ws A Proof of Lemma Il
a09  To simplify the notation throughout this proof, for each j € {1,...,k} denote ¢/ = ¢i. We have
k
w * w *\J j Zap~
EX7(@7) = BX 2 () = 3 wiByess [0V (V) -0/ (V)] - rlog 2 (14)
j=1

410 Observe that for any x € X it holds that

g o Do (_ Sy (@) <¢*>J‘<x>>> |

dﬂ‘/’* Zz/) T
411 Hence,
e 7.
7log Zilf,, = 7logExu,. [Zif/,}
k ; .
d L . J _ *\J
=T1logEx~u,- ld:j (x)exp <ZJ1 w; (@ (i) (¢*) (@))]
k P TRSnY
=T1logEx~p, [exp (Zﬂ'—l wJ(W(i) (¢ )“@))]
k - .
= sup { Bxy | D wi(@ (@) — (0") (@) | — 7KL(p, py) ¢, (15)

HL e J=1

412 where in the final expression we have applied the Donsker-Varadhan variational principle (i.e., convex-
413 conjugate duality between KL-divergence and cumulant generating functions); therein, the supremum
414 Tuns over probability measures y absolutely continuous with respect to ji,, and it is attained by g
415 defined as

k
pld) o exp | 23wy (69(x) — (6 (@) | ()
j=1

1< , 4 1< .
ocexp | =Y wi(¢ (@) = (¢") (@) | exp | == wj¢! (@) | mres(da)
Jj=1 Jj=1

k
1 .
- i ) re d - * d .
x| = w6V ) | ) = ()
416 That is, the supremum in (I3) is attained by 1 = ju~. Hence, the identity (I4) becomes
EXY(§7) — B ()

k k
= 3 wsBy s [P ) = )] = Bxonye | w64 (X) ~ (Y (X))

j=1
+ TRL (g, prp)

wj (By s [V (V) =7 (V)] + Exepye [(67)(X) = ¢7(X)]) + 7KL (p1gp+, 1)

M-

1

J
2 TKL(M’(I’* 9 /j/'l,b)7
417 where the final inequality follows by noting that for each j the optimality of the pair ((¢*)7, (1*)7)
418 for the entropic optimal transport dual objective Eﬁ\w* e implies that
Ey i [ (V) = (V)] + Exepy. [(67)(X) — ¢ (X)]

= BV (07), (7)) = BY (@, 07) 2 0.
419 The proof of Lemma|l|is complete. O
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425

426
427

428
429

430

431

432

B Proof of Proposition|I]

Recall that for any non-negative integer ¢ we have

k .
pi(da) = Z;7 ' exp (_W) Trret (d2).

T

where Z; is the normalizing constant defined by

k S
Zy = /Xexp <—M> Tret (d).

T

With the notation introduced above, we have

K
E(h) = ) wiBy.yi [#(Y)} — 7log Z;.

j=1
Hence,
a Z
j j 1
Bltbrin) — Blabr) = 3 0By [11(¥) ~ (1))~ 7log
j=1
A 3 E log &/ V)| = 7 log 2Lt
= wiEy ., |log — —71log ——.
7 ; iEy [ 8 } e
a Z
. i t+1
= mln()\,T);ijL(VJ,Vg) —1log 7
Therefore, to prove Proposition [I]it suffices to show that the inequality
VA
log 52 <0 (16)

t

holds for any ¢t > 0. We will complete the proof of Proposition [T]using the following lemma, the
proof of which is deferred to the end of this section.

Lemma 3. Let (1;);>0 be any sequence of the form

Wl = ol +nAlog(A)),
where for j € {1,...,k}, (A{)tzg is an arbitrary sequence of strictly positive functions and
1 = min(1,7/X). Then, for any t > 0 it holds that

k

Z"/’t . i
TlOgT-H < min(\, 7) IOngjEYNVf,,t [Ag (Y)} :

P =

To complete the proof of Proposition we will apply the above lemma with A{ = log dv? Indeed,

dvi
we have
k .
L1 . {di/] ]
7lo < min(A,7)lo w;E,, | —(Y
e G S minur)log By | 350)
k
= min(\, 7) log Z w;Ey i [1]
j=1
=0.
By (16}, the proof of Proposition [I]is complete. O
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441

442

443
444

445

B.1 Proof of Lemma[3|

We will break down the proof with the help of the following lemma, the proof of which can be found
in Section[B.21

Lemma 4. For any sequence (1;)>0 and any t > 0 it holds that

i j /A
%log Z?:l wiEx .y, |exp <_ s (004X (X)) ifr=A

T

Z"/)t+1

log
Zapt

< . .
IOngLluhEXNMtFXP<_¢AA%?HQGQ>} ifr <,
where ¢y = ¢y, and p(dz) = Z;tl exp(— Z?Zl il (x) 7)ot (di).

