being fast and having low memory cost, scaling to much
larger models and datasets.

S EXPERIMENTS

Algorithms: We compare our approach, IRM with itera-
tive hard thresholding IRMv1 + IHT), with relevant base-
lines ERM, sparse ERM, the oracle, and IRM-based meth-
ods. For IRM-based methods, we use IRMv1 (Arjovsky
et al., 2020), and we provide Proposition 2 to prove it is
an acceptable proxy for the minimax formulation in Equa-
tion (12). In order, ERM is the standard training loop on
the mixture of all environments; and sparse ERM adds IHT
(Jain et al., 2014). The oracle trains ERM with spurious fea-
tures zeroed, upper bounding accuracies for other methods.
For the IRM-based methods, we compare with the original
IRMvl1 (Arjovsky et al., 2020), and IRMv1 with ProbMask
(IRMv1+PM) (Zhou et al., 2022, 2021). When comparing
sparsity-based methods, we fix the target density of the
feature representation to be same across methods.

Datasets: We use common invariant representation learning
benchmarks, ColoredMNIST (2-CMNIST) is the original
binary dataset introduced in Arjovsky et al. (2020), and
FullColoredMNIST (10-CMNIST) (Ahmed et al., 2021) is
also generated from MNIST, with two environments, 10
labels and 10 colors. MNISTCIFAR concatenates MNIST
digits and CIFAR-10 images (Shah et al., 2020). The or-
acle baseline is constructed per dataset and only has the
designated invariant features: the grayscale MNIST for 2-
and 10-CMNIST, and the CIFAR image for MNISTCIFAR.
Parameters for the dataset configurations, including label
noise and environmental correlation, are in Appendix F.

Hyperparameter selection: Because we do not know dj,y
at train time, it is common to treat s in algorithm 1 as a
hyperparameter as in e.g. (Wainwright, 2019). Specifically,
we take a uniform grid search per dataset. We find also
that accuracy is not affected significantly by small perturba-
tions in s, which is demonstrated by data from additional
experiments on MNISTCIFAR in Table 4.

Evaluation metrics: Top-1 test accuracy is compared for
the three tasks. For ResNet-18 on MNISTCIFAR, we also
provide training time results, and the relative timing in com-
parison to standard ERM.

Discussion: We observe that IRM with IHT can match or
exceed the performance of competing methods, including
IRM with ProbMask sparsity, for larger models and datasets.
Sparse ERM, IRMv1+PM, and IRMv1+IHT were computed
with 88% weight density in Table 2; this corresponds to 12%
of the weights zeroed out by sparsificaiton methods. The L
norms of the layer also reflect the sparsification. ProbMask
incurs a noticeable computational overhead — an additional
23% over IRMv1. IHT only adds a 4% cost. We expect
time savings to scale up with larger models. Additionally,

we provide results for a MLP with two hidden layers of
dimension 390, the median configuration of the model used
by (Zhou et al., 2022) on these datasets.

6 CONCLUSIONS

In this paper, we provide a non-asymptotic analysis of IRM
with sparsity constraints. First, we generalize the data model,
relaxing the data model to allow for varying correlation be-
tween spurious features and the label. Next, we provide
the non-asymptotic results for sparse IRM, including a re-
finement and correction of previous work in sparse IRM,
including theoretical guarantees for L;- and Ly-constrained
IRM, resulting in a sparse representation that selects invari-
ant features. Finally, we demonstrate that these methods can
be computed in a fast and efficient matter using projected
gradient descent-based methods, and we provide experimen-
tal results that demonstrate improved test accuracy and time
savings on domain generalization datasets.
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A  BACKGROUND AND PRELIMINARIES

A.1 DEFINITIONS AND SETUP

The noise variables are independent sub-Gaussian random variables (or vectors), with 0 mean and (lower-)bounded variance
and bounded sub-Gaussian norm. Finally, we have sub-Gaussian norms Kiny = ||€inv|/ys» £s.; = ||€s,5]lw, for spurious
features j € [d,] and K, ; = ||& ;||y, for random features j € [d,]. For simplicity, we will often work with the largest
constants kg = max;e[d,] Ks,j and K, = maxje[d,] Krj-

We have design matrix denoted X¢ € R"*? where X¢ = [z, x5, -+ ,z¢]", and y¢ € R" where y = [y$, 5, -+ ,y5] "
Each feature in € is a sub-Gaussian random variable, and we assume ||7y||2 = ||@iny||2 = 1.
For the following analysis, we will use the notation
e e e e me e 1 - e
E[f(z¢)] = (z9)dPr(f(x%), E[f(@)] = =D fla7). (24)
zece i=1
Likewise, we assume that the environmental expectations are defined as follows:
1 . fig
B @] =17 D EfO), Bl = D] Ef)] (25)
e €€y

for the total number of training points available N = 3 . g,, Ne- Note that the empirical expectation over the environment
mixture only has access to &, C £. It is common to assume n; = n; for environments ¢ # j € &, in which case

E[f(29)] = 187 Leee,, E°Lf ().

This notation extends to modifiers for environment, footprints that are not the invariant footprint, and empirical risk:

B¢ = argmin R¢(v),
vESP(Siny)
llvll2<1
Bs = argminZRe('v),
veSp(S) ecE
lwll2<1
B = argminZﬁ’,E(v).

v€eSp(S) ecE
llvl2<1

For the purposes of our analysis, we assume the population optima 3¢, 8* and 3¢ are normalized.

Then, 3¢ = REe[z¢(x®)T] = Ly at(x) " = L(X°)T(X°). Also, let XS, == A1(X°) for eigenvalues sorted in

descending order, and Ay = maxecg(A1(29)). (

We also include a proof for the Sub-Gaussian design of feature vectors x®, both for Zhou et al. (2022)’s original generative
model (Lemma 3) and for our rescaled model (Lemma 4). Notably, the original setup induces a dependency of 1/d,.

Proposition 2 (Loss difference substitutes gradient norm penalty). Assuming the environmental risk is RSC, that is,
RE(W) 2 R(w) + (v — v, VaR*(v)) + 5 o' — o3, 26)

the gradient norm function Lirmy1 s an proxy of the loss difference function Liryimm.

Proof. We restate the RSC condition for the environmental risk R¢(v). For classifiers v € R? and v € R?, we have
RE(v') = RE(v) + (v — v, VoR(v)) + S [[v' — 3, @7)

for av = 2||z¢||3, which has bounded sub-Gaussian norm, as shown in Lemma 4.

