
Under review as a conference paper at ICLR 2024

Roadmap of Appendix The appendix is organized as follows. We list the notations table in Section A.
We provide the theoretical proof of the convergence analysis in Section B. We present the theoretical
intuition of our proposed two loss term C. Next, we provide more detailed related work in Sec. D We
present more experiment details and results in Sec. E.

A NOTATION TABLE

Table 3: Important notations used in the paper.
Notations Description

f model parameters
l learning procedure
m feature dimension
n number of samples
x a sample
y a label
D set of training domain
L loss function
M number of clients
N number of averaged models
R total communication rounds
X input space of data
Y label space
λ coefficient for local training regularization term
τ local training steps

B CONVERGENCE ANALYSIS

B.1 FORMAL RESTATEMENT OF CONVERGENCE THEOREM

Standard FL (McMahan et al., 2017) employs a server to coordinate the following iterative distributed
training:

Step 1 In each global round of training r ∈ [R], the server broadcasts its current global model
weight f (r−1)

g to all the clients;
Step 2 The selected client c copies the current server model weight fr,0

c ← fg, performs τ local
step updates, then sends fr,L

c − f
(r−1)
g back to the server;

Step 3 The server aggregates the updates from all clients {fr,τ
c −f

(r−1)
g }Cc=1 to form the new server

model using the weighted averaging in Eq 1:

Note that the initialization f (0,0) ,with the subscription indicating model at 0-th communication
round and 0-th local step, is a pre-trained model (e.g. using public datasets) in our problem. This
work focus on improving Step 2 to explore a larger low-loss region in local clients.

Formally, we present the convergence results (Theorem 1 in Wang et al. (2021a) and ours) and
specify the following formal assumptions: 1) Convexity and Smoothness Assumption on β-smooth
loss function, 2) Bounded Variance of Stochastic Gradient Assumption and 3) Bounded Variance of
Local and Global Gradient Assumption).
Assumption B.1. (Convexity and Smoothness). Li is convex and β-smooth for all i ∈ [M ], i.e.,

∥∇Li(w)−∇Li(v)∥ ≤ β∥w − v∥,
for all w, v in its domain and i ∈ [M ].
Assumption B.2. (Bounded variance of stochastic gradient). Each client can achieve an unbiased
stochastic gradient with σ2-uniformly bounded variance for all k ∈ [0, τ), namely

E[gi(f (r,k)
i )|f (r,k)

i ] = ∇Li(f
(r,k)
i ), E[∥gi(f (r,k)

i )−∇Li(f
(r,k)
i )∥2|f (r,k)

i ] ≤ σ2. (6)

13



Under review as a conference paper at ICLR 2024

Assumption B.3. (Bounded variance of local and global gradient). The difference of local gradient
∇Li(f) and the global gradient ∇L(f) is bounded in ℓ2 norm, namely

max
i

sup
f

∥∥∥∇Li(f
(r,k)
i )−∇L(f (r,k)

i )
∥∥∥ ≤ ζ. (7)

Following Wang et al. (2021a), we have the main theorem on converngence rate as follows. For
the complete proof, please refer to Wang et al. (2021a). The main theorem on convergence rate as
follows.
Theorem B.1 (Theorem 1, Convergence Rate for Convex Local Functions Wang et al. (2021a)).
Under the aforementioned assumptions, we have

E

[
1

τR

R−1∑
r=0

τ∑
k=1

L(f (r,k)
)− L(f⋆)

]
≤ d2

2ητR
+

ησ2

M
+ 4τη2βσ2 + 18τ2η2βζ2. (8)

Further, when the client learning rate is chosen as

η = min

{
1

4β
,

M
1
2 d

τ
1
2R

1
2σ

,
d

2
3

τ
2
3R

1
3 β

1
3σ

2
3

,
d

2
3

τR
1
3 β

1
3 ζ

2
3

}
, (9)

we have

E

[
1

τR

R−1∑
r=0

τ∑
k=1

L(f (r,k)
)− L(f⋆)

]
≤ 2βd2

τR
+

2σd√
MτR

+
5β

1
3σ

2
3 d

4
3

τ
1
3R

2
3

+
19β

1
3 ζ

2
3 d

4
3

R
2
3︸ ︷︷ ︸

errors from local updates & Non−IID data

.