Observe that the sequence (;);>¢ of the form stated in Lemma [3| satisfies, for any for any j €
{1,...,k} and any t > 0,

j j i\ M7
—Pi1 + 9 AL dpy dji]
exp — | = exp = log dﬂi = tht ,

where 4 '
djil / Vi () + di (@) — clz,y)
—(z) = v(dy) ex
@) = [ vidy)exp :
. , J J _
:/ Vj(dy)A%(y)"exp <¢t (y) + ¢1 (x) C(Iay)> .
x A
Hence, by Lemma[z_f] we have
Z.
log k2=
Py
1 k
< ~mi Ex.
< mln()\,T);w] Xopy [

; j . max(1,A/7)
</X VI (dy) Al ()" exp (djt (y) + & (i{) (X, y))) 1 ‘ 17

We split the remaining proof into two cases: 7 > Aand 7 < .

The case 7 > A. When 7 > )\, we have max(1,A/7) = 1 and » = min(1,7/\) = 1. Thus,
yields

k

< %min()\,T) longjEXNM l/X VI (dy) Al (y) exp (W (y) + &1 (f) — (X, y))}

j=1

/ ”t(dx)/ VI (dy) A (y) exp (wg(y)ﬂf’g(i() C(X,y)ﬂ
Read x
k

- Lm0 Yy | [ Al ay /X exp (wi<y> + o0 — X, y)) m(da@]

k
1
= —min(\, 7)1 E ;
7_rmn( ,T)1log » w;

j=1

=1

1 k N
= —min(A, 7)log Yowi| [ A () (dy) —"5 ()

=1
1 k :
== min(\, 7) IOngjEYNVf,,t [Ag (y)} .

j=1
This completes the proof of Lemma [3]when 7 > .
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ss Thecase T < A\. Forje {1,...,k} and any x € X define the measure p, by

w@mm%mm>

P (dy) = v (dy) exp ( X

447 By the definition of gf)j , we have

/ p%(dy)
* . .
_ /X v(dy) exp (W) exp (%)(\ﬂf))
= /Xy(dy) exp (W) exp (—log/X v (dy') exp (W))

=1

a8 In particular, p, is a probability measure. Hence, (17) can be rewritten as

g

a49  Because \/7 > 1, the function = — x*/7 is convex. Applying Jensen’s inequality to the conditional
450 expectation and using the fact that n\/7 = 1, it follows that

E

k
Z t
log % S 1ngijX~m YNP?.{

t

Ay

Jj=1
AT

k
Z ,
log% <log E wiEx~pu, {EYNPJ)-( {Ai(Y)’X”
i=1

k J J
j + r) —clx,
=log » wj/ Mt(dﬂc)/ A7 (y) exp (wt W) ¢t&) ( y)> v(dy). (18)
= x x
451 By the definition of Vit we have

de J J x) —clx

452 Interchanging the order of integration in and plugging in the above equation yields

A k J J . ) )
log Piiy1 < logz w; / / exp Vi (y) + ¢ () — c(z,y) 1 (da) Ag (y)v? (dy)
Z, ; A
b i=1 x |Jx

: dyi’t J J

=m;w4dw@Amwm>
k .

= log z; wBy [Ag (Y)} .

