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ABSTRACT

Artificial neural networks (ANNs) have revolutionized machine learning in
recent years, but a complete theoretical framework for their learning process is still
lacking. Substantial theoretical advances have been achieved for infinitely wide
networks. In this regime, two disparate theoretical frameworks have been used,
in which the network’s output is described using kernels: one framework is based
on the Neural Tangent Kernel (NTK), which assumes linearized gradient descent
dynamics, while the Neural Network Gaussian Process (NNGP) kernel assumes
a Bayesian framework. However, the relation between these two frameworks and
between their underlying sets of assumptions has remained elusive. This work
unifies these two distinct theories using gradient descent learning dynamics with
an additional small noise in an ensemble of randomly initialized infinitely wide
deep networks. We derive an exact analytical expression for the network input-
output function during and after learning and introduce a new time-dependent
Neural Dynamical Kernel (NDK) from which both NTK and NNGP kernels can
be derived. We identify two important learning phases characterized by different
time scales: gradient-driven and diffusive learning. In the initial gradient-driven
learning phase, the dynamics is dominated by deterministic gradient descent, and
is adequately described by the NTK theory. This phase is followed by the slow
diffusive learning stage, during which the network parameters sample the solution
space, ultimately approaching the equilibrium posterior distribution correspond-
ing to NNGP. Combined with numerical evaluations on synthetic and benchmark
datasets, we provide novel insights into the different roles of initialization, regu-
larization, and network depth, as well as phenomena such as early stopping and
representational drift. This work closes the gap between the NTK and NNGP
theories, providing a comprehensive framework for understanding the learning
process of deep neural networks in the infinite width limit.

1 INTRODUCTION

Despite the empirical success of artificial neural networks (ANNs), theoretical understanding of
their underlying learning process is still limited. One promising theoretical approach focuses on
deep wide networks, in which the number of parameters in each layer goes to infinity while the
number of training examples remains finite (Jacot et al. (2018); Lee et al. (2018; 2019); Novak
et al. (2018; 2019); Matthews et al. (2018); Yang (2019); Sohl-Dickstein et al. (2020)). In this
regime, the neural network (NN) is highly over-parameterized, and there is a degenerate space of
solutions achieving zero training error. Investigating the properties of the solution space offers an
opportunity for understanding learning in over-parametrized NNs (Chizat & Bach (2020); Jin &
Montúfar (2020); Min et al. (2021)). The two well-studied theoretical frameworks in the infinite
width limit focus on two different scenarios for exploring the solution space during learning. One
considers randomly initialized NNs trained with gradient descent dynamics, and the learned NN pa-
rameters are largely dependent on their value at initialization. In this case, the infinitely wide NN’s
input-output relation is captured by the neural tangent kernel (NTK) (Jacot et al. (2018); Lee et al.
(2019)). The other scenario considers Bayesian neural networks (BNNs) with an i.i.d. Gaussian
prior over their parameters, and a learning-induced posterior distribution. In this case, the statistics
of the NN’s input-output relation in the infinite width limit are given by the neural network Gaussian
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process (NNGP) kernel (Cho & Saul (2009); Lee et al. (2018)). These two scenarios make differ-
ent assumptions regarding the learning process and regularization. Furthermore, for some datasets
the generalization performance of the two kernels differs significantly (Lee et al. (2020)). It is
therefore important to generate a unified framework with a single set of priors and regularizations
describing a dynamical process that captures both cases. Such a theory may also provide insight
into salient dynamical phenomena such as early stopping (Li et al. (2020); Advani et al. (2020); Ji
et al. (2021)). From a neuroscience perspective, a better understanding of the exploratory process
leading to Bayesian equilibrium may shed light on the empirical and hotly debated phenomenon of
representational drift (Rokni et al. (2007); Rule et al. (2019); Deitch et al. (2021); Marks & Goard
(2021); Schoonover et al. (2021)). To this end, we construct a new analytical theory of the learning
dynamics in infinitely wide ANNs. Our main contributions are:
1. We derive an analytical expression for the time evolution of the mean input-output relation (i.e.
the mean predictor) of infinitely wide networks under Langevin dynamics in the form of an integral
equation, and demonstrate its remarkable agreement with computer simulations.
2. A new two-time kernel, the Neural Dynamical Kernel (NDK), naturally emerges from our theory
and we derive explicit relations between the NDK and both the NTK and the NNGP kernels.
3. Our theory reveals two important learning phases characterized by different time scales: gradient-
driven and diffusive learning. In the initial gradient-driven learning phase, the dynamics is primarily
governed by deterministic gradient descent, and can be described by the NTK theory. This phase is
followed by a slow diffusive stage, during which the network parameters sample the solution space,
ultimately approaching the equilibrium posterior distribution corresponding to NNGP.

4. We apply our theory to both synthetic and benchmark datasets and present several predictions.
Firstly, the generalization error may exhibit diverse behaviors during the diffusive learning phase de-
pending on network depth and the ratio between initialization and regularization strengths. Our the-
ory provides insights into the roles of these hyper-parameters in early stopping. Secondly, through
analysis of the temporal correlation between network weights during diffusive learning, we show
that despite the random diffusion of hidden layer weights, the training error remains stable at a very
low value due to a continuous realignment of readout weights and network hidden layer weights.
Conversely, a time delay in this alignment degrades the network performance due to decorrela-
tion in the representation, ultimately leading to degraded performance. We derive conditions under
which the performance upon completely decorrelated readout and hidden weights remain well above
chance. This provides insight into the representational drift and its consequences observed in bio-
logical neuronal circuits.

5. Relation to previous work: Previous work considered a single-time NTK kernel Jacot et al.
(2018). This implicit time dependence arises through the weight dependence of an uaveraged
weight-dependent NTK. Our (two-) time dependence arises in an appropriate weight-averaged ker-
nel, and therefore exhibits explicit time dependence. Other perspective on the two phases has been
proposed by previous works, Shwartz-Ziv & Tishby (2017) establishes an information theory frame-
work to describe the two phases, Li et al. (2021); Blanc et al. (2020) analyze the two phases in SGD,
where the diffusive phase is driven by the different types of noise (label noise or isotropic noise). Our
work complements these previous findings by providing theoretical analysis of the two phases under
Langevin dynamics, reaffirming the connections between the diffusive learning stage and represen-
tational drift in neuroscience as established in previous works Aitken et al. (2022); Pashakhanloo &
Koulakov (2023).

2 THEORETICAL RESULTS
In this section, we present our dynamic theory for infinitely wide deep networks under Langevin
dynamics. We define a new time-dependent kernel, the Neural Dynamical Kernel (NDK), and derive
an exact analytical integral equation for the mean predictor of the network.

2.1 NOTATION AND SETUP FOR ARCHITECTURE AND TRAINING DYNAMICS

We consider a fully connected DNN with L hidden layers with a vector input x ∈ RN0 and a single
output f (x, t) (i.e., the predictor), with the following time-dependent input-output function:

f (x, t) =
1√
NL

a (t) · xL (x, t) , a (t) ∈ RNL (1)

xl (x, t) = ϕ
(
N

−1/2
l−1 Wl (t) · xl−1 (x, t)

)
, xl (x, t) ∈ RNl , l = 1, · · · , L (2)
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Here Nl denotes the number of nodes in hidden layer l, and N0 is the input dimension. The set of
network weights at a training time t is denoted collectively as θ (t) =

{
W1 (t) · · ·WL (t) ,a (t)

}
,

where a (t) ∈ RNL denotes the linear readout weights and W (t)
l ∈ RNl×Nl−1 the hidden layer

weights between layer l − 1 and l. ϕ
(
N

−1/2
l−1 Wl (t) · xl−1 (x, t)

)
is an element-wise nonlinear

function of the weighted sum of its input vector, and xl=0 ≡ x is the input to the first layer. The
training data is a set of P labeled examples D : {xµ, yµ}µ=1,··· ,P where there are P training input
vectors xµ ∈ RN0 , and y ∈ RP is a vector of the target labels of the training examples. We
denote ftrain (t) ∈ RP , a vector containing the predictor on the P training vectors. We consider the
supervised learning cost function:

E (θ (t) |D) =
1

2
|ftrain (t)− y|2 + T

2σ2
|θ (t)|2 (3)

The first term is the squared error empirical loss (SE loss), and the second term is a regularization
term that favors weights with small L2 norm, where |θ (t)|2 is the sum of the squares of all weights.
It is convenient to introduce the temperature parameter (see definition below) T as controlling the
relative strength of the regularization, and σ2 is the variance of the equilibrium distribution of the
Gaussian prior. We consider noisy gradient descent learning dynamics given by continuous-time
Langevin dynamics, where the weights of the system start from an i.i.d. Gaussian initial condition
with zero mean and variance σ2

0 , and evolve under gradient descent dynamics with respect to the
cost function above with an additive white noise ξ (t):

d

dt
θ (t) = −∇θE (θ (t)) + ξ (t) (4)

where ξ (t) has a white noise statistics E
[
ξ (t) ξ (t′)

⊤
]
= 2TIδ (t− t′) ,E [ξ (t)] = 0, and T is the

temperature controlling the level of noise in the system. As we show below, the additional white
noise compared to deterministic gradient descent allows for continued exploration of the solution
space after reaching a small training error, and enables the connection from NTK to NNGP theory.

2.2 INFINITE WIDTH LIMIT

We are interested in the predictor statistics (in particular the mean predictor) induced by the Langevin
dynamics, which can be evaluated analytically in the infinite width where the hidden layer widths
are taken to infinity, while the number of training examples P remains finite. For simplicity, we
consider all the Nl to be the same for l = 1, · · · , L and equal to N , N → ∞.