(10)

Here, d := ∥f (0,0) − f⋆∥ refers to the distance between initialization and the global optimum f⋆.

B.2 PROOF OF LEMMA 1

Lemma 1. Under the data heterogeneity setting, when the total number of gradient computations
across all clients (K = MτR) is fixed and the local steps τ satisfies

τ ≤ σ

ζ

√
σ

dβ

K
1
2

M2
, (11)

the error upper bound Eq.equation 11 will be dominated by the second term O(1/
√
K).

Taking local steps can save total communication rounds compared to synchronous SGD. To be
more specific, as suggested in Wang et al. (2021a), when the total number of gradient evalua-
tions/computations across all clients (K = MτR) is fixed and the local steps τ satisfies:

τ ≤ min

 σ

dβ

K
1
2

M2
,
σ

ζ

√
σ

dβ

K
1
2

M2

 . (12)

When the upper bound of local steps (Eq.(12)) becomes larger, there will be more communication
savings. Therefore, the quantity in Eq.(12) represents the largest savings in communication rounds.
Next, we show the error upper bound under the data heterogeneity setting.

Proof. Under high data heterogeneity, we have ζ ≥ σ, and:

1 ≤ σ

ζ

√
σ

dβ

K
1
2

M2
≤

√
σ

dβ

K
1
2

M2
≤ σ

dβ

K
1
2

M2
(13)

Therefore, we have Lemma 1:

τ ≤ σ

ζ

√
σ

dβ

K
1
2

M2
, (14)

14



Under review as a conference paper at ICLR 2024

This Lemma 1 indicates that when client data are Non-IID, the side effects of the error term in the
Theorem B.1 will be further exacerbated, therefore, increasing the local iteration steps effectively
reduces the communication rounds.

Why connected low-loss valley + pre-trained initialization can achieve extreme communication
rounds reduction? Based on the analysis above, we find that simply increasing the number of
local training steps is insufficient for achieving extreme communication efficiency. The key lies in
reducing the error term introduced by local updates. Importantly, to achieve a significant reduction
in communication rounds, our primary focus should be on decreasing the last term of the RHS
of Formula 2. This is because, under the extreme communication round reduction condition (e.g.,
R = 1), the denominators of the first three terms all involve the local training steps τ . As τ approaches
infinity, the influence of these error terms can be eliminated, but the last error term remains. This
term is mainly affected by three factors: local and global gradient dissimilarity ζ, distance between
initialized and optimal weights d, and the Lipschitz constant β related with smoothness. Previous
research (Nguyen et al., 2022) has shown that FL training based on pre-training initialization can better
align updates from different clients, reducing the ζ term, which represents the difference between
local and global gradients. Additionally, due to the characteristics of existing overparameterized
models (Chizat et al., 2019; Li & Banerjee, 2021), the optimal solution is typically near the initialized
point, leading to a very small d term. As for the smoothness β term, intuitively, if clients are
trapped in isolated low-loss valleys, this situation reflects the non-smoothness of the local model
function. By encouraging the regularization of training to find connected low-loss regions, we can
effectively reduce the potential maximum value of the β term during the training process. Through
the above analysis, we conclude that pre-training initialization combined with our regularization
training that encourages the search for connected regions can reduce the error terms introduced by
local updates, thus increasing the upper limit of local training steps and achieving the goal of reducing
communication rounds.

C THEORETICAL INTUITIONS.

