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Here, we explain things in details about pretext task, architecture setup, provide some more results
and include more visual analysis. We also include tables which we were not able to include in main
paper due to space limitations.

* Section[I} describes challenges and future work based on our study.
* Section 2} Pretext tasks explanation used in our analysis.
¢ Section E} Training details about architectures, datasets, and, other hyperparameters.

¢ Section El} We show additional CKA maps, more results on HMDBS51 dataset and more
analysis on noise robustness. We added some tables for Knowledge distillation experiments
that were promised in the main paper.

1 Challenges and future work

There are several key challenges in video SSL and we believe 1) long-term video understanding, 2)
multi-modal learning, and 3) robust learning are some of the less studied aspects. The novel insights
in our study regarding training dataset size, model architectures, and robustness will play a crucial
role in guiding future work on these research directions.

2 Pretext Tasks Details

In this section, we go through each pretext task in more detail that are used in our main work for
analysis.

2.1 Spatial Transformation

Rotation Net (13) (RotNet) applies geometrical transformation on the clips. The videos are rotated
by various angles and the network predicts the class which it belongs to. Since the clips are rotated, it
helps the network to not converge to a trivial solution.

Contrastive Video Representation Learning (21) (CVRL) technique applies temporally coherent
strong spatial augmentations to the input video. The contrastive framework brings closer the clips
from same video and repels the clip from another video. With no labels attached, the network learns
to cluster the videos of same class but with different visual content.

2.2 Temporal Transformation

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.



27
28
29

30
31
32
33

34

35
36
37
38

39
40
41
42
43

44

45

46
47
48
49

50
51
52
53

70 T

R21D [55] C3D [54]
60 +
50 +
ShuffleNet [65] R3D [22]
40+ O SqueezeNet [24]
MobileNet [43]
30 : . . - :
1.00 1.25 1.50 1.75 2.00
GLOPs

Figure 1: Architecture Performance Analysis: Variation in performance for different architectures.
X-axis shows the relative floating point operations and Y-axis shows the Top-1 Accuracy.

Video Clip Order Prediction (32) (VCOP) learns the representation by predicting the permutation
order. The network is fed N clips from a video and then it predicts the order from N! possible
permutations.

Temporal Discriminative Learning (30) (TDL) In contrast to CVRL, TDL works on temporal
triplets. It looks into the temporal dimension of a video and targets them as unique instances. The
anchor and positive belongs to same temporal interval and has a high degree of resemblance in visual
content compared to the negative.

2.3 Spatio-Temporal Transformation

Playback Rate Prediction (33) (PRP) has two branch, generative and discriminative. Discrimina-
tive focuses on the classifying the clip’s sampling rate, whereas, generative reconstructs the missing
frame due to dilated sampling. Thus, the first one concentrates on temporal aspect and second one on
spatial aspect.

Relative Speed Perception Network (5) (RSPNet) applies contrastive loss in both spatial and
temporal domain. Clips are samples from a same video to analyze the relative speed between them.
A triplet loss pulls the clips with same speed together and pushes clips with different speed apart in
the embedding space. To learn spatial features, InfoNCE loss (29) is applied. Clip from same video
are positives whereas clips from different videos are negatives.

3 Implementation Details

3.1 Architecture Details

Preliminary research has shown that 3D networks (28} [10) have outperformed 2D CNN variants on
video recognition tasks. We looked into three types of capacity - small, medium and big on the basis
of number of trainable parameters. Fig. |1|shows comparison of multiple architectures in terms of
GFLOPs and Top-1 accuracy.

Small capacity networks: are resource efficient, implying they can be trained in larger batches
within short span of time. The network selection is done on the basis of supervised training scores on
Kinetics(14)) and UCF101(15). ShuffleNet V1 2.0X (34)) utilizes point-wise group convolutions and
channel shuffling. SqueezeNet (12) reduces the filter size and input channels to reduce the number of



54
55

56
57

58
59

60
61
62

63
64
65
66
67

68
69
70
71

72
73
74
75
76
77

78

79
80
81

82
83

84
85
86
87

88

89
90
91
92

93
94
95

96

97
98

parameters. MobileNet (23) has ResNet like architecture. With its depthwise convolution, there’s a
reduction in model size and the network can go more deep.

