
A Proof of Lemma 1408

To simplify the notation throughout this proof, for each j ∈ {1, . . . , k} denote φj = φψj . We have409

Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ) =

k∑
j=1

wjEY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
− τ log

Zψ∗

Zψ
. (14)

Observe that for any x ∈ X it holds that410

dµψ
dµψ∗

(x) =
Zψ∗

Zψ
exp

(
−
∑k
j=1 wj(φ

j(x)− (φ∗)j(x))

τ

)
.

Hence,411

τ log
Zψ∗

Zψ
= τ logEX∼µψ∗

[
Zψ∗

Zψ

]
= τ logEX∼µψ∗

[
dµψ
dµψ∗

(x) exp

(∑k
j=1 wj(φ

j(x)− (φ∗)j(x))

τ

)]

= τ logEX∼µψ

[
exp

(∑k
j=1 wj(φ

j(x)− (φ∗)j(x))

τ

)]

= sup
µ�µψ

EX∼µ

 k∑
j=1

wj(φ
j(x)− (φ∗)j(x))

− τKL(µ, µψ)

 , (15)

where in the final expression we have applied the Donsker-Varadhan variational principle (i.e., convex-412

conjugate duality between KL-divergence and cumulant generating functions); therein, the supremum413

runs over probability measures µ absolutely continuous with respect to µψ, and it is attained by µ414

defined as415

µ(dx) ∝ exp

1

τ

k∑
j=1

wj(φ
j(x)− (φ∗)j(x))

µψ(dx)

∝ exp

1

τ

k∑
j=1

wj(φ
j(x)− (φ∗)j(x))

 exp

−1

τ

k∑
j=1

wjφ
j(x)

πref(dx)

∝ exp

−1

τ

k∑
j=1

wj(φ
∗)j(x)

πref(dx) = πψ∗(dx).

That is, the supremum in (15) is attained by µ = µψ∗ . Hence, the identity (14) becomes416

Eν,wλ,τ (ψ∗)− Eν,wλ,τ (ψ)

=

k∑
j=1

wjEY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
−EX∼µψ∗

[ k∑
j=1

wj(φ
j(X)− (φ∗)j(X))

]
+ τKL(µψ∗ , µψ)

=

k∑
j=1

wj
(
EY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
+ EX∼µψ∗

[
(φ∗)j(X))− φj(X)

])
+ τKL(µψ∗ , µψ)

≥ τKL(µψ∗ , µψ),

where the final inequality follows by noting that for each j the optimality of the pair ((φ∗)j , (ψ∗)j)417

for the entropic optimal transport dual objective Eµψ∗ ,ν
j

λ implies that418

EY∼νj

[
(ψ∗)j(Y )− ψj(Y )

]
+ EX∼µψ∗

[
(φ∗)j(X)− φj(X)

]
= Eµ,ν

j

λ ((φ∗)j , (ψ∗)j)− Eµ,ν
j

λ (φj , ψj) ≥ 0.

The proof of Lemma 1 is complete.419
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B Proof of Proposition 1420

Recall that for any non-negative integer t we have421

µt(dx) = Z−1
t exp

(
−
∑k
j=1 wjφ

j
t (x)

τ

)
πref(dx).

where Zt is the normalizing constant defined by422

Zt =

∫
X

exp

(
−
∑k
j=1 wjφ

j
t (x)

τ

)
πref(dx).

With the notation introduced above, we have423

E(ψt) =

k∑
j=1

wjEY∼νj

[
ψjt (Y )

]
− τ logZt.

Hence,424

E(ψt+1)− E(ψt) =

k∑
j=1

wjEY∼νj

[
ψjt+1(Y )− ψjt (Y )

]
− τ log

Zt+1

Zt
.

= ηλ

k∑
j=1

wjEY∼νj

[
log

dνj

dνjt
(Y )

]
− τ log

Zt+1

Zt
.

= min (λ, τ)

k∑
j=1

wjKL(νj , νjt )− τ log
Zt+1

Zt
.