C.1 DECOMPOSITION OF GENERALIZATION BOUND

Connecting ζ with out-of-distribution error. ensemble is a category of the promising method
that ensembles trained models to improve generalizability as demonstrated in centralized settings
via reducing model discrepancy (Izmailov et al., 2018). To reduce the variance ζ of local and global
gradients that is resulted by data heterogeneity, we aim to adapt ensemble to FL. Intuitively, local
client training that can reduce the error on the worst domain (client) in FL will reduce the variance ζ.

In the following, we detail how to reduce ζ with OOD error with a bias-variance-covariance-locality
(BVCL) decomposition analysis. ensemble can be defined as: fWA ≜ 1/N

∑N
n=1 fn. We have

the following decomposition of ensemble’s expected test error. Bias-variance-covariance-locality
decomposition. The expected generalization error on domain T of fWA over the joint distribution
(LN

S ≜ {l(N)
S }NN=1) of N learning procedure on domain S is:

ELN
S
ET (fWA(L

N
S )) = E(x,y)∼pT

[
bias2(x, y) +

1

N
var(x) +

N − 1

N
cov(x)

]
+O(∆̄2), (15)

Here, cov refers to the covariance of predictions made by two member models. The first component
is the same bias as that of each individual member. The variance of ensemble is split into two parts:
the variance of each member divided by the number of members (N ) and a covariance term. The last
locality term enforces constraints on the weights to ensure the functional ensembling approximation
remains valid. In summary, combining N models reduces variance by a factor of N , but introduces
the covariance and locality terms which must be controlled to ensure low OOD error.

In the analysis presented in Ramé et al. (2022b), the authors proposed a BVCL decomposition based
on the approximation of functional ensembling (i.e., averaged prediction instead of parameter) by WA.
The expected generalization error on domain T of fWA over the joint distribution (LN

S ≜ {l(N)
S }NN=1)

of N learning procedure on domain S is:

ELN
S
ET (fWA(L

N
S )) = E(x,y)∼pT

[
bias2(x, y) +

1

N
var(x) +

N − 1

N
cov(x)

]
+O(∆̄2), (BVCL)

15



Under review as a conference paper at ICLR 2024

Definition C.1 (Bias). For x ∈ X and y ∈ Y , we define the bias of OOD prediction as,

bias(x, y) = y − ElS [f(x, lS)]. (16)

Definition C.2 (Variance). For x ∈ X , we define the variance of prediction as

var(x) = EfS

[
(f(x, lS)− ElS [f(x, lS)])

2
]
. (17)

Definition C.3 (Covariance). For x ∈ X , we define the covariance of prediction produced by two
different learning procedures lS and l′S as

cov(x) = ElS ,l′S
[(f(x, lS)− ElS [f(x, lS)]) (f(x, l

′
S)− ElS [f(x, lS)])] . (18)

Definition C.4 (Locality). For any averaged models fi (for i ∈ [N ]), i is the index of an averaged
model, N is the total number of averaged models, we define the locality of all averaged models as

∆̄2 = ELN
S
∆2

LN
S

with ∆LN
S
=

N
max
i=1
∥fi − fWA∥2 . (19)

Following the definitions of the terms in the BCVL generalization bound, we discuss the insights
of reducing the bound via the proposed strategy. Our method is based on WAFT, which enjoys the
benefit of reducing prediction variance by averaging the predictions of multiple models. The diversity
term in our proposed method reduces the covariance term by encouraging functional diversity in the
parameter space. The affinity term in our proposed method reduces the locality term to ensure the
approximation of weight averaging (WA) to prediction ensembling.

Analysis on variance. One can see that an increase in the number of averaged models can directly
lead to a reduction in variance. The straightforward averaging M models, as seen in the vanilla WAFT
method, diminishes variance by a factor of M . However, this approach also introduces covariance
and locality terms, which necessitate meticulous management on adding new averaged models to
guarantee minimal out-of-distribution (OOD) error.

