
being fast and having low memory cost, scaling to much
larger models and datasets.

5 EXPERIMENTS

Algorithms: We compare our approach, IRM with itera-
tive hard thresholding (IRMv1 + IHT), with relevant base-
lines ERM, sparse ERM, the oracle, and IRM-based meth-
ods. For IRM-based methods, we use IRMv1 (Arjovsky
et al., 2020), and we provide Proposition 2 to prove it is
an acceptable proxy for the minimax formulation in Equa-
tion (12). In order, ERM is the standard training loop on
the mixture of all environments; and sparse ERM adds IHT
(Jain et al., 2014). The oracle trains ERM with spurious fea-
tures zeroed, upper bounding accuracies for other methods.
For the IRM-based methods, we compare with the original
IRMv1 (Arjovsky et al., 2020), and IRMv1 with ProbMask
(IRMv1+PM) (Zhou et al., 2022, 2021). When comparing
sparsity-based methods, we fix the target density of the
feature representation to be same across methods.

Datasets: We use common invariant representation learning
benchmarks, ColoredMNIST (2-CMNIST) is the original
binary dataset introduced in Arjovsky et al. (2020), and
FullColoredMNIST (10-CMNIST) (Ahmed et al., 2021) is
also generated from MNIST, with two environments, 10
labels and 10 colors. MNISTCIFAR concatenates MNIST
digits and CIFAR-10 images (Shah et al., 2020). The or-
acle baseline is constructed per dataset and only has the
designated invariant features: the grayscale MNIST for 2-
and 10-CMNIST, and the CIFAR image for MNISTCIFAR.
Parameters for the dataset configurations, including label
noise and environmental correlation, are in Appendix F.

Hyperparameter selection: Because we do not know dinv
at train time, it is common to treat s in algorithm 1 as a
hyperparameter as in e.g. (Wainwright, 2019). Specifically,
we take a uniform grid search per dataset. We find also
that accuracy is not affected significantly by small perturba-
tions in s, which is demonstrated by data from additional
experiments on MNISTCIFAR in Table 4.

Evaluation metrics: Top-1 test accuracy is compared for
the three tasks. For ResNet-18 on MNISTCIFAR, we also
provide training time results, and the relative timing in com-
parison to standard ERM.

Discussion: We observe that IRM with IHT can match or
exceed the performance of competing methods, including
IRM with ProbMask sparsity, for larger models and datasets.
Sparse ERM, IRMv1+PM, and IRMv1+IHT were computed
with 88% weight density in Table 2; this corresponds to 12%
of the weights zeroed out by sparsificaiton methods. The L1

norms of the layer also reflect the sparsification. ProbMask
incurs a noticeable computational overhead – an additional
23% over IRMv1. IHT only adds a 4% cost. We expect
time savings to scale up with larger models. Additionally,

we provide results for a MLP with two hidden layers of
dimension 390, the median configuration of the model used
by (Zhou et al., 2022) on these datasets.

6 CONCLUSIONS

In this paper, we provide a non-asymptotic analysis of IRM
with sparsity constraints. First, we generalize the data model,
relaxing the data model to allow for varying correlation be-
tween spurious features and the label. Next, we provide
the non-asymptotic results for sparse IRM, including a re-
finement and correction of previous work in sparse IRM,
including theoretical guarantees for L1- and L0-constrained
IRM, resulting in a sparse representation that selects invari-
ant features. Finally, we demonstrate that these methods can
be computed in a fast and efficient matter using projected
gradient descent-based methods, and we provide experimen-
tal results that demonstrate improved test accuracy and time
savings on domain generalization datasets.
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A BACKGROUND AND PRELIMINARIES

A.1 DEFINITIONS AND SETUP

The noise variables are independent sub-Gaussian random variables (or vectors), with 0 mean and (lower-)bounded variance
and bounded sub-Gaussian norm. Finally, we have sub-Gaussian norms κinv = ∥ϵinv∥ψ2

, κs,j = ∥ϵs,j∥ψ2
for spurious

features j ∈ [ds] and κr,j = ∥ϵr,j∥ψ2 for random features j ∈ [dr]. For simplicity, we will often work with the largest
constants κs = maxj∈[ds] κs,j and κr = maxj∈[dr] κr,j .

We have design matrix denoted Xe ∈ Rn×d where Xe = [xe1,x
e
2, · · · ,xen]⊤, and ye ∈ Rn where y = [ye1, y

e
2, · · · , yen]⊤.

Each feature in xe is a sub-Gaussian random variable, and we assume ∥γ∥2 = ∥xinv∥2 = 1.

For the following analysis, we will use the notation

Ee[f(xe)] =
∫
xe∈e

f(xe)dPr(f(xe)), Êe[f(xe)] =
1

n

ne∑
i=1

f(xei ). (24)

Likewise, we assume that the environmental expectations are defined as follows:

E[f(xe)] =
1

|E|
∑
e∈E

Ee[f(xe)], Ê[f(xe)] =
∑
e∈Etr

ne
N

Êe[f(xe)] (25)

for the total number of training points available N =
∑
e∈Etr

ne. Note that the empirical expectation over the environment
mixture only has access to Etr ⊂ E . It is common to assume ni = nj for environments i ̸= j ∈ Etr, in which case
Ê[f(xe)] = 1

|E|
∑
e∈Etr

Êe[f(xe)].

This notation extends to modifiers for environment, footprints that are not the invariant footprint, and empirical risk:

βe := argmin
v∈Sp(Sinv)
∥v∥2≤1

Re(v),

β∗
S := argmin

v∈Sp(S)
∥v∥2≤1

∑
e∈E
Re(v),

β̂S := argmin
v∈Sp(S)
∥v∥2≤1

∑
e∈E
R̂e(v).

For the purposes of our analysis, we assume the population optima βe, β∗ and βeS are normalized.

Then, Σ̂e = Êe[xe(xe)⊤] = 1
n

∑n
i=1 x

e(xe)⊤ = 1
n (X

e)⊤(Xe). Also, let λemax := λ1(Σ
e) for eigenvalues sorted in

descending order, and λmax := maxe∈E(λ1(Σ
e)).

We also include a proof for the Sub-Gaussian design of feature vectors xe, both for Zhou et al. (2022)’s original generative
model (Lemma 3) and for our rescaled model (Lemma 4). Notably, the original setup induces a dependency of

√
ds.

Proposition 2 (Loss difference substitutes gradient norm penalty). Assuming the environmental risk is RSC, that is,

Re(v′) ≥ Re(v) + ⟨v′ − v,∇vRe(v)⟩+
α

2
∥v′ − v∥22, (26)

the gradient norm function LIRMv1 is an proxy of the loss difference function LIRMmm.

Proof. We restate the RSC condition for the environmental riskRe(v). For classifiers v ∈ Rd and v ∈ Rd, we have

R̃e(v′) := Re(v) + ⟨v′ − v,∇vRe(v)⟩+
α

2
∥v′ − v∥22, (27)

for α = 2∥xe∥22, which has bounded sub-Gaussian norm, as shown in Lemma 4.

By the RSC condition,Re(v′) ≥ R̃e(v′) for all v′ ∈ Rd. We find infv R̃e(v′) at the critical point of our function,

0 = ∇vRe(ṽ) = ∇Re(v′) + α(ṽ − v),



for a minimizer ṽ. The environmental risk then evaluates to

inf
v
R̃e(v) = Re(ṽ) = Re(v)− 1

2α
∥∇Re(v)∥22, (28)

for a reference classifier v ∈ Rd.

We then get the inequality

Re(v′) ≥ R̃e(v′) ≥ R̃e(ṽ) = Re(v)− 1

2α
∥∇vRe(v)∥22 (29)

From this, we can say

Re(v)−Re(v′) ≤ 1

2α
∥∇vRe(v)∥22. (30)

Letting v′ = ve, we can see that minimizing the gradient norm penalty, can approximate minimizing the minimax loss
L(v).

