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A ILLUSTRATION: PRIVACY-SENSITIVE TRANSLATION

Figure 5

Alice is the owner of the source (tiger) do-
main, and Bob is the owner of the target (cat)
domain. Alice intends to translate tiger im-
ages to cat images, but in a privacy-sensitive
manner without releasing the source dataset.
Bob does not wish to make the cat dataset
public, either.

Fig. 5 illustrates the process of privacy-
sensitive domain translation. The process
contains the following steps, with indexes in
the figure.

1. Alice intends to translate tiger im-
ages to cat images.

2. Alice trains a diffusion model with
the source tiger images.

3. Alice uses the pretrained, tiger diffu-
sion model to convert a source tiger
image to its latent code.

4. Alice sends the latent code to Bob.
5. Bob similarly trains a diffusion

model on the cat domain.
6. Bob uses the pretrained, cat

diffusion model to convert the re-
ceived latent code to a cat image.

7. Bob then sends the translated image
back to Alice.

Clearly, during the translation process, only
the latent code and the translated cat image are transmitted via the public channel, while both source
and target datasets are private to the two parties. This is a significant advantage of DDIBs over
alternate methods, as we enable strong privacy protection of the datasets.
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B DETAILS OF SGM TRAINING AND DDIM ODE SOLVER

B.1 TRAINING SCORE NETWORKS

While the description in Section 2 is based on continuous SDEs, actual implementations of diffusion
models use discrete time steps. Given samples from a data distribution q(x0), diffusion models
attempt to learn a model distribution p✓(x0) that approximates q(x0), and is easy to sample from.
Specifically, diffusion probabilistic models are latent variable models of the form

p✓(x0) =

Z
p✓(x0:T ) dx1:T , where p✓(x0:T ) = p✓(xT )

TY

t=1

p(t)✓ (xt�1|xt)

where x1, · · · ,xT are latent variables in the same sample space as x0. The parameters ✓ are trained
to approximate the data distribution q(x0), by maximizing a variational lower bound:

max
✓

Eq(x0)[log p✓(x0)]  max
✓

Eq(x0,x1,··· ,xT )[log p✓(x0:T )� log q(x1:T |x0)]

where q(x1:T |x0) is some inference distribution over the latent variables. It is known that when the
conditional distributions are modeled as Gaussians with trainable mean functions and fixed variances,
the above objective can be simplified to:

L(✏✓) :=
TX

t=1

Ex0⇠q(x0),✏t⇠N (0,I)

���✏(t)✓ (
p
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p
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The resulting noise prediction functions ✏(t)✓ , are equivalent to the score networks st,✓ mentioned in
Section 2 due to Tweedie’s formula (Stein, 1981; Efron, 2011). For details, we refer the reader to Ho
et al. (2020); Song et al. (2020a).

B.2 DDIM ODE SOLVER

With a trained noise prediction model ✏(t)✓ (x), the DDIM iterate between adjacent variables xt��t

and xt, considered in Song et al. (2020a), assumes the following form:

xt��tp
↵t��t

=
xtp
↵t

+

 s
1� ↵t��t

↵t��t
�
r

1� ↵t

↵t

!
✏(t)✓ (xt)

In our experiments, we implement the above equation between adjacent diffusion steps. The equation
is deterministic, and can be considered as a Euler method over the following ODE:

dx̄(t) = ✏(t)✓

✓
x̄(t)p
�2 + 1

◆
d�(t) (9)

where we adopt the reparameterization:

�(t) =

s
1� ↵(t)

↵(t)
, x̄(t) =

x(t)p
↵(t)

Importantly, the ODE in Eq. (9) with the optimal model ✏(t)✓ (x), has an equivalent probability flow
ODE corresponding to the “Variance-Exploding” SDE in Song et al. (2020b).
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C LIMITATIONS OF OPTIMAL TRANSPORT-BASED TRANSLATION

DDIBs contain deterministic bridges between distributions, and are a form of entropy-regularized
optimal transport. The learned diffusion models can be effectively considered as a digest or summary
of the datasets. While doing translation, they attempt to create images in the target domain, that
are closest in optimal transport distances to the source images. Such OT-based process is both an
advantage and a limitation of our method.

In ImageNet translation, when the source and target datasets are similar, DDIBs are generally able
to identify correct animal postures. For example, we have shouting lions and tigers, because these
animals have similar behaviors that are observed in the datasets and then internalized by DDIBs.
However, in datasets that are less similar (e.g. birds and dogs), DDIBs sometimes fail to produce
translation results that retain the postures precisely. We encountered significantly less such cases in
AFHQ translation, since the dataset is more standardized and homogeneous.

Fig. 6 illustrates the optimal transport mappings among images as well as some failure cases. Clearly,
the translation processes flowing from left to right minimize the Euclidean transportation distances
between images. Some of these translated samples may be classified “failure cases” in actual user
studies. Such are considered both a feature and a limitation of DDIBs.

Figure 6: Optimal transport translation processes in DDIBs. (Leftmost) Source images. (Rightmost)

Translated images.
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D PROOF OF PROPOSITION 3.2

Proof. The proof proceeds by substituting the values of (zt, ẑt) = (0, g(t)rx log pt(x)) into Eq. (6),

dx =


f(x, t) + g(t) z� 1

2
g(t)(z+ ẑ)

�
dt (10)

=


f(x, t)� 1

2
g(t)2rx log pt(x)

�
dt (11)

This is exactly Eq. (2).
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E ADDITIONAL EXPERIMENTAL DETAILS

E.1 OPTIMAL TRANSPORT IN PAIRED DATASETS

Color Conversion In Fig. 7, a simple examination of the original and segmentation images reveals
significant differences in color configurations. In the Maps dataset, while the real, satellite images are
composed of dark colors, the segmentation images are light-toned. The same observation applies
to other datasets. The shark contrasts in colors intuitively present a large transportation cost, that
probably hinders the progress of DDIBs, as we have demonstrated its relationship to OT in Section 3.

To facilitate the workings of DDIBs, we follow a heuristic to transform the colors of the segmentation
images. Specifically, on a small subset of the train dataset, we run an OT algorithm to compute a
color correspondence that minimizes the color differences in terms of Sinkhorn distances between
the real and segmentation images. The segmentation (target) datasets undergo this color conversion
before they are fed into a diffusion model for training. During evaluation, when we compute MSEs,
the images are converted to the original color space.

Privacy Protection Color conversion requires considering both datasets jointly to compute a
color mapping, and seems to betray the original purpose of DDIBs on protection of dataset privacy.
We comment that the amount of leaked information is minimal: for example, to compute a color
correspondence for the Maps dataset, we sampled only around 1000 pixels from the two datasets, to
summarize the color composition information. DDIBs still conserve privacy at large.

Figure 7: Color Conversion. In the paired translation tasks, we are given the real and segmentation
images. Before training the diffusion models, we first transform the segmentation images to a color
palette that is closer to the real images. While evaluating MSEs, we convert the images back to the
original colors.
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E.2 EXAMPLE-GUIDED COLOR TRANSFER

We present additional qualitative comparison between DDIBs and common OT methods, in Fig. 8.

Figure 8: Full color transfer results on example images.
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