J:
453 This completes the proof of Lemma 3] O

44 B.2 Proof of Lemmal

455 To simplify the notation, denote Z; = Zy,. Letx € X and ¢ > 0. We have u; < p¢4q with the
456 Radon-Nikodym derivative dp1 1 /dpu; given by

dus o e <— by wi(d],4 (z) — ] (x)))

dﬂt Zt+1 T
k j i w;
Zy — @11 () + o ()
f ex .
Zt+1 ]];[1 P ( T
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457 Multiplying both sides by Z;,1/Z; and taking expectations with respect to z; yields

i1 _ E Ziy1
Zt X~ 41 Zt

Zyy1 dpsg 1
=Ex~ — (X
X /it|: Zt d/.tt (
k j j w;
—¢l (X)) + ol (X
By Hexp( a0 + 410
j=1

458 In the case 7 < A, the proof is complete by the Artihmetic-Geometric mean inequality (recall that
459 w; >0forj=1,...,kand 25:1 w; = 1). On the other hand, if 7 > A then x + 2*/7 is concave.
460 Hence, it follows that

z (4 5100 + o0\
t+1 Y+l t
log 7 =logEx~, I |lexp< - )

j=

t

AT

T

k . . w;T/A

A —¢11(X) + ¢7(X)
=—1

- ogExu, Hexp ( -

=1
k 5 5 7'/)\
—¢11(X) + ¢7(X)

< lejEqu €xp < = T t ’

j=

461 where the final step follows via the Arithmetic-Geometric mean inequality. This completes the proof
462 of Lemmalfdl O

L (el (x) el x)\ T
<logEx~,, H exp +
j=1

w3 C Proof of Theorem

464 Foreveryt>0andje {1,...,k},let 17,{ be the distribution returned by the approximate Sinkhorn
465 oracle that satisfies the properties listed in Definition [l We follow along the lines of proof of
466 Theorem/[Il

467 First, we will establish an upper bound on the oscillation norm of the iterates {/;t. Indeed, by the
ae8  property four in Definition [I] we have

||1/’i+1HOSC <(1- 77)||7/}g||osc + Moo (X).
w9 Since ¢} = 0, for any ¢ > 0 we have [|¢)] [|ose < Coo ().

a0 Letdy = E;;"(w*) - E/\";”(zzt) be the suboptimality gap at time ¢. Using the concavity upper bound
47t (I0) and the property two in Definition [I| we have

0r < 2e00(X) > wyllv? — ||y

k
< e+ 2e00(X) > wyllv? — T ||y

k
< &4 V200 (X) ij KL(v,7)
j=1
k
§5+\/§cm ZwKLVJ I/t
j=1
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480
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482
483

484

Combining the property threeﬂ stated in the Definition |l| with Lemma [3| we obtain

k k
~ ~ . . . dv; .
0t — 641 > min(A\, 7) E w;KL(v’,9]) — min(\, 7) log E 1 w; /X T%(y)yj (dy)
Jj=

Jj=1

k
> Z ijL(vj,'ﬁg) —min(A, 7) log (1 + £%/(2ce (X)?))
j=1

k .
> min(A, 7) ijKL(vj,ﬁg) — Im€2
j=1 e
min(A, 7) “ 2 min(\,7) o
2 Do (X)2 max{O,ét 5} Do (X)2 e”.

Provided that gt > 2¢ it holds that
min(\, 7) ,«

(St — 26) — (St+1 — 26) > 2COO(X) (6t — 25)2.

Let T be the first index such that gTH < 2¢ and set T' = oo if no such index exists. Then, the above
equation is valid for any ¢ < T'. In particular, repeating the proof of Theorem|[I] for any ¢ < T" we
have

2c50(X)?% 1

min(\, 7) ¢’

which completes the proof of this theorem. O

gt—QSS

D Proof of Lemma/[2
The first property — the positivity of the probability mass function of 77 — is immediate from its
definition.

To simplify the notation, denote in what follows

K7 (x,y) = exp (¢¢j (z) + 1/”;1/) - C(x,y)) .

With this notation, recall that

i 1< )
V) =~ > vy K(Xi07).
i=1
The above is a sum of n non-negative random variables bounded by one with expectation
W) (5]) = Bxmp, [V ()]

It follows by Hoeffding’s inequality and the union bound that with probability at least 1 — J the
following holds for any j € {1,...,k}andany ! € {1,...,m;}:

2log (22)

Do) — () ()] < | =

In particular, the above implies that
7 — vy llrv < 2¢+ (1 = Ol — v [y
<20+ 1 =Qlvy, — @) ey + Q=N —vyllry
<2+ 7 = Y oy + 1) = vl lev