By the RSC condition, R¢(v') > R¢(v') for all v’ € R%. We find inf,, R°(v’) at the critical point of our function,

0= V,R(®) = VR(v) + a(d — v),



for a minimizer v. The environmental risk then evaluates to

. ~e e/~ e 1 e
inf R*(v) = R*(®) = R*(v) = 5~ [VR(v)|[3, (28)
for a reference classifier v € R<.
We then get the inequality
- _ 1
Re(v') > R¢(v') > R*(¥) = R*(v) — %I\Vﬂe(ﬂ)lli (29)
From this, we can say
1
Ré(v) = R(v') < %IIVURG(U)H%. (30)

Letting v’ = v¢, we can see that minimizing the gradient norm penalty, can approximate minimizing the minimax loss

L(v).
O

Lemma 3 (Sub-Gaussian Design for Zhou et al. (2022)). When (S = 17, as in the original generative model introduced by
Zhou et al. (2022), we still have K opes = ||(2¢)™1/2(2¢) D]y, < c1V/ds foralli € n,e € E.

Proof. Let I be the indices of the spurious features. The invariant features £, , the label noise €;,y, and the random features

mv?

7 are all independent, and identically distributed across samples. Then, x§ for spurious features j € I, we have
T
xT; =yt aje; =7 Tiy, + €my + Q5E;

We keep ||€; |, = 1 for the spurious features. Let @ = [ainy, as, @] satisfy ||a||3 = 1. Then for any ¢ € R,

Epe [exp (taTwe)] = Eaz, |exp (ta-T x$ )Ems‘mm’ [exp (ta;—azg)ﬂ Ege [exp (ta:aci)] .

4 inv*¥inv
€inv €inv

The random features are bounded with E,, [exp(ta,’ ¢)] < exp(cst?x2). From here, we can condition on &y, €iny, getting

Ea. ., (XD (ta] @)] = Ba ja,,. |exp [ Y ta;(y+aje)) | | 31)
€iny €iny jEIq
< exp (tleas) Eo. o, |€xp(t Z ajaje;) |, (32)
cinv jel,
< exp (tleas) exp (62t2A) , (33)

for A = maxjer, a? and ¢y > 0. Then,

Ezg [exp (tai—';\,a:fnv) exp (t('ywanv + einv)lTas) exp (cthA)] , (34)
= Eqge [exp (t(ain + 1'a) " xf, +tleml  ay)) exp (cat’4)], (33)
< exp (t%4 ((1 A2 12, + ds\|emv||§,2)) exp (cat?A) . (36)

The above inequality uses 1Ta, < /d, and v; < 1. We then have the bound
E, [exp (taTage)} < exp (t%s(ds +24/ds +1+ d5||einv||12¢,2 4+ oA + 0353)) . (37)
Taking the square root of the exponent gets ||x°||,, = O(v/ds||Z, ||y, ); the isotropic vector (32¢)~1/2(2¢)() then satisfies

inv
Rones S C1 )\max V ds‘

Remark 9. This implies that if we are interested in finding the norm for a subset of the features, i.e. m®x* for m € {0, 1}d,
this bound scales with the size of the subset ||72|;. This is pertinent for when we select a smaller (usually O(dj,y)) subset of
features with a sparse predictor under L constraints.



Lemma 4 (Feature vector L2 bound). We have with probability 1 — § the bound

1
|zl < 1+ ¢s + caks + crkr + O <(Cil€§ + c,%nf)\llog 5) , (38)

for positive constants c, cq, ¢, as defined in model generation. The norm itself is a sub-Gaussian RV with |||y, = ke =

O(max{x?, k2}) and mean E[||z¢||2] = cs + cakis + Crhir-

Proof. We first apply triangle inequality on the three feature blocks.
2|2 < ll@fyll2 + 252 + 252

We bound the three terms in order. First, we use the assumption that ||z, |2 = 1.

Then, to evaluate ||x¢||2, we again use the triangle inequality to separate the label component from the sub-Gaussian noise,
getting <> < [|y“Cll2 + o © e, . With Cauchy-Schwartz, we have [y°Cl2 < ]l [im 1215 |2 = cs.

To bound the second noise component, we apply a variant of Theorem 3.1.1 from (Vershynin, 2018) for zero-mean
sub-Gaussian variables with different sub-Gaussian norms on different features.

We define a random variable Z = [Z1, Za, - -+ , Zg,] with Z; = |aSes ;|, and we aim to bound || Z||2. Firstly, E[|| Z||3] = ¢2x2
and E[Z?] = (af)?k2. We know that Z; is sub-Gaussian with [|Y; ||y, = oSk, so it must be that Y; = Z? — (af)?k? is
sub-exponential and zero-mean.

Then, let K = max (||Yily,) < max (cl ||Zl||12/)2) < ¢y max; ((af)?) k% = c1¢2k2 for an absolute constant ¢; > 0. Note

that variables named ¢y, co, etc. will also be positive constants going forward.

Pr< >

We apply Bernstein’s to get

ds

2 2. 2
§ Zz — CoRs
i=1

ds .
> u) < 2exp <—CIQ( min (u{u)) , 39)

0

where Ky = max (K?, K). Then, using the fact that for non-negative z,a we have |z — a| > ¢ implies [2? — a?| >
max(d, 62). If we let u = max(d, 62), we have 62 = min(u?,u), and

1 1
P‘“( T 121l = cars)) = 5> < Pr( o (1203 - é22) | > max(é,éz)) (40)
ng
< 2exp <— Kgs -52) . (41)
This then gets the bound, with t = 6+/d,

Cgt2
Pr (||| Zill2 — cakis| > t) <2exp | ——5 | . (42)

Kj

Then, we have with probability 1 — &, that ||a® © €52 < coks + 1/ Ij—f log (%. Together,

e Kg, 1
||ws||2 S Cs + Cqks + 710g7
C2 53
2
Then, a similar argument gets ||z¢||2 < ¢,k + 1/ %1 log 5-. Here, the constant is K1 < max{K’, K’} for K’ = c3c2k?.

