
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 TRAINING PROCESS

The following Alg.1 provides a detailed description of the training process for the proposed C2INet
method.

Algorithm 1 Training Process of C2INet.
Input: The training trajectories from K task domains {Xi, Yi}Ki=1, with a maximum prior queue

capacity of γ, training L epochs for each task.
Output: The optimized model parameters θ∗.

1: for each i ∈ [1,K] do
2: for each j ∈ [1, L] do
3: if j = 1 then
4: if Online Mode then
5: Sample S trajectories from the current task.
6: Obtain the initial prior based on the sampled data and enqueue it.
7: else if Offline Mode then
8: Cluster the accessible data and enqueue the cluster centers.
9: end if

10: end if
11: Maximize the loss function of the causal intervention model Eq.10 to optimize model pa-

rameters θ.
12: if j mod ⌊Lγ ⌋ = 0 then
13: if Online Mode then
14: Calculate the new component based on Eq.8 and Eq.9 and add it to the prior queue.
15: else if Offline Mode then
16: Optimize the obtained components in the prior queue based on Eq.8 and Eq.9.
17: end if
18: end if
19: end for
20: if the queue length exceeds γ then
21: Pruning is performed according to Eq.10 until the quantity is reduced below γ.
22: end if
23: end for
24: return The optimized model parameters θ∗

A.2 DETAILS SUPPLEMENT

A.2.1 DERIVATIONS OF THE CAUSAL INTERVENTION IN SECTION 2.3

We begin by introducing causal interventions and the related do-calculus techniques, which can
be regarded as the axioms underlying our methodological derivations. Let us assume P (Y |X)
represents the conditional probability of Y given the variable X as an observed known. Clearly,
within the system, if other confounding factors are informationally associated with x, then P (Y |X)
cannot accurately measure the direct relationship from X to Y . To address this issue, the formula
P (Y |do(X)) is used to represent an intervention applied to X , specifically assigning a fixed value
X = x, severing the informational pathways from other variables to X , thereby obtaining the direct
effect between the variables. The identification of causal effects here follows the backdoor criterion
(Pearl, 2016). As we will see, the do-calculus provides us with tools to identify causal effects using
the causal assumptions encoded in the causal graph. It consists of three inference rules that allow
us to map interventional and observational distributions whenever certain conditions are satisfied in
the Structural Causal Models G, which is a Directed Acyclic Graph (DAG) that describes causal
attributes and their interactions (Neal, 2020). Let X , Y , Z, and W be arbitrary disjoint sets of nodes
in a causal DAG G. Let GX denote the graph obtained by deleting from G all arrows pointing to
nodes in X and GX denote the graph obtained by deleting from G all arrows emerging from nodes

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

in X . To represent the deletion of both incoming and outgoing arrows, we use the notation GXZ .
The following three rules are valid for every interventional distribution compatible with G.
Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w), if(Y ⊥⊥ Z|X,W)GX
. (13)

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w), if(Y ⊥⊥ Z|X,W)GXZ
. (14)

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w), if(Y ⊥⊥ Z|X,W)G
XZ(W)

. (15)

Next, we present the derivation process for P (Y |do(X)) in the main text. Specifically, based on
the intervention on X in the Structural Causal Model as depicted in Fig. 2 and the formula for
conditional probability, we can deduce:

P (Y |do(X)) = E P (Z)
P (C)

P (Y |do(X), Z, C)

= E P (Z)
P (C)

P (Y |do(X), Z, C)P (Z|do(X), C)P (C|do(X))

= E P (Z)
P (C)

P (Y |X,Z,C)P (Z|X,C)P (C|X).

(16)

In the above process, given that Y ⊥⊥ X|Z,C and Z ⊥⊥ X|C in GX , according to the
Action/observation exchange Rule, it can be derived that P (Y |do(X), Z, C) = P (Y |X,Z,C) and
P (Z|do(X), C) = P (Z|X,C). Similarly, with C ⊥⊥ X in GX , by applying the Insertion/Deletion
of Actions Rule, it can be deduced that P (C|do(X)) = P (C|X).