SI Sec.A presents a derviation of a path integral formulation of the above Langevin dynamics using
a Markov proximal learning framework. Evaluating statistical quantities using these integrals is in
general intractable. However, in the infinite width limit, they become tractable, as proven in SI
Sec.B.1-B.4. Specifically, the moments of the predictor can be derived from a moment generating
function (MGF) M [ℓ(t)], written in the form of a path integral over two auxiliary time-dependent
vectors, u (t) ∈ RP and v (t) ∈ RP . Additionally, ũ(t) = [u(t), iℓ(t)] ∈ RP+1, where ℓ(t) denotes
the field coupled to the predictor f(x, t) on an arbitrary test input vector x. Therefore, the moments
of the predictor can be derived by evaluating the derivative of M[ℓ(t)] at ℓ(t) = 0. In SI Sec.B.4 it
is shown that the MGF has the following form,

M [ℓ(t)] =

∫
Du(t)

∫
Dv(t) exp (−S [v(t), ũ(t)]) (5)

S [v (t) , ũ (t)] =
1

2

∫ ∞

0

dt

∫ ∞

0

dt′m (t, t′) ũ⊤ (t) K̃L (t, t′) ũ (t′) (6)

+

∫ ∞

0

dt

∫ t

0

dt′ũ (t)
⊤
K̃d,L (t, t′)v (t′) +

∫ ∞

0

dtu(t)⊤ (v (t)− iy)

where
∫
Du(t) means integration over all trajectories of u and similarly for v. The two-time kernel

matrices K̃L(t, t′) ∈ R(P+1)×(P+1) and K̃d,L(t, t′) ∈ R(P+1)×P in Eq.6 are defined by applying
the kernel functions KL(t, t′,x,x′) and Kd,L(t, t′,x,x′) on P training data xµ, 1 ≤ µ ≤ P and a
single test point, xP+1 = x. Specifically, K̃L

µ,ν(t, t
′) = KL(xµ,xν , t, t

′), 1 ≤ µ, ν ≤ P + 1 and
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K̃d,L
µ,ν = K̃d,L(xµ,xν , t, t

′), 1 ≤ µ ≤ P + 1, 1 ≤ ν ≤ P . m(t, t′) is a two-time dependent scalar
function.

We first provide expressions of these kernel functions as well as the scalar two-time function m(t, t′)
in Sec.2.3; we then present an expression for the mean predictor in terms of these kernels in Sec.2.4.
The full derivation of these equations are given in Sec. B.1-B.4.
2.3 THE NEURAL DYNAMICAL KERNEL (NDK)
The kernel function Kd,L(t, t′,x,x′) in Eq.6 is a new kernel function in our theory, denoted as the
Neural Dynamical Kernel (NDK), which can be viewed as a time-dependent generalization of the
NTK, and can be expressed in terms of derivatives of the predictor w.r.t. the time-dependent network
parameters (SI Sec.C.4):

Kd,L (t, t′,x,x′) = e−Tσ−2|t−t′|Eθ∼S0

[
∇θ(t)f (x, t) · ∇θ(t′)f (x′, t′)

]
(7)

where S0 denotes a Gaussian probability measure of the weights

Eθ∼S0

[
θ (t)θ (t′)

⊤
]
= m (t, t′) I,Eθ∼S0 [θ (t)] = 0 (8)

m (t, t′) = σ2e−Tσ−2|t−t′| +
(
σ2
0 − σ2

)
e−Tσ−2(t+t′) (9)

Here and in Eq.7 T is the level of noise in the Langevin dynamics, σ2 and σ2
0 are the variances of

the L2 regularizer and initial weights distribution, respectively. As expected, m (0, 0) = σ2
0 is the

variance of the weights at initialization. At long times, the last (transient) term in Eq.9 vanishes and
the first term dominates, such that m(t, t′) and Kd,L(t, t′,x,x′) become functions of time difference
|t− t′|. From Eqs.7, 9 follow that at initialization

Kd,L (0, 0,x,x′) = Eθ0∼N(0,Iσ2
0)

[∇θ0 f (x, 0) · ∇θ0 f (x′, 0)] = KL
NTK(x,x′) (10)

The NDK equals the NTK as the average is only over the i.i.d. Gaussian initialization. Furthermore,
as we will see in Sec.3.2, the NNGP kernel can also be obtained from the NDK. The other kernel
function KL(t, t′,x,x′) that appears in Eq.6 is a two-time extension of the NNGP kernel function

KL (t, t′,x,x′) = Eθ∼S0

[
N−1xL (x, t) · xL (x′, t′)

]
(11)

The NDK defined in Eq.7 can be computed recursively, in terms of the two-time NNGP kernel
KL (t, t′,x,x′) and the derivative kernel K̇L (t, t′,x,x′) (see SI 2.3 for a detailed proof of the
equivalence), given by

Kd,L (t, t′,x,x′) = m (t, t′) K̇L (t, t′,x,x′)Kd,L−1 (t, t′,x,x′) + e−Tσ−2|t−t′|KL (t, t′,x,x′)

Kd,L=0 (t, t′,x,x′) = e−Tσ−2|t−t′| (N−1
0 x · x′)

(12)

The derivative kernel, K̇L (t, t′,x,x′) is the kernel evaluated w.r.t. the derivative of the activation
functions

K̇L (t, t′,x,x′) ≡ Eθ∼S0

[
N−1ẋL (x, t) · ẋL (x′, t′)

]
(13)

where ẋL (x, t) = ϕ′
(
N

− 1
2

L−1W
L
t · xL−1 (x, t)

)
, namely dϕ(z)/dz evaluated at the preactivtion of

xL−1 . All the kernel functions above including the two-time NNGP kernel, the derivative kernel,
and the NDK, have closed-form expressions for specific activation functions such as linear, ReLU
and error function (see SI Sec.C.1-C.3, Cho & Saul (2009); Williams (1996)).

2.4 EQUATIONS FOR THE MEAN PREDICTOR

Here we provide the expressions of the mean predictor averaged over the distribution of learning
trajectories, under the Langevin dynamics (Eq.4), using the NDK introduced above. The mean
predictor can be derived by evaluating the derivative of the MGF (Eq.37, see details in SI Sec.B.3)
The mean predictor on the training inputs obeys the following integral equation

E [ftrain (t)] =

∫ t

0

dt′Kd,L (t, t′) (y − E [ftrain (t
′)]) (14)
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and the mean predictor on any test point x is given by an integral over the training predictor with
the NDK of the test data x

E [f (x, t)] =
∫ t

0

dt′kd,L (t, t′)
⊤
(y − E [ftrain (t

′)]) (15)

Here we have introduced separate notations for the kernel function applied on training data and
testing data, Kd,L(t, t′) ∈ RP×P and kd,L(t, t′) ∈ RP , defined as Kd,L

µ,ν (t, t
′) ≡ K̃d,L

µ,ν (t, t
′) and

kd,L
µ (t, t′) ≡ K̃d,L

P+1,µ(t, t
′), respectively. Throughout the paper we will use similar notations for

these kernel matrices and vectors (i.e., K ∈ RP×P for kernel functions applied on training data, and
k ∈ RP for kernel functions applied on test and training data).

3 CORRESPONDENCE TO NTK AND NNGP
In this section, we show that our theory recovers known results of the NTK (Jacot et al. (2018)) and
NNGP theories (Lee et al. (2018)) in the short- and long-time limit, respectively. We stress that the
separation of time scales occurs in the limit of small but nonzero noise controlled by T , which is
also the relevant limit of a realistic machine-learning scenario.

3.1 GRADIENT-DRIVEN PHASE CORRESPONDS TO NTK DYNAMICS

The time dependence of the NDK (Eq.12) is in time scales of T · t (Eqs.9,12), and thus at low T and
t ∼ O (1) we can substitute Kd,L (t, t′,x,x′) = Kd,L (0, 0,x,x′). In Sec.2.3, we obtain an exact
equivalence between the NDK at time zero and the NTK. In this regime, Kd,L(t, t′) and kd,L(t, t′)
in Eq.15 and Eq.14 become time-independent. By taking the time derivative on both sides, the
integral equations Eq.15 and Eq.14 can be transformed into a linear ODE, and solved analytically,
leading to the well-known mean predictor in the NTK theory:

E [f (x, t)] ≈ kL
NTK

⊤ [
KL

NTK

]−1 (
I − exp

(
−KL

NTKt
))

y, t ∼ O (1) (16)

where we define kL
NTK ∈ RP and KL

NTK ∈ RP×P as the NTK applied on test and training data,
respectively, similar to Sec.2.3. We see that the NTK theory describes the dynamics of the sys-
tem when the time is short compared to the level of noise, such that the dynamics is approximately
deterministic. Taking the large t limit of the NTK dynamics (Eq.16) results in the “NTK equilib-
rium”, where limt→∞ E [f (x, t)] = kL

NTK
⊤ [

KL
NTK

]−1
y. This short-time equilibrium marks the

crossover between the gradient-driven phase and the diffusive learning phase. After the NTK equi-
librium point, the gradient of the loss is O (T ), and thus the two parts of the cost function in Eq.3
(the SE loss and the regularization) are on equal footing, and give rise to the diffusive dynamics in
time scales of t ∼ O

(
T−1

)
.

3.2 LONG-TIME EQUILIBRIUM CORRESPONDS TO NNGP

Now we investigate the behavior at long time scales defined by t, t′ ≫ T−1. In this regime,
Kd,L (t, t′,x,x′) = Kd,L (t− t′,x,x′) is a function of the time difference, and the transient de-
pendence on the initialization parameter σ0 vanishes. Furthermore, in this regime the limit of the
integral of the NDK (Eq.7, Eq.12) satisfies the following identity (see SI Sec.C.4 for detailed proof):

lim
t→∞

(∫ t

0

Kd,L (t− t′,x,x′) dt′
)

= σ2T−1KL
GP (x,x′) (17)

where KL
GP (x,x′) = EW∼N (0,σ2I)

[
N−1xL (x) · xL (x′)

]
is the well-known NNGP kernel. As a

result, the mean predictor on arbitrary input x (Eq.15) correspondingly converges to an equilibrium
(see SI C.4),

lim
t→∞

E [f (x, t)] = kL
GP

⊤ (
ITσ−2 +KL

GP

)−1
y (18)

where kL
GP ∈ RP is the NNGP kernel function applied to x. This is the known equilibrium NNGP

result (Lee et al. (2018)). We emphasize that this result is true for any temperature, while the NTK
solution in Sec.3.1 is relevant at low T only. Our theory thus establishes the connection between the
NTK and the NNGP theories.
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Figure 1: Two phases of the dynamics. Example using a synthetic dataset where the training inputs
are orthogonal to each other with random binary labels yµ ∈ {±1}. Each test point has partial
overlap with one input point and is orthogonal to all the others. The desired test label is the same as
the label on the training input with which it has nonzero overlap. (a) Schematics of the dynamics,
the weights are initialized with width σ0. The gradient-driven dynamics bring the weights to the
solution space with a small training error, and the diffusive learning dynamics explores the solution
space with a time scale T−1. (b) Three example trajectories of f(x, t), the dynamics are initially
deterministic, and fluctuate significantly when t is large. (c-d) The network mean predictor on a test
point with the desired label +1 (see details in SI Sec.E). (c) T does not affect the initial gradient-
driven phase, but decreasing T slows the dynamics of the diffusive learning phase. (d) Increasing
σ2 and σ2

0 simultaneously (keeping σ2 = σ2
0) affects the time scales of the two phases differently.