Therefore, to prove Proposition 1 it suffices to show that the inequality425

log
Zt+1

Zt
≤ 0 (16)

holds for any t ≥ 0. We will complete the proof of Proposition 1 using the following lemma, the426

proof of which is deferred to the end of this section.427

Lemma 3. Let (ψt)t≥0 be any sequence of the form

ψjt+1 = ψjt + ηλ log(∆j
t ),

where for j ∈ {1, . . . , k}, (∆j
t )t≥0 is an arbitrary sequence of strictly positive functions and428

η = min(1, τ/λ). Then, for any t ≥ 0 it holds that429

τ log
Zψt+1

Zψt

≤ min(λ, τ) log

k∑
j=1

wjEY∼νj
ψt

[
∆j
t (Y )

]
.

To complete the proof of Proposition 1, we will apply the above lemma with ∆j
t = log dνj

dνj
t

. Indeed,430

we have431

τ log
Zt+1

Zt
≤ min(λ, τ) log

k∑
j=1

wjEY∼νj
t

[
dνj

dνjt
(Y )

]

= min(λ, τ) log

k∑
j=1

wjEY∼νj [1]

= 0.

By (16), the proof of Proposition 1 is complete.432
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B.1 Proof of Lemma 3433

We will break down the proof with the help of the following lemma, the proof of which can be found434

in Section B.2.435

Lemma 4. For any sequence (ψt)t≥0 and any t ≥ 0 it holds that436

log
Zψt+1

Zψt
≤


λ
τ log

∑k
j=1 wjEX∼µt

[
exp

(
−φj

t+1(X)+φj
t(X)

τ

)τ/λ]
if τ ≥ λ,

log
∑k
j=1 wjEX∼µt

[
exp

(
−φj

t+1(X)+φj
t(X)

τ

)]
if τ < λ,

where φt = φψt
and µt(dx) = Z−1

ψt
exp(−

∑k
j=1 wjφ

j
t (x)/τ)πref(dx).437

Observe that the sequence (ψt)t≥0 of the form stated in Lemma 3 satisfies, for any for any j ∈438

{1, . . . , k} and any t ≥ 0,439

exp

(
−φjt+1 + φjt

τ

)
= exp

(
−λ
τ

log
dµt

dµ̃jt

)
=

(
dµ̃jt
dµt

)λ/τ
,

where440

dµ̃jt
dµt

(x) =

∫
X
ν(dy) exp

(
ψjt+1(y) + φjt (x)− c(x, y)

λ

)

=

∫
X
νj(dy)∆j

t (y)η exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
.

Hence, by Lemma 4 we have441

log
Zψt+1

Zψt

≤ 1

τ
min(λ, τ)

k∑
j=1

wjEX∼µt

[
(∫
X
νj(dy)∆j

t (y)η exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

))max(1,λ/τ) ]
. (17)

We split the remaining proof into two cases: τ ≥ λ and τ < λ.442

The case τ ≥ λ. When τ ≥ λ, we have max(1, λ/τ) = 1 and η = min(1, τ/λ) = 1. Thus, (17)443

yields444

log
Zψt+1

Zψt

≤ 1

τ
min(λ, τ) log

k∑
j=1

wjEX∼µt

[∫
X
νj(dy)∆j

t (y) exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

)]

=
1

τ
min(λ, τ) log

k∑
j=1

wj

[∫
X
µt(dx)

∫
X
νj(dy)∆j

t (y) exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

)]

=
1

τ
min(λ, τ) log

k∑
j=1

wj

[∫
X

∆j
t (y)νj(dy)

∫
X

exp

(
ψjt (y) + φjt (X)− c(X, y)

λ

)
µt(dx)

]

=
1

τ
min(λ, τ) log

k∑
j=1

wj

[∫
X

∆j
t (y)νj(dy)

dνjψt

dνj
(y)

]

=
1

τ
min(λ, τ) log

k∑
j=1

wjEY∼νj
ψt

[
∆j
t (y)

]
.