Analysis on covariance. The covariance term represents the predictive covariance between two
member models whose weights are averaged. It increases when the predictions of different averaged
models are highly correlated. In the worst-case scenario where all predictions are identical, the
covariance is equal to the variance, rendering the benefits of weight averaging ineffective Ramé
et al. (2022b). Conversely, when the covariance is lower, the advantages of weight averaging over
individual models become more pronounced. Therefore, it is crucial to address covariance by
promoting functional diversity among the averaged models. Our proposed method incorporates a
diversity term that aims to reduce this covariance.

Analysis on locality. The locality term, which represents the expected squared maximum distance
between weights and their average, constrains the weights to be close and ensures the approximation.
The affinity term in our proposed method encourages the reduction of this locality term.

Overall, to reduce WA’s error in OOD, we need to seek a good trade-off between diversity and locality.
Our solution achieves this balance through two optimizable loss terms, the diversity term, and the
affinity term. Besides, the direct combination of M models, as in the vanilla WAFT method, reduces
variance by a factor of M but introduces covariance and locality terms that need to be carefully
managed in order to ensure low OOD error.

It is worth noting that, from an implementation perspective, unlike the model soups method (see
Fig. 7 middle), which requires retraining a large number of candidate models for model selection
and interpolation, our method only selects a few models (typically 3 to 5) for sequential random
interpolation training in order to maintain connectivity. This significantly reduces the time cost of
local training. Furthermore, unlike model ensembles (see Fig. 7) that require storing multiple model
weights and integrating predictions during inference, our method only needs to retain an averaged
weight during the final inference stage. This greatly reduces the memory footprint and enhances the
inference speed on the client side.

16



Under review as a conference paper at ICLR 2024

Model SoupsModel Ensemble Superior Soups

Inference

Training

Single Final Model

Curated 
Ingredients

Figure 7: Comparison on model ensemble, model soups, and superior soups.

D MORE RELATED WORK

D.1 HETEROGENEOUS FEDERATED LEARNING

FL performance downgrading on Non-IID data is a critical challenge. A variety of FL algorithms have
been proposed to handle this heterogeneous issue. From an optimization perspective: FedProx (Li
et al., 2020) adds L2 norm to the client model and the previous server model to regularize them. This
helps to prevent the client models from diverging too far from the server model. Scaffold (Karimireddy
et al., 2020) adds a variance reduction term to mitigate the “clients-drift.” MOON (Li et al., 2021a)
uses mode-level contrastive learning to stabilize local training by making the client models more
robust to changes in the data distribution. In addition, personalized FL (Tan et al., 2021) is another
approach to achieving high local testing performance on Non-IID data. For aggregation perspective:
FedBN (Li et al., 2021b) uses local batch normalization to alleviate the feature shift before averaging
models. For extreme communication efficient: In recent years, there have been some FL methods
based on one-shot communication rounds. These methods typically use additional techniques on
the server-side, such as using prediction ensembles (Guha et al., 2019) instead of weight ensembles
or generating data (Zhang et al., 2022a; Heinbaugh et al., 2023) from local models for centralized
training, to improve the performance of the aggregated model. These methods are orthogonal to our
client training-based approach. There are also works on few-round communication rounds in FL
based on meta-learning frameworks (Park et al., 2021), but the data partition used in the experimental
setup may not be suitable for practical FL scenarios.

D.2 FINE-TUNING AND MODEL INTERPOLATION

Fine-tuning aims to achieve improved performance on the given task by leveraging the learned
knowledge of the pre-trained model. Choshen et al. (2022) empirically study the impact of fine-tuning
from a pre-trained model in FL and unsurprisingly find that starting from a pre-trained model reduces
the training time required to reach a target error rate and enables the training of more accurate models
than starting from random initialization. Zhang et al. (2022b) propose a knowledge distillation
approach for fine-tuning the global model, called FedFTG. In addition, fine-tuning in FL has been
widely used in personalized FL to address Non-IID problems by having each user adapt the global
model to personalized local models using their own data. For example, FedBABU (Oh et al., 2022)
splits the model into body and head, then fine-tuning the head part for personalization. Cheng et al.
(2021) propose FTFA and RTFA that start with a pre-trained model and then fine-tunes a small subset
of model parameters using the FedAvg (McMahan et al., 2017) algorithm. However, this line of
work focuses on optimizing local performance and ignores the generalization of global data. This
can lead to a performance drop when we further update the global model from the updated local
models. Weight averaging and model recycling are not only efficient ways to aggregate machine