The time scale of the gradient-driven phase decreases as σ2
0 increases and vice versa in the diffusive

dynamics. (e) The mean predictor under Langevin simulations of neural networks for the synthetic
dataset agrees well with the theory prediction.
4 DYNAMICS AT LOW T

In this section, we study the equations for the mean predictor dynamics (Eqs. 14, 15) in the important
limit of low T . As we show below and illustrate in Fig.1(a,b), the network dynamics exhibits two
distinct regimes. First, the network weights are initialized with width σ0, and converge to weights
with almost zero training error (error of O (T )) approximately deterministically. Subsequently, the
network executes slow and noise-driven explorations (on a time scale of O

(
T−1

)
) of the solution

space, regularized by a Gaussian prior with width σ. We investigate how the different parameters
such as initialization, regularization and the level of noise affect the learning behavior by evaluating
numerically Eqs. 14, 15.

4.1 TIME SCALES OF THE DYNAMICS

In this section, we further examine how the time scales of the dynamics in the two phases are affected
by the different hyper-parameters. We focus on the level of stochasticity T , the initialization (σ2

0),
and regularization (σ2). As can be seen in Eqs.9, 12, the dynamics depend on t through exponents
exp

(
−Tσ−2t

)
and a scalar factor that depends on σ2

0/σ
2. To determine the time scales of the

dynamics, we fix the scalar factor σ2
0/σ

2 as a constant as we vary σ2
0 , σ

2 and T respectively. We
consider σ2

0 , σ
2 ∼ O (1).

First, we evaluate how the dynamics depends on the level of stochasticity determined by a small
but nonzero T . As we see in Fig.1 (c), while the initial learning phase is not affected by T since
the dynamics is mainly driven by deterministic gradient descent, the diffusive phase is slower for
smaller T since it is driven by noise. We then investigate how the dynamics depends on σ2 and σ2

0
while fixing the ratio between them. Fig.1 (d) shows that as we increase σ2 and σ2

0 simultaneously,
the gradient dynamics becomes faster since the initialization weights determined by σ2

0 are closer
to the typical solution space (with the L2 regularization), while the dynamics of the diffusive phase
becomes slower since the regularization determined by σ2 imposes less constraint on the solution
space, hence exploration time increases.

4.2 DIFFUSIVE LEARNING DYNAMICS EXHIBIT DIVERSE BEHAVIORS

In this section, we focus on the diffusive phase, where t ∼ O (1/T ). Unlike the simple exponen-
tial relaxation of the gradient-driven stage, in the diffusive phase, the predictor dynamics exhibits
complex behavior dependent on depth, regularization, initialization and the data. We systematically
explore these behaviors by solving the integral equations (Eqs.14, 15) numerically for benchmark
datasets as well as a simplified synthetic task (see details of the tasks in Fig.1,2 captions and SI
Sec.E). We verify the theoretical predictions with simulations of the gradient-based Langevin dy-
namics of finite width neural networks with sufficiently small discretisation time step Alfonsi et al.
(2015), as shown in Fig.1(e) and SI Sec.F . Even though in the diffusive phase, the dominant dy-
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Figure 2: Dynamics of the mean predictor on a
given test point in benchmark datasets. All test
points shown have a target label +1. (a) Result on
CIFAR10 dataset (Krizhevsky et al. (2014)) with
binary classification of cats vs dogs, for σ2

0/σ
2 =

2. We see a fast convergence of the mean pre-
dictor on the training point while the test point
exhibits a diffusive learning phase on time scales
t ∼ O (1/T ). (b-d) Results on MNIST dataset
(Deng (2012)) with binary classification of 0 vs 1
digits, for L = 1, 2. In L = 2 the effect of σ2

0/σ
2

is larger. (d) Results on MNIST dataset in a net-
work with an error function (erf) nonlinearity with
a single hidden layer. The effect σ2

0/σ
2 is signifi-

cantly larger than in (b,c).

namics is driven by noise and the regularization, the learning signal (both on the readout weights
and the hidden layers) from the gradient of the loss is what restricts the exploration to the subspace
of low (O(T )) training error, and without it the performance will deteriorate back to chance.

The role of initialization and regularization and early stopping phenomena: We investigate
how the diffusive dynamics is affected by the σ2

0 for fixed values of σ2 and T (thus fixing the time
scale of the diffusive learning phase). As expected, the training predictor converges fast to the target
output and exhibits little deviation afterward (see Fig.2 (a)). In the previous section, we kept the
ratio σ2

0/σ
2 fixed, resulting in the same qualitative behavior with different time scales. In Fig.2(b-d)

, we show that changing the ratio σ2
0/σ

2 results in qualitatively different behaviors of the trajectory,
shown across network depth and nonlinearities. Interestingly, in Fig.2(c), when σ2

0/σ
2 is small, the

predictor dynamics is non-monotonic, overshooting above its equilibrium value. The optimal early
stopping point, defined as the time the network reaches the minimal generalization error in the entire
learning trajectory from t = 0 to t → ∞, occurs in the diffusive learning phase. In this case, the
performance in the diffusive phase is better than both equilibria. We study the effect of σ2

0/σ
2 on

the early stopping point systematically in the synthetic dataset in Fig.3.

The role of depth: The effect of different σ2
0/σ

2 ratios on the dynamics increases with depth,
resulting in distinctively different behavior for different ratios (Fig.2(b,d)). Depth also changes the
NTK and NNGP equilibrium, typically in favor of the NNGP solution as the network grows deeper
(see SI Sec.D.1). Furthermore, as shown in Fig.3, depth also has an effect on the occurrence of
the optimal early stopping time. In the synthetic dataset, the early stopping time occurs earlier in
shallower networks for small σ2

0/σ
2, and does not occur when L > 3.

Figure 3: The time difference between the optimal stop-
ping time and the long-time equilibrium time scaled by T
(denoted by ∆t · T ), for the synthetic orthogonal dataset
in networks with hidden layers L = 1, 2, 3. We see that
for small σ2

0/σ
2 the optimal stopping time occurs during

the diffusive learning phase, while for large σ2
0/σ

2 the
optimal stopping time is only at the long-time equilib-
rium, which corresponds to the NNGP. Interestingly, in
this dataset for L > 3 there is no early stopping point.

The role of nonlinearity: We compare the behaviors of networks with ReLU and error function,
with both having closed-form expressions for their NDK (see SI C.1-C.3). As shown in Fig.2(c)
with error function nonlinearity, the difference between NTK and NNGP is larger and the effect of
σ2
0/σ

2 on the network dynamics is more significant.

5 REPRESENTATIONAL DRIFT

We now explore the implications of the diffusive learning dynamics on the phenomenon of represen-
tational drift. Representational drift refers to neuroscience observations of neuronal activity patterns
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accumulating random changes over time without noticeable consequences on the relevant animal be-
havior. These observations raise fundamental questions about the causal relation between neuronal
representations and the underlying computation. Some of these observations were in the context
of learned behaviors and learning-induced changes in neuronal activity. One suggestion has been
that changes in the readout of the circuit compensate for the representational drift, leaving intact its
input-output relation (Rule et al. (2020); Rule & O’Leary (2022)). We provide a general theoretical
framework for studying such dynamics. In our model, the stability of the (low) training error during
the diffusion phase, is due to the continuous realignment of readout weights a (t) to changes in the
network hidden layer weights W (t) as they drift simultaneously exploring the space of solutions.

The above alignment scenario requires an ongoing learning signal acting on the weights. To high-
light the importance of this signal, we consider an alternative scenario where the readout weights
are frozen at some time (denoted as t0) after achieving a low training error while the weights of the
hidden layers W (t) continue to drift randomly without an external learning signal. We will denote
the output of the network in this scenario as fdrift (x, t, t0). Our formalism allows for computation
of the mean of fdrift (x, t, t0) (see SI Sec.D for details). We present here the results for large t0, i.e.,
after the learning has finished.

E [fdrift (t− t0)] =
(
kL (t− t0)

)⊤ (
ITσ−2 +KL

GP

)−1
y (19)

The kernel kL(t − t0) represents the overlap between the representations of the training inputs at
time t0 and that of a test point at time t . When t − t0 is large, the two representations completely
decorrelate and the predictor is determined by a new kernel KL

mean (x,x
′)defined as

KL
mean (x,x

′) = N−1Eθ∼N (0,Iσ2)

[
xL (x)

]
· Eθ∼N (0,Iσ2)

[
xL (x′)

]
(20)

which is a modified version of the NNGP kernel where the Gaussian averages are performed sepa-
rately for each data point.

lim
t−t0→∞

E [fdrift (x, t− t0)] = kL
mean

⊤ (
ITσ−2 +KL

GP

)−1
y (21)

where kL
mean is defined as applying the mean kernel function to the test data. For some nonlinearities

(e.g., linear and error function activation) KL
mean (x,x

′) is zero. This however, is not the case for
other nonlinearities (e.g., ReLU). In these cases, its value depends on the input vectors’ norms
∥x∥ , ∥x′∥. Thus, if the distribution of the norms is informative of the given task, the predictor can
still be useful despite the drift process. In this case, we can say that the norms are drift-invariant
information. In other cases, the norms may not be relevant to the task, in which case the decorrelated
output will yield a chance-level performance. We present examples for both scenarios in Fig.4. We
consider two MNIST binary classification tasks, after reaching the long-time equilibrium. For each
one, we show the evolution of the histograms of the predictor on the training examples at times
t, after freezing readout weights at an earlier time t0. We train a linear classifier on top of the
training predictors to evaluate the classification accuracy (see SI Sec.D for details). In the case
of the classification task of the digit pair 4,9, the two histograms eventually overlap each other,
resulting in a long-time chance level accuracy and a complete loss of the learned information. In
contrast, in the classification of the digit pair 0,1 (Fig.4(f-j)), the histograms of the two classes are
partially separated, leading to a long time accuracy of 90%, reflecting the residual information in
the input norms. Interestingly during the dynamics from the original state to the long time state the
distributions cross each other, resulting in a short period of chance performance.

