at bottom two rows (SSv2 and Diving48 respectively), we can’t describe144

the activity class until we look into few continuous frames. It shows that temporal aspect plays an145

important role for these datasets, that’s why we categorize them into temporal-based datasets.146

UCF-101 (25) : It’s an action recognition dataset that spans over 101 classes. There are around147

13,300 videos, with 100+ videos per class. The length of videos in this dataset varies from 4 to148

10 seconds. It covers five types of categories: human-object interaction, human-human interaction,149

playing musical instruments, body motion and sports.150

HMDB-51 (16) : The number of videos in this dataset is 7000 comprising 51 classes. For each151

action, at least 70 videos are for training and 30 videos are for testing. The actions are clubbed152

into five categories: 1) General facial actions, 2) Facial actions with body movements, 3) General153
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Figure 3: Example sample from each dataset.

Figure 4: Example frame sample for each noise Gaussian, Impulse, Shot and Speckle from left to
right. Sample clips are provided in supplementary.

Table 4: Evaluation of different pretext tasks on different subset size on R21D network on HMDB51
dataset.

Non-contrastive Contrastive

Epochs VCOP Rot PRP CVRL TDL RSPNet

10k 18.9 15.0 9.2 22.2 9.9 30.2
30k 19.3 11.7 11.5 25.0 10.1 37.3
50k 17.3 12.2 10.2 29.3 9.5 40.2

body movements, 4) Body movements with object interaction, and, 5) Body movements for human154

interaction.155

3.6 Noisy Datasets156

We have shown the examples of each dataset used in the paper in Fig. 3.157

The test datasets have different number of videos for different levels and types of noises. For Gaussian158

noise, we manipulated all 3783 samples. For noise level 1, apart from Gaussian, we had roughly 400159

samples and all other levels of severity, we have approximately 550 samples. An example of each160

type of noise is shown in Fig. 4.161

4 Additional Results162

Here, we will talk about some additional results, to further strengthen the claims made in the main163

paper.164

4.1 Effect of dataset size165

Diminishing returns Looking across different architectures in Figure 6, there’s a minimal gain166

for R21D and ShuffleNet beyond increasing dataset size from 30k subset against VideoSwin which167

improves with an increase in dataset size which relates to similar behavior like image models discussed168

in (8).169
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Figure 5: Training time CKA maps on 50, 100, 150, 200 epochs of R21D network on RSPNet
pretext for K-400 10k subset (Left to right). The block structure is visible from 50 epochs itself,
which then darkens and becomes prominent by 200 epochs. With 10k subset, the saturation starts
hitting at 100 epochs.

R21D (10k) vs R21D (10k) R21D (30k) vs R21D (30k)

R21D (50k) vs R21D (50k) R21D (100k) vs R21D (100k)
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Figure 6: Left: Dataset subset performance for three different architectures on RSPNet pretext task
(x-axis: subset size, y-axis: Top-1 Accuracy). Here, 10 means 10k dataset subset, 30 means 30k, and
so on. Right: CKA maps for RSPNet on different subsets with R21D backbone.

Table 5: RSPNet with different subset size on ShuffleNet/R21D/VideoSwin on UCF101 dataset.

Epochs Shuffle R21D Swin

10k 30k 50k 100k 10k 30k 50k 100k 10k 30k 50k 100k
50 59.1 66.3 68.1 68.9 66.8 71.1 75.0 77.2 - 40.4 44.9 52.0
100 60.3 67.6 68.7 69.0 69.5 75.2 76.1 80.0 37.2 44.3 49.6 58.5
150 61.8 66.7 69.4 69.7 69.5 76.6 76.5 78.8 37.9 46.2 50.7 61.3
200 61.5 68.2 68.5 69.9 69.6 76.6 77.4 78.3 36.8 46.3 52.5 61.5