Lemma 3 (Sub-Gaussian Design for Zhou et al. (2022)). When ζes = 1s, as in the original generative model introduced by
Zhou et al. (2022), we still have κones := ∥(Σe)−1/2(xe)(i)∥ψ2

≤ c1
√
ds for all i ∈ n, e ∈ E .

Proof. Let Is be the indices of the spurious features. The invariant features xeinv, the label noise ϵinv, and the random features
xer are all independent, and identically distributed across samples. Then, xej for spurious features j ∈ Is, we have

xej = y + αei ϵj = γ⊤xeinv + ϵinv + αei ϵj

We keep ∥ϵj∥ψ2 = 1 for the spurious features. Let a = [ainv,as,ar] satisfy ∥a∥22 = 1. Then for any t ∈ R,

Exe

[
exp

(
ta⊤xe

)]
= Exinv

ϵinv

[
exp

(
ta⊤

invx
e
inv

)
Exs|xinv,

ϵinv

[
exp

(
ta⊤
s x

e
s

)]]
Exe

r

[
exp

(
ta⊤
r x

e
r

)]
.

The random features are bounded with Exr
[exp(ta⊤

r x
e
r)] ≤ exp(c3t

2κ2
r). From here, we can condition on xinv, ϵinv, getting

Exs|xinv,
ϵinv

[
exp

(
ta⊤
s x

e
s

)]
= Exs|xinv,

ϵinv

exp
∑
j∈Is

taj(y + αjϵj)

 , (31)

≤ exp
(
ty1⊤as

)
Exs|xinv,

ϵinv

exp(t∑
j∈Is

ajαjϵj)

 , (32)

≤ exp
(
ty1⊤as

)
exp

(
c2t

2A
)
, (33)

for A = maxj∈Is α
2
j and c2 > 0. Then,

Exinv
ϵinv

[
exp

(
ta⊤

invx
e
inv

)
exp

(
t(γ⊤xeinv + ϵinv)1

⊤as
)
exp

(
c2t

2A
)]

, (34)

= Exe
inv
ϵinv

[
exp

(
t(ainv + 1⊤asγ)

⊤xeinv + t(ϵinv1
⊤as)

)
exp

(
c2t

2A
)]

, (35)

≤ exp
(
t2c4

(
(1 +

√
ds)

2∥xeinv∥2ψ2
+ ds∥ϵinv∥2ψ2

))
exp

(
c2t

2A
)
. (36)

The above inequality uses 1⊤as ≤
√
ds and γj ≤ 1. We then have the bound

Ex

[
exp

(
ta⊤xe

)]
≤ exp

(
t2c5(ds + 2

√
ds + 1 + ds∥ϵinv∥2ψ2

+ c2A+ c3κ
2
r)
)
. (37)

Taking the square root of the exponent gets ∥xe∥ψ2 = O(
√
ds∥xeinv∥ψ2); the isotropic vector (Σe)−1/2(xe)(i) then satisfies

κones ≤ c1λmax

√
ds.

Remark 9. This implies that if we are interested in finding the norm for a subset of the features, i.e. m⊙xe for m ∈ {0, 1}d,
this bound scales with the size of the subset ∥m∥1. This is pertinent for when we select a smaller (usually O(dinv)) subset of
features with a sparse predictor under L0 constraints.



Lemma 4 (Feature vector L2 bound). We have with probability 1− δ the bound

∥xe∥2 ≤ 1 + cs + caκs + crκr +O

(
(c2aκ

2
s + c2rκ

2
r)

√
log

1

δ

)
, (38)

for positive constants cs, ca, cr as defined in model generation. The norm itself is a sub-Gaussian RV with ∥xe∥ψ2
= κx =

O(max{κ2
s, κ

2
r}) and mean E[∥xe∥2] = cs + caκs + crκr.

Proof. We first apply triangle inequality on the three feature blocks.

∥xe∥2 ≤ ∥xeinv∥2 + ∥xes∥2 + ∥xer∥2
We bound the three terms in order. First, we use the assumption that ∥xeinv∥2 = 1.

Then, to evaluate ∥xes∥2, we again use the triangle inequality to separate the label component from the sub-Gaussian noise,
getting ∥xes∥2 ≤ ∥yeζ∥2 + ∥αe ⊙ ϵs∥2. With Cauchy-Schwartz, we have ∥yeζ∥2 ≤ ∥γ∥2∥xinv∥2∥ζes∥2 = cs.

To bound the second noise component, we apply a variant of Theorem 3.1.1 from (Vershynin, 2018) for zero-mean
sub-Gaussian variables with different sub-Gaussian norms on different features.

We define a random variable Z = [Z1, Z2, · · · , Zds ] with Zi = |αei ϵs,i|, and we aim to bound ∥Z∥2. Firstly, E[∥Z∥22] = c2aκ
2
s

and E[Z2
i ] = (αei )

2κ2
s. We know that Zi is sub-Gaussian with ∥Yi∥ψ2

= αeiκs, so it must be that Yi = Z2
i − (αei )

2κ2
s is

sub-exponential and zero-mean.

Then, let K = max (∥Yi∥ψ1
) ≤ max

(
c1∥Zi∥2ψ2

)
≤ c1 maxi

(
(αei )

2
)
κ2
s = c1c

2
aκ

2
s for an absolute constant c1 > 0. Note

that variables named c1, c2, etc. will also be positive constants going forward.

We apply Bernstein’s to get

Pr

(∣∣∣∣∣
ds∑
i=1

Z2
i − c2aκ

2
s

∣∣∣∣∣ ≥ u

)
≤ 2 exp

(
−c2ds

K0
min

(
u2, u

))
, (39)

where K0 = max
(
K2,K

)
. Then, using the fact that for non-negative z, a we have |z − a| ≥ δ implies |z2 − a2| ≥

max(δ, δ2). If we let u = max(δ, δ2), we have δ2 = min(u2, u), and

Pr

(∣∣∣∣ 1√
ds

(∥Z∥2 − caκs)

∣∣∣∣ ≥ δ

)
≤ Pr

(∣∣∣∣ 1ds (∥Zi∥22 − c2aκ
2
s

)∣∣∣∣ ≥ max(δ, δ2)

)
(40)

≤ 2 exp

(
−c2ds

K2
0

· δ2
)
. (41)

This then gets the bound, with t = δ
√
ds,

Pr (|∥Zi∥2 − caκs| ≥ t) ≤ 2 exp

(
−c2t

2

K2
0

)
. (42)

Then, we have with probability 1− δs that ∥αe ⊙ ϵs∥2 ≤ caκs +
√

K2
0

c2
log 1

δs
. Together,

∥xes∥2 ≤ cs + caκs +

√
K2

0

c2
log

1

δs
.

Then, a similar argument gets ∥xer∥2 ≤ crκr +
√

K2
1

c3
log 1

δr
. Here, the constant is K1 ≤ max{K ′,K ′2} for K ′ = c3c

2
rκ

2
r .

For the final answer, we will assume K,K ′ ≥ 1. Then, letting δ = δr + δs, we get the final bound: with probability 1− δ,
we have

∥xe∥2 ≤ 1 + cs + caκs + crκr +

√
c4aκ

4
s

c2
log

1

δ
+

√
c4rκ

4
r

c3
log

1

δ
,

= O

(
cs + caκs + crκr + (c2aκ

2
s + c2rκ

2
r)

√
log

1

δ

)
. (43)



This demonstrates that ∥xe∥2 is a sub-Gaussian random variable; its sub-Gaussian norm is κx = O(max{κ2
s, κ

2
r}). Also

from the above analysis, we can see that the population mean of the norm is

E[∥xe∥2] = 1 + cs + caκs + crκr. (44)

Lemma 5 (Empirical gap). Let βeS = argminv∈Sp(S) Ee[(y−v⊤x)2] and β̂eS = argminv∈Sp(S) Êe[(y−v⊤x)2] respectively
be population and empirical minimizers, with covariance matrix Σ̂e = Êe[xx⊤] and footprint size |S| ≤ dinv. Then we have
with probability 1− δ,

Êe[(y − βeS
⊤x)2]− Êe[(y − β̂eS

⊤
x)2] = ∥βeS − β̂eS∥Σ̂e + err(1/δ, n), (45)

where err( 1δ , n) depends on assumptions on the generation model, specified in Proposition 7.