17



Under review as a conference paper at ICLR 2024

learning models but also present promising benefits of improving model generalizability. Inspired by
the linear mode connectivity property of neural networks trained with stochastic gradient descent
(SGD) (Nagarajan & Kolter, 2019; Frankle et al., 2020), Model Soups (Wortsman et al., 2022)
proposes to combine many independent runs with varied hyper-parameter configurations. Similarly,
DiWA (Ramé et al., 2022b) utilizes this idea of Model Soups while theoretically analyzing the
importance of training different models with diverse hyper-parameters within mild ranges. Soups-
based methods (Wortsman et al., 2022; Ramé et al., 2022b) rely on aggregating diverse models to
improve model generalizability. To induce greater diversity, some methods such as (Maddox et al.,
2019) using a high constant learning rate, (Wortsman et al., 2021) minimizing cosine similarity
between weights, (Izmailov et al., 2019) using a tempered posterior and model Ratatouille (Ramé
et al., 2022a) averages diverse model trained from auxiliary datasets.

E EXPERIMENT DETAILS

E.1 EXPERIMENTAL SETUP DETAILS

Dataset. We validate the effectiveness of our proposed method with four datasets, FMNIST Xiao et al.
(2017), CIFAR-10 Krizhevsky et al. (2009), Digit-5 Ganin & Lempitsky (2015); Li et al. (2021b),
and DomainNet Peng et al. (2019). The Fashion-MNIST (FMNIST) dataset is a dataset of Zalando’s
article images consisting of a training set of 60, 000 examples and a test set of 10, 000 examples.
Each example is a 28 × 28 grayscale image of a piece of clothing. The dataset is divided into 10
classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. The
CIFAR-10 dataset is a popular dataset for machine learning research. It consists of 60, 000 32× 32
color images divided into 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. The dataset is split into 50, 000 training images and 10, 000 test images. The Digit-5 dataset is
a collection of five popular digit datasets, MNIST Deng (2012) (55000 samples), MNIST-M (55000
samples), Synthetic Digits Ganin & Lempitsky (2015) (25000 samples), SVHN (73257 samples),
and USPS (7438 samples). Each digit dataset includes a different style of 0-9 digit images. The
DomainNet dataset is a large-scale dataset of images collected from six different domains: clipart,
infograph, painting, quickdraw, real, and sketch. The dataset contains 600, 000 images, each labeled
with one of 345 object categories. The images in the DomainNet dataset are of high quality and are
diverse in terms of their content and style.

Model. We used the pre-trained models from the timm repo 1, which are a collection of state-of-the-art
deep learning models for computer vision tasks. For our proposed LSS, we use Adam optimizer with
a learning rate of 5e−4 , momentum 0.9, and weight decay 5e−4. The default number of averaged
models is 4. Each model updates 8 epoch then aggregates with the others. The default affinity term
coefficient is 3 and diversity term coefficient is 3. We set the batch size to 64 by default. For vision
transformer (ViT) Dosovitskiy et al. (2021) model, we adopt ViT base model with 224× 224 image
size and 16× 16 input patch size. The ViT is a neural network architecture for image classification
that uses a self-attention mechanism to learn the relationships between pixels in an image. ViT
has been shown to achieve state-of-the-art results on a variety of image classification benchmarks,
including ImageNet and CIFAR-10.

Training Details. We implement all the methods in PyTorch, and we run all the experiments on an
NVIDIA Tesla V100 GPU. Unless otherwise specified, the model performance in the experiments
below refers to the global model performance after aggregation on the server side. For commonly
used FL methods, due to the significant increase in local update steps that leads to worse convergence,
we set their local update steps to 8.