2log (2
< 2C—|—mjau +m; M

i
"The third property, unlike claimed in the main text, should read as: Ey-,_, [;—‘f' (V)] < 1+€%/(2¢00 (X)?).
Yap
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485 Notice that the above bound can be made arbitrarily close to m e, by taking a large enough n and a
ass  small enough (. This proves the second property of Definition|I]

487 To prove the third propertyﬂ observe that

A g [ 00 )
Uy (Y) 7,(Y) 7,(Y)
1 w0 =)
< Ey..i _1 e + ﬂfp(y)
I ¢ mm-5m)
S EYNVJ 1 + 1_ C + ;’Zb(y)
<1 o L) - )
- 1—-¢ (¢"¥ » Vv

1 2log (2
< 1+2<+E mie, +m; 2og ()
488 This concludes the proof of the third property.
4g9 It remains to prove the fourth property of Definition|l} Observe that for any ¥, 3y’ we have

: 7 (y) o 7 (y)

¥’ (y) — nAlog — > - <W(y ) — nAlog —
( v (y) vi(y')

C+ (1= Oy 2iny K7(X, y’))
CH+1=07 Xi K (Xi,y)

— (¥ (y) — ¥ (4)) + mAlog (

¢ 1 n j /
. . f+721’71 KJ(Xiay)
= (¥’ (y) =¥’ (¢)) +77Mog<1 e
fcg+%zi:1 K](X’Zay)
Coo J N— J n y
& —l—exp( (X)-HZJ/\(@I) 4 (y)) %Zi:l KJ(Xi,y)

ﬁ + % Z?:1 Ki(Xi,y)

< (W (y) =¥ (y)) + nAlog

a0 Now observe that for any a, b > 0 the function g : [0, 00) — (0, 00) defined by g(z) = (z+a)/(x+b)
491 is increasing if a < b and decreasing if @ > b. Thus, ¢ is maximized either at zero or at infinity. It
492 thus follows that

Tz +exp (wam) 7 i K7 (Xiyy)
o o i K (Xay)
< {ncoom — () — () if exp (=) > 1

0 otherwise.

493 This proves the claim and completes the proof of this lemma. O

w4 E  Approximate Sampling From ;.,, via Langevin Monte Carlo

495 The purpose of this section is to show how sampling via Langevin Monte Carlo algorithm yields
496 the first provable convergence guarantees for computing barycenters in the free-support setup (cf.
497 the discussion at the end of Section [2.2)). In particular, we provide computational guarantees for
498 implementing Algorithm 2]

i
*The third property, unlike claimed in the main text, should read as: Ey-,.,,,; [;—‘f' (V)] < 1+€%/(2¢00 (X)?).
Yap
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A measure p is said to satisfy the logarithmic Sobolev inequality (LSI) with constant C'if for all
sufficiently smooth functions f it holds that

Eu[f*log f°] — E.[f*]log E,[g*] < 2CE,[[V f]3]-

To sample from a measure p(dx) = exp(— f(x))dz supported on RY, the unadjusted Langevin Monte
Carlo algorithm is defined via the following recursive update rule:

Tpa1 = 2x — NV f(zr) + /202, where Z ~ N(0,1). (19)
The following Theorem is due to Vempala and Wibisono [55, Theorem 3].
Theorem 3. Let ju(dz) = exp(— f(x))dx be a measure on R%. Suppose that i satisfies LSI a with

constant C' and that | has L-Lipschitz gradient with respect to the Euclidean norm. Consider the
sequence of iterates () >0 defined via and let let py, be the distribution of xy. Then, for any

e>0,anyn < ﬁ min{l, 5}, and any k > % log M, it holds that

KL(pg, pt) < e.

Thus, LSI on the measure x provides convergence guarantees on KL(pg, ). It is shown in [55}
Lemma 1] how to initialize the iterate x( so that KL(p, ) scales linearly with the ambient dimension
d up to some additional terms.

To implement the approximate Sinkhorn oracle described in Definition[I] we can combine Lemma 2]
with approximate sampling via Langevin Monte Carlo; note that by Pinsker’s inequality, Kullback-
Leibler divergence guarantees provide total variation guarantees which are sufficient for the applica-
tion of Lemma 2] Therefore, providing provable convergence guarantees for Algorithm 2] the inexact
version of Algorithm [T} amounts to proving that we can do arbitrarily accurate approximate sampling
from distributions of the form

k
pp(dz) o< Ly (x) exp(—Viyp(z)/7)dx, where Vy(z) = ijquj(x).