Proof. We note that v⊤
Sx = v⊤Φ(x) if Φ selects the same features as S, where Φ(x) masks x and vS masks v. We

continue with the set notation βS for this proof, but the proof applies when working with feature mask Φ.

First, we define a noise variable ωeS :

ωeS = y − (βeS)
⊤xe = (β∗ − βeS)

⊤xe + ϵinv. (46)

We proceed with the algebraic proof.

Êe
[
(y − xe⊤β̂eS)

2 − (y − xe⊤βeS)
2
]

(47)

= Êe
[
(xe⊤β̂eS)

2
]
− 2Êe

[
yxe⊤(β̂eS − βeS)

]
− Êe

[
(xe⊤βeS)

2
]

(48)

= Êe
[
(xe⊤β̂eS)

2
]
− 2Êe

[
(βeS

⊤xe + ωeS)x
e⊤(β̂eS − βeS)

]
− Êe

[
(xe⊤βeS)

2
]

(49)

= Êe
[
(xe⊤β̂eS)

2
]
− 2Êe

[
(xe⊤βeS)x

e⊤(β̂eS − βeS)
]
− Êe

[
(xe⊤βeS)

2
]
+ err(1/δ, n) (50)

= Êe
[
(xe⊤β̂eS)

2
]
− 2Êe

[
xe⊤β̂eSx

e⊤βeS

]
+ Êe

[
(xe⊤βeS)

2
]
+ err(1/δ, n)

= Êe
[
(xe⊤β̂eS)− (xe⊤βeS)

2
]
+ err(1/δ, n)

= (β̂eS − βeS)Êe
[
xexe⊤

]
(β̂eS − βeS) + err(1/δ, n)

=
∥∥∥β̂eS − βeS

∥∥∥2
Σ̂e

+ err(1/δ, n). (51)

We note that step Equation (48) to Equation (50) is where the err( 1δ , n) term is introduced. The proof of Proposition 5 in
(Hsu et al., 2014) applies to population error, making use of E[y] = E[β∗⊤x], which does not hold for either empirical risk,
nor for classifiers βe or βeS that are not the (invariant optimal) ground truth.

Corollary 6 (Empirical gap dominates). Following definitions introduced in Lemma 5, we have with probability 1− δ,

∥βeS − β̂eS∥Σ̂ ≤ | err(1/δ, n)|. (52)

Proof. Recalling that β̂eS = argminv∈Sp(S) Êe[(y − v⊤x)2], we know that

Êe
[
(y − xe⊤β̂eS)

2 − (y − xe⊤βeS)
2
]
≤ 0.

Proposition 7 (Empirical gap general). Given environment e ∈ E and selected features S ∈ 2d, and with probability 1− δ,

err(1/δ, n) := O

(
dinvctotal +

Kdinv√
n

log
1

δ

)
(53)

for ctotal = max{1 + κ2
inv + (c2z + κ2

inv + c2a) + c2r} and K2 = max
(
κ4
x, κ

2
inv

)
.



Proof. We have the definition

err(
1

δ
, n) := −2Êe[ωeSxe

⊤(β̂eS − βeS)]. (54)

We will now upper bound the second term with probability 1− δ.

err(
1

δ
, n) ≤ 2

∣∣∣Êe [ωeS(xe)⊤(β̂eS − βeS)
]∣∣∣ (55)

≤
∣∣∣(β∗ − βeS)

⊤Êe[xe(xe)⊤](β̂eS − βeS)
∣∣∣+ ∣∣∣Êe[ϵinvx

e]⊤(β̂eS − βeS)
∣∣∣ (56)

≤ 2dinv

∥∥∥∥ 1n (Xe)⊤Xe

∥∥∥∥
2

+
√
2dinv

∥∥∥∥∥ 1n
n∑
i=1

ϵinv,ix
e
i

∥∥∥∥∥
2

. (57)

With constants c1, c2 > 0 and t1, t2 > 0 we can use Bernstein’s inequality to get, with probability 1 −
2 exp

(
−c1 min{ t

2
1

κ4
x

t1
κ2
x
}n
)

, ∥∥∥∥ 1n (Xe)⊤Xe

∥∥∥∥
2

≤ 1

n

n∑
i=1

∥xei∥
2
2 ≤ Ee[∥xe∥22] + t1. (58)

Similarly, with the Hoeffding-type inequality, 1− e · exp
(
− c2t

2
2n

K2

)
,∥∥∥∥∥ 1n

n∑
i=1

ϵinv,ix
e
i

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥ϵinv,ix
e
i∥2 ≤ Ee[∥ϵinvx

e
i∥2] + t2. (59)

Combining, we get

err(
1

δ
, n) ≤ 2dinv(Ee[∥xe∥22] + t1) +

√
2dinv(Ee[∥ϵinvx

e
i∥2] + t2). (60)

We let both share the same bound t1 = t2 = t. Then, with constants C, c > 0 and K2 = max
(
κ4
x, κ

2
inv

)
, we apply

union bound to a bound with probability 1 − c exp
(
−Cmin{ t

2

K2 ,
t
κ2
x
}n
)

. Due to the mixture of tails resulting from
Bernstein’s inequality of a sum of sub-exponential variables, we will upper bound the maximum of the two. In other words,

t ≤
√

K2

Cn log c
δ , and

err(
1

δ
, n) ≤ 2dinvEe[∥xe∥22] +

√
2dinvEe[∥ϵinvx

e
i∥2] + 2dinv

√
K2

Cn
log

c

δ
. (61)

We substitute Ee[∥xe∥22] ≤ 1 + κ2
inv + (c2z + κ2

inv + c2aκ
2
a) + c2rκ

2
r and Ee[∥ϵinvx

e
i∥2] ≤ κinv(1 + cs + caκs + crκr) into the

above to get the desired result.

Corollary 8 (Empirical gap with ones). In th original setting in Zhou et al. (2022), where the scaling variables are ζes = 1ds

ζes = 1ds , we have

err(
1

δ
, n) ≤ conesdinv +O

(
dinv

√
K2

n
log

1

δ

)
. (62)

for cones = dinv(1 + κ2
inv + c2Aκ

2
s)

2 and K2 = O(dinv).

Proof. We modify the bound for the error term introduced in Proposition 7 with ζes = 1ds and ζr = 1dr . That is,
xs = y1ds +αe ⊙ ϵs and xr = ϵr.

Remark 10. The spurious features are generated with constant contribution from the label per feature. That is,

Ee[xs,i] = Ee[y] = Ee[γ⊤xinv] = O(1),

In this case, Ee[∥xe∥2] ≥ c
√
ds for constant c > 0. Because this will introduce an undesirable dependency on ds, we avoid

evaluating ∥xe∥2 explicitly.



Again, we want to bound the expression from Equation (56).

err(
1

δ
, n) ≤ 2

∣∣∣Êe [ωeS(xe)⊤(β̂eS − βeS)
]∣∣∣ (63)

≤
∣∣∣Êe[(β∗ − βeS)

⊤xe(xe)⊤(β̂eS − βeS)]
∣∣∣+ ∣∣∣Êe[ϵinvx

e]⊤(β̂eS − βeS)
∣∣∣ (64)

≤ 1

n

n∑
i=1

AiBi +
√
2dinv

∥∥∥∥∥ 1n
n∑
i=1

ϵinv,ix
e
i

∥∥∥∥∥
2

. (65)

Above, we apply Cauchy-Schwartz to get Ai = ∥(β∗ − βeS)
⊤xe∥2 and Bi = ∥(β̂eS − βeS)

⊤xe∥2. Ai is a sub-Gaussian
random variable with mean at least

√
dinv. Likewise for Bi. Furthermore, let K = max{∥Ai∥ψ2 , ∥Bi∥ψ2}, where the

sub-Gaussian norm of both Ai and Bi is O(
√
dinv) (see final remark in Lemma 3), given that we only sum up to 2dinv

elements of the total features of xe.