Applying WAFT to FL Local Update. For SWA Izmailov et al. (2018), SWAD Cha et al. (2021),
and our method LSS, we take more local update steps, with each model being averaged trained 8
steps, and the default number of models to be averaged is 4. For the Model Soups Wortsman et al.
(2022) method and DiWA Ramé et al. (2022b), we trained 32 models and each model trained 8 steps.
The hyper-parameter configuration for model selection includes learning rate ([1e−4, 5e−4, 1e−5]),
batch size ([32, 64, 128]), dropout rate ([0.0, 0.1, 0.3]), and weight decay [5e−4, 5e−5, 5e−6]. Each
run randomly select one of the hyper-parameter options. From each run of WAFT method, we take

1https://github.com/huggingface/pytorch-image-models

18



Under review as a conference paper at ICLR 2024

the weights of the epoch with maximum accuracy on the validation dataset, which follows the training
distribution.

E.2 EXTENDED EXPERIMENT RESULTS

Arbitrarily increasing local steps cannot reduce communication rounds.

From Table 4, we can see that simply increasing local steps does not always lead to improved model
performance. For FedAvg on the CIFAR10 dataset, increasing local steps beyond 8 actually results in
a decrease in model performance.

Table 4: FedAvg with different local steps: Label shift test accuracy after R = 1 communication
rounds (CIFAR-10 with 5 Clients).

Method Accuracy (τ = 1) ↑ Accuracy (τ = 4) ↑ Accuracy (τ = 8) ↑ Accuracy (τ = 12) ↑ Accuracy (τ = 16) ↑
FedAvg 2017 34.03(2.84) 49.08(1.51) 58.34(0.86) 55.76(0.82) 53.21(0.80)

Computational and memory costs comparison.

In Table 5, we provide detailed information on computational overhead and memory usage for
various methods. Since the computational overhead and memory usage of FedAvg and other used
FL methods are nearly identical, we only present the data for FedAvg here. Similarly, as the
computational overhead and memory usage for SWA and SWAD, as well as for Soups and DiWA,
are also nearly the same, we only show the data for SWA and Soups methods. It can be observed that
our method requires more memory compared to other soups-based methods. However, the overall
computational time for a single client’s communication round is faster in our approach. This is
because other soups-based methods require training a large number of models repeatedly to achieve
good model performance. For instance, Soups needs to train 32 models, whereas our method only
requires training 4 models. If the number of models trained by Soups is reduced to just 4, it only
brings about a 5% improvement compared to FedAvg with a communication round of 1.

Table 5: Computational and memory costs of different types of method (ResNet-18).
Costs FedAvg 2017 SWA 2018 Soups 2022 LSS (M = 2) LSS (M = 4)
MACs (G) 1.82 1.82 1.82 2.73 4.55
Train Time Per Epoch (s) 2.66 2.73 2.66 12.27 20.43
Train Time Per Round (s) 21.28 433.31 683.52 100.98 169.77

LSS encourages smoothness (reducing β). In Table 6, we provide the performance degradation of
trained models evaluating under varying levels of random noise. Generally, a smaller performance
degradation indicates a more robust model, which to some extent reflects the smoothness of the
trained model. We can observe that our method exhibits greater robustness to noise perturbation.

Table 6: Smoothness of the trained model. Evaluated trained model performance drop on a testset
with added ℓ0 norm random noise. CIFAR-10 dataset Dirichlet distribution α = 1.0 and α = 0.1:
Label shift test accuracy after R = 1

CIFAR-10 (4/255) CIFAR-10 (8/255)

Method Accuracy (R = 1) ↓ Accuracy (R = 3) ↓ Accuracy (R = 1) ↓ Accuracy (R = 3) ↓
FedAvg 2017 1.30 1.17 3.06 2.93
LSS 0.89 0.76 2.37 1.85

LSS improves flatness of loss landscape. The sharpness measure utilized in the Table 7 computes the
median of the dominant Hessian eigenvalue across all training set batches through the Power Iteration
algorithm (Yao et al., 2020). This metric signifies the maximum curvature of the loss landscape,
commonly employed in the literature on flat minima (Kaddour et al., 2022) to indicate sharpness. As

19



Under review as a conference paper at ICLR 2024

demonstrated in the presented table, it is clear that our proposed method results in flatter minima
compared to FedAvg.