A.2.2 DERIVATIONS OF THE OBJECTIVE FUNCTION IN SECTION 3

Eq. 4 presents our optimization objective, with the detailed derivation of the second term, the KL
divergence, as follows:

K∑
i=1

EP (Ei(X))

Qi(C|X)

KL[Qi(C|X)∥P̂ (C)]

=

K∑
i=1

EP (Ei(X)) KL[Qi(C|X)∥αK−1(. . . α2(α1P̂1(C) + (1− α1)P̂2(C))

+ (1− α2)P̂3(C) + . . .) + (1− αK−1)P̂K(C)]

=
K∑
i=1

EP (Ei(X)) KL[Qi(C|X)∥
K−1∏
j=1

αjP̂1(C) +

K−1∏
j=2

αj(1− α1)P̂2(C) + · · ·+ (1− αK−1)P̂K(C)].

(17)

For the convenience of calculation, We define M≤K−1(C) =
K−1∏
j=1

αjP̂1(C) +
K−1∏
j=2

αj(1 −

α1)P̂2(C) + · · · + αK−1(1 − αK−2)P̂K−1(C). Inspired by Egorov et al. (2021), Eq.17 can be

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

simplified as follows according to the calculation formula of limit:

(17) =

K∑
i=1

EP (Ei(X)) KL[Qi(C|X)∥(αK−1M≤K−1(C) + (1− αK−1)P̂K(C))]

=

K∑
i=1

EP (Ei(X)) EQi(C|X)[log
Qi(C|X)

αK−1M≤K−1(C) + (1− αK−1)P̂K(C)
]

= −
K∑
i=1

EP (Ei(X)) EQi(C|X)[αK−1log
M≤K−1(C)

Qi(C|X)
+ log(1 +

(1− αK−1)P̂K(C)

αK−1M≤K−1(C)
)]

= −
K∑
i=1

EP (Ei(X)) EQi(C|X)[log
M≤K−1(C)

Qi(C|X)
+ log(αK−1 +

(1− αK−1)P̂K(C)

M≤K−1(C)
)]

= −
K∑
i=1

EP (Ei(X)) EQi(C|X)[log
M≤K−1(C)

Qi(C|X)
+ log((1− αK−1)(

P̂K(C)

M≤K−1(C)
− 1) + 1)]

≈
K∑
i=1

EP (Ei(X))[KL[Qi(C|X)∥M≤K−1(C)]− (1− αK−1)(P̂K(C)
Qi(C|X)

M≤K−1(C)
::::::::::::::::

− 1)] + o(αK−1).

(18)
The derivation of the penultimate line utilizes an approximation by taking the limit value.