For the final answer, we will assume K, K’ > 1. Then, letting § = ¢,. + 05, we get the final bound: with probability 1 — ¢,
we have

4.4 1 4,4 1
|22 < 1+ cs + Cakis + comir + 4] 9 log = + 4 | L log
C2 1) C3 1)

1
=0 (cs + Cakis + Crkip + (22 + 2K2)4 [ log 5) . (43)




This demonstrates that ||x¢||2 is a sub-Gaussian random variable; its sub-Gaussian norm is k, = O(max{x2, x2}). Also
from the above analysis, we can see that the population mean of the norm is

Ellz®ll2] =1+ cs + cakis + crhir. (44)

O

Lemma 5 (Empirical gap). Let 85 = argmin,cg,(s) E¢[(y—v T x)?] and 3% = argming cgp(s) Ee[(y—v T x)?] respectively

be population and empirical minimizers, with covariance matrix Se = ke [xx "] and footprint size |S| < diny. Then we have
with probability 1 — 6,

~ ~ ~ T ~

B[y - 8% ®)°] —E{(y — B ®)°] = 1185 — Bl +err(1/6,m), 45)

where err( n) depends on assumptions on the generation model, specified in Proposition 7.

Proof. We note that vlx = v' ®(z) if ® selects the same features as S, where ®(x) masks x and vs masks v. We
continue with the set notation Sg for this proof, but the proof applies when working with feature mask ®.

First, we define a noise variable w§:

ws =y — (B5) T = (B~ B5) "= + €inv. (46)
We proceed with the algebraic proof.

B [y — 2T B5)? - (y — 2T 597 (7)
= B¢ (27 5)?] — 2° [yaT (85 - 55)| — B° (27 85)?] (48)
= ¢ |(@°7B5)?] — 28 [(85 @ +w§)at T (85 — B5)] — B ("7 85)?] (49)
~ g [l ] 2 (@82 (35 = 9] — B [(a T 85)°) + exc(1/6.m) (50)
= (27 5)?] - 27 [0 Bgae T B5] + B° [(@T 85)?] + er(1/6,m)
= B (2T 38) - (@7 B5)?] +err(1/0,)

= (B — B9)E" [weatT| (B — B5) + err(1/5,m)

2
- B5 s +err(1/6,n). (51)
We note that step Equation (48) to Equation (50) is where the err( % 5»n) term is introduced. The proof of Proposition 5 in
(Hsu et al., 2014) applies to population error, making use of E[y] = [ﬂ*T ], which does not hold for either empirical risk,
nor for classifiers 3¢ or 3¢ that are not the (invariant optimal) ground truth. O

Corollary 6 (Empirical gap dominates). Following definitions introduced in Lemma 5, we have with probability 1 — 9,
185 — BSlls. < lerr(1/6,n)]. (52)

Proof. Recalling that 35 = argmin, cgp(s) Ee[(y — v x)?], we know that

e {(y _ weTB§)2 _ (y _ weTﬁg)ﬂ <0.
]

Proposition 7 (Empirical gap general). Given environment e € £ and selected features S € 2%, and with probability 1 — 6,

Kdinv 1
err(l/év TL) =0 (dinvclotal + W log 5) (53)

Jor cio = max{1 + k2, + (2 + k2, + 2) + 2} and K? = max (k1, k2, ).

x’ nv



Proof. We have the definition

1 A .
err(5,n) = —2E¢ wega® T (Bg — BL))]. (54)
We will now upper bound the second term with probability 1 — 4.
1 e e e\T(pe e
err(5,m) < 2 |B° [w§(2*) (35 - 55)] | (55)
< |(6* = B9 TE [ (@) T1(Bs — 89)| + B L] (B — 55) (56)
1 1O
< 2y || = (X)X + V2l || = imi (57)
n 9 n )

With constants c;,co > 0 and ?;,3 > 0 we can use Bernstein’s inequality to get, with probability 1 —
2

2exp (ﬂ:l mm{;—}l%}n)

1

7(XE)TX8

1 n . ) . . )
n < =3l ll; < E<flatll3] + ta. 58)

2 i=1

Similarly, with the Hoeffding-type inequality, 1 — e - exp (— cign),

1o . 1 « . . .
-~ ;emv,imi 2 < - ; l|€inv,i x5 |5 < E€[||€invf 5] + to- (59)
Combining, we get
err(%,n) < Wiy (B2 [||29 2] + 1) + v/ 20limy (B[l im S [15] + L2)- ©0)
We let both share the same bound ¢; = t, = t. Then, with constants C,c¢ > 0 and K? = max (/ﬁfu Ki2nv)’ we apply

. . g . 2 . . .
union bound to a bound with probability 1 — cexp (—C mm{%, K%}n) Due to the mixture of tails resulting from
Bernstein’s inequality of a sum of sub-exponential variables, we will upper bound the maximum of the two. In other words,

t < \/g—fllogg,and
1 K2 c
err(g,n) < 2dim,IEe[Ha:eHg] + V 2diny E°[|| €1y 5 || 5] + 2inyy/ Cn log 5 61)

We substitute E[[|z¢[|2] < 14 &2

2o+ (2 +rE, 4 ARZ) + 2k2 and E¢{|| ezl ||o] < Kinv(1 + €5 + cakis + ¢r k) into the
above to get the desired result.

inv

O

Corollary 8 (Empirical gap with ones). In th original setting in Zhou et al. (2022), where the scaling variables are (& = 1%

¢S = 1%, we have
1 | K2 1
eI‘I‘(77 n) < Cones@iny + O | diny\/ — log = |- (62)
1) n 1)

for cones = diny(1 + K2, + 4 k2)? and K? = O(diy)-

Proof. We modify the bound for the error term introduced in Proposition 7 with ¢ = 1% and ¢, = 1%. That is,
T, = ylds + af ® €, and x, = €,.
Remark 10. The spurious features are generated with constant contribution from the label per feature. That is,

E [ZES,Z‘} =E°[y] = E° ['YTxinV] =0(1),

In this case, E¢[||x¢||2] > ¢/d, for constant ¢ > 0. Because this will introduce an undesirable dependency on d, we avoid
evaluating ||x¢|| explicitly.



Again, we want to bound the expression from Equation (56).

err(3,m) < 2[R [w§(2)T (B — 52)] (©3)
< |B[(8" - 89) e (2%) (85 — 89| + [B¥lema*] (85 - 85) (64)

1< 1< .
<- ; AiB; + /2 || ; €inv,i L (65)

2

Above, we apply Cauchy-Schwartz to get 4; = ||(8* — %) T z¢||2 and B; = ||(B§ — B)Tz¢||2. A; is a sub-Gaussian
random variable with mean at least /diy. Likewise for B;. Furthermore, let K = max{||4;||y,, | Bi| v, }, where the
sub-Gaussian norm of both A; and B; is O(v/diny) (see final remark in Lemma 3), given that we only sum up to 2djyy
elements of the total features of x°.