Medium capacity networks: Following the conventional 3D architectures for self-supervised
learning approaches, C3D, R21D and R3D are used in this study.

Large Capacity networks: ViViT (2) Timesformer (3), VideoSwin (19) and MVIiT (7)) fall under
this category.

In samll capacity networks, based on (15)), we probed into the performance comparison of several
versions of these architectures. We choose 3D-ShuffleNet V1 2.0X, 3D-SqueezeNet, and 3D-
MobileNet V2 1.0X networks based on their performance on Kinetics and UCF-101.

3D-ShuffleNet V1 2.0X (34): It utilize point-wise group convolutions and channel shuffling and has
3 different stages. Within a stage, the number of output channel remains same. As we proceed to
successive stage, the spatiotemporal dimension is reduced by a factor of 2 and the number of channels
are increased by a factor of 2. V1 denotes version 1 of ShuffleNet and 2.0X denotes the 2 times
number of channels compared to original configuration.

3D-SqueezeNet (12): It uses different alteration to reduce the number of parameters as compared to
the 2D version which employs depthwise convolution. Those three modifications are: 1) Change the
shape of filters from 3x3 to 1x1, 2) Input channels to 3x3 filters is reduced, and, 3) to maintain large
activation maps high resolution is maintained till deep layers.

3D-MobileNet V2 1.0X (23): This network employs skip connections like ResNet architecture in
contrast to version 1. It helps the model in faster training and to build deeper networks. There are
also linear bottlenecks present in the middle of layers. It helps in two ways as we reduce the number
of input channels: 1) With depthwise convolution, the model size is reduced, and 2) at inference
time, memory usage is low. V2 denotes version 2 of mobilenet and 1.0X uses the original parameter
settings.

The architectures of medium capacity networks are described as follows:

C3D (27): This follows a simple architecture where two dimensional kernels have been extended
to three dimensions. This was outlined to capture spatiotemporal features from videos. It has 8
convolutional layers, 5 pooling layers and 2 fully connected layers.

R3D (10): The 2D CNN version of ResNet architecture is recasted into 3D CNNs. It has skip
connections that helps make the gradient flow better as we build more deeper networks.

R(2+1)D (28): In this architecture, 3D convolution is broken down into 2D and 1D convolution.
2D convolution is in spatial dimension and 1D convolution is along the temporal dimension. There
are two benefits of this decomposition: 1) Increase in non-linearity as the number of layers have
increased, and, 2) Due to factorization of 3D kernels, the optimization becomes easier.

The architectures of large capacity networks are described as follows:

VideoSwin (19): Itis an inflated version of original Swin (L8)) transformer architecture. The attention
is now spatio-temporal compared to previous which is only spatial. 3D tokens are constructed from
the input using patch partition and sent to the network. The architecture includes four stages of
transformer block and patch merging layers.

The performance across different architectures are shown in Table|l{and Figure (1| ShuffleNet and
R21D performs the best across small and medium capacity networks in most of the pretext tasks.
Thus, we choose ShuffleNet and R21D for our benchmark analysis.

3.2 Clip Length

Different pretext tasks take 16 or 32 frames as input clip length. We experimented with both 16 and
32 clips length and observe that 32 frames mostly provide better performance. However, to maintain
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Table 1: Comparison of FLOPs and trainable parameters for each network on UCF101 dataset. T -
pretraining on Kinetics 700 (4) (%).