This completes the proof of Lemma 3 when τ ≥ λ.445
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The case τ < λ. For j ∈ {1, . . . , k} and any x ∈ X define the measure ρx by446

ρjx(dy) = νj(dy) exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
.

By the definition of φjt , we have447 ∫
X
ρjx(dy)

=

∫
X
ν(dy) exp

(
ψjt (y)− c(x, y)

λ

)
exp

(
φjt (x)

λ

)

=

∫
X
ν(dy) exp

(
ψjt (y)− c(x, y)

λ

)
exp

(
− log

∫
X
νj(dy′) exp

(
ψjt (y

′)− c(x, y′)
λ

))
= 1

In particular, ρx is a probability measure. Hence, (17) can be rewritten as448

log
Zψt+1

Zψt

≤ log

k∑
j=1

wjEX∼µt

[
EY∼ρjX

[
∆j
t (Y )η

∣∣∣∣X]λ/τ
]

Because λ/τ > 1, the function x 7→ xλ/τ is convex. Applying Jensen’s inequality to the conditional449

expectation and using the fact that ηλ/τ = 1, it follows that450

log
Zψt+1

Zψt

≤ log

k∑
j=1

wjEX∼µt

[
EY∼ρjX

[
∆j
t (Y )

∣∣∣∣X]]

= log

k∑
j=1

wj

∫
X
µt(dx)

∫
X

∆j
t (y) exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
ν(dy). (18)

By the definition of νjψt
we have451

dνjψt

dνj
(y) =

∫
X

exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
µt(dx).

Interchanging the order of integration in (18) and plugging in the above equation yields452

log
Zψt+1

Zψt

≤ log

k∑
j=1

wj

∫
X

[∫
X

exp

(
ψjt (y) + φjt (x)− c(x, y)

λ

)
µt(dx)

]
∆j
t (y)νj(dy)

= log

k∑
j=1

wj

∫
X

[
dνjψt

dνj
(y)

]
∆j
t (y)νj(dy)

= log

k∑
j=1

wjEY∼νj
ψt

[
∆j
t (Y )

]
.

This completes the proof of Lemma 3.453

B.2 Proof of Lemma 4454

To simplify the notation, denote Zt = Zψt
. Let x ∈ X and t ≥ 0. We have µt � µt+1 with the455

Radon-Nikodym derivative dµt+1/dµt given by456

dµt+1

dµt
(x) =

Zt
Zt+1

exp

(
−
∑k
j=1 wk(φjt+1(x)− φjt (x))

τ

)

=
Zt
Zt+1

k∏
j=1

exp

(
−φjt+1(x) + φjt (x)

τ

)wj

.
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Multiplying both sides by Zt+1/Zt and taking expectations with respect to µt yields457

Zt+1

Zt
= EX∼µt+1

[
Zt+1

Zt

]
= EX∼µt

[
Zt+1

Zt

dµt+1

dµt
(X)

]

= EX∼µt

 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wj
 .

In the case τ < λ, the proof is complete by the Artihmetic-Geometric mean inequality (recall that458

wj > 0 for j = 1, . . . , k and
∑k
j=1 wj = 1). On the other hand, if τ ≥ λ then x 7→ xλ/τ is concave.459

Hence, it follows that460

log
Zt+1

Zt
= logEX∼µt


 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wjτ/λ
λ/τ


≤ logEX∼µt

 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wjτ/λ
λ/τ

=
λ

τ
logEX∼µt

 k∏
j=1

exp

(
−φjt+1(X) + φjt (X)

τ

)wjτ/λ


≤
k∑
j=1

wjEX∼µt

exp

(
−φjt+1(X) + φjt (X)

τ

)τ/λ ,
where the final step follows via the Arithmetic-Geometric mean inequality. This completes the proof461

of Lemma 4.462

C Proof of Theorem 2463

For every t ≥ 0 and j ∈ {1, . . . , k}, let ν̃jt be the distribution returned by the approximate Sinkhorn464

oracle that satisfies the properties listed in Definition 1. We follow along the lines of proof of465

Theorem 1.466

First, we will establish an upper bound on the oscillation norm of the iterates ψ̃t. Indeed, by the467

property four in Definition 1 we have468

‖ψ̃jt+1‖osc ≤ (1− η)‖ψ̃jt ‖osc + ηc∞(X ).