Then with probability 1 — 2 exp (fc min{% %}n) , constants C, ¢ > 0, and ¢ > 0 we can say

1 n
it § AiB; < cdiny(1 4 k2, + A K2) + 1. (66)
n

i=1

The bound
1 K2
er(2,m) < cdiny(1+ K2, + K22 + /2 B[l |,] + 2di\/0— log g
n

O

Corollary 9 (Missing empirical term with uniform feature assumption). When the norms of s, x, are uniformly distributed,
Le. (= di 1% and ¢, = di - 1%, we have with probability 1 — ¢,

1 dinv
err(g,n) <SO((E+ca+cl)- min{ds, d,}

) + vV 2diny e[HEinvwfng] + 2diny Cl,nv 1Og 5 (67)

Proof. We can also infer that for a constant b > 0, max;cg; >

inv -

because ||y |3 = 1.

diny

We again bound Equation (56) by considering A; = ||(8* — ﬁg)%ellz and B; = ||(8% — %) T ¢||2. With the uniformity
assumptions, we can then say that for vectors v € Sp(S1),u € Sp(Ss), for [S1], [S1] < diny,

(w—u) e <24 > (u—v)zs+ > (u; —v;)af <2+\ﬁ< f jfT) (68)

JESs JES

We get A; B; < O((c2+c2 +c2)?- W) Then with probability 1 — 2 exp ( cmin{ 1{24 2 }n), constants C, ¢ > 0,
and ¢ > 0 we can say

1 dinv
err(g,n) <SO((2+c2+ch)- min{ds, d,}

)+ 2diny E°[|| €inv®§ || 5] + 2diny C‘j“’ 1og 5 (69)

Remark 11. This result is significantly tighter due to the % < djyy factor in the first term, generated from the mean

of wg(we)T(Bg — (%). Because in the overparameterized case diny < ds + d.., we expect that the predictors (Bg — %) and
(B* — B%), are not likely to pick up the majority of the length of © with only 2d;,, features. This is the best-case scenario,
in which no “heavy hitters" contributing to ¢2 or ¢? are captured by the linear predictors.



A.2 ASSUMPTIONS

Assumption 1. The noise on the invariant features is subgaussian. Specifically, there exists C' > 0 such that
E [exp(temv) < exp(tQC’Q)} vVt € R.

Assumption 2. There exist positive constants o and 7 such that
Vi € [diny], || > 7, Var[zi,;] > o2

This states that each invariant feature i,y ; and its corresponding ground truth weight ; must sufficiently contribute to the
explanation of the label.

Assumption 3. For the ith spurious feature, let o = ﬁ Y oece (a)? for spurious features i € [d;]. There exists a constant
A > 0 such that the following holds for each spurious feature i € [d;] for all environments e € &:

i — (af)?|> A.

Assumption 4. Let {\¢}% ;| and {)\;}2_, be the eigenvalues of %:¢ and X respectively with corresponding eigenvectors
{uf}l and {u;}L ;.

Then for those u; such that \¢ — \; = a? — (a$)? > 0, we have a constant D such that
|E[x°y®] "u;|> D >0 (70)
Assumption 5. The invariant features may not be rank deficient. That is,

Hlil’l )\i > Cmin > 0 71)

for \; (defined in Assumption 4) as an eigenvalue of 3.

Assumption 6. The loss function is RSC. Specifically, a function L satisfies a—restricted strong convexity («—RSC)

B PROOF OF THEOREMS 1 AND 2 (INFORMATION-THEORETIC)

This appendix includes the proof and supporting analysis for Theorem 1. We restate it below for clarity.

Theorem 1 Assume at least n samples per environment e € £, for a total of N = |€|n across the whole training set. If

n >0 (log (%) ), together with assumptions in Appendix A.2, with probability at least (1 — §), we have:
[:(Sinv) < EA(S)a V‘S|§ dinva S 7£ Sinv ) (72)

with constants in sample complexity further specified below.

Proof. To sketch the proof, we first analyze £(vg) where vg € Sp(S) for S € 27, breaking down its IRM penalty term into
three error components Jirymm (S) = €a(S) — &(S) + &.(S). This is then used to bound L(vs) — L(5*). When S # Siny,
we show this gap to be positive.

B.1 COMPONENTS OF PENALTY

The penalty term from £(®) is

T (8) = 3 [R4(Bs) = R (85)] = €a(S) — &(5) + &u(5), 73)

ecf

with B s and Bg as defined in Section 3

&l(8) = 3 [Re(Bs) - R (83)] (74)

ecf



&(8) = Y [Re(B9) - R (8%)] . 75)

ecé

£(S) =) _[R(B5) — R°(BS)] - (76)

ecé&

We bound |&,(S)] in Corollary 11 and |£,(S)]| in Corollary 12, followed by an analysis of |£.(5)].

Lemma 10 (Penalty component). For a given environment e € £ and feature subset S € 2%, we can bound |7A€e(B§) -
R(B%)| with probability 1 — 6, given a sample size per environment of n > cw?(A) = O(diny):

I log(3
RE(35) — REBE)I O [ | 2202 )
where Amax ‘= MaXees (Amax(X€)) and err(1/9, n) as defined in Proposition 7.
Proof. First, with triangle inequality, we have for all .S,
IR(B%) — RE(BS)I< [RE(BS) — RE(BE)|[+IR(BE) — RE(BS)]. (78)

The second term from Lemma 10 can be bounded by generalized Hoeffding’s inequality for unbounded sub-Gaussian
random variables, as stated in Proposition 5.10 in (Vershynin, 2011). With probability 1 — O(dp),

1
RE(35) — RE(B5)|< O [ rimey | 2812

(79)

For the first term with 7@6, Bg, (¢ as defined above, it is necessarily less than 0 by the definition of BSS , the minimizer of
R(BS)-
IR(Bs) — R°(Bs)[< 0. (80)
O
Corollary 11 (Second penalty term). The following bound holds with probability 1 — &, for all S € 2%:

log(£))
n

1€6(9)|< O [ |€]Finv =: |&] (81)

where ert(3,n) is as defined in Proposition 7. The RHS is independent of S, so we name the upper bound |&,|.