Networks Parameters GFLOPs Rot' VCOP " PRPT RSPNet

ShuffleNet!  4.6M 1.1 422 41.6 41.1 688
MobileNet| 3.1M 1.1 380 400 374 63.1
SqueezeNet| 1.9M 1.8  413| 414 392 629

C3D| 27.7M 772 57.7| 545 581 67.6
R3D| 14.4M 39.8 51.1| 50.7 521 621
R2+1)D| 14.4M 429 469| 568 58.9 78.0

Table 2: Downstream accuracy classification on UCF-101 dataset. FT: Finetuning LP: Linear
Probing (%).

Network LP FT RotNet VCOP PRP

v 43 123 28
Shuffie = 166 408 21.9
~21D ¥ 27 122 46

v 412 515 462

consistency with most of the approaches and reduce computation costs, we use 16 frames in our
experiments.

3.3 Linear probing vs Finetuning

For linear probing, we train only the linear layers attached for classification while freezing other
network weights, whereas in finetuning the whole network is trained end-to-end. In our preliminary
experiments we use Kinetics-400 for pretraining and UCF-101 as the target dataset. From Table
[2l on several pretext tasks, we observe an average drop of 25% (ShuffleNet) and 40% (R21D) in
performance when comparing linear probe with finetuning. However, we do not usually observe
this significant drop when both the pretraining and target datasets are the same (24). It indicates
that finetuning is important for the model to adapt to downstream dataset in case it is different.
Therefore, some of the existing works (26)) rely on finetuning when the source and target datasets
are different. Since we are interested in cross-dataset learning, we perform finetuning on all our
downstream datasets.

3.4 Pretext Tasks

Configurations: For VCOP, RotNet and PRP, we just manipulated the type of augmentation from the
original work. We applied Random Rotation, Resizing, Random Crop, Color Jittering and Random
Horizontal Flipping to the input clip. CVRL has some extra data augmentation compare to the
previous ones we mentioned. It includes grayscale and gamma adjustment as well. RSPNet also uses
some temporal augmentation. For finetuning the augmentations are Resize and Center Crop for all
the approaches. The k-value for Momentum contrastive network is 16384 for RSPNet, it’s 500 for
TDL.

Evaluations: A comparison of pretext tasks on two different backbones is shown in Table 3] We
observe that most of the contrastive tasks outperform non-contrastive tasks when they are trained
under different constraints (row 3). However, that is not the case when we compare them under the
same constraints (row 1-2). Similarly, spatial and spatio-temporal tasks have a similar performance
from reported results. However, spatio-temporal pretext tasks outperform spatial ones by a large
margin when we keep pre-training constraints similar. This supports our hypothesis that it is important
to experiment under similar constraints for a fair evaluation of different approaches.
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Table 3: Comparison across different pretext tasks pre-train on K400-50k subset and finetuned on
UCF101 dataset against reported results in the original paper (%).

Non-Contrastive Contrastive
Rot VCOP PRP|CVRL TDL RSP
S (M SO S (T) (ST)
Shuffle 16.6 40.8 21.9| 62.3 12.4 68.8
R21D 41.2 51.5 46.2| 61.2 31.7 78.0
Reported * 72.1 684 72.4| 944 849 93.7

R21D (RSPNet) vs R21D (RSPNet) R21D (PRP) vs R21D (PRP) R21D (RotNet) vs R21D (RotNet) R21D (VCOP) vs R21D (VCOP) R21D (CVRL) vs R21D (CVRL)

Layers

Figure 2: Pretext tasks CKA maps for RSPNet, PRP, RotNet, VCOP, CVRL on K-400 50k subset
using R21D network (Left to right). R21D pretrained on K400 shows a semi-block structure for
VCOP, indicating near-saturation condition of the network on this pretext task. It shows a more
prominent grid-based structure on CVRL and RSPNet instead. These observations corroborate the
quantitative results, where pretraining on K400 for both CVRL and RSPNet gives better performance.

Additionally, Figure[2]depicts the hidden representations of R21D network pretrained on different
pretext tasks. Here the 50k subset of K-400 was used for pretraining, and finetuned on UCF-101.

