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A APPENDIX

In the appendix, we organize the details as follows. First, in Sec. |B| we present the specifics of our
implementations. Second, Sec. [C|introduces additional experiments that focus on the effectiveness
of loss functions, comparision with supervised learning based on SLAM, and the convergence of
our framework. Finally, more qualitative results are presented in Sec.

B IMPLEMENTATION DETAILS OF F2M-REG

B.1 NEURAL IMPLICIT FIELD OPTIMIZATION

For each sequence, we initially conduct 200 iterations of mapping using the first frame to establish
the initialization of the neural implicit field. Subsequently, during the training phase, we input
both the current frame and the neural implicit field M. We maintain M fixed while optimizing
the camera parameters of the untracked pose. Specifically, we randomly select N, = 1024 pixels
from the current frame. For each ray, we uniformly sample M, = 32 points between the near
and far bounds. Additionally, we sample an extra M; = 21 depth-guided points evenly within
the range [d — ds,d + ds|, where d represents the depth and d;, = 0.25 denotes a small offset.
During experimentation, it was noted that employing the same number of optimization rounds as
in Co-SLAM (Wang et al., |2023) often yielded suboptimal untracked poses across most scenes.
This challenge arises due to the larger inter-frame distances present in our data compared to scenes
encountered in previous Neural SLAM tasks. Hence, we conduct 100 iterations for tracking to
mitigate this issue.

Subsequently, the tracked pose is utilized in the mapping stage. Upon the initial addition of each
frame to the mapping stage, 5% of its pixels are incorporated into the maintained pixel bank. During
the mapping phase, 2048 pixels are randomly selected from the pixel bank, and rays are generated
to participate in the training process. The subsequent procedure mirrors that of the tracking section,
except that the optimized parameters ¥ = {6, Ti_o,Ti1, Tl} consist of the neural implicit field M
and the camera poses in the batch.

Our sub-scene representation comprises a L = 16 level hash grid V,, = V!, 1L=1’ with 16 bins oneblob
for each dimension. The color and Signed Distance Function (SDF) are encoded by two 2-layer
MLPs with 32 hidden units and a 15-dimensional geometric feature. The boundaries of our sub-
scene are confined within the following ranges along the xyz-axes: (-3, 7), (-5, 5), (-4, 4). Regarding
the learning rates, we utilize 7; = 0.002 for tracking, and ny = 0.01, g = 0.01, and 7, = 0.0005
for the feature grid, decoder, and pose optimizer, respectively.

In both of the above stages, we minimize four different losses introduced in Co-SLAM(Wang et al.,
2023). They include (1) two rendering losses Lrgp and Lgeptp, for minimizing errors between

ground truth RGB/depth image C'p/ﬁp and rendered RGB/depth image Cp/D,,:
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Figure 1: Demonstration of Sim-RGBD dataset. The entire scene is depicted in the left figure.
Camera sampling is illustrated in the middle figure. Initially, we sample the position of the first
camera based on a specified pitch angle 6 and yaw angle ¢, with (0, 0, 0) as the viewpoint, forming
the camera’s view direction. The position of the second camera is derived from the transformation of
the first camera position, which is obtained from a Gaussian distribution. The right figure showcases
the point cloud with color extracted from the scene.

Sff represents whose signed distance function (SDF) is not truncated along the viewing ray of pixel

p, and Ds/f)s denote their predicted/ground-truth SDF values. (4) For those sampled points distant
from the observed surface, a free-space loss Ly, is applied to enforce their predicted SDF to be
truncation distance d,.:
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(5) An additional regularization on the interpolated features V,, (z) in order to decrease the noisy in
reconstruction.

1
['smooth = v Z (Ai + A?QI + Ai) (4)

z€e|V|

where V denotes the grid and A, = Vo (2 + €4y2) — Vo (x) The weights of each loss are Argp =
5.0, Mdepth = 0.1, Aoy = 1000, A5 = 10, Amootn = 0.001.

B.2 REGISTRATION MODEL TRAINING

Supervisory signals for the feature extractor are generated when the current batch is fixed. These
signals are generated by optimized pose (7}, T]) corresponding point clouds (X;, X;), and corre-
sponding features (F;, F;) within the current batch. Specifically, the process begins by deriving a
relative pose using the global pose optimized within neural implicit representation. For one relative
pose AT;_; ;, correspondences between two point clouds are identified using a specified threshold
7, which can be formulated as C* = {(p;—1,p:) | ||Ti=1,iPi—1 — pi|| < 7}. The correspondences
and corresponding feature pairs {(EF?i-*, FPi) | (p;—1,p;) € C*} are utilized to compute the loss.