6 DISCUSSION

Our work provides the first theoretical understanding of the complete trajectory of gradient-descent
learning dynamics of wide DNNs in the presence of small noise, unifying the NTK theory and the
NNGP theory as two limits of the same underlying process. While the noise is externally injected
in our setup, stochasticity in the machine-learning context may arise from randomness in the data
in stochastic gradient descent, making noisy gradient descent a relevant setting in reality (Dalalyan
(2017); Noh et al. (2017); Wu et al. (2020); Mignacco & Urbani (2022)). We derive a new kernel,
the time-dependent NDK, as a dynamic generalization of the NTK, and provide new insights into
learning dynamics in the diffusive learning phase as the learning process explores the solution space.
We focus on two particularly interesting phenomena of early stopping and representational drift.
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Figure 4: Representational drift with at0 fixed at a long-time equilibrium t0. (a-d,f-i) The dynamics
of the probability distribution of E [fdrift (x, t− t0)] over the training data, starting with two delta
functions at ±1, and gradually decays in performance when a (t0) and W (t) lose alignment. On
classification between the digits 0, 1, the norm of the images has enough information to classify
them with reasonable success even after complete decorrelation, while on classification between the
digits 4,9 the performance is reduced to chance. (e,j) The performance as a function of the time
difference from the freezing point t0.

We identify an important parameter σ2
0/σ

2 characterizing the relative weights amplitude induced
by initialization and Bayesian prior regularization, which plays an important role in shaping the
trajectories of the predictor. We note that while the results are shown for network with a single
output for simplicity, extension to networks with M outputs (M ∼ O(1)) is straightforward by
simply replacing the P dimensional target output y to a P ×M dimensional matrix.

In most of our examples, the best performance is achieved after the gradient-driven learning phase,
indicating that exploring the solution space improves the network’s performance, consistent with
empirical findings (Lee et al. (2020)). For some examples, the optimal stopping point occurs during
the diffusive phase, before the long-time equilibrium. We stress that our ‘early stopping’ is ‘early’
compared to the NNGP equilibrium, and is different from the usual notion of early stopping, which
happens in the gradient-driven learning phase (Caruana et al. (2000); Jacot et al. (2018); Advani
et al. (2020)). Our theory provides insights into how and when an early stopping point can happen
after the network reaches an essentially zero training error.

Our theory for the Langevin dynamics suggests a possible mechanism of representational drift,
where the hidden layer weights undergo random diffusion, while the readout weights are contin-
uously realigning to keep performance unchanged, as previously suggested (Rule et al. (2020); Rule
& O’Leary (2022)). In our framework, this realignment is due to the presence of a loss-gradient
signal. The source of the putative realignment signals in brain circuits is unclear. An alternative
hypothesis is that computations in the neuronal circuits are based on features that are invariant to the
representational drift (Druckmann & Chklovskii (2012); Kaufman et al. (2014); Rule et al. (2019);
Rubin et al. (2019); Deitch et al. (2021); Marks & Goard (2021)). We provide an example of such
features and show that performance can be maintained after drift.

So far we have focused on learning in infinitely wide networks in the lazy regime, where the time
dependence of the NDK results from random drift in the solution space. Empirical time-dependent
NTK is more complex due to feature learning that exists in finite width NNs (Shan & Bordelon
(2021); Vyas et al. (2022); Canatar & Pehlevan (2022)) or in an infinite width network with non-lazy
regularization (Bordelon & Pehlevan (2022)). Future work aims to extend the theory to the regime
where data size is proportional to network width where we expect dynamic kernel renormalization
(Li & Sompolinsky (2021; 2022)) and to describe the dynamics of feature learning in non-lazy
regularization (Woodworth et al. (2020); Azulay et al. (2021); Flesch et al. (2022)).
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Aurélien Alfonsi, Benjamin Jourdain, and Arturo Kohatsu-Higa. Optimal transport bounds between
the time-marginals of a multidimensional diffusion and its euler scheme. 2015.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir
Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal
mirror descent. In International Conference on Machine Learning, pp. 468–477. PMLR, 2021.

Juhan Bae, Paul Vicol, Jeff Z HaoChen, and Roger B Grosse. Amortized proximal optimization.
Advances in Neural Information Processing Systems, 35:8982–8997, 2022.

Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-Dickstein,
and Surya Ganguli. Statistical mechanics of deep learning. Annual Review of Condensed Matter
Physics, 11:501–528, 2020.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural
networks driven by an ornstein-uhlenbeck like process. In Conference on learning theory, pp.
483–513. PMLR, 2020.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution in
wide neural networks. arXiv preprint arXiv:2205.09653, 2022.

Abdulkadir Canatar and Cengiz Pehlevan. A kernel analysis of feature learning in deep neural
networks. In 2022 58th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1–8. IEEE, 2022.

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby,
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Luca Saglietti and Lenka Zdeborová. Solvable model for inheriting the regularization through
knowledge distillation. In Mathematical and Scientific Machine Learning, pp. 809–846. PMLR,
2022.

Carl E Schoonover, Sarah N Ohashi, Richard Axel, and Andrew JP Fink. Representational drift in
primary olfactory cortex. Nature, 594(7864):541–546, 2021.

12



Under review as a conference paper at ICLR 2024

Haozhe Shan and Blake Bordelon. A theory of neural tangent kernel alignment and its influence on
training. arXiv preprint arXiv:2105.14301, 2021.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via informa-
tion. arXiv preprint arXiv:1703.00810, 2017.

Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaehoon Lee. On the infinite width
limit of neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301,
2020.

Marc Teboulle. Convergence of proximal-like algorithms. SIAM Journal on Optimization, 7(4):
1069–1083, 1997.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Limitations of the ntk for understanding gen-
eralization in deep learning. arXiv preprint arXiv:2206.10012, 2022.

Christopher Williams. Computing with infinite networks. Advances in neural information process-
ing systems, 9, 1996.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the
noisy gradient descent that generalizes as sgd. In International Conference on Machine Learning,
pp. 10367–10376. PMLR, 2020.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian pro-
cesses. Advances in Neural Information Processing Systems, 32, 2019.

13



Under review as a conference paper at ICLR 2024

A MARKOV PROXIMAL LEARNING (MPL) FRAMEWORK FOR LEARNING
DYNAMICS

We introduce a Markov proximal learning framework for learning dynamics in fully connected deep
neural networks (DNNs). This method allows us to construct a dynamical mean field theory for
Langevin dynamics in the infinite width limit. We formally write down the moment generating
function (MGF) of the predictor. We then use the well-known replica method in statistical physics
(Mézard et al. (1987); Franz et al. (1992)), which has also been shown to be a powerful tool for
deriving analytical results for learning in NNs (Gardner (1988); Gabrié et al. (2018); Carleo et al.
(2019); Bahri et al. (2020); Saglietti & Zdeborová (2022)). We analytically calculate the MGF after
averaging over the posterior distribution of the network weights in the infinite width limit, which
enables us to compute statistics of the predictor.

A.1 DEFINITION OF MPL

We consider the network learning dynamics as a Markov proximal process, which is a general-
ized version of the deterministic proximal algorithm (Parikh et al. (2014); Polson et al. (2015)).
Deterministic proximal algorithm with L2 regularization is a sequential update rule defined as
θt (θt−1,D) = argminθ

(
E (θ|D) + λ

2 |θ − θt−1|2
)

where λ is a parameter determining the
strength of the proximity constraint. This algorithm has been proven to converge to the global
minimum for convex cost functions (Teboulle (1997); Drusvyatskiy & Lewis (2018)), and many op-
timization algorithms widely used in machine learning can be seen as its approximations(Robbins
& Monro (1951); Amari (1998); Beck & Teboulle (2003); Bae et al. (2022)). We define a stochas-
tic extension of proximal learning, the Markov proximal learning, through the following transition
matrix

T (θt|θt−1) =
1

Z (θt−1)
exp

(
−1

2
β

(
E (θt) +

λ

2
|θt − θt−1|2

))
(22)

where Z (θt−1) is the single-time partition function, Z (θt−1) =
∫
dθ′T (θ′|θt−1). β = T−1 is an

inverse temperature parameter characterizing the level of ’uncertainty’ and β → ∞ limit recovers
the deterministic proximal algorithm. We further assume that the initial distribution of θ is an i.i.d.
Gaussian with variance σ2

0 and zero mean. Finally, we note that in the large λ limit, the difference
between θt and θt−1 is infinitesimal, and θt becomes a smooth function of continuous time, where
the time variable is the discrete time divided by λ.