3.5 Datasets

Here we discuss datasets in detail. We use Kinetics-400 (K400) (14) and Something-Something V2
(9) for our pre-training. For the downstream task evaluation, we perform our experiments on UCF-101
(25), HMDB-51 (16), and Diving48 (17). Since, the pretraining and finetuning datasets are different,
the performance variation will provide us a better picture about how much meaningful spatiotemporal
features are learned by these networks. K400 has approximately 240k videos distributed evenly
across 400 classes respectively. The approximate number of videos in finetuning datasets are: 1)
UCF101-10k, 2) HMDB51-7k, and, 3)Diving48-16k. The datasets can be categorized into two ways:

Appearance-based: Kinetics, UCF101 and HMDBS51 comes under this category (65 [11). Kinetics
videos length are generally 10s centered on human actions. It mainly constitutes singular person
action, person-to-person actions and person-object action. For pre-training, we select a random subset
of videos and maintain equal distribution from each class. Unless otherwise stated, pre-training is
done on K400-50k subset for all experiments.

Temporal-based: In Kinetics, we can estimate the action by looking at a single frame (6} [11). From
Fig. [3] top two rows, we can see the person with a javelin and basketball. This information helps in
class prediction. Looking at bottom two rows (SSv2 and Diving48 respectively), we can’t describe
the activity class until we look into few continuous frames. It shows that temporal aspect plays an
important role for these datasets, that’s why we categorize them into temporal-based datasets.

UCF-101 (25) : It’s an action recognition dataset that spans over 101 classes. There are around
13,300 videos, with 100+ videos per class. The length of videos in this dataset varies from 4 to
10 seconds. It covers five types of categories: human-object interaction, human-human interaction,
playing musical instruments, body motion and sports.

HMDB-51 (16) : The number of videos in this dataset is 7000 comprising 51 classes. For each
action, at least 70 videos are for training and 30 videos are for testing. The actions are clubbed
into five categories: 1) General facial actions, 2) Facial actions with body movements, 3) General
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Table 4: Evaluation of different pretext tasks on different subset size on R21D network on HMDBS51
dataset.

Non-contrastive Contrastive
Epochs VCOP Rot PRP CVRL TDL RSPNet

10k 189 150 92 222 99 302
30k 193 11.7 11.5 25.0 10.1 37.3
50k 173 122102 293 95 40.2

body movements, 4) Body movements with object interaction, and, 5) Body movements for human
interaction.

3.6 Noisy Datasets

We have shown the examples of each dataset used in the paper in Fig. 3]

The test datasets have different number of videos for different levels and types of noises. For Gaussian
noise, we manipulated all 3783 samples. For noise level 1, apart from Gaussian, we had roughly 400
samples and all other levels of severity, we have approximately 550 samples. An example of each
type of noise is shown in Fig. 4

4 Additional Results

Here, we will talk about some additional results, to further strengthen the claims made in the main
paper.

4.1 Effect of dataset size

Diminishing returns Looking across different architectures in Figure [6] there’s a minimal gain
for R21D and ShuffleNet beyond increasing dataset size from 30k subset against VideoSwin which
improves with an increase in dataset size which relates to similar behavior like image models discussed

in (8)).
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Figure 5: Training time CKA maps on 50, 100, 150, 200 epochs of R21D network on RSPNet
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Figure 6: Left: Dataset subset performance for three different architectures on RSPNet pretext task
(x-axis: subset size, y-axis: Top-1 Accuracy). Here, 10 means 10k dataset subset, 30 means 30k, and
so on. Right: CKA maps for RSPNet on different subsets with R21D backbone.

Table 5: RSPNet with different subset size on ShuffleNet/R21D/VideoSwin on UCF101 dataset.