Table 7: Loss landscape flatness quantification with Hessian eigenvalue.

FedAvg ↓ LSS (M = 2) ↓ LSS (M = 3) ↓ LSS (M = 4) ↓
Hessian Eigenvalue 193.18 147.20 136.67 119.14

Evaluation with more clients. To assess the effectiveness of our method in larger-scale client
scenarios, we conducted an expanded experiment involving 50 clients. From the Table 8, we can
observe that our proposed method maintains a significant advantage across different client scales,
particularly when the number of communication rounds is small (R = 1).

Table 8: Different client numbers (5 Clients and 50 Clients): Label shift test accuracy after R = 1
and R = 3 communication rounds.

CIFAR-10 (5 Clients) CIFAR-10 (50 Clients)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 58.34(0.86) 66.74(0.76) 49.32(0.93) 68.39(0.61)
LSS 65.96(1.50) 75.16(1.07) 56.72(0.53) 73.32(0.46)

Evaluation with ViT. To validate the effectiveness of our method across different network architec-
tures, we conducted an expanded experiment using the Vision Transformer (ViT) model based on
the Transformer architecture. Upon observing the Table 9, it is evident that our method consistently
enhances the communication efficiency of federated learning with ViT model architectures.

Table 9: Different Network Architecture (ResNet-18 and ViT): Label shift test accuracy after R = 1
and R = 3 communication rounds.

CIFAR-10 (ResNet-18) CIFAR-10 (ViT Base)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 58.34(0.86) 66.74(0.76) 60.35(0.82) 69.38(0.51)
LSS 65.96(1.50) 75.16(1.07) 67.48(0.70) 76.81(0.47)

Evaluation with different Non-IID level. To further comprehensively validate the effectiveness of
our method under different levels of data heterogeneity, we conducted experiments on the CIFAR-10
dataset by adjusting the coefficients α of the Dirichlet distribution. We examined the performance of
our method in scenarios with greater distribution variations. Based on the Table 10, it is evident that
our method maintains a significant advantage in scenarios with larger data heterogeneity.

20



Under review as a conference paper at ICLR 2024

Table 10: Different Non-IID level (Dirichlet distribution α = 1.0 and α = 0.1): Label shift test
accuracy after R = 1 and R = 3 communication rounds.

CIFAR-10 (α = 1.0) CIFAR-10 (α = 0.1)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg 2017 58.34(0.86) 66.74(0.76) 18.30(2.25) 45.85(1.24)
LSS 65.96(1.50) 75.16(1.07) 26.70(1.62) 50.02(0.82)

21


	Introduction
	Related Work
	Heterogeneous Federated Learning
	Fine-tuning and Model Interpolation

	Method
	Notions and Problem Definition
	Local Steps Effect on FL Convergence under Data Heterogeneity
	Our Solution: LSS Algorithm
	Random interpolation conserving connected low-loss region.
	Diversity term.
	Affinity term.
	Overall pipeline.


	Experiment
	Experimental Setup
	Performance Comparison
	Ablation Studies

	Conclusion
	Notation Table
	Convergence Analysis
	Formal Restatement of Convergence Theorem
	Proof of Lemma 1

	Theoretical Intuitions.
	Decomposition of Generalization Bound

	More Related Work
	Heterogeneous Federated Learning
	Fine-tuning and Model Interpolation

	Experiment Details
	Experimental Setup Details
	Extended Experiment Results