Large λ limit and Langevin dynamics:

We show that in the limit of large λ and differentiable cost function this algorithm is equivalent to
gradient descent with white noise (Langevin dynamics). We define δθt = θt − θt−1 . In the limit
of large λ, we can expand the transition matrix around δθt = 0:

T (δθt|θt−1) ≈
(
λβ

4π

) d
2

exp

[
−λβ

4

∣∣∣∣δθt + 1

λ
∇E (θt−1)

∣∣∣∣2
]

(23)

δθt|θt−1 is Gaussian with statistics:

E [δθt|θt−1] = − 1

λ
∇E (θt−1) (24)

Var
(
δθi

tδθ
j
t′ |θt−1

)
=

2

λβ
δijδt,t′ (25)

which is equivalent to Langevin dynamics in Itô discretization:

δθt = (−∇E (θt−1) + ξt−1) dt (26)

with
E
[
ξtξ

⊤
t′
]
=

2TIδt,t′

dt
,E [ξt] = 0 (27)

where 1
λ = dt,β = 1

T .
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B CALCULATION OF THE MOMENT GENERATION FUNCTION (MGF) AND
THE MEAN PREDICTOR

In this section, we start from the MPL framework introduced in Section A.1, and present the detailed
derivation of the moment generating function for the predictor statistics, explain the introduction of
the auxilliary variables v(t) and u(t) in Eq.37, and derive expressions for the mean predictor given
by Eq.15.

B.1 REPLICA CALCULATION OF THE MGF FOR THE PREDICTOR

The transition matrix can be written using the replica method, where

Z−1 (θt−1) = lim
n→0

Zn−1 (θt−1) = lim
n→0

(∫
dθt exp

(
−β

2

(
E(θt) +

λ

2
|θt − θt−1|2

)))n−1

= lim
n→0

∫ n−1∏
α=1

dθα
t exp

(
−β

2

(
n−1∑
α=1

E(θα
t ) +

λ

2

n−1∑
α=1

|θα
t − θt−1|2

))
(28)

therefore we have

T (θt|θt−1) = T (θn
t |θn

t−1) = lim
n→0

Zn−1
(
θn
t−1

)
exp

(
−1

2
β

(
E (θn

t ) +
λ

2

∣∣θn
t − θn

t−1

∣∣2))
= lim

n→0

∫ n−1∏
α=1

dθα
t exp

(
−β

2

(
n∑

α=1

E (θα
t ) +

λ

2

n∑
α=1

∣∣θα
t − θn

t−1

∣∣2))
(29)

Here α = 1, · · · , n − 1 are the ’replicated copies’ of the physical variable {θn
τ }τ=1,··· ,t ≡

{θτ}τ=1,···t. To calculate the statistics of the dynamical process, we consider the MGF for arbi-

trary functions of the trajectory g({θn
τ }τ=0,···t), M [ℓt] = E

[
eℓtg({θ

n
τ }

τ=0···t)
]

M [ℓt] =

∞∏
τ=0

∫
dθτ

[ ∞∏
τ=1

T (θτ |θτ−1)

]
p (θ0) exp

( ∞∑
t=1

ℓtg
(
{θn

τ }τ=0,...t

))
(30)

= lim
n→0

n∏
α=1

∞∏
τ=1

∫
dθα

t

∫
dθn

0 p (θ
n
0 )

exp

(
−β

2

∞∑
τ=1

(
n∑

α=1

E (θα
τ ) +

λ

2

n∑
α=1

∣∣θα
τ − θn

τ−1

∣∣2)+

∞∑
t=1

ℓtg
(
{θn

τ }τ=0,···t

))
(31)

We now apply this formalism to the cost function from Sec.2.1:

E (θt|D) =
1

2
|ftrain (t)− y|2 + T

2σ2
|θt|2 (32)

and the predictor statistics at time t, g({θn
τ }τ=0,···t) = f (x,θn

t ) ,yielding

M [ℓt] = lim
n→0

n∏
α=1

∞∏
τ=1

∫
dθα

τ

∫
dθ0 exp

(
−β

4

t∑
τ=1

n∑
α=1

|ftrain (θ
α
t )− y|2 + ℓtf (x,θn

t )− S0 [θ]

)
(33)

S0 [θ] =
1

4

∞∑
τ=1

n∑
α=1

(
σ−2 |θα

τ |
2
+ λβ

∣∣θα
τ − θn

τ−1

∣∣2)+ 1

2
σ−2
0 |θn

0 |
2 (34)

where we define ftrain (t) ≡
[
f
(
x1, t

)
, · · · , f (xµ, t)

]
∈ RP a vector contains the predictor on the

training dataset, and y ∈ RP as in the main text (Sec.2.1). S0 (θ) denotes the Gaussian prior on the
parameters including the hidden layer weights and the readout weights.
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To perform the integration over {aατ }, we use Hubbard-Stratonovich (H.S.) transformation and in-
troduce a new vector field vα

τ ∈ RP

M [ℓt] = lim
n→0

n∏
α=1

∞∏
τ=1

∫
dθα

τ

∫
dvα

τ

∫
dθ0 (35)

exp

(
− iβ

2

∞∑
τ=1

n∑
α=1

(
1√
NL

ftrain (t)− y

)⊤

vα
τ

−β

4

∞∑
τ=1

n∑
α=1

|vα
τ |

2
+ ℓtf (x,θn

t )− S0 (θ
α
τ )

)

Averaging over the readout weights a:

We denote the hidden layer weights collectively as Wα
τ =

{
W1,α

τ · · ·WL,α
τ

}
. We integrate over

aατ

M [ℓτ ] = lim
n→0

∞∏
τ=1

n∏
α=1

∫
dvα

τ

∫
dWα

τ (36)

exp (−S [vα
τ ,Wα

τ ]−Q [ℓt,v
α
τ ,Wα

τ ]− S0 [Wα
τ ])

S [vα
τ ,Wα

τ ] =
β

4

 n∑
α,β=1

∞∑
τ=1

β

2
vα⊤
τ mαβ

τ,τ ′K
L,αβ
τ,τ ′ (Wα

τ )v
β
τ ′ +

n∑
α=1

∞∑
τ=1

(vα
τ − 2iY )

⊤
vα
τ

 (37)

and the source term action

Q [ℓt,v
α
τ ,Wα

τ ] =i
β

2

n∑
α=1

∞∑
t,τ=1

vα⊤
τ mαn

t,τk
L,αn
t,τ (Wα

τ ) ℓt (38)

− 1

2

∞∑
t,t′=1

mnn
t,t′k

L,nn
t,t′ (Wn

τ ) ℓtℓt′

Where mαβ
τ,τ ′ is a scalar function independent of the data, and represents the averaging w.r.t. to the

replica dependent prior S0 [θ
α
τ ], such that

E
[
(θα

τ )i

(
θβ
τ ′

)
j

]
S0

= δijm
αβ
τ,τ ′

mαβ
τ,τ ′ =

m1
τ,τ ′ = σ̃2

(
λ̃|τ−τ ′| + γλ̃τ+τ ′

)
{α = β, τ = τ ′} ∪ {α = n, τ < τ ′} ∪ {β = n, τ > τ ′}

m0
τ,τ ′ = σ̃2

(
λ̃2λ̃|τ−τ ′| + γλ̃τ+τ ′

)
otherwise

(39)
where we have defined new functions of the parameters for convenience,

λ̃ =
λ

λ+ Tσ−2
, σ̃2 = σ2 λ+ Tσ−2

λ+ 1
2Tσ

−2
, γ =

σ2
0

σ̃2
− 1 (40)

The time-dependent and replica-dependent kernel function KL,αβ
τ,τ ′ (x,x′) is defined as:

KL,αβ
τ,τ ′ (x,x′) =

1

NL

(
xL
τ (x,Wα

τ ) · xL
τ ′

(
x′,Wβ

τ ′

))
(41)

And KL,αβ
τ,τ ′ ∈ RP×P ,kL,αβ

τ,τ ′ ∈ RP , kL,αβ
τ,τ ′ ∈ R are given by applying the kernel function on the

training data and test data, respectively.
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Averaging over the hidden layer weights W :

In the infinite width limit, the statistics of W are dominated by its Gaussian prior (Eq.34) with
zero mean and covariance ⟨Wα

τ W
β⊤
τ ′ ⟩ = mαβ

τ,τ ′I .Thus the averaged kernel function KL,αβ
τ,τ ′ (x,x′)

(Eq.41) over the prior yields two kinds of statistics for a given pair of time {τ, τ ′} as for mαβ
τ,τ ′ ,

which we denote as K1,L
τ,τ ′ (x,x′), and K0,L

τ,τ ′ (x,x′) :

KL,αβ
τ,τ ′ (x,x′) =

{
K1,L

τ,τ ′(x,x′) {α = β, τ = τ ′} ∪ {α = n, τ < τ ′} ∪ {β = n, τ > τ ′}
K0

τ,τ ′(x,x′) otherwise
(42)

And they obey the iterative relations:

K1,L
τ,τ ′ (x,x

′) = F
(
m1

τ,τK
1,L−1
τ,τ (x,x) ,m1

τ ′,τ ′K
1,L−1
τ ′,τ ′ (x′,x′) ,m1

τ,τ ′K
1,L−1
τ,τ ′ (x,x′)

)
(43)

K0,L
τ,τ ′ (x,x

′) = F
(
m1

τ,τK
1,L−1
τ,τ (x,x) ,m1

τ ′,τ ′K
1,L−1
τ ′,τ ′ (x′,x′) ,m0

τ,τ ′K
0,L−1
τ,τ ′ (x,x′)

)
(44)

K1,L=0 (x,x′) = K0,L=0 (x,x′) = Kin (x,x′) (45)

Kin (x,x′) =
1

N0

N∑
i=1

xix
′
i (46)

where F
(
E
[
z2
]
,E
[
z′2
]
,E [zz′]

)
is a nonlinear function of the variances of two Gaussian variables

z and z′ and their covariance, whose form depends on the nonlinearity of the network (Cho & Saul
(2009)). As we see in Eqs.43,44 these variances and covariances depend on the kernel functions of
the previous layer and on the prior replica-dependent statistics represented by m1,0

τ,τ ′ .

The MGF can be written as a function of the statistics of one of these kernels, and their
difference, which we will denote as ∆L

τ,τ ′ (x,x′) = λβ
2

(
K1,L

τ,τ ′ (x,x′)−K0,L
τ,τ ′ (x,x′)

)
. It

is useful to define a new kernel, the discrete neural dynamical kernel Kd,L
τ,τ ′(x,x′) =

limn→0
λβ
2

∑n
α=1 m

nβ
τ,τ ′K

nβ,L
τ,τ ′ (x,x′), which controls the dynamics of the mean predictor. It has

a simple expression in terms of the kernel K0,L
τ,τ ′(x,x′) and the kernel difference ∆L

τ,τ ′ .

