
Under review as a conference paper at ICLR 2023

A EXPERIMENTAL SETUP

We provide further training details for our approaches in the following sections. First we discuss
the adapter parameterizations in more detail specifically detailing the adapter locations and their
associated trainable parameters.

A.1 ADAPTER PARAMETERIZATIONS

As noted previously in Sub-Section 3.2 we use bottom, middle and top adapters. We discuss the
overall number of parameters for each of these adapter types. Table 4 provides an overall count for
the number of adapter parameters.

Bottom: For NFNet and ResNet architectures we use the initial convolution, while for ViT we use
the initial patch embedding as the only bottom set of layers. We add 1 adapter for this bottom
layer. Since the image input only contains 3 channels and the bottom layer consists of only 16
and 256 channels for NFNet and ResNets respectively, bottom adapters require very few (< 1000)
parameters. While for ViT since we have a large feature output, it results in a much larger number
of parameters ≈ 0.7M .

Middle: For middle adapters we use 4 and 6 adapters for the convnet and transformer based architec-
tures respectively. For the convnet based architectures we add each adapter to the first convolution
in each block group except the last group, where we add it at the end. While for the transformer
based architectures we apply them at layers {0, 1, 5, 6, 10, 11} which yields around ∼ 400K adapter
parameters. While better choices and adapter placements may exist we use these uniformly across
all tasks. Finally, the output of middle layer consists of a set of spatial features. For NFNet and
ResNet these are output of layer 4 and final conv with a spatial size of 7 × 7 and a feature size of
3096 and 2048 respectively. For ViTs we get 196 patches each with 768 features.

Top: As noted previously in Sub-section 3.2, the high dimensional spatial features from the middle
layer can be reduced either via mean pooling or by projecting them onto a lower dimensional space
through a single layer. Since prior works use mean pooling we use it to compare our work with them.
However, since manipulation tasks are spatial in nature we also investigate down-projecting the
high dimensional spatial features into smaller dimensions and concatenating them. This formulation
avoids any loss of spatial information. To achieve this for NFNet and ResNets we use 1 convolution
layer with 1 × 1 kernel and 41 output channels. While for ViT we use a shared MLP that projects
each patch embedding into a 20 dimensional feature. Finally, to further process these features we
optionally add 2 MLPs each with 256 parameters, we refer to these as top layer adapters.

Policy Head: We universally use a linear policy head that converts the output of the top layer into
the robot action to be executed.

A.2 TRAINING DETAILS

As noted in the main paper we use behavior cloning with mean squared loss as the optimization
objective. We use a linear policy head to predict continuous actions. While specific action param-
eterizations, such as the use of binary gripper can help increase performance, for a fair comparison
of representations we avoid using any such techniques. Table 5 lists out the detailed hyperparame-
ters used in our experiments. We uniformly use the same set of hyperparameters across most task
settings except the learning rate, wherein we found using a slightly higher learning rate of 1e − 3
works better for Franka-Kitchen tasks.

Network Details: As discussed before our implementation uses three different network architec-
tures – NFNets, ResNets and ViTs. Figure 3 presents the overall architecture. In settings where we
use proprioceptive information, we use a single linear layer with 256 dimensions to map the low
dimensional proprioceptive information to a higher dimensional space. This high dimensional pro-
prioceptive information is then concatenated with the visual features before being forwarded to the
2 layer MLP (each with 256 units). Further, since we evaluate our approach across very different ar-
chitectures we use the same policy form across all of them. Thus, we avoid using any normalization
techniques such as BatchNorm or LayerNorm in our policy implementation.

14

Under review as a conference paper at ICLR 2023

Training Parameters MetaWorld Franka-Kitchen RGB Stacking

Loss MSE MSE MSE
Optimizer Adam Adam Adam
Learning Rate 1e-4 1e-3 1e-4
Weight Decay 1e-6 1e-6 1e-6
Gradient Norm Clip 1.0 1.0 1.0
Training Steps 40K 40K 200K
Learning Rate Schedule cosine cosine cosine
Learning Rate Schedule Warmup Steps 5K 5K 10K
Adapter Features Size 32 32 32

Table 5: Training Details for each of the three different task suites used in our work. For each task
within the task suite we use the same set of hyperparameters.

Assembly Bin-Picking Button Press Drawer Open Hammer Average

NFNet 0.92 0.7 0.94 0.96 0.94 0.89
ResNet 0.90 0.66 0.96 0.94 0.92 0.88
ViT 0.92 0.8 0.91 0.98 0.92 0.91

Table 6: Task specific results for using bottom, middle and top adapters with proprioceptive infor-
mation (proprio) for each task in MetaWorld.

B ADDITIONAL RESULTS

We provide further results for the use of adapters in the three different environment suites consid-
ered in the main paper. We then discuss the ablation results on adapter locations for all suites and
network architectures. For these results, in addition to average metrics across all enviroments, we
also provide task specific metrics.

B.1 ADAPTER RESULTS WITH PROPRIOCEPTIVE INFORMATION

In this section we present detailed task-specific success rate using our proposed adapters for each
task in the three manipulation suites. For these results we use all top, bottom and middle adapters in
our implementation. Further, in addition to visual features we also utilize proprioceptive information
for these results. Table 6, 7 and Table 8 report task-specific results for MetaWorld, Franka-Kitchen
and RGB Stacking suites using all three different architectures with imagenet pretrained weights.
Comparing Table 6 with previous results in Table 2 we see that adding proprioceptive information
results in ≈ 10% increase in the average success rate. This increase holds consistently across all
architectures. More interestingly we also find that for most tasks (except Bin-Picking) the agent can
reach greater than 90% performance, while for some tasks such as Button-Press and Drawer-Open
it can even reach close to 100% performance.

