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Figure 1: Human recognition performance vs. random pixel-space perturbations. In these
tests, for a given pixel budget, the perturbations were selected to be random directions in pixel space
with the same magnitude as the specified pixel budget. Specifically, perturbations were created by i)
sampling from a multivariate standard normal distribution (D=150,528), ii) adjusting its norm to the
current pixel budget, then iii) clipping the perturbation vector so values in the resultant perturbed
image remained within the [0, 1] range. Normalized (i.e. lapse-rate corrected) human error rates (on
nine-way categorization on Restricted Imagenet) are shown, as a function of the strength of random
perturbations applied to the original, clean images. The Under our definition of "low budget regime"
of ϵ ≤ 30, human error rates are nearly identical to the error rates on clean images (clean: 11.6%±2.6;
perturbed: 13.4% ± 3.0). Error bars are bootsrapped SEM over images and human subjects. The
empirical distribution of pairwise ℓ2 distances between images in the Restricted Imagenet subset are
shown in the blue histogram.
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Task paradigm

Trial initiation Stimulus presentation Choice screen

≈ 6 degrees

Figure 2: Overview of task paradigm. Each trial consisted of three phases: trial initiation, in which the
subject pressed a small white button at the center of the screen, stimulus presentation, in which a test image
was briefly flashed at the center of the screen (at approximately 6 degrees of visual angle), and a choice screen
consisting of 9 buttons, each labeled with a possible category report.

Subject screening

To gain entry into the study, subjects were required to first perform a “demo” task consisting of 100
trials on a basic, two-way object recognition task on ImageNet [1] images, which followed the same
structure as the task paradigm described in the Main Text (here, only n = 1 distractor was presented
on each trial). We included all subjects who achieved at least 9/10 correct choices on catch trials,
which were randomly interleaved throughout the session.

Lapse-rate correction

To account for the possibility that – unlike deterministic models – human subjects do not maintain
attention to the task on 100% of the trials (referred to a “lapse-rate”), we designed catch trials, in
which we assumed fully attentive subjects would achieve an error rate of zero. Thus, any empirically
measured error rates above zero indicated that subject’s lapse-rate, γ. The subject-wise lapse-rate
corrected probability of choosing a target class thus reads, p =

p̂− γ
N

1−γ , where p̂ and N are a subject’s
average measured probability on the calibration trials and the number of class options in the task (nine)
respectively. Applying this correction subject-wise also allowed us to reduce the noise stemming
from cross-subject baseline performance variability when estimating subject mean scores.

Derivation

The lapse rate is the probability that a subject will make a random choice, irrespective of the presented
stimulus. We assume that this random choice is drawn from a uniform distribution; so 1

N probability
for each of the N class options. We call the probability they will make such a random choice
γ ∈ [0, 1]. For any empirically measured condition, we thus have an empirically observed probability
p′, corrupted by lapse rate γ:

p′ = p (1− γ) +
γ

N
. (1)

To estimate the underlying probability, p, we design calibration trials, where by assumption, the
subjects have an underlying perfect score, namely p = 1. It follows that the measured probability for
those trials reads,

p′calib = (1− γ) +
γ

N
,

thus the lapse-rate can be computed as,
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γ =
p′calib − 1

1
N − 1

.

The lapse-rate correction thus take the form,

p =
p̂− γ

N

1− γ
. (2)

Applying this correction subject-wise also allowed us to reduce the noise stemming from cross-subject
baseline performance variability when estimating subject mean scores. We refer to measures of
human choice probability that are lapse-rate correct in this manner as “Normalized” (e.g., Supp.
Fig 1, Main text Figs 1-4).

The typically observed lapse rates were quite low (median over subjects: 0%; mean 4.9%), indicating
that not making this correction would have only a minor quantitative effect on the presented results.

Viewing time dependence
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Figure 3: Human disruption rates are largely stable across stimulus presentation times.
We measured human disruption rates across several viewing times for a subset of Guide Model DM image
perturbations (ℓ2 pixel budget 20.0). We found that our originally observed effects (measured at t=200
milliseconds) were replicated even at long presentation times, which permit a subject to potentially more closely
analyze the image. At shorter viewing times, we observed modest or no increases in disruption rate. Errorbars
are SEM (simple bootstrap over subjects and images).
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Generator Model: Robust l2-εtr [3.0]
‘fish’

start
images ‘primate’ ‘cat’ ‘dog’ ‘crab’ ‘bird’ ‘turtle’ ‘frog’ ‘insect’

Figure 4: Targeted Modulation examples. Perturbing at a pixel budget of 30. Showing randomly-selected
modulation over Restricted ImageNet (see Main Text).
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Generator Model: Robust l2-εtr [3.0]

Generator Model: Robust l2-εtr [10.0]

Figure 5: Targeted Modulation examples using OOD, ANI, and UNI as source images. Perturbing
at a pixel budget of 30.
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Generator Model: Robust l2-εtr [3.0]

Figure 6: Targeted Modulation examples using Arbitrary Natural Images (ANI) as source
images. Perturbing at a pixel budget of 30. Source images were captured with a smartphone camera.
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Generator Model: Robust l2-εtr [3.0]

Robust εtr [3.0]
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Figure 7: Targeted Modulation to arbi-
trary target categories. Using OOD, ANI,
and UNI as source images. Perturbing at a pixel
budget of 30.
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Generator Model: Robust l2-εtr [3.0]
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Figure 8: Targeted Modula-
tion toward hybrid directions
of two and three classes.
Demonstrating Perturbing at a pixel
budget of 30. For 3-composite mod-
ulation a perfect success is ∼33%
rate for all three target categories.
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Different attack strategy: ℓ∞ attacks and ℓ∞-robust models

Generator Model: Robust l2-εtr [3.0]

Generator Model: Robust l∞-εtr [4]

Figure 9: Comparison with ℓ∞ attacks and ℓ∞-robust models. We present results for all four
combination of model robustification strategy (ℓ∞ or ℓ2), and attack strategy for image generation (ℓ∞ or ℓ2).
The actual pixel budgets for ℓ∞ attacks (or models) are X/255 of those marked. We denote the proportion of
pixel budget used for generating the modulated image from the source image by δ. Bold titles above modulated
images denote the targeted class label. Titles above original (source) images denote the ground-truth class label.
We chose model/attack ℓ∞ pixel budgets that are comparable with those used in the ℓ2 setting.

Restricted ImageNet class mapping

In what follows we provide the definition of Restricted ImageNet classes by their corresponding
ImageNet classes, as previously defined in robustness library [2].

• Dog (classes 151-268) • Cat (classes 281-285) • Frog (classes 30-32) • Turtle (classes 33-37) •
Bird (classes 80-100) • Monkey (classes 365-382) • Fish (classes 389-397) • Crab (classes 118-121)
• Insect (classes 300-319)
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https://github.com/MadryLab/robustness
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