Since ψ̃j0 = 0, for any t ≥ 0 we have ‖ψ̃jt ‖osc ≤ c∞(X ).469

Let δ̃t = Eν,wλ,τ (ψ∗)−Eν,wλ,τ (ψ̃t) be the suboptimality gap at time t. Using the concavity upper bound470

(10) and the property two in Definition 1 we have471

δ̃t ≤ 2c∞(X )

k∑
j=1

wj‖νj − νjt ‖TV

≤ ε+ 2c∞(X )

k∑
j=1

wj‖νj − ν̃jt ‖TV

≤ ε+
√

2c∞(X )

k∑
j=1

wj

√
KL(νj , ν̃jt )

≤ ε+
√

2c∞(X )

√√√√ k∑
j=1

wjKL(νj , ν̃jt ).
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Combining the property three1 stated in the Definition 1 with Lemma 3 we obtain472

δ̃t − δ̃t+1 ≥ min(λ, τ)

k∑
j=1

wjKL(vj , ṽjt )−min(λ, τ) log

 k∑
j=1

wj

∫
X

dνt
dν̃t

(y)νj(dy)


≥

k∑
j=1

wjKL(vj , ṽjt )−min(λ, τ) log
(
1 + ε2/(2c∞(X )2)

)
≥ min(λ, τ)

k∑
j=1

wjKL(vj , ṽjt )−
min(λ, τ)

2c∞(X )2
ε2

≥ min(λ, τ)

2c∞(X )2
max

{
0, δ̃t − ε

}2

− min(λ, τ)

2c∞(X )2
ε2.

Provided that δ̃t ≥ 2ε it holds that473

(δ̃t − 2ε)− (δ̃t+1 − 2ε) ≥ min(λ, τ)

2c∞(X )
(δ̃t − 2ε)2.

Let T be the first index such that δ̃T+1 < 2ε and set T =∞ if no such index exists. Then, the above474

equation is valid for any t ≤ T . In particular, repeating the proof of Theorem 1, for any t ≤ T we475

have476

δ̃t − 2ε ≤ 2c∞(X )2

min(λ, τ)

1

t
,

which completes the proof of this theorem.477

D Proof of Lemma 2478

The first property – the positivity of the probability mass function of ν̃j – is immediate from its479

definition.480

To simplify the notation, denote in what follows481

Kj(x, y) = exp

(
φψj (x) + ψj(y)− c(x, y)

λ

)
.

With this notation, recall that

ν̂jψ(yjl ) =
1

n

n∑
i=1

νj(yjl )K(Xi, y
j
l ).

The above is a sum of n non-negative random variables bounded by one with expectation

(ν′)j(yjl ) = EX∼µ′ψ

[
νj(yjl )

]
It follows by Hoeffding’s inequality and the union bound that with probability at least 1 − δ the482

following holds for any j ∈ {1, . . . , k} and any l ∈ {1, . . . ,mj}:483 ∣∣∣ν̂ψ(yjl )− (ν′)j(yjl )
∣∣∣ ≤

√
2 log

(
2m
δ

)
n

.

In particular, the above implies that484

‖ν̃jψ − ν
j
ψ‖TV ≤ 2ζ + (1− ζ)‖ν̃jψ − ν

j
ψ‖TV

≤ 2ζ + (1− ζ)‖ν̃jψ − (ν′)j‖TV + (1− ζ)‖(ν′)j − νjψ‖TV

≤ 2ζ + ‖ν̃jψ − (ν′)j‖TV + ‖(ν′)j − νjψ‖TV

≤ 2ζ +mjεµ +mj

√
2 log

(
2m
δ

)
n

.