Kd,L
τ,τ ′ (x,x

′) =

{
0 τ ≤ τ ′

m1
τ,τ ′∆L

τ,τ ′ (x,x′) + λ̃|τ−τ ′|+1K0,L
τ,τ ′ (x,x′) τ > τ ′

(47)

We integrate over the replicated hidden layers variables Wα
τ , which replaces the W dependent ker-

nels with the averaged kernels. We get an MGF that depends only on the vα
τ variables

M [ℓt] = lim
n→0

n∏
α=1

∞∏
τ=1

∫
dvα

τ exp (−S (vα
τ )−Q (ℓt,v

α
τ )) (48)

S [vα
τ ] =

β

4

∞∑
τ=1

β

2

n∑
α,β=1

∞∑
τ ′=1

vα⊤
τ m0

τ,τ ′K
0,L
τ,τ ′v

β
τ ′ +

2

λ

n∑
α=1

t−1∑
τ ′=1

vα⊤
τ Kd,L

τ,τ ′v
n
τ ′ (49)

+
1

λ

n∑
α=1

vα⊤
τ Kd,L

τ,τ v
α
τ +

n∑
α=1

vα⊤
τ (vα

τ − 2iy)

)

Q [ℓt,v
α
τ ] =

iβ

2

n∑
β=1

∞∑
t,τ ′=1

ℓtm
0
t,τ ′k

0,L⊤
t,τ ′ vβ

τ ′ +
i

λ

t∑
t,τ ′=1

ℓtk
d,L⊤
t,τ ′ vn

τ ′

+
i

λ

n∑
β=1

∞∑
t=1

∞∑
τ ′=t+1

ℓtk
d,L⊤
t,τ ′ vβ

τ ′ −
∞∑
t=1

1

2
m1

t,tℓ
2
tk

1,L
t,t (50)

kd,L
t,τ ′ in Eq.50 is a P -dimensional vector given by applying the kernel function on the test data.
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B.2 INTEGRATE OUT REPLICATED VARIABLES vα
τ

We define a new variable uτ = λβ
2

∑n
α=1 v

α
τ , and integrate out vα̸=n

τ , we obtain a simpler expres-
sion of the MGF (after taking the limit n → 0).

M [ℓt] =

∞∏
τ=1

∫
dvτ

∫
duτ exp (−S [vτ ,uτ ]−Q [ℓτ ,vτ ,uτ ]) (51)

S [vτ ,uτ ] =
1

2λ2

∞∑
τ,τ ′=1

u⊤
τ

(
m0

τ,τ ′K
0,L
τ,τ ′ −

2

β
δτ,τ ′

(
I +

1

λ
Kd,L

τ,τ

))
uτ ′ (52)

+
1

λ

∞∑
τ=1

(
1

λ

τ−1∑
τ ′=1

Kd,L
τ,τ ′vτ ′ +

(
I +

1

λ
Kd,L

τ,τ

)
vτ − iy

)⊤

uτ

Q [ℓτ ,vτ ,uτ ] =
i

λ

∞∑
t=1

ℓt

( ∞∑
τ ′=1

m0
t,τ ′k

0,L⊤
t,τ ′ uτ ′ +

t∑
τ ′=1

kd,L⊤
t,τ ′ vτ ′ +

2

λβ

∞∑
τ ′=t+1

kd,L⊤
t,τ ′ uτ ′

)
(53)

−
∞∑
t=1

1

2
(ℓt)

2
m1

t,tk
1,L
t,t

B.3 DETAILED CALCULATION OF THE MEAN PREDICTOR

To derive the mean predictor we take the derivative of the MGF w.r.t. ℓt:

E [f (x, t)] =
∂M (ℓt)

∂ℓt

∣∣∣∣
ℓt=0

(54)

which yields

E [f (x, t)] =
1

λ

t∑
t′=1

kd,L⊤
t,t′ E [−ivt′ ] (55)

Furthermore, from the H.S. transformation in Eq.35, we can relate E [vτ ] to the mean predictor on
the training data :

E [ivt] = E [ftrain (t)]− y (56)

On the other hand we can get the statistics of ivt from the MGF in Eq.51.

E [(ftrain)t] =
(
Iλ+Kd,L

t,t

)−1 t−1∑
t′=1

Kd,L
t,t′ (y − E [(ftrain)t′ ]) (57)

E [f (x, t)] =
1

λ

t∑
t′=1

kd,L⊤
t,t′ (y − E [(ftrain)t′ ]) (58)

where Kd,L (t, t′) is a P × P dimensional kernel matrix defined as Kd,L
µν,t,t′ = Kd,L

t,t′ (x
µ,xν). Now

we can compute E [f (x,θt)] iteratively by combining Eqs.57,58.

B.4 LARGE λ LIMIT

All the results so far hold for any T and λ. Now, we consider the limit where the Markov proximal
learning algorithm is equivalent to Langevin dynamics in order to get expressions that are relevant
to a gradient-descent scenario. We consider large λ and tdiscrete ∼ O (λ), and thus define a new
continuous-time t = tdiscrete/λ ∼ O (1) . In this limit, the parameters defined in Eq.40 become

λ̃tdiscrete = e−Tσ−2t, σ̃2 = σ2 (59)
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Taking the limit of large λ of Eq.51 is straightforward, and yields

M [ℓ (t)] =

∫
Dv (t)

∫
Du (t) exp (−S [v (t) ,u (t)]−Q [ℓ (t) ,v (t) ,u (t)]) (60)

where

S [v (t) ,u (t)] =
1

2

∞∫
0

dt

∞∫
0

dt′m (t, t′)u⊤ (t)KL (t, t′)u (t′) (61)

+

∞∫
0

dt

 t∫
0

dt′Kd,L (t, t′)v (t′) + v (t)− iy

⊤

u (t)

and the source term action is

Q [ℓ (t) ,v (t) ,u (t)] =i

∞∫
0

dt

t∫
0

dt′
(
kd,L (t, t′)

)⊤
v (t′) ℓ (t) (62)

+ i

∞∫
0

dt

∞∫
0

dt′m (t, t′)
(
kL (t, t′)

)⊤
u (t′) ℓ (t)

− 1

2

∞∫
0

dt

∞∫
0

dt′m (t, t′) kL (t, t′) ℓ (t) ℓ (t′)

The NDK in Eq.47 can be rewritten as

Kd,L (t, t′,x,x′) = m (t, t′)∆L (t, t′,x,x′) + e−Tσ−2|t−t′|KL (t, t′,x,x′) (63)

with

∆L (t, t′,x,x′) =
λ

2T

(
KL,1 (t, t′,x,x′)−KL,0 (t, t′,x,x′)

)
(64)

= Kd,L−1 (t, t′,x,x′) K̇L (t, t′,x,x′)

m (t, t′) = σ2e−Tσ−2|t−t′| +
(
σ2
0 − σ2

)
e−Tσ−2(t+t′) (65)

with the kernels defined in Sec.2.3 in the main text. Here the quantity m (t, t′) is the continuous
time limit of m1

t,t′ . As defined in Eq.39, it represents the covariance of the prior

E
[
θi
tθ

j
t′

]
S0

= δijm (t, t′) ,E
[
θi
t

]
S0

= 0 (66)

.

The above calculation leads to the recursion relation of Kd,L (t, t′,x,x′) given in Eq.12 in the main
text:

Kd,L (t, t′,x,x′) =m (t, t′)Kd,L−1 (t, t′,x,x′) K̇L (t, t′,x,x′) (67)

+ e−Tσ−2|t−t′|KL (t, t′,x,x′)

with initial condition

Kd,L=0 (t, t′,x,x′) = e−Tσ−2|t−t′|Kin (x,x′) (68)

Where Kin (x,x′) was defined in Eq.46. We refer to this continuous time Kd,L (t, t′,x,x′) as the
neural dynamical kernel (NDK). Note that it follows directly from Eq.67 that

Kd,L (0, 0,x,x′) = KL
NTK (x,x′) . (69)
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For the mean predictor we use the results from the previous section Eqs.56,57,58, take the large λ
limit and turn the sums into integrals, we obtain

E [ftrain (t)] =

t∫
0

dt′Kd,L (t, t′) (y − E [ftrain (t
′)]) (70)

E [f (x, t)] =

t∫
0

dt′
(
kd,L (t, t′)

)⊤
(y − E [ftrain (t

′)]) (71)

as given in Eqs.14, 15 in the main text.

B.5 TEMPORAL CORRELATIONS

Previously we considered the predictor with readout weights at and hidden layer weights Wt at the
same time t. To reveal the effects of learning on W and a separately, we can consider the temporal
correlation between W and a at different times:

c (x, t0, t) ≡ E [f (x,at0 ,Wt)] = E
[

1√
NL

at0 · xL
t (x,Wt)

]
(72)

We can derive the MGF of this quantity by replacing ℓg
(
{θn

τ }τ=1,··· ,t

)
in Eq.31 by ℓ (t0, t) c (t0, t).

For convenience, we split the action into three parts, one that previously appeared in the equal time
calculation in Eq.61, and two new parts involving the new source ℓ (t0, t).