Then with probability 1− 2 exp
(
−cmin{ t

2
1

K4
t1
K2 }n

)
, constants C, c > 0, and t > 0 we can say

1

n

n∑
i=1

AiBi ≤ cdinv(1 + κ2
inv + c2Aκ

2
s) + t1. (66)

The bound

err(
1

δ
, n) ≤ cdinv(1 + κ2

inv + c2Aκ
2
s)

2 +
√

2dinvEe[∥ϵinvx
e
i∥2] + 2dinv

√
K2

Cn
log

c

δ
.

Corollary 9 (Missing empirical term with uniform feature assumption). When the norms of xs,xr are uniformly distributed,
i.e. ζes =

1
ds
· 1ds and ζr =

1
dr
· 1dr , we have with probability 1− δ,

err(
1

δ
, n) ≤ O((c2s + c2a + c2r)

2 · dinv

min{ds, dr}
) +

√
2dinvEe[∥ϵinvx

e
i∥2] + 2dinv

√
κ2

inv

Cn
log

c

δ
. (67)

Proof. We can also infer that for a constant b > 0, maxj∈Sinv x
2
j ≥ b

dinv
because ∥xinv∥22 = 1.

We again bound Equation (56) by considering Ai = ∥(β∗ − βeS)
⊤xe∥2 and Bi = ∥(β̂eS − βeS)

⊤xe∥2. With the uniformity
assumptions, we can then say that for vectors v ∈ Sp(S1),u ∈ Sp(S2), for |S1|, |S1| ≤ dinv,

(v − u)⊤xe ≤ 2 +
∑
j∈Ss

(uj − vj)x
e
j +

∑
j∈Sr

(uj − vj)x
e
j ≤ 2 +

√
dinv

(
c2s + c2a√

ds
+

c2r√
dr

)
(68)

We get AiBi ≤ O((c2s + c2a+ c2r)
2 · dinv

min{ds,dr} ). Then with probability 1− 2 exp
(
−cmin{ t

2
1

K4
t1
K2 }n

)
, constants C, c > 0,

and t > 0 we can say

err(
1

δ
, n) ≤ O((c2s + c2a + c2r)

2 · dinv

min{ds, dr}
) +

√
2dinvEe[∥ϵinvx

e
i∥2] + 2dinv

√
κ2

inv

Cn
log

c

δ
. (69)

Remark 11. This result is significantly tighter due to the d2inv
min{ds,dr} ≤ dinv factor in the first term, generated from the mean

of ωeS(x
e)⊤(β̂eS − βeS). Because in the overparameterized case dinv ≪ ds + dr, we expect that the predictors (β̂eS − βeS) and

(β̂∗ − βeS), are not likely to pick up the majority of the length of xe with only 2dinv features. This is the best-case scenario,
in which no “heavy hitters" contributing to c2s or c2r are captured by the linear predictors.



A.2 ASSUMPTIONS

Assumption 1. The noise on the invariant features is subgaussian. Specifically, there exists C > 0 such that

E
[
exp(tϵinv) ≤ exp(t2C2)

]
∀t ∈ R.

Assumption 2. There exist positive constants σ0 and γ̄ such that

∀i ∈ [dinv], |γi| ≥ γ̄, Var[xinv,i] ≥ σ2
0 .

This states that each invariant feature xinv,i and its corresponding ground truth weight γi must sufficiently contribute to the
explanation of the label.

Assumption 3. For the ith spurious feature, let α2
i =

1
|E|
∑
e∈E(α

e
i )

2 for spurious features i ∈ [ds]. There exists a constant
∆ > 0 such that the following holds for each spurious feature i ∈ [ds] for all environments e ∈ E :

|α2
i − (αei )

2|≥ ∆.

Assumption 4. Let {λei}di=1 and {λi}di=1 be the eigenvalues of Σe and Σ respectively with corresponding eigenvectors
{uei}di=1 and {ui}di=1.

Then for those ui such that λei − λi = α2
i − (αei )

2 > 0, we have a constant D such that

|E[xeye]⊤ui|≥ D > 0 (70)

Assumption 5. The invariant features may not be rank deficient. That is,

min
i

λi ≥ cmin > 0 (71)

for λi (defined in Assumption 4) as an eigenvalue of Σ̂.

Assumption 6. The loss function is RSC. Specifically, a function L satisfies α−restricted strong convexity (α−RSC)

B PROOF OF THEOREMS 1 AND 2 (INFORMATION-THEORETIC)

This appendix includes the proof and supporting analysis for Theorem 1. We restate it below for clarity.

Theorem 1 Assume at least n samples per environment e ∈ E , for a total of N = |E|n across the whole training set. If
n > O

(
log
(
d·|E|
δ

))
, together with assumptions in Appendix A.2, with probability at least (1− δ), we have:

L̂(Sinv) < L̂(S), ∀|S|≤ dinv, S ̸= Sinv , (72)

with constants in sample complexity further specified below.

Proof. To sketch the proof, we first analyze L̂(v̂S) where vS ∈ Sp(S) for S ∈ 2d, breaking down its IRM penalty term into
three error components JIRMmm(S) = ξa(S)− ξb(S) + ξc(S). This is then used to bound L̂(v̂S)− L̂(β∗). When S ̸= Sinv,
we show this gap to be positive.

B.1 COMPONENTS OF PENALTY

The penalty term from L̂(v̂) is

JIRMmm(S) =
∑
e∈E

[
R̂e(β̂S)− R̂e

(
β̂eS

)]
= ξa(S)− ξb(S) + ξc(S), (73)

with β̂S and β̂eS as defined in Section 3

ξa(S) =
∑
e∈E

[
R̂e(β̂S)−Re (β∗

S)
]
, (74)



ξb(S) =
∑
e∈E

[
R̂e(β̂eS)−Re (βeS)

]
, (75)

ξc(S) =
∑
e∈E

[Re(β∗
S)−Re (βeS)] . (76)

We bound |ξb(S)| in Corollary 11 and |ξa(S)| in Corollary 12, followed by an analysis of |ξc(S)|.

Lemma 10 (Penalty component). For a given environment e ∈ E and feature subset S ∈ 2d, we can bound |R̂e(β̂eS) −
Re(βeS)| with probability 1− δ, given a sample size per environment of n ≥ cw2(A) = O(dinv):

|R̂e(β̂eS)−Re(βeS)|≤ O

κinv

√
log( 1δ )

n

 (77)

where λmax := maxe∈E(λmax(Σ
e)) and err(1/δ, n) as defined in Proposition 7.

Proof. First, with triangle inequality, we have for all S,

|R̂e(β̂eS)−Re(βeS)|≤ |R̂e(β̂eS)− R̂e(βeS)|+|R̂e(βeS)−Re(βeS)|. (78)

The second term from Lemma 10 can be bounded by generalized Hoeffding’s inequality for unbounded sub-Gaussian
random variables, as stated in Proposition 5.10 in (Vershynin, 2011). With probability 1−O(δb),

|R̂e(βeS)−Re(βeS)|≤ O

κinv

√
log( 1δ )

n

 (79)

For the first term with R̂e, β̂eS , βe as defined above, it is necessarily less than 0 by the definition of β̂Ss , the minimizer of
R̂e(βeS).

|R̂e(β̂eS)− R̂e(βeS)|≤ 0. (80)

Corollary 11 (Second penalty term). The following bound holds with probability 1− δb for all S ∈ 2d:

|ξb(S)|≤ O

|E|κinv

√
log( |E|δ )

n

 =: |ξb| (81)

where err( 1δ , n) is as defined in Proposition 7. The RHS is independent of S, so we name the upper bound |ξb|.