1The third property, unlike claimed in the main text, should read as: EY∼νj [
dν

j
ψ

dν̃
j
ψ

(Y )] ≤ 1+ε2/(2c∞(X )2).
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Notice that the above bound can be made arbitrarily close to mjεµ by taking a large enough n and a485

small enough ζ. This proves the second property of Definition 1.486

To prove the third property2, observe that487

EY∼νj

[
νjψ(Y )

ν̃jψ(Y )

]
= EY∼νj

[
ν̂jψ(Y )

ν̃jψ(Y )
+
νjψ(Y )− ν̂jψ(Y )

ν̃jψ(Y )

]

≤ EY∼νj

[
1

1− ζ
+
νjψ(Y )− ν̂jψ(Y )

ν̃jψ(Y )

]

≤ EY∼νj

1 +
ζ

1− ζ
+

∣∣∣νjψ(Y )− ν̂jψ(Y )
∣∣∣

ν̃jψ(Y )


≤ 1 +

ζ

1− ζ
+

1

ζ
‖νjψ(Y )− ν̂jψ(Y )‖TV

≤ 1 + 2ζ +
1

ζ

mjεµ +mj

√
2 log

(
2m
δ

)
n

 .

This concludes the proof of the third property.488

It remains to prove the fourth property of Definition 1. Observe that for any y, y′ we have489 (
ψj(y)− ηλ log

ν̃j(y)

νj(y)

)
−
(
ψj(y′)− ηλ log

ν̃j(y′)

νj(y′)

)
=
(
ψj(y)− ψj(y′)

)
+ ηλ log

(
ζ + (1− ζ) 1

n

∑n
i=1K

j(Xi, y
′)

ζ + (1− ζ) 1
n

∑n
i=1K

j(Xi, y)

)

=
(
ψj(y)− ψj(y′)

)
+ ηλ log

(
ζ

1−ζ + 1
n

∑n
i=1K

j(Xi, y
′)

ζ
1−ζ + 1

n

∑n
i=1K

j(Xi, y)

)

≤
(
ψj(y)− ψj(y′)

)
+ ηλ log

 ζ
1−ζ + exp

(
c∞(X )+ψj(y′)−ψj(y)

λ

)
1
n

∑n
i=1K

j(Xi, y)

ζ
1−ζ + 1

n

∑n
i=1K

j(Xi, y)

 .

Now observe that for any a, b > 0 the function g : [0,∞)→ (0,∞) defined by g(x) = (x+a)/(x+b)490

is increasing if a < b and decreasing if a ≥ b. Thus, g is maximized either at zero or at infinity. It491

thus follows that492

ηλ log

 ζ
1−ζ + exp

(
c∞(X )
λ

)
1
n

∑n
i=1K

j(Xi, y)

ζ
1−ζ + 1

n

∑n
i=1K

j(Xi, y)


≤

{
ηc∞(X )− η(ψj(y)− ψj(y′)) if exp

(
c∞(X )
λ

)
≥ 1

0 otherwise.

This proves the claim and completes the proof of this lemma.493

E Approximate Sampling From µψ via Langevin Monte Carlo494

The purpose of this section is to show how sampling via Langevin Monte Carlo algorithm yields495

the first provable convergence guarantees for computing barycenters in the free-support setup (cf.496

the discussion at the end of Section 2.2). In particular, we provide computational guarantees for497

implementing Algorithm 2.498

2The third property, unlike claimed in the main text, should read as: EY∼νj [
dν

j
ψ

dν̃
j
ψ

(Y )] ≤ 1+ε2/(2c∞(X )2).
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A measure µ is said to satisfy the logarithmic Sobolev inequality (LSI) with constant C if for all499

sufficiently smooth functions f it holds that500

Eµ[f2 log f2]−Eµ[f2] logEµ[g2] ≤ 2CEµ[‖∇f‖22].