B.3 GEOMETRIC FITTING

Given 512 input correspondences, C = {(pi,q;) | p: € X,q; € Y}, we randomly sample ¢ =
10 subsets, each containing I = 20% of the total correspondences. For each subset, a candidate
transformation 7' is estimated by solving a Weighted Procrustes problem (Besl & McKay, [1992).
The candidate transformation 7 that minimizes the error E/(C, T™*) is retained. Additionally, during
the testing phase, we increase ¢ to 100 and reduce [ to 5% to achieve better RANSAC results while
limiting computational costs.
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B.4 SiM-RGBD

To clarify how we sample the appropriate camera poses, we visualize the process of sampling two
camera poses in Fig.

Table 1: Implementation details of our F2M-Reg

(a) Same setting as PointMBF (b) Changes in F2M-Reg
Momentum 0.9 Batch size 4
Optimizer Adam Normalization in ResNet GroupNorm
Image size 128*128 Normalization in fusion GroupNorm
Feature dimension 32 Group of channels 32
Kyo4,K g2, for training | Koy = 16,K42, = 1 low’s ratio False
Kyog,K g2, for test Koy = 32,Kg9, =1 Number of correspondence k& | 256

B.5 SETTINGS

We adopt PointMBF (Yuan et al.| 2023)) as our registration model and utilize several of its settings,
such as data processing and learning rate. On the software side, our code is built using PyTorch and
PyTorch3D (Ravi et al.,[2020). On the hardware side, we train our network using an Nvidia GeForce
RTX 3090Ti GPU with 24GB of memory, paired with an Intel® Core™ i9-12900K @ 3.9GHz x
16 and 32GB of RAM. To ensure a fair comparison, we adhere to the same training schemes as
PointMBF, including data processing and other configurations. Table [1| provides further details on
the similarities and differences between our approach and PointMBF. Specifically, Table [Ia|outlines
the shared settings, while Table [Ib]highlights the differing configurations.

B.6 TIME EFFICIENCY

Table 2: Runtime analysis

Time(ms)
Feature Extraction 79.87 £ 29.10
Correspondence Estimation 35.57 £ 10.36
Geometric Fitting 10.32 £ 9.20
Loss Computing 28.97 £ 10.38
Backward 202.34 £ 164.08
Tracking(Just for training) 20.10 £+ 4.41
Mapping(Just for training) 25.06 £ 2.59

The time for our pipeline was reported in Table[2] Our method increases the training time, focusing
on the tracking and mapping stage, i.e., we have to spend time on optimizing neural implicit field
compared to rasterization of the point cloud. But considering the excellent performance of the
frame-to-model set of optimization frameworks, we think these time overheads are meaningful.

Table 3: Ablation on loss. Corr denotes the correspondence loss. Circle denotes the circle loss. All
the blank (1% row) means the registration model was only bootstrapped on the Sim-RGBD dataset
without fintuning.

Rotation(®) Translation(cm) Chamfer(mm)
Corr  Circle Train Set Accuracy 1 Error) Accuracy T Error| Accuracy 1 Error],
5 10 45 Mean Med. 5 10 25  Mean Med. I 5 10 Mean Med.

713 786 874 158 20 469 655 763 345 54 575 722 750 717 0.6

ScanNet 71.0 77.7 86.7 188 20 487 66.0 758 347 52 581 722 750 838 0.6

v ScanNet 77.1 843 92.7 103 1.9 491 702 81.6 24.0 51 61.1 773 804 627 0.5

v v ScanNet 774 84.5 925 155 1.9 500 70.6 821 30.1 50 615 77.6 809 738 0.5
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C ADDITIONAL EXPERIMENTS

C.1 EFFECTIVENESS ON LOSS

Our work incorporates the circle loss (Sun et al.,2020; Huang et al.,2021) and correspondence loss
into the training process. We conduct a comprehensive Ablation study to elucidate the significance
of these two losses within the entire pipeline.

The correspondence 10ss Lo (1) is formalized in equation [5| In the context, C = {(p;,q;) | pi €
X,q; € Y} denotes the correspondences selected based on the cosine similarity of the features
of corresponding two points. We choose the top 256 pairs of correspondences and use the relative

optimized pose AT = [R|#] to calculate the loss. The weights w; range from 0 to 1, and are
derived from the cosine similarity values of the two point features.
Leorr = Z wL”sz +1- q;H 5
(pi,a:)€C

To better supervise the point-wise descriptors, we also follow (Huang et al., 2021)) and employ the
circle loss. Considering the correspondence C = {(p;,q;) | p: € X,q; € Y} and the optimized
pose T. We compute, for each point in X the distance to all points in Y .Pairs of points with a
distance less than 1), are treated as positive samples €5, while those greater than r are treated as
negative samples €, . The circle loss from X is formalized in equation [6]