Here 1y is the indicator function of X', 4 is an arbitrary iterate generated by Algorithm[2] and we
consider the free-support setup characterized via the choice o (dz) = dx.

Notice that we cannot apply Theorem @ directly because the measure i, defined above has con-
strained support while Theorem only applies for measures supported on all of R%. Nevertheless, we
will show that the compactly supported measure ji,, can be approximated by a measure i, ,, Where

parameter o will trade-off LSI constant of ji,, , against the total variation norm between the two
measures. To this end, define

fiap.o =X exp(—Vi () /7 — dist(z, X)*/(20%))dz, where dist(z,X) = 1g( |l — yl|2- (20)
y

The argument presented below works for any cost function ¢ such that ¢(+, y) is Lipschitz on X" and
grows quadratically at infinity. However, to not cloud the whole picture with technical details, we
shall simply take c(x,y) = ||z — y||3. The exact problem setup is formalized below.

Problem Setting 1. We consider the setting described in Section In addition, suppose that
1. the reference measure ¢ (dx) is the Lebesgue measure (free-support setup);
2. X C Bg = {z €R%: ||z|2 < R} for some constant R < co;
3. ¢:RY x R? — [0, 00) is defined by c(z,y) = ||z — y||3;
4. for any v generated by Algorithm we have access to a stationary point ., of Vz, over X',

The final condition can be implemented in polynomial time using a first order gradient method. The
implication of this condition is that by [55, Lemma 1], for any ¢ > 0, the initialization scheme
xg ~ N (24, I4) for the Langevin algorithm (T9) satisfies
Co(X) d L,
KL o) < —log —,
(P, Hyp0) < =+ 5 log o

where L, is the smoothness constant of V, /7 + dist(z, X')/(202) (see Lemma .

The following properties are satisfied by the measure (i .
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537 Lemma 5. Consider the setup described in Problem Setting|I| Let 1 be any iterate generated by
538 Algorithm[?]and let iy » be the distribution defined in (20). Then, the measure [y , satisfies the
539 following properties:

540 1. Forany o € (0,1/4] it holds that
SR2 d—1
[y — Bp,o TV < 20 exp <7> {(4365_1/4) + 1} .
541 2. Let Vy(z) = exp(—Vy(x)/7 — dist(x, X)?/(202)); thus piy o (dz) = exp(—V,(z))dz.
542 The function V, has L,-Lipschitz gradient where
11, 1
L, = = + §4R mjaxmj + 2
543 3. The measure [y » satisfies LSI with a constant C, = poly(R,exp(R?/7), L,).

544 Above, the notation C' = poly(z, y, z) denotes a constant that depends polynomially on x, y and z.

s45 Before proving this lemma, let us state and prove the main result of this section.

ss6  Corollary 1. Consider the setup described in Problem Setting[l| Then, for any confidence parameter
sa7 6 € (0, 1) and any accuracy parameter € > 0, we can simulate a step of Algorithm with success
548 probability at least 1 — § in time polynomial in

el d, R exp(R?/7), (RA™Y*)4 771 X\~ d,m,log(m/é).

ss0 Comparing the above guarantee with the discussion at the end of Section4.1] we see an additional
s50 polynomial dependence on (Rd~'/*)?. We believe this term to be an artefact of our analysis, which
s51  appears due to the total variation norm approximation bound in Lemma|[5] Ignoring this term (or
ss2  considering the setup with R < d'/%), the running time of our algorithm depends exponentially in
553 2 /7. We conclude with the following two observations. First, because approximating Wasserstein
s54  barycenters is NP-hard in general [4]], an algorithm with polynomial dependence on all problem
s55  parameters does not exist (unless P = NP). Second, combining the above corollary with Theorem 2]
s5 obtaining an e approximation of (\, 7)-Barycenter can be done in time polynomial in ¢~ !. This
557 should be contrasted with numerical schemes based on discretizations of the set X, which would, in
ss8  general, result in computational complexity of order (R/¢)? to reach the same accuracy.