Proof. We expand ξb(S) to get
|ξb(S)|≤

∑
e∈E
|R̂e(β̂eS)−Re(βeS)| (82)

Lemma 10 can directly be applied on each of the different environments e ∈ E . Applying the union bound for the
environments produces the desired result.

Corollary 12 (First penalty component). The following bound holds with probability 1− δa for all S ∈ 2d:

|ξa(S)|≤ O

κinv

√
log( 1δ )

|E|n

 =: |ξa| (83)

where err( 1δ , n) is as defined in Proposition 7. Again, the RHS is independent of S, and we name the upper bound |ξa|.



Proof. Recall that R(v) =
∑
e∈E Re(v) for all classifiers v ∈ Rd. Additionally, β∗

S = argminv∈VS
R(v) and β̂S =

argminv∈VS
R̂(v). We want to bound the following expression with high probability (1− δa):

|ξa(S)|=

∣∣∣∣∣∑
e∈E

[
R̂e(β̂S)−Re(β∗

S)
]∣∣∣∣∣ = ∣∣∣R̂(β̂S)−R(β∗

S)
∣∣∣ (84)

We may apply the analysis of Lemma 10 to the whole dataset, which can be treated as one environment with n|E| points as
is done in Zhou et al. (2022).

Proposition 13. For D,∆ as defined in Assumption 4,

ξc(S)

{
= 0, if S ∈ Sinv ∪ Sr

≥ D2∆2

λ3
c

, otherwise.
(85)

λm = max
(⋃

e∈E{λei}di=1 ∪ {λi}di=1

)
.

To bound |ξc(S)|, we reference the analysis of Equation (29) in (Zhou et al., 2022).

Let {λei}di=1 and {λi}di=1 be the eigenvalues of Σe and Σ respectively with corresponding eigenvectors {uei}di=1 and
{ui}di=1.

Define ΣeS := Ee[(xeS)(xeS)⊤], and ΣS := E[(xeS)(xeS)⊤], where xeS ∈ R|S| and is the pruned “projection" of xe keeping
only the indices i ∈ S. Note that this differs from the analysis in (Zhou et al., 2022), particularly Assumption 1, which
involves taking the inverse of the analagous matrix ΣeΦ that is not full rank.

ξc(S) =
∑
e∈E
∥(β∗

S − βeS)∥Σe
S

(86)

=
∑
e∈E

(
Σ−1
S E[xeSy]− (ΣeS)

−1Ee[xeSy]
)⊤

ΣeS
(
Σ−1
S E[xeSy]− (ΣeS)

−1Ee[xeSy]
)

(87)

=
∑
e

∑
i∈S

(
Ee[xeSy]⊤ui

)2
λi

(
1

λei
− 1

λi

)2

(88)

For any classifier footprint S ∈ 2d, we know that ΣeS = ΣS + Diag(0, · · · , 0, (αei )2 − α2
i , 0, · · · , 0). From this, at most

ds eigenvalues have a nonzero difference λei − λi = (αei )
2 − α2

i . This is bounded by Assumption 3, and |Ee[xey]⊤ui| is
bounded in Assumption 4. Note also that

λi

(
1

λei
− 1

λi

)2

≥ λi(λi − λei )
2

(λei )
2λ2
i

≥ ∆2

λ3
m

, (89)

for λm = max
(⋃

e∈E{λei}di=1 ∪ {λi}di=1

)
. Then the overall bound for ξc for Sinv is

ξc

{
= 0, if S ∈ Sinv ∪ Sr

≥ D2∆2

λ3
c

, otherwise.
(90)

This is a simpler and slightly tighter lower bound than provided previously.

B.2 ANALYZING EMPIRICAL RISK

We want to show that L̂(Sinv) < L̂(S) for footprint S ∈ 2d such that ∥S∥0 ≤ dinv. To borrow the analysis in (Zhou et al.,
2022), we observe that there are two categories of footprints: those that include at least one spurious feature (Swith-spu) and
those that do not (Sno-spu).

We will first show that ∀S ⊆ Swith-spu, L̂(Sinv) ≤ L̂(S). Then, we will show the same for the no-spurious feature selectors,
that is ∀S ⊆ Sno-spu, L̂(Sinv) ≤ L̂(S). We will use βinv = βSinv as a shorthand.



First, for S ⊆ Swith-spu, we have

L̂(S)− L̂(Sinv) =
∑
e

[
R̂e(β̂S) + ρ

(
R̂e(β̂S)− R̂e(β̂eS)

)]
−
∑
e

[
R̂e(β̂inv) + ρ

(
R̂e(β̂inv)− R̂e(β̂einv)

)]
(91)

=
∑
e

[
R̂e(β̂S)

]
+ ρξa(S)− ρξb(S) + ρξc(S)

− ξa(Sinv)− |E|·σ2
inv − ρξa(Sinv) + ρξb(Sinv)− ρξc(Sinv) (92)

For the second equality, note the definition of ξa(Sinv), using σ2
inv as the variance of ϵinv:

ξa(Sinv) =
∑
e

[
R̂e(β̂inv)−Re(β∗)

]
=
∑
e

[
R̂e(β̂inv)

]
−
∑
e

σ2
inv.

By dropping error terms
∑
e R̂e(·) ≥ 0 and using |ξa(S)|≤ |ξb(S)| for all S ∈ 2d, we get a lower bound.

L̂(S)− L̂(Sinv) ≥ −ρξb(S) + ρξc(S)

− ξa(Sinv)− |E|·σ2
inv − ρξa(Sinv)− ρξc(Sinv) (93)

Additionally, from eq. (85), ξc(Sinv) = 0.

≥ −(2ρ+ 1)|ξb|−|E|·σ2
inv + ρξc(S) (94)

We then select ρ to eliminate the ξc(S) term, while also producing a positive term in the RHS. Specifically, let ρξc(S) ≥
2|E|·σ2

inv, getting

ρ =
2|E|σ2

inv

D2∆2/λ3
max

≥ 2|E|σ2
inv

ξc(S)
. (95)

Setting the weight ρ to the LHS, we can write the gap as

L̂(S)− L̂(Sinv)

≥ −(2ρ+ 1)O

|E|
√

log |E|
δ

n

+ |E|·σ2
inv. (96)

Finally, we solve for the sample complexity required to differentiate Sinv and S.

n >
(2ρ+ 1)2 log

(
|E|
δb

)
σ4

inv
(97)

Likewise, to analyze the classifiers that include random features but not spurious features, we now consider S ⊆ Sno−spu.
Note that Sr refers to the set of features i ∈ [d] such that xei is a random feature; S ∩ Sr is the set of random features in S.

L̂(S)− L̂(Sinv) =
∑
e

[
R̂e(β̂S)

]
+ ρξa(S)− ρξb(S) + ρξc(S)

− ξa(Sinv)− |E|·σ2
inv − ρξa(Sinv) + ρξb(Sinv)− ρξc(Sinv) (98)

From (Zhou et al., 2022), we have Re(βS)−Re(β∗) =
∑
i∈Sinv\S γix

2
inv,i, so

ξa(S) =
∑
e

[
R̂e(β̂S)−Re(β∗)−Re(βS) +Re(β∗)

]
=
∑
e

R̂e(β̂S)− |E|·σ2
inv − |E|

∑
i∈Sinv\S

γix
2
inv,i.

We also use the definitions in Assumption 2 to lower bound γi and xinv,i with high probability.



Remark 12. We need a lower bound specifically to provide the sample complexity result after. In other words, we work
both with the subgaussian norm to “upper bound" the features, and we need a lower bound on the label noise variance σ2

inv
and the smallest feature variance σ2

0 .