< 1 & J i _ A k(A k
L= - — [ 1+ Bpos(di_ pos) . /B'n,eg( neg—d; ) 6
circle = ; Og[ Z € Z € ] (6)

jeepos kEEney

where n is the number of the points in X, d/ = ||f,, — f,, || denotes the L2 distance of the

corresponding point features and A5, A4 are positive and negative margins. The weights
Blos = Y(dl — Apos) and B, = y(Apey — df) are computed for each correspondence. The
margin hyper-parameters are set to Ap,, = 0.1 and A, = 1.4. For the circle loss Lzmze goes the

same. The final circle loss Leireie = (L%, ;o + LY, 10)/2-

The outcomes are presented in Table[3] It is evident from the results that both losses are instrumental
in enhancing the performance of our registration framework during the finetuning phase. Regarding
the nature of the losses, the circle loss facilitates the accurate recognition of correspondences by
the registration model, whereas the correspondence loss aids in adjusting the weighting of identified
correspondences. Furthermore, the experiment confirms that the concurrent utilization of these two
losses contributes to further advancements in our registration model.

C.2 COMPARISON WITH SUPERVISED LEARNING BASED ON SLAM.

For sequential data, it is intuitive to obtain the pose of each frame quickly through reconstruction
pipelines like SLAM. The pose reconstructed by SLAM can be used to supervise the training of a
registration model. However, our approach can further enhance the performance of a registration
model trained on SLAM-reconstructed poses. To demonstrate the effectiveness of our optimization
framework, we designed this ablation experiment. We selected ROSEFusion (Zhang et al.| 2021) as
the SLAM algorithm for the experiment.

We randomly divide the 1,045 ScanNet training scenes into two groups: 300 scenes and 745 scenes.
Using ROSEFusion, we perform the reconstruction on the 300 scenes, and the resulting poses were
used to train a registration model from scratch. We then fine-tune the registration model using our
frame-to-model optimization framework on the next 745 scenes. Finally, we test all the registation
model on ScanNet testing scenes.

The results, as shown in Table |4} indicate that the performance of the registration model improves
as the number of training scenes increases, demonstrating the optimization strength of our method.
Notably, our bootstrapping module is flexible and can accommodate different datasets. When the
quality of the synthetic dataset or the accuracy of the reconstruction from real-world scenes im-
proves, these factors contribute to a better initialization of the registration model. Given a highly
expressive model, our framework can leverage these improvements to provide a stronger initializa-
tion, further enhancing the registration model’s performance.
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Figure 2: Variation of Inlier Ratio Across Training Epochs. The pie chart illustrates the distribu-
tion of inlier ratios across different ranges, with each range represented by distinct colored blocks.
Larger blocks correspond to a higher number of frame pairs that fall within the respective inlier
ratio range on the test dataset. This data was obtained by fine-tuning the registration model on the

3DMatch dataset [Zeng et al] (2017) and testing it on the ScanNet test set (2017), using

frame pairs spaced 50 frames apart.

C.3 CONVERGENCE

We conduct quantitative experiments to assess the convergence of our framework on the Scan-

Net (Dai et al., 2017), with the registration model fine-tuned on the 3DMatch (Zeng et al, 2017).

Figure[2]and table 5] depict the evolution on the ScanNet test set as the number of epochs progresses.
We observe an initial increase in the inlier ratio until epoch 4, followed by oscillations. Again this
phenomenon appears in the performance of the pose. These findings underscore the convergence of
our framework. Our framework comprises two integral components: the registration model and the
neural implicit field. They synergistically reinforce each other, wherein the enhanced performance
of the registration model contributes to improved quality of the global pose input for neural field.
Consequently, this enhances the reconstruction quality of neural field. The improved neural field
quality facilitates more accurate and efficient optimization of the untracked poses, thereby providing
a more effective gradient to refine the preceding registration model.

Table 4: Comparison with supervised learning based on SLAM. N, indicates the number of
scenes used for training. The first row shows the results of using the reconstructed poses from
ROSEFusion on 300 scenes to supervise the registration model, which was then tested on ScanNet.
The subsequent rows display the outcomes of increasing the number of training scenes from the first
row and further optimizing the results using our pipeline.

Rotation(°) Translation(cm) Chamfer(mm)
Ny Accuracy T Error| Accuracy T Error| Accuracy T Error)
5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.
300 (ROSEFusion) 705 79.6 904 125 23 429 645 714 287 59 550 722 757 731 0.7

+200 (ROSEFusion+Ours) 71.1 80.6 912 12.0 23 425 644 778 275 6.0 547 725 76.1 708 0.7
+400 (ROSEFusion+Ours) 71.6 80.6 909 114 22 433 647 777 270 59 552 727 762 692 0.7
+600 (ROSEFusion+Ours) 73.2 819 91.6 11.1 2.1 458 665 797 256 55 574 744 781 659 0.6
+745 (ROSEFusion+Ours)  73.2 821 91.7 10.7 2.1 453 66.6 79.6 24.7 55 571 745 780 63.0 0.6
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Table 5: Table of performance effects of training different epoch registation. Epoch indicates
the number of epochs that the registration model has been trained on 3DMatchZeng et al.|(2017).