559 Proof. Let 1) be an arbitrary iterate generated via Algorithm[2} We can simulate a step of approximate
sso  Sinkhorn oracle with accuracy e via Lemma 2] (with ¢ = £/4) in time poly(n, m, d) provided access
s61  ton = poly(e~t, m,log(m/§)) samples from any distribution [y, Such that

o

o

2

’ &
— < —. 21
1y — ppllTv < Tom (21)

s62 To find a choice of Nip satisfying the above bound, consider the distribution

g2 8R2 14\ 41 -t
' - . > —1/4
Weypo With o 39m <2 exp( - ) [(4Rd ) + 1]) .

se3  Let C, and L, be the LST and smoothness constants of the distribution /i, , provided in Lemma [3}
564 By Theorem it suffices to run the Langevin algorithm for poly(e~t,m,d, C,, L,) number
ses of iterations to obtain a sample from a distribution /i, » such that

2

~ g
— < —
.0 — tipollTv < S9m

s66 In particular, by the triangle inequality for the total variation norm, the choice u;/, = [lyp, o Satisfies
567 (2I). This finishes the proof. O

s6s E.1 Proof of Lemmalf3

ses  To simplify the notation, denote j1 = fp, flo = Hap,0r V (2) = Vip(z) /7, and V,(z) = V(z)/7 +
sro  dist(z, X)%/(202).

N
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Total variation norm bound. With the above shorthand notation, we have

p(de) =1y Z Vexp(=V (x))dz, where Z:/Xexp(—V(x))dm

and
jo(dz) = (Z + Z,) "V exp(—V,(x))dz, where Z, — /R SVl
We have
ol = [ (2 20) el Votode+ [ 124207 = 27 expl=V ()

27, 27, Coo(X) 4AR?
= < < _ < p—— .
717,57 _2exp< = )ZU_Qexp< - o

We thus need to upper bound Z,. Let Vol(A) be the Lebesgue measure of the set A, let 9 A denote
the boundary of A, andlet A+ B ={a+b:a € A,b € B} be the Minkowski sum of sets A and
B. Using the facts that for each j € {1,...,k} we have sup,c y ¥’ (y) < coo(X) < 4R? and that
X C Br ={x:||z|l2 < R} we have

Zg:/Rd\XeXp( Vo (2))dz

R2
§exp< >/ exp( dlSt(xQX)>d:c
Rd\X 20
4 2 2
:exp(R>/ X+B))exp( 2x2>dm
0
72
Sexp( )/ Vol(0Br+x) eXp( 202>dx

4R? d—1 z?
_exp( ) d/2 R—I—m) exp( 5 Q)dx

Bounding (R + z)4~! < 24-1RI-1 ¢ 2d_1xd_1 and computing the integrals results in

d/2

SR2\ = a1 | nde1 VT oaso—
_ < /2-1 d
le = pollTv < 2exp ( ~ ) (d/2)2 [R o5 +2 I'(d/2)c

oy (M) [ g

Using the assumption o < 1/4 and using the bound T'(d) > (d/2)%/? we can further simplify the
above bound to
SR2 1/4 d—1
i — i oy < 20 exp (> [(4Rd— M 1] ,
T
which completes the proof of the total variation bound.

Lipschitz constant of the gradient. Recall that for any any j € {1,...,d} we have

i Il 113 j
VI(yl) — =52+ ()
; 3 L i)

Denote ¢/ (x) = ¢/ () — 3||z||3. Fix any z, 2’ and define g(t) = ¢’ (z + (2’ — z)t). Then, for any
t € [0, 1] we have

1 ; 1
9"(s) = =3 Varpw,, (V7 (@' —2)L] 2 =l = a'll3m4 R, (22)
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where
i, J llwi 113 / J
, I (y! L2 4 (x4t —x),y
pt(l) X Z/(ylj)exp ( l) 2 ; ( ) l>

and Y7 € R¥™i is the matrix whose [-th column is equal to the vector yf

Because 7 is concave, the bound (22) shows that ¢/ is 1 + Lm;4R?-smooth.
Combining the above with the fact that the convex function dist(x, X') has 1-Lipschitz gradient [6,
Proposition 12.30] proves the desired smoothness bound on the function V.

LSI Constant bound. The result follows, for example, by applying the sufficient log-Sobolev
inequality criterion stated in [13] Corollary 2.1, Equation (2.3)], combined with the bound 22)). The
exact constant appearing in the log-Sobolev inequality can be traced from [13 Equation (3.10)].
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