Table 7 shows the results for each task in the Franka-Kitchen suite. Compared to previous results
in Table 2 we see a much larger increase in the performance (≈ 60% relative performance increase
on average) of each architecture in the Franka-Kitchen suite. One reason for such a large increase
is the very limited state space distribution for these tasks. Since all objects in the environment are
fixed and only the initial robot configuration changes, it is much easier for the robot to memorize
the proprioceptive information and map it to observed expert actions for improved task performance.
Additionally, while both MetaWorld and Franka-Kitchen use 25 demonstrations, each demonstration
in MetaWorld has 500 steps while in Franka-Kitchen each demonstration is only 50 steps. This
results in 10× difference in the amount of training data. However, since prior works use these
settings for a fair comparison we follow similar evaluation protocols.

B.2 EFFECTS OF ADAPTER LOCATIONS

In this section we investigate the effect of inserting adapters in each of the different network layers
as discussed in Subsection 3.2 and initially explored in Subsection 5.2. Due to space constraints
in Subsection 5.2 we only provide results for the RGB Stacking task. In this subsection we show

15

Under review as a conference paper at ICLR 2023

Knob1-On LDoor-Open Light-On Micro-Open SDoor-Open Average

NFNet 0.46 0.44 0.72 0.32 0.94 0.58
ResNet 0.48 0.46 0.60 0.30 0.88 0.54
ViT 0.6 0.48 0.59 0.36 0.83 0.57

Table 7: Task specific results for using bottom, middle and top adapters with proprioceptive infor-
mation (proprio) for each task in Franka-Kitchen suite.

Triplet 1 Triplet 2 Triplet 3 Triplet 4 Triplet 5 Average

NFNet 0.40 0.18 0.11 0.67 0.90 0.45
ResNet 0.48 0.34 0.11 0.62 0.86 0.48
ViT 0.25 0.40 0.13 0.80 0.85 0.49

Table 8: Task specific results for using bottom, middle and top adapters for each task in RGB-
Stacking suite.

results across all manipulation suites and network architectures. For ease of comparison we also plot
the RGB Stacking results from before.

Figure 7 shows results for inserting adapters in each network layer across all 3 task suites and
architectures. As noted before, we split the results in each plot into two parts. 1) without using top
layer adapters (i.e. directly using a linear policy head), and 2) using a top layer adapter (i.e. using
2 additional MLPs before the linear policy head). Moreover, in addition to the different adapter
locations we also show results for fixed pretrained representations (Pretrain Feat.) and full fine-
tuning (Full FT.) both with and without top adapters. As noted in the main paper, prior works
always use such top adapters in their implementations.

Top Adapters: In our discussion in Subsection 5.2 we showed that for the RGB Stacking task top
adapters are quite important to achieve close to optimal task performance. We note that the greyed
out plots in Figure 7 indicate methods that do not use top adapters. Our results in Figure 7 show
that this holds true for both MetaWorld and Franka-Kitchen suites as well. For both of these suites
we find that using top adapters improves the downstream manipulation performance. However, as
seen in the metaworld results (top row of Figure 7), full fine-tuning approaches (last bar in each
plot) can reach good performance even without top adapters. However, this does not hold for the
Franka-Kitchen tasks (middle row in Figure 7). We hypothesize this is because of the metaworld
setup, wherein there is usually a single object centered on an otherwise empty table, which presents
an easier visual setting and simply fine-tuning the high capacity pretrained visual model can extract
the appropriate task representation. However, we do note that our use of adapters is able to closely
match the full fine-tuning performance across all architectures.

Bottom Adapters: Similar to RGB-stacking results before we note that the bottom adapters (plotted
in Green) with very few parameters (around a few thousand) can lead to substantially better results
than simply using fixed pretrained models. This holds when bottom adapters are combined with top
adapters and even in the absence of top adapters. Although, as noted before the overall results are
much poorer without top adapters. From Figure 7 we see that bottom adapters help for both NFNet
(green bar in column 1, row 1 and column 1, row2) and ResNet (green bar in column 1, row 1 and
column 1, row2). Thus, broadly similar results hold across environment suites.

Middle Adapters: From Figure 7 also shows that while bottom and top adapters together (green
bar on the right plots) can achieve good performance there still exists a significant gap compared to
the full fine-tuning approach. However, inserting middle adapters, either alone (shown by orange)
or together with bottom adapters (shown in purple) leads to a much more improved performance.
Overall, using adapters in all the layers is closely able to match the full fine-tuning performance. This
substantial effect of middle adapters is not unexpected since the middle part of the network contains
a large part of the pretrained network and thus has significant affect on the output representation.

16

Under review as a conference paper at ICLR 2023

M
et

aW
or

ld
Fr

an
ka

Ki
tc

he
n

RG
B

St
ac

ki
ng

NFNet ResNet ViT

Pretrained Feat. Bottom
Adapters

Middle
Adapters

Bottom + Middle
Adapters

Full
Finetuning

Figure 7: Results on the RGB-Stacking environment for 3 different type of model architectures.

17

	Introduction
	Related Works
	Approach
	Adapter Modules
	Visual Adapters for Control

	Experimental Setup
	Manipulation Tasks
	Network Architectures

	Results
	Fixed Pretrained Features vs Adapter Representations
	Effects of Adapter Locations & Different Pretrained Representations
	Sim2Real Results

	Conclusion
	Ethics Statement
	Experimental Setup
	Adapter Parameterizations
	Training Details

	Additional Results
	Adapter Results with Proprioceptive Information
	Effects of Adapter Locations