Rotation(°) Translation(cm) Chamfer(mm)
Epoch  Train Set Accuracy 1 Error| Accuracy 1 Error Accuracy T Error|
5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

3DMatch 712 799 903 13.6 23 424 639 773 308 62 545 723 758 75.1 0.8
3DMatch  72.6 81.1 91.1 125 22 446 659 785 285 58 561 736 771 720 0.7
3DMatch 73.0 819 914 124 23 440 657 792 290 62 562 739 778 718 0.8
3DMatch 735 822 91.6 119 22 447 664 797 268 58 569 745 782 69.0 0.7
3DMatch  73.0 81.7 914 122 24 445 659 794 282 6.4 566 740 777 715 0.8

L R T R S

C.4 ABLATION ON DIFFERENT MODULE COMBINATIONS

Table 6: Ablation on different module combination.

Rotation(°) Translation(cm) Chamfer(mm)
Warmup F2F F2M Accuracy 1 Error] Accuracy 1 Error] Accuracy 1 Error]
5 10 45  Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

v 604 682 799 192 23 400 543 669 38.1 6.0 489 615 658 858 0.7

v 713 786 874 158 20 469 655 763 345 54 575 722 750 717 0.6

v 744 828 923 10.8 2.1 468 679 804 254 55 585 755 790 67.1 0.6

v v 752 825 903 14.0 20 474 683 805 30.0 54 588 765 794 692 0.6

v v 774 845 925 155 1.9 500 706 821 30.1 50 615 77.6 809 738 0.5

We have separately studied the improvements from each component in Tab.2, Tab.3, Tab.4 and Tab.5
in the main paper. Here, we reorganize the results in Tab [f] below for a better understanding. Warm
up refers to the synthetic warm-up, F2M refers to frame-to-model optimization, and F2F refers to
the frame-to-frame optimization. Applying the synthetic warm-up mechanism (line 2) and frame-to-
model optimization (line 3) independently both result in significant improvements over the frame-to-
frame baseline (line 1), highlighting the strong effectiveness of these designs. Moreover, combining
both mechanisms further enhances performance, achieving an improvement of 6 percentage points
over the baseline-only model and 3 percentage points over the frame-to-model-only model across
most metrics.

C.5 COMPARISON ON TUM RGB-D

We conduct a comparison with PointMBHYuan et al.|(2023) and F2M-Reg on TUM RGB-D, which
has more accurate and high-resolution RGB-D streams. The two registration models in Tab. [/| are
trained on ScanNet and tested on TUM RGB-D with a 50 frames apart setting. We find that our
method surpasses PointMBF by 9.4 percent point on Rotation Accuracy @5°, 11.5 percent point on
Translation Accuracy @5cm, and 9.5 percent point on Chamfer Accuracy @ 1cm. These results have
proven the strong generality of method to new datasets.

D QUALITATIVE VISUALIZATION

In this section, we present more detailed visualization results in Fig [3] for both our method and
PointMBF(Yuan et al.| |2023). We visualize the inputs and the final alignment outcomes. In dataset
selection, we deliberately choose scenes with minimal overlap and significant lighting variations.
From the visualization results, our method exhibits several advantages. This observation further
supports the superiority of the frame-to-model approach proposed in this paper over the frame-to-
frame approach, such as PointMBF. Leveraging our neural implicit field constructed on RGB-D
sequences, our approach excels in handling multi-view inconsistency. Consequently, the rerender-
ing of neural implicit field can effectively leverage both photometric and geometric consistency to
optimize the estimated pose, surpassing the capabilities of frame-to-frame methods.
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Figure 3: Visual Comparison between PointMBF and F2M-Reg. The registration model of
PointMBEF is trained on the ScanNet dataset (2017). Similarly, our registration model
is fine-tuned on the ScanNet dataset, consistent with the experiments detailed in the paper.
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Table 7: Pairwise registration on TUM RGB-D with a 50 frames apart setting.

Rotation(°) Translation(cm) Chamfer(mm)
Accuracy 1 Error] Accuracy 1 Error] Accuracy T Error]
5 10 45 Mean Med. 5 10 25 Mean Med. 1 5 10 Mean Med.

PointMBF 859 979 100.0 25 1.5 665 843 984 5.1 31 696 864 916 25 0.4
F2M-Reg 953 969 1000 1.8 11 780 948 995 3.7 26 791 953 969 1.1 0.3
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