To sample from a measure µ(dx) = exp(−f(x))dx supported on Rd, the unadjusted Langevin Monte501

Carlo algorithm is defined via the following recursive update rule:502

xk+1 = xk − η∇f(xk) +
√

2ηZk, where Zk ∼ N (0, Id). (19)
The following Theorem is due to Vempala and Wibisono [55, Theorem 3].503

Theorem 3. Let µ(dx) = exp(−f(x))dx be a measure on Rd. Suppose that µ satisfies LSI a with504

constant C and that f has L-Lipschitz gradient with respect to the Euclidean norm. Consider the505

sequence of iterates (xk)k≥0 defined via (19) and let let ρk be the distribution of xk. Then, for any506

ε > 0, any η ≤ 1
8L2C min{1, ε4d}, and any k ≥ 2C

η log 2KL(ρ0,µ)
ε , it holds that507

KL(ρk, µ) ≤ ε.

Thus, LSI on the measure µ provides convergence guarantees on KL(ρk, µ). It is shown in [55,508

Lemma 1] how to initialize the iterate x0 so that KL(ρ0, µ) scales linearly with the ambient dimension509

d up to some additional terms.510

To implement the approximate Sinkhorn oracle described in Definition 1, we can combine Lemma 2511

with approximate sampling via Langevin Monte Carlo; note that by Pinsker’s inequality, Kullback-512

Leibler divergence guarantees provide total variation guarantees which are sufficient for the applica-513

tion of Lemma 2. Therefore, providing provable convergence guarantees for Algorithm 2, the inexact514

version of Algorithm 1, amounts to proving that we can do arbitrarily accurate approximate sampling515

from distributions of the form516

µψ(dx) ∝ 1X (x) exp(−Vψ(x)/τ)dx, where Vψ(x) =

k∑
j=1

wjφ
j
ψj (x).

Here 1X is the indicator function of X , ψ is an arbitrary iterate generated by Algorithm 2, and we517

consider the free-support setup characterized via the choice πref(dx) = dx.518

Notice that we cannot apply Theorem 3 directly because the measure µψ defined above has con-519

strained support while Theorem 3 only applies for measures supported on all of Rd. Nevertheless, we520

will show that the compactly supported measure µψ can be approximated by a measure µψ,σ , where521

parameter σ will trade-off LSI constant of µψ,σ against the total variation norm between the two522

measures. To this end, define523

µψ,σ =∝ exp(−Vψ(x)/τ − dist(x,X )2/(2σ2))dx, where dist(x,X ) = inf
y∈X
‖x− y‖2. (20)

The argument presented below works for any cost function c such that c(·, y) is Lipschitz on X and524

grows quadratically at infinity. However, to not cloud the whole picture with technical details, we525

shall simply take c(x, y) = ‖x− y‖22. The exact problem setup is formalized below.526

Problem Setting 1. We consider the setting described in Section 4.1. In addition, suppose that527

1. the reference measure πref(dx) is the Lebesgue measure (free-support setup);528

2. X ⊆ BR = {x ∈ Rd : ‖x‖2 ≤ R} for some constant R <∞;529

3. c : Rd × Rd → [0,∞) is defined by c(x, y) = ‖x− y‖22;530

4. for any ψ generated by Algorithm 1 we have access to a stationary point xψ of Vψ over X .531

The final condition can be implemented in polynomial time using a first order gradient method. The532

implication of this condition is that by [55, Lemma 1], for any σ > 0, the initialization scheme533

x0 ∼ N (xψ, Id) for the Langevin algorithm (19) satisfies534

KL(ρ0, µψ,σ) ≤ c∞(X )

τ
+
d

2
log

Lσ
2π
,

where Lσ is the smoothness constant of Vψ/τ + dist(x,X )/(2σ2) (see Lemma 5).535

The following properties are satisfied by the measure µψ,σ .536

20



Lemma 5. Consider the setup described in Problem Setting 1. Let ψ be any iterate generated by537

Algorithm 2 and let µψ,σ be the distribution defined in (20). Then, the measure µψ,σ satisfies the538

following properties:539

1. For any σ ∈ (0, 1/4] it holds that540

‖µψ − µψ,σ‖TV ≤ 2σ exp

(
8R2

τ

)[(
4Rd−1/4

)d−1

+ 1

]
.