Proof. We expand &,(S) to get
6(S)[< D IR(BS) — R(B5)] (82)

ecé

Lemma 10 can directly be applied on each of the different environments e € £. Applying the union bound for the
environments produces the desired result. O

Corollary 12 (First penalty component). The following bound holds with probability 1 — &, for all S € 2%:

log(3)

< .
€a(9)|< O | Kiny Zln

= |&l (83)

where err(%7 n) is as defined in Proposition 7. Again, the RHS is independent of S, and we name the upper bound |,|.



Proof. Recall that R(v) = Y .o R¢(v) for all classifiers v € R%. Additionally, 85 = argmin,,cy, R(v) and Bs =
argmin,, ¢y, 7@(1}) We want to bound the following expression with high probability (1 — d,):

1€a(S)|=

> [Re(Bs) — R (89)] ‘ — [R(Bs) - R(83) (84)

ecé

We may apply the analysis of Lemma 10 to the whole dataset, which can be treated as one environment with n|| points as
is done in Zhou et al. (2022). O

Proposition 13. For D, A as defined in Assumption 4,

(85)

gc<5){:0’ if S € Simy U S,

D2A? .
> =5 otherwise.

A = max (Ueef{)‘f}gZI U {)‘i}gzl)'

To bound |£.(.5)|, we reference the analysis of Equation (29) in (Zhou et al., 2022).

Let {\¢}¢, and {)\;}¢_, be the eigenvalues of ¥¢ and ¥ respectively with corresponding eigenvectors {u}?¢_, and
{ui}iy.

Define X% = E¢[(x)(25) "], and Xg == E[(x§)(z%) "], where % € RISl and is the pruned “projection” of ¢ keeping
only the indices ¢ € S. Note that this differs from the analysis in (Zhou et al., 2022), particularly Assumption 1, which
involves taking the inverse of the analagous matrix £§ that is not full rank.

&(8) = DI85 — B8)lls (86)

ecf

- € €\ — e e T e — e €\ — e e

= Z (ESIE[wsy] - (Z'E [Sy]) =g (ZSIE[iBsy} - (Z%)'E [x%y)) (87)

ec&

ef.e 1T 2 1 1 :
=3 (Blagy) Tu) N (= - — (88)
; AN
e i€S L

For any classifier footprint S € 2%, we know that ¢ = Y5 + Diag(0, - - ,0, (af)? — a?,0,- - - ,0). From this, at most

d, eigenvalues have a nonzero difference \f — \; = (af)? — a?. This is bounded by Assumption 3, and [E¢[z°y] T ;] is
bounded in Assumption 4. Note also that

2
11 (A — A2 A2
VAT S RN YC Y O - 89
(Af M) T T v
for Ay, = max (U,ce{A¢}¢; U {A;}, ). Then the overall bound for & for Sy is
e - 0, if S € Siny U S, (90)
> D;3A2, otherwise.

This is a simpler and slightly tighter lower bound than provided previously.

B.2 ANALYZING EMPIRICAL RISK

We want to show that £(Siy, ) < £(S) for footprint S € 27 such that ||S||o < diny. To borrow the analysis in (Zhou et al.,
2022), we observe that there are two categories of footprints: those that include at least one spurious feature (Syim-spu) and
those that do not (Syo-spu)-

We will first show that VS’ C Swi-spu> E(Sinv) < [Z(S) Then, we will show the same for the no-spurious feature selectors,
that is V'S C Sno-spus ﬁ(Sinv) < E(S) We will use iy = Ss,, as a shorthand.



First, for S C Swith.spu> We have
£(8) = £(Sm) = > [R¥(Bs) + p (R*(Bs) — R*(85) )]
= 37 R Bi) + 0 (R o) — R (55 O
= Ze[ﬁ%és)} + 0€a(S) = PEb(S) + PEclS)

_ga( 1nv) |€"Jinv pga( 1nv)+p£b< 1nv) Pﬁc( 1nv) (92)

For the second equality, note the definition of £, (.S, ), using o2 as the variance of €ipy:

fa(Sinv) = Z {ﬁe(gmv) - Re(ﬁ*)} Z {Re ﬂmv } Zom\/
By dropping error terms Y, R¢(-) > 0 and using |&,(S)|< |&(S)| for all S € 29, we get a lower bound.

L(S) = L(Sin) = —p&(S) + p&e(S)

—&a(Siny) — |g|‘0'i2nv — P€a(Sinv) — PEc(Siny) (93)
Additionally, from eq. (85), £.(Siy) = 0.
—(2p + 1) & —[E]- oy + pEe(S) (94)

We then select p to eliminate the £.(S) term, while also producing a positive term in the RHS. Specifically, let p£.(S) >
2|E|-02,, getting

2‘8‘0—1nv 2|‘5‘|O—lﬂ\’
>
= DRAY AL © 6(5) ©3)

Setting the weight p to the LHS, we can write the gap as

L(S) -

‘C an
ﬂ
—2p+ 1O | [EN— | +|E|-om- (96)

Finally, we solve for the sample complexity required to differentiate Si,, and S.

(2p+1)2log (lg‘)
n > I o7

inv

Likewise, to analyze the classifiers that include random features but not spurious features, we now consider S C S,,o—spu.-
Note that .S, refers to the set of features ¢ € [d] such that =§ is a random feature; S N S, is the set of random features in S.

£(8) = L(Sim) = Y [RE(Bs)| + p&a(S) = p() + ptc(S)

e

- ga( mv) |8"0-inv pga( 1nv) + be( 1nv) Pfa( 1nv) (98)
From (Zhou et al., 2022), we have R°(8s) — R°(8") = }_;c5,\s Vil i i» SO
&(8) = Y [R¥(Bs) = RE(8") = R¥(8s) + R(8")] = DR (Bs) — el o= 1E] 30 s
e 1€ S\ S

We also use the definitions in Assumption 2 to lower bound +; and i,y ; With high probability.



Remark 12. We need a lower bound specifically to provide the sample complexity result after. In other words, we work

both with the subgaussian norm to “upper bound" the features, and we need a lower bound on the label noise variance o2
2

and the smallest feature variance o¢.