Proceeding to compare the empirical losses,

L̂(S)− L̂(Sinv) ≥

ξa(S) + |E|·σ2
inv + |E|

∑
i∈Sinv\S

γix
2
inv,i


+ ρξa(S)− ρξb(S) + ρξc(S)

− ξa(Sinv)− |E|·σ2
inv

− ρξa(Sinv) + ρξb(Sinv)− ρξc(Sinv), (99)

≥ −(2ρ+ 1)|ξb|+|E|·γ̄ · σ2
0 . (100)

Again, we eliminate positive terms; additionally, ξc(S) = ξc(Sinv) = 0. The resulting sample complexity for differentiating
Ŝinv from S ∈ Sno-spu is then the following:

n >
(2ρ+ 1)2 log |E|

δb

γ̄2σ4
0

(101)

Together, Equation (97) and Equation (101) form the sample compleixty; we take the max between the both. We note that
both are O( |E|δb ).

Because |Swith-spu ∪ Sno-spu|=
(
d
dinv

)
≤ ddinv , we can set δb = δ

ddinv
before taking the union bound, incurring a log |E|

δb
=

dinv log d+log|E|− log δ ≤ dinv log
d|E|
δ . Under this sample complexity, we have L̂(S)−L̂(Sinv) for all |S|0 ≤ dinv, S ̸= Sinv.

B.3 COMPARISON: EMPIRICAL LOSS WITH POPULATION MINIMA

We provide a proof for Theorem 2 of the main paper, restated below for reference:

Theorem 2 For population minimizers as defined in Equation (6), and n samples per environment e ∈ E , for a total of
N = |E|n across the whole training set, we have

L̂(β∗) < L̂(β∗
S), |S|≤ dinv, S ̸= Sinv, (102)

if n > O
(

poly(dinv) log
(
d·|E|
δ

))
with constants specified below.

Proof. We want to show that
L̂(β∗

inv) < L̂(β∗
S) (103)

for |S| < dinv and S ̸= Sinv. We will use the notation β∗
inv := β∗ = β∗

Sinv
for the invariant optimal predictor.

First note that with high probability 1− δ1,

L̂(β∗
inv) =

∑
e∈E
R̂e(β∗

inv) + ρ
∑
e∈E

[
R̂e(β∗

inv)− R̂e(βeinv) + R̂e(βeinv)− R̂e(β̂einv)
]

(104)

=
∑
e∈E
R̂e(β∗

inv) + ρ (0 + ξb(Sinv)) (105)

≤
∑
e∈E
R̂e(β∗

inv) + ρ|E|O

κinv

√
log( |E|δ1 )

n

 (106)

The second equality uses two definitions. First, βeinv = β∗
inv for e ∈ E , so R̂e(βeinv)− R̂e(β∗

inv) = 0.



Then, we use the definition of ξb(S) from Equation (75), which is upper bound in Corollary 11. Also, the equality βe1inv = βe2inv
for e1, e2 ∈ E , because the subset selects only the invariant features that are shared between all environments.

Next, with high probability 1− δ2,

L̂(β∗
S) =

∑
e∈E
R̂e(β∗

S) + ρ
∑
e∈E

[
R̂e(β∗

S)− R̂e(βeS) + R̂e(βeS)− R̂e(β̂eS)
]

(107)

≥
∑
e∈E
R̂e(β∗

S) + ρξc(S) + ρ
∑
e∈E

−2O
ctotal

√
log( |E|δ2 )

n

− ρ|ξb(S)| (108)

≥
∑
e∈E
R̂e(β∗

S) + ρ|E|O

D2∆2

λ3
m

− ctotal

√
log |E|

δ2

n

− ρ|E|O

κinv

√
log( |E|δ2 )

n

 (109)

where c2total = c0 max{(c2aκ2
s + c2rκ

2
r)

2, κ4
inv} for some constant c0 > 0. To get the first inequality, we want to bound

|R̂(β∗
S)−R(β∗

S)| and |R̂(βeS)−R(βeS)|. Hoeffding’s inequality may be used, but we need the sub-Gaussian norm of the
least squares error; let this be Zj := (yj − (β∗

S)
⊤xej)

2 for j ∈ [n]:

Zj = (yj − (β∗
S)

⊤xej)
2 = ((β∗

inv − β∗
S)

⊤xej + ϵinv,j)
2 ≤ (∥β∗

inv − β∗
S∥2∥xej∥2 + ϵinv,j)

2. (110)

By the assumption that classifiers β∗
inv, β

∗
S are normalized, we have ∥β∗

inv − β∗
S∥2 ≤ 2, and ∥xe∥2 is sub-Gaussian; from

Lemma 4 with probability 1− δ, we get

Ee[Zi] = O(max{(cs + caκs + crκr)
2, κ2

inv}), (111)

and
ctotal = ∥Zi∥ψ2

≤ O(max{4∥xe∥22 + 4∥xe∥2ϵinv + ϵ2inv}) = O((cs + caκs + crκr)
2, κ4

inv). (112)

Applying Hoeffding’s inequality to |R̂e(β∗
S) − Re(β∗

S)| then gets the bound of O

(
ctotal

√
log(

|E|
δ2

)

n

)
with probability

1− δ1. Likewise, |R̂e(βeS)−Re(βeS)| ≤ O

(
ctotal

√
log(

|E|
δ2

)

n

)
with probability 1− δ2. We apply these inequalities over |E|

environments, so we set δ1 = δ2 = δ
2|E| . To complete the first inequality, we use ξb(S) =

∑
e∈E [R̂e(βeS)− R̂e(β̂eS)] and

ξc(S) =
∑
e∈E [Re(β∗

S)−Re(βeS)].

We use the upper bound on |ξb(S)| in Corollary 11 and the lower bound on ξc(S) from Proposition 13, noting that ξc(S) is
greater than some constant c > 0 with high probability provided that there exists at least one feature i such that αe1i ̸= αe2i ,
for e1, e2 ∈ E , e1 ̸= e2.

Next, we demonstrate that L̂(β∗
S)− L̂(β∗

inv) > 0.

L̂(β∗
S)− L̂(β∗

inv) ≥
∑
e∈E
R̂e(β∗

S)−
∑
e∈E
R̂e(β∗

inv) + ρ|E|O

(
D2∆2

λ3
m

− ctotal

√
log|E|/δ3

n

)
(113)

= −|E|σ2
inv + ρ|E||ξc(S)|−ρ|E|ctotal

√
log|E|/δ3

n
(114)

We observe that R̂e(β∗
S) −

∑
e∈E R̂e(β∗

inv) ≥ 0 − |E|σ2
inv. First, we set ρ such that ρ|E||ξc(S)|−|E|σ2

inv > σ2
inv > 0. This

can be satisfied by setting

ρ >
σ2

inv + |E|σ2
inv

|E|ξc(S)
, (115)

which can be satisfied with ρ >
(1+|E|)σ2

inv
|E|D2∆2/λ3

max
. Then, we can guarantee that L̂(β∗

S) − L̂(β∗
inv) > 0, with the sample

complexity computed in the proof of Theorem 1:

n > max

{
(2ρ+ 1)2c2total log

|E|
δb

σ4
inv

,
(2ρ+ 1)2c2total log

|E|
δb

γ̄2σ4
0

}
(116)



Again, we need to solve
(
d
dinv

)
≤ ddinv optimization problems, so we set δb = δ

ddinv
before taking the union bound.

With n > c2totaldinv log
d|E|
δ , we achieve the desired result.

We note that in the general case, ctotal = O(max{(cs+ caκs+ crκr)
2, κ4

inv}). With the original setting in Zhou et al. (2022),
ζs = 1ds . This leads to cs =

√
ds. Then, with c2total = O(c4s) = O(d2s), we get a polynomial dependency on ds without a

more refined analysis.

Remark: It is also unlikely that spurious features are all equally correlated with the label, as assumed when we take ζes
to be all ones. Even with sparse feature selection, it is possible for the predictor to pick up the largest elements of xe. An
example of a “heavy-hitter" would be a spurious feature xej that has a strong correlation with the label through a high ζej ,
contributing to c2s. In the case that j ∈ S, we end up with ctotal ∝ c2s. This is expored further in Corollary 8.

On the other end of the spectrum, a more evenly distributed feature vector can demonstrate even tighter bounds. This is
explored further in Corollary 9.