Epochs Shuffle R21D Swin

10k 30k 50k 100k 10k 30k 50k 100k 10k 30k 50k 100k
50 59.1 66.3 68.1 68.9 66.8 71.1 75.0 77.2 - 40.4 449 52.0
100  60.3 67.6 68.7 69.0 69.5 75.2 76.1 80.0 37.2 44.3 49.6 58.5
150 61.8 66.7 69.4 69.7 69.5 76.6 76.5 78.8 37.9 46.2 50.7 61.3
200 61.5 68.2 68.5 69.9 69.6 76.6 77.4 78.3 36.8 46.3 52.5 61.5

HMDB51 In Table ] we extend results for different pretext tasks on HMDBS51 dataset. Similar
to UCF101, the scale in subset size doesn’t reciprocate to gain in performance for all pretext tasks
on HMDBS51 dataset. From Figures[7]and ??, we see that performance increase for Swin by a good
margin, whereas in case of ShuffleNet and R21D it’s relatively less beyond 50k subset.

Training time Table [5] shows VideoSwin saturates at 150 epochs on UCF101 whereas CNN
architectures saturates earlier (100 epochs) which reflects limitation of model capacity. Figure[3]
shows the emergence of block structures for R21D network trained on RSPNet for K400 10k. The
saturation point has reached earlier around 100 epochs which supports the hypothesis in main work
that CNN architectures mostly saturates around 100 epochs. We see similar pattern even after
increasing the dataset size.
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Figure 8: Complexity CKA maps PRP ShuffleNet (Left) and R21D (Right) network increasing
complexity from 2 to 4 (Left to right). ShuffleNet has lower performance than R21D, and it shows
darkest patterns when complexity is increased from 3 to 4. For both of these complexities, R21D
shows staggering grids.

91.4
100 T 100 828 700 100
75 - 75 75
50 . " 50 329 o 1
25 1.2 25 129
0 0
Level 1 Level 2 Level 3

Figure 9: Relative decrease in performance at three different severity levels in increasing order
from left to right. The pretext tasks is depicted by following colors - RotNet, VCOP, , CVRL,
TDL, RSPNet.

4.2 TImpact of task complexity

Figures|[8]shows for ShuffleNet dark patterns with increase in complexity. R21D shows staggering
grids. It supports our hypothesis that model capacity plays an important role to learn meaningful
features and always increasing the complexity doesn’t reciprocate to better spatio-temporal features.

4.3 Effect of data distribution

Figure [10] illustrates CKA maps for networks pretrained on different source datasets - for R21D
pretrained on K400-50k on VCOP and CVRL respectively. The stark difference in semi-block
structure of spatial (VCOP) vs grid-like structure of spatio-temporal (CVRL) shows spatio-temporal
outperforms spatial pretext task.
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Table 6: Analysis of all pretext tasks with noise severity level 1 on R21D network on UCF101 dataset.

Non-contrastive Contrastive
RotNet VCOP PRP CVRL TDL RSP

No Noise 412 515 462 612 31.7 78.0
Gaussian 409 47.0 146 12.7 28.0 16.7
Impulse 38.1 305 54 35 188 85
Shot 334 451 209 264 215 45.1
Speckle 347 439 144 13.1 247 270

4.4 Robustness of SSL tasks

Table[6]shows performance of each pretext on each type of noise for severity level 1. Fig. D]shows a
relative decrease in performance for three different severity level on UCF101 dataset. Non-contrastive
tasks are more robust than contrastive on average even at different severity levels.

4.5 Feature Analysis

We employ knowledge distillation to evaluate how complementary information from different datasets
can be used to train a student model that could take advantage of this in terms of performance gain and
training time reduction. Here we show the numbers quantitatively. Table[7]shows smaller architecture
leans complementary information whereas bigger architecture depends on pretext task. Table[§]shows
that for each pretext task, we learn complementary information from two different source datasets.
Thus, student always outperforms the teachers. Table [9] shows that distilling knowledge from a
spatial and a temporal task outperforms the standalone spatio-temporal task in both contrastive and
non-contrastive case.

4.6 Study on Video Foundation Models
In Table [T} we show performance of different ViFMs zero shot accuracy on UCF101.
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