Proceeding to compare the empirical losses,

L(S) = L(Smy) > [ &a(S) +Elony +1E] Y vizhy,
1€ Siny\S
+ p€a(S) — p&u(S) + p&e(S)
- fa(Sinv) - |g"0'i%1v
— P€a(Sinv) + P& (Sinv) — P€c(Sinv)s (99)
> —(2p + 1)[&|+IE]-7 - 5. (100)

Again, we eliminate positive terms; additionally, £.(S) = £.(Siny) = 0. The resulting sample complexity for differentiating

Sy from S € Sho-spu 1S then the following:
£
(2p+1)%log %

n >
~2 4
fy UO

(101)
Together, Equation (97) and Equation (101) form the sample compleixty; we take the max between the both. We note that
both are O(léibl).

d )
diny d%inv

diny log d+1og|E|—log § < diny log @. Under this sample complexity, we have ﬁ(S) fﬁ(Sim,) forall | S|y < diny, S # Sinv-
O

before taking the union bound, incurring a log % =

Because [Syith-spu U Sno-spu|= ( ) < d% we can set §, =

B.3 COMPARISON: EMPIRICAL LOSS WITH POPULATION MINIMA
We provide a proof for Theorem 2 of the main paper, restated below for reference:

Theorem 2 For population minimizers as defined in Equation (6), and n samples per environment e € &, for a total of
N = |&|n across the whole training set, we have

L(B*) < L(BE), |S|< dinys S # Siny, (102)

ifn>0 (poly(dm\,) log (%)) with constants specified below.

Proof. We want to show that
L(Bay) < L(Bs) (103)
for |S| < dipy and S # Siny. We will use the notation 85, == f* = ﬁg‘mv for the invariant optimal predictor.

inv

First note that with high probability 1 — 67,

‘CA(BITIV) = Zﬁe(ﬂitlv) + 'DZ [7%'6(6;;\/) - 7%6( ic;lv) + 7%6( i?w) - 7%6( Ai?lv)i| (104)
ect ec&
=D R(Bi) + 00+ &(Sim)) (105)
ecf
< STRE(B) + plEIO | ki (5) 106
= inv p Kinv n ( )
eef
The second equality uses two definitions. First, 85, = 8, for e € £, so R°(85,) — R(Bi,) = 0.



Then, we use the definition of &, (.5) from Equation (75), which is upper bound in Corollary 11. Also, the equality 35\ = 5.2
for e1, es € &, because the subset selects only the invariant features that are shared between all environments.

Next, with high probability 1 — Jo,

5) = DORE(B5) + Y [RE(B5) — RE(B5) + R (85) — R(35)| 107)
ecé ecé
log(?—‘)
> RUBE) + p€e(S) + 0> |20 | o 2 — pl&(9)] (108)
ect ecé
~ DQAZ 1 1€l 1 €]
> STRBE) + 10 | S — || o | = AIEIO [ i % (109)

ecf

where 2, = comax{(c2k? + ¢?k2)?, ki, } for some constant ¢y > 0. To get the first inequality, we want to bound

IR(B%) — R(8%)| and |R(BE) — R(BE)|. Hoeffding’s inequality may be used, but we need the sub-Gaussian norm of the
least squares error; let this be Z; = (y; — (85) " x5)? for j € [n]:

Zi = (y; — (B8) " ®5)* = (B = B5) a5 + €inv.g)” < (18 — BEl2ll5ll2 + eine ). (110)

By the assumption that classifiers (3

mnv?

Lemma 4 with probability 1 — §, we get

B% are normalized, we have || 5

vy — B5ll2 < 2, and ||z°]|2 is sub-Gaussian; from

E®[Z;] = O(max{(cs + coks + CTHT)Q, n?nv}), (111)

and
Cuotal = || Zillp, < O(max{4]|@®||3 + 4[|z | 2€iny + €y }) = O((¢s + cakis + Crhir)?, Fipy)- (112)

lo g(‘“)

Applying Hoeffding’s inequality to |R¢ (B%) — R°(BE)| then gets the bound of O (cwtdl with probability

£
og('5)
n

1 — 4. Likewise, |7A€€(5§) —Re(Bg) <O (clotal ) with probability 1 — d,. We apply these inequalities over |£]

environments, so we set 01 = dg =
£e(5) = Leee[R(B5) = R°(B5)]-

We use the upper bound on [£,(.5)| in Corollary 11 and the lower bound on &.(S) from Proposition 13, noting that £.(5) is
greater than some constant ¢ > 0 with high probability provided that there exists at least one feature ¢ such that o # a2,
forey,es € E,e1 # es.

ﬁ. To complete the first inequality, we use &,(S) = Zeeg[ﬁe(ﬁg) — R¢(3%)] and

Next, we demonstrate that £(3%) — L(6,) > 0.
D2A2 [log|&| /0.
(ﬂS mv Z Z ZRE inv + p|€|0 < — Ciotal g||/3> (113)
ee ecf "
log|&]/d
= —IElof + pIENES)|—plElewuay] B2 (114)
We observe that R¢(3%) — Y ece RE(BE,) > 0 — |E|o2,. First, we set p such that p|||€.(S)|—|E|o2, > o2, > 0. This
can be satisfied by setting
11'1V + ‘€|O—1nv
TR (115)
€18e(S)

. Then, we can guarantee that £(8%) — L( > 0, with the sample

which can be satisfied with p > |5(1+|5|)U‘"V i)

[DZTAZ/A3

max

complexity computed in the proof of Theorem 1:

£ £
n > max { (2P + 1) lotal log l l (2P + 1) ctotal log l ‘ }

4 ) (116)
Oiny 7 00



Again, we need to solve ( ) < d%~ optimization problems, so we set &, = —i— before taking the union bound.

With n > ¢ diny log %, we achieve the desired result.

We note that in the general case, o = O(max{(cs + cqakis + crkr)?, Kb, }). With the original setting in Zhou et al. (2022),
¢, = 1% This leads to cs = v/ds. Then, with ¢2 ,; = O(c?) = O(d?), we get a polynomial dependency on d, without a

S
more refined analysis. O

Remark: It is also unlikely that spurious features are all equally correlated with the label, as assumed when we take
to be all ones. Even with sparse feature selection, it is possible for the predictor to pick up the largest elements of €. An
example of a “heavy-hitter" would be a spurious feature 7 that has a strong correlation with the label through a high (7,
contributing to c?. In the case that j € .S, we end up with ¢y cg. This is expored further in Corollary 8.

On the other end of the spectrum, a more evenly distributed feature vector can demonstrate even tighter bounds. This is
explored further in Corollary 9. U

B.4 COMPARISON: SPARSE IRM VS ERM AND SPARSE ERM

The following propositions give a characterization of this data generation model to motivate the use of IRM. Proposition 17
shows that ERM with sparsity constraints on the global population is also unable to find the invariant features.