2. Let Vσ(x) = exp(−Vψ(x)/τ − dist(x,X )2/(2σ2)); thus µψ,σ(dx) = exp(−Vσ(x))dx.541

The function Vσ has Lσ-Lipschitz gradient where542

Lσ =
1

τ
+

1

τλ
4R2 max

j
mj +

1

σ2
.

3. The measure µψ,σ satisfies LSI with a constant Cσ = poly(R, exp(R2/τ), Lσ).543

Above, the notation C = poly(x, y, z) denotes a constant that depends polynomially on x, y and z.544

Before proving this lemma, let us state and prove the main result of this section.545

Corollary 1. Consider the setup described in Problem Setting 1. Then, for any confidence parameter546

δ ∈ (0, 1) and any accuracy parameter ε > 0, we can simulate a step of Algorithm 2 with success547

probability at least 1− δ in time polynomial in548

ε−1, d, R, exp(R2/τ), (Rd−1/4)d, τ−1, λ−1, d,m, log(m/δ).

Comparing the above guarantee with the discussion at the end of Section 4.1, we see an additional549

polynomial dependence on (Rd−1/4)d. We believe this term to be an artefact of our analysis, which550

appears due to the total variation norm approximation bound in Lemma 5. Ignoring this term (or551

considering the setup with R ≤ d1/4), the running time of our algorithm depends exponentially in552

R2/τ . We conclude with the following two observations. First, because approximating Wasserstein553

barycenters is NP-hard in general [4], an algorithm with polynomial dependence on all problem554

parameters does not exist (unless P = NP). Second, combining the above corollary with Theorem 2,555

obtaining an ε approximation of (λ, τ)-Barycenter can be done in time polynomial in ε−1. This556

should be contrasted with numerical schemes based on discretizations of the set X , which would, in557

general, result in computational complexity of order (R/ε)d to reach the same accuracy.558

Proof. Letψ be an arbitrary iterate generated via Algorithm 2. We can simulate a step of approximate559

Sinkhorn oracle with accuracy ε via Lemma 2 (with ζ = ε/4) in time poly(n,m, d) provided access560

to n = poly(ε−1,m, log(m/δ)) samples from any distribution µ′ψ such that561

‖µ′ψ − µψ‖TV ≤
ε2

16m
. (21)

To find a choice of µ′ψ satisfying the above bound, consider the distribution562

µψ,σ with σ =
ε2

32m
·
(

2 exp

(
8R2

τ

)[(
4Rd−1/4

)d−1

+ 1

])−1

.

Let Cσ and Lσ be the LSI and smoothness constants of the distribution µψ,σ provided in Lemma 5.563

By Theorem 3, it suffices to run the Langevin algorithm (19) for poly(ε−1,m, d, Cσ, Lσ) number564

of iterations to obtain a sample from a distribution µ̃ψ,σ such that565

‖µ̃ψ,σ − µψ,σ‖TV ≤
ε2

32m
.

In particular, by the triangle inequality for the total variation norm, the choice µ′ψ = µ̃ψ,σ satisfies566

(21). This finishes the proof.567

E.1 Proof of Lemma 5568

To simplify the notation, denote µ = µψ, µσ = µψ,σ, V (x) = Vψ(x)/τ , and Vσ(x) = V (x)/τ +569

dist(x,X )2/(2σ2).570
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Total variation norm bound. With the above shorthand notation, we have571

µ(dx) = 1XZ
−1 exp(−V (x))dx, where Z =

∫
X

exp(−V (x))dx

and

µσ(dx) = (Z + Zσ)−1 exp(−Vσ(x))dx, where Zσ =

∫
Rd\X

exp(−Vσ(x))dx.