HMDB51 In Table 4, we extend results for different pretext tasks on HMDB51 dataset. Similar170

to UCF101, the scale in subset size doesn’t reciprocate to gain in performance for all pretext tasks171

on HMDB51 dataset. From Figures 7 and ??, we see that performance increase for Swin by a good172

margin, whereas in case of ShuffleNet and R21D it’s relatively less beyond 50k subset.173

Training time Table 5 shows VideoSwin saturates at 150 epochs on UCF101 whereas CNN174

architectures saturates earlier (100 epochs) which reflects limitation of model capacity. Figure 5175

shows the emergence of block structures for R21D network trained on RSPNet for K400 10k. The176

saturation point has reached earlier around 100 epochs which supports the hypothesis in main work177

that CNN architectures mostly saturates around 100 epochs. We see similar pattern even after178

increasing the dataset size.179
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Figure 7: Multiple architectures and data subsets. Pretext task is RSPNet. (x-axis: subset size,
y-axis: Top-1 Accuracy) Here, 10 means 10k dataset subset, 30 means 30k and so on. Left: UCF-101,
right: HMDB51.

Figure 8: Complexity CKA maps PRP ShuffleNet (Left) and R21D (Right) network increasing
complexity from 2 to 4 (Left to right). ShuffleNet has lower performance than R21D, and it shows
darkest patterns when complexity is increased from 3 to 4. For both of these complexities, R21D
shows staggering grids.

Figure 9: Relative decrease in performance at three different severity levels in increasing order
from left to right. The pretext tasks is depicted by following colors - RotNet, VCOP, PRP, CVRL,
TDL, RSPNet.

4.2 Impact of task complexity180

Figures 8 shows for ShuffleNet dark patterns with increase in complexity. R21D shows staggering181

grids. It supports our hypothesis that model capacity plays an important role to learn meaningful182

features and always increasing the complexity doesn’t reciprocate to better spatio-temporal features.183

4.3 Effect of data distribution184

Figure 10 illustrates CKA maps for networks pretrained on different source datasets - for R21D185

pretrained on K400-50k on VCOP and CVRL respectively. The stark difference in semi-block186

structure of spatial (VCOP) vs grid-like structure of spatio-temporal (CVRL) shows spatio-temporal187

outperforms spatial pretext task.188
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Figure 10: Out-of-distribution CKA maps: on VCOP and CVRL for R21D Network (Left to right).
The semi-block structure of VCOP contrasts sharply with the grid-like structure of CVRL.

Table 6: Analysis of all pretext tasks with noise severity level 1 on R21D network on UCF101 dataset.
Non-contrastive Contrastive

RotNet VCOP PRP CVRL TDL RSP

No Noise 41.2 51.5 46.2 61.2 31.7 78.0
Gaussian 40.9 47.0 14.6 12.7 28.0 16.7
Impulse 38.1 30.5 5.4 3.5 18.8 8.5
Shot 33.4 45.1 20.9 26.4 21.5 45.1
Speckle 34.7 43.9 14.4 13.1 24.7 27.0

4.4 Robustness of SSL tasks189

Table 6 shows performance of each pretext on each type of noise for severity level 1. Fig. 9 shows a190

relative decrease in performance for three different severity level on UCF101 dataset. Non-contrastive191

tasks are more robust than contrastive on average even at different severity levels.192

4.5 Feature Analysis193

We employ knowledge distillation to evaluate how complementary information from different datasets194

can be used to train a student model that could take advantage of this in terms of performance gain and195

training time reduction. Here we show the numbers quantitatively. Table 7 shows smaller architecture196

leans complementary information whereas bigger architecture depends on pretext task. Table 8 shows197

that for each pretext task, we learn complementary information from two different source datasets.198

Thus, student always outperforms the teachers. Table 9 shows that distilling knowledge from a199

spatial and a temporal task outperforms the standalone spatio-temporal task in both contrastive and200

non-contrastive case.201

4.6 Study on Video Foundation Models202

In Table 11, we show performance of different ViFMs zero shot accuracy on UCF101.203
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