We can represent a given classifier v in its three parts v = [Viny, Vs, ’UT]T.

Proposition 14 (Invariant Optimal Classifier is ground truth). In the problem setting defined by Equation (2), 3* =

[y", (0%)T (0%)T], and is also a solution to Equation (1).

Proof. First, R(6*) = Var(eyy). Let a comparison be made to candidate parameters 5 € S with |S| < dj,. If any
of the parameters in § are random, that is §; # 0 for ¢ € S, we lose information and R¢(8) > R€¢(8*). Likewise,
J(B) = R°(B) — ming esps) R(B) > 0 = J¢(B). So, any parameter 3 with random features will not be a solution to
Equation (1).

Next, we consider 3; # 0 for i € S, potentially including spurious features. In this case, we want to show that £(5*) —L(5)
is negative:

L(B*) = L(B) =D _R(B*) = RB) + pT(8*) — pT*(B)

ec
> Z Var(€iny) — R(B) — pT°(B)
ecf
= Z; Var(eny) — (14 p)R(B) + pﬁ/rerélpr(ls) RE(B)

We know that R¢(3) — ming csp(sy R(8") = J§ > 0. With an appropriately selected p, we can see that the penalty
incurred by a non-invariant 3 will incur greater IRM population loss than the optimum 3*. O

Proposition 15 (ERM does not overfit on random features). Because x¢ is independent from the other features and
zero-mean, we can guarantee that v¢ does not have elements on the random noise features x... In other words,

RE([Oinys v 0, ]1) < RE([viy, 05,071 T) (117)
Proof. We can see that
R ([ 0207 17) = B [(y = [vim, 0] [, @) — v/ ,)°]
=E° [(y [Viny, ][ :Bmv,wg])z = 2(y — [Viny, vs][®fy, ® ])(vTer) + (”:67’)2]
= R*([viny, v ,0"] ") + E[(v,] )]
> R([jny, v, 0] 7).

The difference E[(v, €,)2] = 0 if and only if v,” €, = 0, in which case vy = 0. O



Proposition 16 (ERM overfits on spurious features). When there exists spurious feature i € [d] such that o? < o2, then

mv’

B* =[v,0,0]" ¢ arggr;inn(v). (118)
vERD

Thus, unconstrained ERM on the even mixture of environments will not be able to detect the ground truth.

Proof. This can be seen by setting v = e; where £ is the standard basis vectors with a 1 on the ith feature on the spurious

¢
feature 7,

€; e e €
72(3) =E[E°[(y -y — afes,i)’]] = E [(a§)?] = of < offy = R([7,0,0)].
While e; is not generally the minimizer of the global population loss, it does show that [, 0, 0] does not achieve minimum
loss when there are no restrictions on footprint/LO norm. U

Proposition 17 (Sparse ERM doesn’t find invariant features). With population risk, ERM with constrained LO norm does

. . 2 2
not find invariant features when o < i,

min R(v) < R(B* (119)
llvllo<dinv @) G
Proof. We can observe that
min R(v) < R(Z) = a? < 02, = R(5") (120)
[0llo<din Gi
In other words, ERM with sparsity constraints is not guaranteed to find the exact invariant footprint in the population
case. O

Proposition 18 (Sparse IRM finds invariant features). IRM with sparsity can find the invariant optimal classifier, where
B* = argmin L(v) s.t. [|[v]|o < diny (121)
Proof. With the assumptions in Appendix A.2, we can analyze eq. (76) to see that the penalty term added by £(v), which

is R¢(v) — R°(v°) in the population case, is only zero when the classifier learned has nonzero elements on the invariant
features only. O

C PROOF OF THEOREM 3 (ALGORITHMIC ERROR BOUND)

C.1 ITERATIVE HARD THRESHOLDING

Below is the proof for Appendix C.1. We copy the theorem below for reference:

Theorem 3 Assume n samples per training environment, for n > @ (poly(dinv) log(d) log (%)) Together with
assumptions in Appendix A.2, we can say with probability at least 1 — §:

8= Irgnﬁ(v) st.v € R |lv]lo < diny,

returns a parameter 3 with low estimation error |5 — 3% ||z < O( d‘T‘L“)

Proof. We apply Theorem 3 of Jain et al. (2014), which specifically contains an example for Sparse Linear Regression.

RSS and RSC: With parameter 3 € R?, 3’ € R?, we define

IR(B) :=R(B') = R(B) — (VsR(B), B’ = B), (122)

and likewise

0T (B) = TB') = T(B) = (VsT“(B), 8" = B)- (123)



To apply results from Iterative Hard Thresholding, we show that this problems satisfies the Restricted Strong Convexity
(RSC) and Restricted Strong Smoothness (RSS) conditions. RSC requires

ORE(8) + pd.T*(B) = T A, (124)
Likewise, for RSS condition,
SR (8) + b (8) < "R A (125
Let A =3 —p.
8T(B) = T8+ ) — T(8) + (VsT*(8). ) (126)
= XY = X8 = XA~ [ (X T(V — X°B)3
+ <%(—X8TX6X‘")T(Y - X°B),A) (127)
= (X)X A3 (128)
= lxTXeAlB (129

If we set aurm = @5 as defined in (Jain et al., 2014), which defines RSC for the least square component 6R¢(/3), we recover
the RSC property:

e e 1 e 1 e e 1 e o
ORE(B) + p0T*(B) = — | X°All5 + —5 (X)X A[5 > ~[|X*Al5 > ISMHAH%,

since %X et Xeis positive semi-definite.

We then want to upper-bound 6.7¢(3), and we will also use L as defined in Jain et al. (2014) Let X = X°, the
data matrix for a single environment. If we write the eigendecomposition X ' X = VAV, with diagonal elements
of A as A; for ¢ € [d], we can also write A = Va for some coefficients «. For least squares, we have bounds for

d .
IXA[Z = [[A2al|f = 320 Miof < 5| A|l3.