B.4 COMPARISON: SPARSE IRM VS ERM AND SPARSE ERM

The following propositions give a characterization of this data generation model to motivate the use of IRM. Proposition 17
shows that ERM with sparsity constraints on the global population is also unable to find the invariant features.

We can represent a given classifier v in its three parts v = [vinv,vs,vr]
⊤.

Proposition 14 (Invariant Optimal Classifier is ground truth). In the problem setting defined by Equation (2), β∗ =
[γ⊤, (0ds)⊤, (0dr )⊤], and is also a solution to Equation (1).

Proof. First, R(β∗) = Var(ϵinv). Let a comparison be made to candidate parameters β ∈ S with |S| ≤ dinv. If any
of the parameters in β are random, that is βi ̸= 0 for i ∈ Sr, we lose information and Re(β) ≥ Re(β∗). Likewise,
J e(β) = Re(β)−minβ′∈Sp(S)Re(β′) ≥ 0 = J e(β). So, any parameter β with random features will not be a solution to
Equation (1).

Next, we consider βi ̸= 0 for i ∈ Ssp, potentially including spurious features. In this case, we want to show thatL(β∗)−L(β)
is negative:

L(β∗)− L(β) =
∑
e∈E
Re(β∗)−Re(β) + ρJ e(β∗)− ρJ e(β)

≥
∑
e∈E

Var(ϵinv)−Re(β)− ρJ e(β)

=
∑
e∈E

Var(ϵinv)− (1 + ρ)Re(β) + ρ min
β′∈Sp(S)

Re(β′)

We know that Re(β) − minβ′∈Sp(S)Re(β′) = JeS ≥ 0. With an appropriately selected ρ, we can see that the penalty
incurred by a non-invariant β will incur greater IRM population loss than the optimum β∗.

Proposition 15 (ERM does not overfit on random features). Because xer is independent from the other features and
zero-mean, we can guarantee that ve does not have elements on the random noise features xr. In other words,

Re([v⊤
inv,v

⊤
s ,v

⊤
r ]

⊤) ≤ Re([v⊤
inv,v

⊤
s ,0

⊤]⊤) (117)

Proof. We can see that

Re([v⊤
inv,v

⊤
s ,v

⊤
r ]

⊤) = Ee
[(
y − [vinv,vs][x

e
inv,x

e
s])]− v⊤

r xr
)2]

= Ee
[
(y − [vinv,vs][x

e
inv,x

e
s])

2 − 2(y − [vinv,vs][x
e
inv,x

e
s])(v

⊤
r ϵr) + (v⊤

r ϵr)
2
]

= Re([v⊤
inv,v

⊤
s ,0

⊤]⊤) + E[(v⊤
r ϵr)

2]

≥ Re([v⊤
inv,v

⊤
s ,0

⊤]⊤).

The difference E[(v⊤
r ϵr)

2] = 0 if and only if v⊤
r ϵr = 0, in which case vR = 0.



Proposition 16 (ERM overfits on spurious features). When there exists spurious feature i ∈ [d] such that α2
i < σ2

inv, then

β∗ = [γ, 0, 0]⊤ /∈ argmin
v∈Rd

R(v). (118)

Thus, unconstrained ERM on the even mixture of environments will not be able to detect the ground truth.

Proof. This can be seen by setting v = ei where ei

ζi
is the standard basis vectors with a 1 on the ith feature on the spurious

feature i,
R(ei

ζi
) = E

[
Ee[(y − y − αei ϵs,i)

2]
]
= E

[
(αei )

2
]
= α2

i < σ2
inv = R([γ,0,0)].

While ei is not generally the minimizer of the global population loss, it does show that [γ,0,0] does not achieve minimum
loss when there are no restrictions on footprint/L0 norm.

Proposition 17 (Sparse ERM doesn’t find invariant features). With population risk, ERM with constrained L0 norm does
not find invariant features when α2

i < σ2
inv.

min
∥v∥0≤dinv

R(v) < R(β∗) (119)

Proof. We can observe that
min

∥v∥0≤dinv

R(v) ≤ R(ei
ζi
) = α2

i < σ2
inv = R(β∗) (120)

In other words, ERM with sparsity constraints is not guaranteed to find the exact invariant footprint in the population
case.

Proposition 18 (Sparse IRM finds invariant features). IRM with sparsity can find the invariant optimal classifier, where

β∗ = argmin
v
L(v) s.t. ∥v∥0 ≤ dinv (121)

Proof. With the assumptions in Appendix A.2, we can analyze eq. (76) to see that the penalty term added by L(v), which
isRe(v)−Re(ve) in the population case, is only zero when the classifier learned has nonzero elements on the invariant
features only.

C PROOF OF THEOREM 3 (ALGORITHMIC ERROR BOUND)

C.1 ITERATIVE HARD THRESHOLDING

Below is the proof for Appendix C.1. We copy the theorem below for reference:

Theorem 3 Assume n samples per training environment, for n > Q
(

poly(dinv) log(d) log
(

|E|
δ

))
. Together with

assumptions in Appendix A.2, we can say with probability at least 1− δ:

β̃ = min
v
L̂(v) s.t. v ∈ Rd, ∥v∥0 ≤ dinv,

returns a parameter β̃ with low estimation error ∥β̃ − β∗
inv∥2 ≤ O(

√
dinv
n ).

Proof. We apply Theorem 3 of Jain et al. (2014), which specifically contains an example for Sparse Linear Regression.

RSS and RSC: With parameter β ∈ Rd, β′ ∈ Rd, we define

δRe(β) := Re(β′)−Re(β)− ⟨∇βRe(β), β′ − β⟩, (122)

and likewise
δJ e(β) := J e(β′)− J e(β)− ⟨∇βJ e(β), β′ − β⟩. (123)



To apply results from Iterative Hard Thresholding, we show that this problems satisfies the Restricted Strong Convexity
(RSC) and Restricted Strong Smoothness (RSS) conditions. RSC requires

δRe(β) + ρδJ e(β) ≥ αIRM

2
∥∆∥22. (124)

Likewise, for RSS condition,

δRe(β) + ρδJ e(β) ≤ LIRM

2
∥∆∥22. (125)

Let ∆ = β′ − β.

δJ e(β) = J e(β +∆)− J e(β) + ⟨∇βJ e(β),∆⟩ (126)

= ∥ 1
n
(−Xe)⊤(Y −Xeβ −Xe∆)∥22 − ∥

1

n
(−Xe)⊤(Y −Xeβ)∥22

+ ⟨ 2
n2

(−Xe⊤XeXe)⊤(Y −Xeβ),∆⟩ (127)

= ∥ 1
n
(Xe)⊤Xe∆∥22 (128)

=
1

n2
∥(Xe)⊤Xe∆∥22 (129)

If we set αIRM = αs as defined in (Jain et al., 2014), which defines RSC for the least square component δRe(β), we recover
the RSC property:

δRe(β) + ρδJ e(β) = 1

n
∥Xe∆∥22 +

1

n2
∥(Xe)⊤Xe∆∥22 ≥

1

n
∥Xe∆∥22 ≥

αIRM

2
∥∆∥22,

since 1
nX

e⊤Xe is positive semi-definite.

We then want to upper-bound δJ e(β), and we will also use Ls as defined in Jain et al. (2014) Let X = Xe, the
data matrix for a single environment. If we write the eigendecomposition X⊤X = V ΛV ⊤, with diagonal elements
of Λ as λi for i ∈ [d], we can also write ∆ = Vα for some coefficients α. For least squares, we have bounds for
∥X∆∥22 = ∥Λ1/2α∥22 =

∑d
i=1 λiα

2
i ≤ Ls

2 ∥∆∥
2
2.