We have572

‖µ− µσ‖TV =

∫
Rd\X

(Z + Zσ)−1 exp(−Vσ(x))dx+

∫
X
|(Z + Zσ)−1 − Z−1| exp(−V (x))dx

=
2Zσ

Z + Zσ
≤ 2Zσ

Z
≤ 2 exp

(
c∞(X )

τ

)
Zσ ≤ 2 exp

(
4R2

τ

)
Zσ.

We thus need to upper bound Zσ. Let Vol(A) be the Lebesgue measure of the set A, let ∂A denote573

the boundary of A, and let A+B = {a+ b : a ∈ A, b ∈ B} be the Minkowski sum of sets A and574

B. Using the facts that for each j ∈ {1, . . . , k} we have supy∈X ψ
j(y) ≤ c∞(X ) ≤ 4R2 and that575

X ⊆ BR = {x : ‖x‖2 ≤ R} we have576

Zσ =

∫
Rd\X

exp(−Vσ(x))dx

≤ exp

(
4R2

τ

)∫
Rd\X

exp

(
−dist(x,X )

2σ2

)
dx

= exp

(
4R2

τ

)∫ ∞
0

Vol(∂(X + Bx)) exp

(
− x2

2σ2

)
dx

≤ exp

(
4R2

τ

)∫ ∞
0

Vol(∂BR+x) exp

(
− x2

2σ2

)
dx

= exp

(
4R2

τ

)
πd/2

Γ(d/2)

∫ ∞
0

(R+ x)d−1 exp

(
− x2

2σ2

)
dx.

Bounding (R+ x)d−1 ≤ 2d−1Rd−1 + 2d−1xd−1 and computing the integrals results in577

‖µ− µσ‖TV ≤ 2 exp

(
8R2

τ

)
πd/2

Γ(d/2)
2d−1

[
Rd−1σ

√
π

2
+ 2d/2−1Γ(d/2)σd

]
≤ 2σ exp

(
8R2

τ

)[
(2R)d−1

Γ(d/2)
+ (4σ)d−1

]
.

Using the assumption σ ≤ 1/4 and using the bound Γ(d) ≥ (d/2)d/2 we can further simplify the578

above bound to579

‖µ− µσ‖TV ≤ 2σ exp

(
8R2

τ

)[(
4Rd−1/4

)d−1

+ 1

]
,

which completes the proof of the total variation bound.580

Lipschitz constant of the gradient. Recall that for any any j ∈ {1, . . . , d} we have581

φj(x)− 1

2
‖x‖22 = −λ log

 nj∑
l=1

exp

ψj(yjl )− ‖yjl ‖222 + 〈x, yjl 〉
λ

 νj(yjl )

 .

Denote φ̃j(x) = φj(x)− 1
2‖x‖

2
2. Fix any x, x′ and define g(t) = φ̃j(x+ (x′ − x)t). Then, for any582

t ∈ [0, 1] we have583

g′′(s) = − 1

λ
VarL∼ρt

[
(Y j(x′ − x))L

]
≥ − 1

λ
‖x− x′‖22mj4R

2, (22)
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where584

ρt(l) ∝ ν(yjl ) exp

ψj(yjl )− ‖yjl ‖222 + 〈x+ t(x′ − x), yjl 〉
λ


and Y j ∈ Rd×mj is the matrix whose l-th column is equal to the vector yjl .585

Because ψ̃j is concave, the bound (22) shows that φj is 1 + 1
λmj4R

2-smooth.586

Combining the above with the fact that the convex function dist(x,X ) has 1-Lipschitz gradient [6,587

Proposition 12.30] proves the desired smoothness bound on the function Vσ .588

LSI Constant bound. The result follows, for example, by applying the sufficient log-Sobolev589

inequality criterion stated in [13, Corollary 2.1, Equation (2.3)], combined with the bound (22). The590

exact constant appearing in the log-Sobolev inequality can be traced from [13, Equation (3.10)].591
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