Define Lo = %2 ||A[|3. First, ||A||3 = ||a|3 = 1. Furthermore, we note that A = 3 — 8 for iterates of the IHT algorithm,
and let || 3]]o = s and ||8'||o = &', where s + s" < d. Then, ||Allo < s+ s’. Because A is low-rank, we can assume there is

aset T of eigenvectors where |T'| < s’ + s, which defines || X A||3.

d d
Do} =Y Nal<Lp, and > Nof=) Mol (130)
=1 1

i€T i= €T

The bounds apply for restricted eigenvectors A where ), . Ma? < Lg for any ||a||3 = 1. Then we can say that
S.epA2e? = \; < Lg forall i € T', which means 20 < 1. Then, it must be that

€T M 1
AP Ai o
Tai < Zfo‘i <1, (131)
ieT 0 ieT
and
> Aai < L3 (132)

€T

Then we can set Liry = L2. Following the example of Theorem 3 in (Jain et al., 2014), for sparse linear regression, we apply
the same sample complexity n > 5c¢qdiny log d(AS ;) where AS . = min;eq A(X¢) will get us the conditioning constant:

min

e 2
K = 7( ";ax> . (133)



We substitute this back into the error bound of IHT. Then with probability at least 1 — ¢1p~ 2 for constants c1, co > 0, we
end up with the bound

~ . /\2 diny 1O d diwlogd oy
18 = Bivllz < 1 or SR maxa Fhs\| ———— & “ ( hax \/Vng—i-ﬁ>. (134)

Remark 13. The minimax loss in Equation (9), which formulates the IRM penalty as a loss difference [7@6 (vs) — R® (vg)} ,
has notable discontinuities between different parameters with different footprints .S

=) R(vs +pz max [Re vs) — 736(”%)}

cee vSESp(S)
=1+ R (v min R
P e; s) pzv Jmin (v%)
= (1+p) > _ R(vs) — pMs. (135)
ee&

This presents challenges in applying existing results in linear regression with restricted parameter error, such as by LASSO
(Negahban et al., 2009; Banerjee et al., 2015; Wainwright, 2019), or especially IHT (Jain et al., 2014). Instead, we directly
analyze the IRMv1 penalty.

O
D GENERALIZED LINEAR MODEL EXTENSION
We start by restating the original data generation model:
Yy = 'YT Tiny + €iny »
ro =yl +a“Oe, (136)

z,=C, Q€.

GLMs are based on exponential family distributions (Brown, 1986; Barndorff-Neils, 2014; Banerjee et al., 2015), where we
assume the conditional distribution of a response y; conditioned on covariates x; is an exponential density function:

P(yilz7, Biy) = expl{yi(xf, Bny) — o((5, Biy)) } = exp{¥i(®inv,i,7) — @({Tinv,is 7))} (137)

for log-partition function ¢ ((x¢, 5 ,)) = log ( fu’_ exp {y; (x$, B0} dyi). For simplicity of notation, we can represent

the parameter 77; = (@iny,;, 7). Then the new environmental risk is the negative log-likelihood for the conditional pdf. If we
use Dy, = U, ce{ (2, y:) }i, to be the entire dataset across different parameters,

RE(B, :_722%98 L1 ZZ 1nv7 z))

ec& i=1 eefz 1
e Bl -
ecf i=1
1
=X (Bly: | 2] - ). (138)

We present the conditional Bernoulli distribution example (Banerjee et al., 2015; Dunn and Smyth, 2018). Using parameter
p; for the conditional mean,

P(y;, |pi) = pi.“ (1— pi)(l—yi)

— exp (y log (1 b ) +log(1— pz)> . (139)




Then the parameter 1; = (Tin;,y) = log (1 L p ) We then end up with logistic regression, where

_ exp(<winv,iv 7>)
1+ exp((Tinv,i,7))

(140)

4

In this case the link function is log(1 — p;). We emphasize in this setting that this only depends on the invariant features x,,
and not those of the spurious.

The corresponding IRM penalty term is then

JB) = max [R(8s) — R°(B5)]. (141)

cer Bs€Sp(S)

By showing RSC and RSS for the loss function ) . R(8) + pJ (), we can recover Theorem 1.
E ALGORITHM

Algorithm 2 Sparse IRM with Iterative Hard-Thresholding

Ne

1: Input: target nonzero features dipy < d, D = {D®}ece and D¢ = {(x§, y;) } 1.
2: Initialize weights (v, ®).

3: for training iterationt = 1,2,--- ,7T do

4: vt proj, (v' — nvvﬁ(vt))

5 P! Bt — Vg L(D)

6 t=t+1

7: end for

F EXPERIMENT DETAILS

The hyperparameters used for the experiments in Section 5 are included below. Starred hyperparameters were evaluated via
grid search. Remaining hyperparameters are kept from previous experimentation (Arjovsky et al., 2020; Zhou et al., 2022).
Hyperparameters for the SparseIRM + PM method, not included in Table 4, are taken from Zhou et al. (2022).

Table 4: Hyperparameter configurations for experiments.

Dataset 2-CMNIST 10-CMNIST MNISTCIFAR
Model MLP390 MLP390 ResNet-18
GPUs (NVIDIA A100) 1 1 1

Epochs 1500 1500 50
Optimizer Adam Adam Adam
Learning Rate 0.0004 0.001 0.001
IRMvI Penalty Weight 10000 10000 10000
IRMv1 Anneal Start Epoch 200 200 13
Learning Rate Scheduler Cosine Cosine Cosine

# Zeroed Weights (last layer)* 40 40 60

IHT starting epoch* 1200 1200 46
Updates between IHT projection®* 5 5 5

F.1 DATASETS

Correlation tuples for the construction of IRM datasets are included below.

Numbers followed by a error bar are 1 standard deviation, i.e., in 62.44 & 0.96, 62.44 is the mean, and 0.96 is one standard
deviation above and below.



Table 5: Dataset configurations for experiments.

2-CMNIST 10-CMNIST MNISTCIFAR
Number of Classes 2 2
Correlation Tuple 0.9,0.8,0.1) (0.999,0.7,0.1) (0.999,0.7,0.1)
Noise 25% 10%

F.2 TUNING THE SPARSITY

In practice, we do not have access to dj,y when training a model on Sparse IRM.

Perturbation to d_inv (%)

Train Accuracy (%)

Test Accuracy (%) L1 Norm

-5
-2
+0
+2
+5

59.61 £0.32
62.11 £0.51
63.39 £0.55
59.41 £0.52
60.34 £ 0.80

56.98 £0.27 5.17£1.43
59.05 £ 0.43 6.07 = 1.05
60.94 £ 0.46 5.79 £ 4.05
57.36 £ 0.42 7.97 £4.05
58.03 £0.63 6.98 + 3.18

Table 6: Performance metrics across different perturbations to djpy.