Define L0 = Ls

2 ∥∆∥
2
2. First, ∥∆∥22 = ∥α∥22 = 1. Furthermore, we note that ∆ = β − β′ for iterates of the IHT algorithm,

and let ∥β∥0 = s and ∥β′∥0 = s′, where s+ s′ < d. Then, ∥∆∥0 ≤ s+ s′. Because ∆ is low-rank, we can assume there is
a set T of eigenvectors where |T | ≤ s′ + s, which defines ∥X∆∥22.

d∑
i=1

λiα
2
i =

∑
i∈T

λiα
2
i ≤ L0, and

d∑
i=1

λ2
iα

2
i =

∑
i∈T

λ2
iα

2
i . (130)

The bounds apply for restricted eigenvectors ∆ where
∑
i∈T λ2

iα
2
i ≤ L0 for any ∥α∥22 = 1. Then we can say that∑

i∈T λ2
ie

2
i = λi ≤ L0 for all i ∈ T , which means λi

L0
≤ 1. Then, it must be that

∑
i∈T

λ2
i

L2
0

α2
i ≤

∑
i∈T

λi
L0

α2
i ≤ 1, (131)

and ∑
i∈T

λ2
iα

2
i ≤ L2

0. (132)

Then we can set LIRM = L2
s. Following the example of Theorem 3 in (Jain et al., 2014), for sparse linear regression, we apply

the same sample complexity n > 5c1dinv log d(λ
e
min) where λemin = mini∈d λ(X

e) will get us the conditioning constant:

K :=
(λemax)

2

λemin

. (133)



We substitute this back into the error bound of IHT. Then with probability at least 1− c1p
−c2 for constants c1, c2 > 0, we

end up with the bound

∥β̃ − β∗
inv∥2 ≤ c1

λ2
max

9κ2
s

κs max
i∈[ds]

αeiκs

√
dinv log d

n
+ 2

√
σ2

inv

κ2
s

= O

(
λ2
maxA

√
dinv log d

n
+

σinv

κs

)
. (134)

Remark 13. The minimax loss in Equation (9), which formulates the IRM penalty as a loss difference
[
R̂e(vS)− R̂e (veS)

]
,

has notable discontinuities between different parameters with different footprints S:

L̂(vS) :=
∑
e∈E
R̂e(vS) + ρ

∑
e∈E

max
ve
S∈Sp(S)

[
R̂e(vS)− R̂e (veS)

]
= (1 + ρ)

∑
e∈E
R̂e(vS)− ρ

∑
e∈E

min
ve
S∈Sp(S)

R̂e (veS)

= (1 + ρ)
∑
e∈E
R̂e(vS)− ρMS . (135)

This presents challenges in applying existing results in linear regression with restricted parameter error, such as by LASSO
(Negahban et al., 2009; Banerjee et al., 2015; Wainwright, 2019), or especially IHT (Jain et al., 2014). Instead, we directly
analyze the IRMv1 penalty.

D GENERALIZED LINEAR MODEL EXTENSION

We start by restating the original data generation model:

y = γ⊤xinv + ϵinv ,

xes = yζs +αe ⊙ ϵs ,

xr = ζr ⊙ ϵr .

(136)

GLMs are based on exponential family distributions (Brown, 1986; Barndorff-Neils, 2014; Banerjee et al., 2015), where we
assume the conditional distribution of a response yi conditioned on covariates xei is an exponential density function:

P (yi|xei , β∗
inv) = exp{yi⟨xei , β∗

inv⟩ − φ(⟨xei , β∗
inv⟩)} = exp{yi⟨xinv,i, γ⟩ − φ(⟨xinv,i, γ⟩)}, (137)

for log-partition function φ (⟨xei , β∗
inv⟩) = log

(∫
yi
exp {yi ⟨xei , β∗

inv⟩} dyi
)

. For simplicity of notation, we can represent
the parameter ηi = ⟨xinv,i, γ⟩. Then the new environmental risk is the negative log-likelihood for the conditional pdf. If we
use Dn =

⋃
e∈E{(xei , yi)}

ne
i=1 to be the entire dataset across different parameters,

Re(β,Dn) = −
1

n

∑
e∈E

ne∑
i=1

yix
e
i +

1

n

∑
e∈E

ne∑
i=1

xei
∂φ (⟨β∗

inv,x
e
i ⟩)

∂ηi

=
1

n

∑
e∈E

ne∑
i=1

xei (E [yi | xei ]− yi)

=
1

n
X⊤ (E [yi | xei ]− yi) . (138)

We present the conditional Bernoulli distribution example (Banerjee et al., 2015; Dunn and Smyth, 2018). Using parameter
pi for the conditional mean,

P (yi, |pi) = pyii (1− pi)
(1−yi)

= exp

(
yi log

(
pi

1− pi

)
+ log (1− pi)

)
. (139)



Then the parameter ηi = ⟨xinv,i, γ⟩ = log
(

pi
1−pi

)
. We then end up with logistic regression, where

pi =
exp(⟨xinv,i, γ⟩)

1 + exp(⟨xinv,i, γ⟩)
. (140)

In this case the link function is log(1− pi). We emphasize in this setting that this only depends on the invariant features xeinv
and not those of the spurious.

The corresponding IRM penalty term is then

J (β) =
∑
e∈E

max
βe
S∈Sp(S)

[Re(βS)−Re(βeS)]. (141)

By showing RSC and RSS for the loss function
∑
e∈E Re(β) + ρJ (β), we can recover Theorem 1.

E ALGORITHM

Algorithm 2 Sparse IRM with Iterative Hard-Thresholding

1: Input: target nonzero features dinv < d, D = {De}e∈E and De := {(xei , yi)}
ne
i=1.

2: Initialize weights (v,Φ).
3: for training iteration t = 1, 2, · · · , T do
4: vt+1 ← projdinv

(vt − η∇vL̂(vt))
5: Φt+1 ← Φt − η∇ΦL̂(Φt)
6: t = t+ 1
7: end for

F EXPERIMENT DETAILS

The hyperparameters used for the experiments in Section 5 are included below. Starred hyperparameters were evaluated via
grid search. Remaining hyperparameters are kept from previous experimentation (Arjovsky et al., 2020; Zhou et al., 2022).
Hyperparameters for the SparseIRM + PM method, not included in Table 4, are taken from Zhou et al. (2022).

Table 4: Hyperparameter configurations for experiments.

Dataset 2-CMNIST 10-CMNIST MNISTCIFAR
Model MLP390 MLP390 ResNet-18

GPUs (NVIDIA A100) 1 1 1
Epochs 1500 1500 50
Optimizer Adam Adam Adam
Learning Rate 0.0004 0.001 0.001
IRMv1 Penalty Weight 10000 10000 10000
IRMv1 Anneal Start Epoch 200 200 13
Learning Rate Scheduler Cosine Cosine Cosine
# Zeroed Weights (last layer)* 40 40 60
IHT starting epoch* 1200 1200 46
Updates between IHT projection* 5 5 5

F.1 DATASETS

Correlation tuples for the construction of IRM datasets are included below.

Numbers followed by a error bar are 1 standard deviation, i.e., in 62.44 ± 0.96, 62.44 is the mean, and 0.96 is one standard
deviation above and below.



Table 5: Dataset configurations for experiments.

2-CMNIST 10-CMNIST MNISTCIFAR

Number of Classes 2 10 2
Correlation Tuple (0.9, 0.8, 0.1) (0.999, 0.7, 0.1) (0.999, 0.7, 0.1)
Noise 25% 20% 10%

F.2 TUNING THE SPARSITY

In practice, we do not have access to dinv when training a model on Sparse IRM.

Perturbation to d_inv (%) Train Accuracy (%) Test Accuracy (%) L1 Norm

-5 59.61 ± 0.32 56.98 ± 0.27 5.17 ± 1.43
-2 62.11 ± 0.51 59.05 ± 0.43 6.07 ± 1.05
+0 63.39 ± 0.55 60.94 ± 0.46 5.79 ± 4.05
+2 59.41 ± 0.52 57.36 ± 0.42 7.97 ± 4.05
+5 60.34 ± 0.80 58.03 ± 0.63 6.98 ± 3.18

Table 6: Performance metrics across different perturbations to dinv.