M [ℓ (t0, t)] =

∫
Dv (t)

∫
Du (t) exp (−S [v (t) ,u (t)] (73)

−Q1 [ℓ (t0, t) ,u (t)]−Q2 [ℓ (t0, t) ,v (t)])

Q1 [ℓ (t0, t) ,u (t)] =

∞∫
0

dt0

∞∫
0

dt

∞∫
0

dt′m (t0, t
′)
(
kL (t, t′)

)⊤
u (t′) ℓ (t0, t) (74)

+
1

2

∞∫
0

dt

∞∫
0

dt′
∞∫
0

dt0

∞∫
0

dt′0m (t0, t
′
0) k

L (t, t′) ℓ (t0, t) ℓ (t
′
0, t

′)

Q2 [ℓ (t0, t) ,v (t)] =

∞∫
0

dt

∞∫
0

dt0

max(t0,t)∫
0

dt′ℓ (t0, t)v
⊤ (t′) (75)

(
θ (t− t′)m (t0, t

′)kd,L−1 (t, t′) k̇L (t, t′)

+θ (t0 − t′) e−Tσ−2|t0−t′|kL (t, t′)
)

Using the same approach as in Sec.B.3, we get the statistics of c (x, t0, t), which depend on whether
t > t0 or vice versa:

c (x, t0 < t) = eTσ−2(t−t0)

t0∫
0

dt′
(
kd,L (t, t′)

)⊤
(y − E [ftrain (t

′)]) (76)

+

t∫
t0

dt′m (t′, t0)
(
kd,L−1 (t, t′) k̇L (t, t′)

)⊤
(y − E [ftrain (t

′)])
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Figure 5: Temporal correlation dynamics for the synthetic dataset. (a-b) Temporal correlations
between at0 fixed at NTK equilibrium with changing Wt, for different σ2

0/σ
2 values. In (a), we

show remarkable agreement between the theory and network simulations. Interestingly, for larger
σ2
0/σ

2, the temporal correlations closely follow the mean predictor dynamics, meaning the learning
of Wt is dominant in this regime. (b) There is almost exponential decay of the temporal correlations,
similar to Fig.11, meaning the effect of learning on Wt is weak (almost like the representational drift
case). (c) Wt fixed at NNGP equilibrium, while the dynamics of at0 continues.

c (x, t0 > t) = e−Tσ−2(t0−t)E [f (x, t)] (77)

+

t0∫
t

dt′e−Tσ−2(t0−t)
(
kL (t, t′)

)⊤
(y − E [ftrain (t

′)])

The kernels are defined in Sec.2.3. E [ftrain (t)] is calculated via the integral equation in Eq.14 in the
main text. By definition c (x, t = t0) = E [f (x, t)].

Solving the integrals numerically, we find the the ratio σ2
0/σ

2 plays an important role in the dy-
namics again. As can be seen in Fig.5 (a), when σ2

0/σ
2 is large, the temporal correlations follow

the predictor for a significant amount of time even though at0 is frozen, meaning that the effect of
learning on the hidden layer weights Wt is dominant. Eventually, the decorrelation between at0
and Wt causes a decrease in performance. When σ2

0/σ
2 is small (Fig.5 (b)), the temporal correla-

tions decrease almost exponentially, hinting that in this regime the effect of learning on the readout
weights is dominant. In this case Fig.5 (b) is similar to Fig.11, where there is no external learning
signal affecting the hidden layer weights at all.

C THE NEURAL DYNAMICAL KERNEL

We focus on the large λ limit derived above, and present several examples where the NDK has
explicit expressions, and provide proofs of properties of the NDK presented in the main text.

C.1 LINEAR ACTIVATION:

For linear activation:
KL (t, t′,x,x′) = (m (t, t′))

L
Kin (x,x′) (78)

K̇L (t, t′,x,x′) = I (79)

The recursion relation for the NDK can be solved explicitly, yielding

Kd,L (t, t′,x,x′) = (m (t, t′))
L
(L+ 1) e−Tσ−2|t−t′|Kin (x,x′) (80)
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The NDK of linear activation is proportional to the input kernel Kin (x,x′) regardless of the data.
The effect of network depth only changes the magnitude but not the shape of the NDK. As a result,
the NNGP and NTK kernels also only differ by their magnitude, and thus the mean predictor at the
NNGP and NTK equilibria only differ by O (T ). This suggests that the diffusive phase has very
little effect on the mean predictor in the low T regime, as shown in Fig.10.

C.2 RELU ACTIVATION:

For ReLU activation, we define the function J (θ) (Cho & Saul (2009)):

J
(
θL (t, t′,x,x′)

)
=
(
π − θL (t, t′,x,x′)

)
cos
(
θL (t, t′,x,x′)

)
+ sin

(
θL (t, t′,x,x′)

)
(81)

where the angle between x and x′ is given by :

θL (t, t′,x,x′) = cos−1

(
m (t, t′)√

m (t, t)m (t′, t′)

1

π
J
(
θL−1 (t, t′,x,x′)

))
(82)

θL (t, t′,x,x′) is defined through a recursion equation, and

θL=0 (t, t′,x,x′) = cos−1

(
m (t, t′)√

m (t, t)m (t′, t′)

Kin (x,x′)√
Kin(x,x)Kin(x′,x′)

)
(83)

the kernel functions are then given by

K̇L (t, t′,x,x′) =
1

2π

(
π − θL (t, t′,x,x′)

)
(84)

KL (t, t′,x,x′) =

√
Kin (x,x)Kin (x′,x′)

π2L
(m (t, t)m (t′, t′))

L/2
J
(
θL−1 (t, t′,x,x′)

)
(85)

We obtain an explicit expression for the NDK by plugging these kernels into Eqs.67,68.

C.3 ERROR FUNCTION ACTIVATION

For error function activation (Williams (1996)):

KL (t, t′,x,x′)

=
2

π
sin−1

(
2m (t, t′)KL−1 (t, t′,x,x′)√

(1 + 2m (t, t)KL−1 (t, t,x,x)) (1 + 2m (t′, t′)KL−1 (t′, t′,x′,x′))

)
(86)

K̇L
µν (t, t

′,x,x′) =
4

π

((
1 + 2m (t, t)KL−1 (t, t,x,x)

) (
1 + 2m (t′, t′)KL−1 (t′, t′,x′,x′)

)
−4
(
m (t, t′)KL−1 (t, t′,x,x′)

)2)−1/2

(87)

Again we can obtain an explicit expression for the NDK by plugging these kernels into Eqs.67,68.

C.4 LONG-TIME BEHAVIOR OF THE NDK

We define the long-time limit as t, t′ → ∞, t− t′ ∼ O
(
T−1

)
. In this limit the statistics of W w.r.t.

the prior becomes only a function of the time difference:

E
[
WtW⊤

t′
]
= σ2e−Tσ−2|t−t′| = m (|t− t′|) (88)

And thus, the kernels defined above will only be functions of the time difference. We look at the
time derivative of the kernel (w.l.o.g. we assume t > t′), which can be obtained with a chain rule:

d

dt′
KL (t− t′,x,x′) = K̇L (t− t′,x,x′)

d

dt′
(
KL−1 (t− t′,x,x′)m (t− t′)

)
(89)
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We prove by induction:

1

T

d

dt′
(
m (t− t′)KL (t− t′,x,x′)

)
= Kd,L (t− t′,x,x′) (90)

The induction basis for L = 0 is trivial. For arbitrary L+ 1:

1

T

d

dt′
(
m (t− t′)KL+1 (t− t′,x,x′)

)
(91)

= m (t− t′) K̇L+1 (t− t′,x,x′)
1

T

d

dt′
(
KL (t− t′,x,x′)m (t− t′)

)
+ e−Tσ−2(t−t′)KL+1 (t− t′,x,x′) (92)

And using the induction assumption we get:

1

T

d

dt′
(
m (t− t′)KL+1 (t− t′,x,x′)

)
= m (t− t′) K̇L+1 (t− t′,x,x′)Kd,L (t− t′,x,x′)

+ e−Tσ−2(t−t′)KL+1 (t− t′,x,x′) (93)

Which is the expression for Kd,L+1 (t− t′). Using this identity, we can get a simple expression for
the integral over Kd,L (t− t′) at long times:

lim
t→∞

t∫
0

dt′Kd,L (t− t′,x,x′) =
σ2

T
KGP (x,x′) (94)

As a result, taking the limit of t → ∞ on both sides of Eq.14, we have

lim
t→∞

E [ftrain (t)] =

(
lim
t→∞

∫ t

0

dt′Kd,L (t, t′)

)(
y − lim

t→∞
E [ftrain (t

′)]
)

lim
t→∞

E [ftrain(t)] = K⊤
GP

(
KGP + σ−2TI

)−1
y

(95)

We then take t → ∞ on both sides of Eq.15 and plug in limt→∞ E [ftrain(t)] to obtain

lim
t→∞

E [f(x, t)] =
σ2

T
kLGP (x)

⊤(y − lim
t→∞

E [ftrain(t)])

=
(
kL
GP (x)

)⊤ (
ITσ−2 +KL

GP

)−1
y

(96)

which corresponds to Eq.18 in the main text.

C.5 NDK AS A GENERALIZED TWO-TIME NTK

In Eq.7 in the main text, we claimed that the NDK has the following interpretation as a generalized
two-time NTK

Kd,L (t, t′,x,x′) = e−Tσ−2|t−t′|E
[
∇θt

f (x,θt) · ∇θt′ f (x
′,θt′)

]
S0

t ≥ t′ (97)

where E [·]S0
denotes averaging w.r.t. the prior distribution of the parameters θ, with the statistics

defined in Eq.9.

Now we provide formal proof.

We separate ∇θt f (x,θt) into two parts including the derivative w.r.t. the readout weights at and the
hidden layer weights Wt

Derivative w.r.t. the readout weights:

E
[
∂at

f (x,θt) · ∂at′ f (x,θt′)
]
S0

= KL (t, t′,x,x′) (98)

Derivative w.r.t. the hidden layer weights:
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We have

∂Wl
t
xL
t (x,Wt) =

1√
NL−1 · · ·Nl−1

ΠL
k=l+1

[
ϕ′ (zkt )Wk

t

]
ϕ′ (zlt)xl−1

t (99)

and

E
[
∂Wl

t
f (x,θt) · ∂Wl

t′
f (x,θt′)

]
S0

= E
[
N−1

L at · at′
] (

ΠL
k=l+1E

[
N−1

k N−1
k−1W

k
t ·Wk

t′
]) (

ΠL
k=lK̇

k (t, t′,x,x′)
)
Kl−1 (t, t′,x,x′)

= m (t, t′)
L−l+1

(
ΠL

k=lK̇
k (t, t′,x,x′)

)
Kl−1 (t, t′,x,x′) (100)

To leading order in Nl the averages over a and W can be performed separately for each layer, and
are dominated by their prior, where each element of the weights is an independent Gaussian given
by Eq.34. The term m (t, t′) comes from the covariance of the priors in W and a, since there are a
total of L − l layers of W and one layer of a, we have m (t, t′)

L−l+1. The kernel K̇
k
(t, t′,x,x′)

comes from the inner product between ϕ′ (zkt ) and ϕ′ (zkt′), and the kernel Kl−1 (t, t′,x,x′) comes
from the inner product between xl−1

t and xl−1
t′ .

