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Proof of Proposition 11

The first equality follows from the fact that X and Xσ have the same distribution. Specifically, we2

have for any positive integer k,3

P(Xσ = k) = P((X ◦ σ)−1(k)) = P(σ−1(X−1(k))) = P(X−1(k)) = P(X = k).

For the second, we observe that if σ is a random permutation of {1, . . . , n}, chosen uniformly at
random, so is σ−1 which implies:

E(H(X,Yσ)) = E(H(X,Yσ−1)) = E(H(Xσ, Y )),

where we have used the first equality and the fact that (X,Yσ−1) ◦ σ = (Xσ, Y ). The third equality4

is a direct consequence of the two first.5

Proof of Proposition 26

If Y is constant, then Y = Yσ for all permutations σ and the result follows from (??). Now assume
that Y is a permutation of {1, . . . , n}. Then H(X,Y ) = H(Y ) = log(n) and I(X,Y ) = H(X),
for any random variable X . It then follows from (??) (and the symmetry in X and Y ) that

∆I(X,Y ) = I(X,Y )− E(I(Xσ, Y )) = 0.

Proof of Proposition 37

If ∆H(X) = 0, then d((X,Xσ)) = 0 for all permutation σ. In particular, there exists some bijection8

f such thatXσ = f(X). Now assume that for some integer i, the eventA = {ω : X(ω) = i} is such9

that 1 < |A| < n. Then there exists some j 6= i such that the event B = {ω : X(ω) = j} is not10

empty. Choose a ∈ A and b ∈ B and define σ as the permutation of a and b. ThenXσ(a) = X(b) =11

j while Xσ(a′) = X(a′) = i for all a′ ∈ A \ {a}. So Xσ(a) 6= Xσ(a′) while X(a) = X(a′) for all12

a′ ∈ A \ {a}, which contradicts the existence of some mapping f that Xσ = f(X). Thus for each13

integer i, the cardinal of the event A = {ω : X(ω) = i} is 0, 1 or n. This implies that X is constant14

or equal to some permutation of {1, . . . , n}.15

Proof of Theorem 116

Consider two items selected uniformly at random in {1, . . . , n}. Let Ai1 , Bj1 be the clusters of the
first item, Ai2 , Bj2 be the clusters of the second item. In particular, these items belong respectively
to the sets Ai1 ∩Bj1 and Ai2 ∩Bj2 . The probability of this event is:

ni1j1ni2j2
n2

.
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Now assume that these items exchange their labels for the first clustering, so that the first item move
to set Ai2 while the second item move to the set Ai1 . If i1 = i2 or j1 = j2, the new contingency
matrix remains unchanged; now if i1 6= i2 and j1 6= j2, the new contingency matrix n′ij remains
unchanged except for the following entries:

n′ij =

{
nij − 1 for i, j = i1, j1 and i2, j2,
nij + 1 for i, j = i1, j2 and i2, j1.

We obtain the similarity between clusterings A and B:17

sp(A,B) =
∑

i1 6=i2,j1 6=j2
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where by convention, x log x = 0 for any x ≤ 0. Finally,18
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Proof of Corollary 119

The proof follows on observing that the second sum in the expression of sp(A,B) in Theorem 1 can20

be written:21
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We obtain:22

S =
∑

i,j:nij>0

(ai − nij)(bj − nij)
n2

(
nij
n

log
nij
n
− nij + 1

n
log

nij + 1

n
+

1

n
log

1

n

)

−

n2 −∑
i

a2i −
∑
j

b2j +
∑
i,j

n2ij

 1

n
log

1

n
.

Proof of Corollary 223

The proof follows from Theorem 1 applied to the diagonal contingency matrix nij = aiδij = bjδij ,24

where δij denotes the Kronecker symbol.25
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