Using proof by induction as for the NTK (Jacot et al. (2018)), we obtain

E
[
∂Wt

f (x,θt) · ∂Wt′ f (x,θt′)
]
S0

= eTσ−2|t−t′|m (t, t′) K̇L (t, t′,x,x′)Kd,L−1 (t, t′,x,x′)

(101)

Combine Eq.101 with Eq.98 and with the definition of Kd,L (t, t′,x,x′) in Eq.67, we have

e−Tσ−2|t−t′|E
[
∇θt

f (x,θt) · ∇θt′ f (x
′,θt′)

]
S0

= Kd,L (t, t′,x,x′) (102)

D REPRESENTATIONAL DRIFT

To capture the phenomenon of representational drift, we consider the case where the learning signal
stops at some time t0, while the hidden layers continue to drift according to the dynamics of the
prior. If all the weights of the system are allowed to drift, the performance of the mean predictor
will deteriorate to chance, thus we consider stable readout weights fixed at the end time of learning
t0. This scenario can be theoretically evaluated using similar techniques to Sec.B.1 , leading to the
following equation for the network output:

E [fdrift (x, t, t0)] =

t0∫
0

(
kd,L (t, t′)

)⊤
(y − E [ftrain (t

′)]) (103)

We see here that if t0 = t it naturally recovers the full mean predictor. It is interesting to look at the
limit where the freeze time t0 is at NNGP equilibrium, where the network has finished its dynamics
completely. In this case, the expression can be simplified due to the long-time identity of the NDK
(Eq.17 in the main text).

E [fdrift (t− t0)] =
(
kL (t− t0)

)⊤ (
ITσ−2 + KL

GP

)−1
y (104)

which has a simple meaning of two samples of hidden layer weights from different times at equi-
librium. Even at long time differences, the network performance does not decrease to chance, but
reaches a new static state.

lim
t−t0→∞

E [fdrift (t− t0)] →
(
kL
mean (x)

)⊤ (
ITσ−2 + KL

GP

)−1
y (105)

We can assess the network’s ability to separate classes in a binary classification task by using a linear
classifier between the two distributions of outputs (Duda et al. (2000)).
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Figure 6: Comparison between NTK and NNGP equilibria, in fully connected DNNs with ReLU
activation function.(a-d) The average MSE loss per test example in binary classification tasks of (a,b)
MNIST dataset and (c,d) CIFAR10 dataset averaged over all class pairs. We present the results as a
function of the number of training examples P (at a constant depth L = 3) (a,c), and as a function of
depth (at constant P = 104) (b,d)

D.1 NTK AND NNGP EQUILIBRIA

The NTK and NNGP equilibria mark the initial and final points for the dynamics of the diffusive
phase. An interesting question is how different these two equilibria are. In general, the answer
depends on the data and the network architecture (Lee et al. (2020)). In Fig.6 we show that in these
tasks deeper networks tend to favor the NNGP equilibrium compared with NTK. On the other hand,
increasing the size of the training set has a similar effect on both equilibria.

E DETAILS OF THE SIMULATIONS

E.1 SYNTHETIC DATA

We consider P normalized and orthogonal input data vectors x ∈ RN0 , such that Kin
µν = 1

N0
xµ ·

xν = δµν . The labels of the data point are ±1 with equal probability. We consider a test point, which
has partial overlap with one of the input vectors, and is orthogonal to all others, w.l.o.g. we assume
that the test point is overlapping with the first input vector with label +1, such that 1

N0
xtest · xµ =

Otestδµ,1,
1
N0

xtest ·xtest = 1, and y1 = +1. In our simulations we set Otest =
3
4 , which maximizes

the difference between NNGP and NTK equilibria. For this setup, we can represent the kernels by a
few scalar functions:

Kd,L
µν (t, t′) = kd,L

offdiag (t, t
′) (1− δµν) + δµνk

d,L
diag (t, t

′) (106)

kd,L
µ (t, t′) = kd,L

offdiag (t, t
′) (1− δµ,1) + δµ,1k

d,L
test (t, t

′) (107)
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Here kd,L
offdiag(t, t

′) and kd,L
diag(t, t

′) are off-diagonal and diagonal elements of the kernel matrix
Kd,L(t, t′), they are scalar functions of time, kd,L

test(t, t
′) denotes the first element of the vector

k(t, t′),and is also a scalar function of both time and the parameter Otest. KL
µν (t, t

′) and K̇L
µν (t, t

′)
have the same structure.

Because of the symmetry of this toy model, ftrain (t) takes the same value across all training points
with the same label and takes the negative value for training points with the opposite label, and thus
can be reduced to a scalar. We consider ftrain (t) on training points with label +1. We can transform
the vector integral equation into a scalar one, depending only on known scalar functions:

ftrain (t) =

t∫
0

dt′
[(

kd,L
diag (t, t

′)− kd,L
diag (t, t

′)
)
(1− ftrain (t′))

]
(108)

E [f (x,θt)] =

t∫
0

dt′
(
kd,L

test (t, t
′)− kd,L

offdiag (t, t
′)
)
(1− ftrain (t′)) (109)

In this model the theoretical results do not depend on P ,N0. For Fig.1, we vary T and σ, σ0 according
to the legend, while keeping dt = 0.1.For all other simulations presented, we use T = 0.001,dt =

0.1, with total time t = 10000 = 10/T , σ = 1, while σ0 varies depending on
(
σ0

σ

)2
that is presented

in the plot.

E.2 MNIST

We consider a digit binary classification task (Deng (2012)), where one type of input is with label +1
and the other −1. In our simulations we take digits 1 and 0 as the two classes. We take 50 examples
from each class, flatten the image into a vector and normalize the data. The test is a previously
unseen example from the class +1 to make the comparison with other data sets easy (same with the
synthetic data and CIFAR10).The examples in the figures are chosen for a large difference between
NTK and NNGP equilibria while the error is relatively small. In Fig.2(e-g) example 25910 from
MNIST data set is presented, while in Fig.8 examples 50396 (example 2) and 30508 (example 3)
are presented. We used T = 0.01,dt = 0.01, with total time t = 1000 = 10/T . In the simulations
presented σ = 1, while σ0 varies depending on

(
σ0

σ

)2
that is presented in the plot.

E.3 CIFAR10

We consider an image binary classification task (Krizhevsky et al. (2014)), where one class of input
is with label +1 and the other −1. In our simulations we take images of cats and dogs as the two
classes. We take 50 examples from each class, flatten the image (including channels) into a vector
and normalize the data. The test was a previously unseen example from the class +1. The examples
in the figures are chosen for a large difference between NTK and NNGP equilibria while the error
compared to the true label is relatively small. In Fig.2(h) and in Fig.9 example 4484 from CIFAR10
data set is presented (example 1), while in Fig.9 examples 3287 (example 2), 5430 (example 3) and
6433 (example 4) are presented. We used T = 0.01,dt = 0.01, with total time t = 1000 = 10/T ,
and σ = 1, σ0 varies depending on

(
σ0

σ

)2
that is presented in the plot.

E.4 LANGEVIN DYNAMICS

To check the validity of the theory we performed simulations with Langevin dynamics in a network
with L = 1, the network is trained under the dynamics given by Eq.26 with lr = dt = 0.01, T =
0.001, with total time t = 10000 = 10/T on the synthetic data introduced in SI E.1. Simulations
shown in Figs.2(a) and Fig.7 are done with P = 2, N0 = 100, and hidden layer width N =
1000, σ2

0/σ
2 = 1, 2 as indicated in the figure captions. Results are averaged over 5000 different

initializations and realizations of noise. In the representational drift predictor simulations, at time
t0 the loss changes to contain only the prior part, as presented in Eq.34. The network output was
calculated with the hidden layer weights at time t with the readout weights at time t0.
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F ADDITIONAL NUMERICAL RESULTS

Figure 7: Theory and network simulations of the synthetic data set.(a-b) Theory and simulation of
the mean predictor, for different values of (σ0/σ)

2, with time in log scale due to the large difference
in time scales of the two learning phases. (c) Theory and simulation of the temporal correlations of
at0 at NTK equilibrium with Wt.

Figure 8: More test examples from MNIST dataset (Deng (2012)), for ReLU (L = 1, L = 2), erf and
linear activation functions, with different (σ0/σ)

2 values (a-d) Example 2, with NNGP performance
better than NTK. (e-h) Example 3. Interestingly, NTK performance is better than NNGP for ReLU
and erf L = 1, but is worse for ReLU L = 2.
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Figure 9: More test examples from CIFAR10 dataset (Krizhevsky et al. (2014)), for ReLU activation
function (L = 1, L = 2), with different (σ0/σ)

2 values (a-f) Examples 1,2,3, with NNGP perfor-
mance better than NTK . (g-h) Example 4. Interestingly, NTK performance is better than NNGP for
ReLU L = 1, but is worse for ReLU L = 2.
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Figure 10: Examples of dynamics for different nonlinearities and depth in the synthetic dataset.
(a,b,e,f) ReLU activation function for L = 1, 2, 3, 4, with different (σ0/σ)

2 values. (c) erf activation
function with different (σ0/σ)

2 values. (d) Linear activation function, with different (σ0/σ)
2 values.

We see that with linear activation the system reaches equilibrium in a time shorter than 1/T, during
the gradient-driven phase.
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Figure 11: The dynamics of the predictor with no external learning signal and readouts weights
frozen at NTK equilibrium (t0), for the synthetic dataset. We see an approximately exponential
decay to chance level performance with time scale of t ∼ 1/T .
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