A.3 RELATED WORK

A.3.1 LEARNING-BASED TRAJECTORY PREDICTION

End-to-end trajectory prediction using deep learning has become the mainstream because it can ac-
count for multiple factors contributing to prediction accuracy. The most common approach involves
sequential networks, which take the past path points of multiple agents across several frames, along
with various attributes, to predict future movements. These networks include Recurrent Neural Net-
works (RNN) (Zyner et al., 2018; 2017), Long Short-Term Memory (LSTM) models (Alahi et al.,
2016; Salzmann et al., 2020; Xin et al., 2018), and Graph Convolutional Networks (GCN) (Shi et al.,
2021; Li et al., 2019). These architectures extract attributes like speed, direction, road characteris-
tics, and interactions, yielding high-dimensional vector representations or feature distributions in
latent space. Decoders or sampling methods then use these representations to predict future trajec-
tories.
Attention-based methods extract relational patterns in both time and space (Wu et al., 2021; Kim
et al., 2020; Messaoud et al., 2020), with attention mechanisms controlling the flow of critical in-
formation. Transformer-based architectures are prominent in this category. For instance, Liu et al.
(Liu et al., 2021) propose a multi-modal architecture with stacked transformers to capture features
from trajectories, road data, and social interactions. Similarly, Zhao et al. Zhao et al. (2021) utilize
a transformer with residual layers and pooling operations to integrate geographical data for learn-
ing interactions. The Spatio-Temporal Transformer Networks (S2TNet) (Chen et al., 2021b) use a
spatio-temporal transformer for interactions and a temporal transformer for sequences. Generative
Adversarial Networks (GANs) (Gupta et al., 2018) also capture the data distribution, generating di-
verse and plausible trajectory predictions. Alternatively, large language models have been applied
to generate trajectories based on semantics (Lan et al., 2024; Peng et al., 2024).
Recent works further integrate map or scene information for more comprehensive prediction. CNNs
have been used to extract features from Bird’s Eye View (BEV) representations (Mangalam et al.,
2021; Chou et al., 2020), while context rasterization techniques address Vulnerable Road User
(VRU) trajectory prediction (Cui et al., 2019; Djuric et al., 2020). Additionally, some works (Gu
et al., 2022; Li et al., 2023; Bae et al., 2024; Li et al., 2024; Xu & Fu, 2024) that integrate emerg-
ing research methods such as diffusion models have been proposed, which can effectively enhance
the performance of trajectory prediction models in challenging situations. This paper proposes a
general training method for end-to-end trajectory prediction models that enhances generalization
performance with plug-and-play flexibility.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3.2 CAUSAL INFERENCE

The core objective of causal inference is to identify critical factors influencing outcomes. Structural
causal models are commonly used for modeling, with principles like backdoor adjustment employed
to intervene in causal relationships. In deep learning applications, the focus is often on analyzing
confounding factors to mitigate the impact of perturbations on model performance, as demonstrated
by methods in Johansson et al. (2016) and Wu et al. (2023). In recent years, causal intervention
methods have been applied in trajectory prediction to enhance performance across domains. For
example, Chen et al. (2021a) employs counterfactual interventions, such as using a zero vector, to
reduce bias between training and deployment environments. Liu et al. (2022) highlights that target
trajectory Y is often correlated with observation noise and agent densities, proposing a gradient
norm penalty over empirical risk to mitigate environmental effects (Bagi et al., 2023). Addition-
ally, Pourkeshavarz et al. (2024) leverages disentangled representation learning to isolate invariant
and variant features, minimizing the latter’s influence on trajectory prediction. Our work addresses
catastrophic forgetting in domain-shift scenarios by learning the prior distribution of trajectory rep-
resentations across contexts to identify scenario-specific confounding factors. This approach en-
ables intuitive manipulation through controlled interventions and adapts seamlessly to continuously
evolving conditions.

A.3.3 CONTINUAL LEARNING

Continual learning aims to maintain strong model performance as new domain samples are intro-
duced, addressing catastrophic forgetting by balancing the retention of previous knowledge with the
acquisition of new tasks. The most common approach uses constraint-based methods on the loss
function, ensuring past learning directions are considered during gradient updates while adapting
to new samples (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017). However, these methods
often lack interpretability and accuracy, especially when current tasks differ significantly from prior
ones. An alternative approach is the rehearsal method (Wang et al., 2019; Riemer et al., 2018),
which reinforces past knowledge by replaying previous samples during training. Memory-based
mechanisms also preserve past information by storing samples as tasks accumulate (Chaudhry et al.,
2019). Despite some work on expanding domain generalization through meta-learning (Ivanovic
et al., 2023), limited research addresses continual learning in trajectory prediction, particularly in
mitigating forgetting and adapting to changing scenarios. Our method integrates causal inference
with a memory-based continual learning framework to develop a generalized trajectory prediction
model.

A.4 MORE ABOUT EXPERIMENTS

A.4.1 ADDITIONAL RESULTS IN CONTINUAL LEARNING SETTING

Table2 and Table3 present the training results of continual learning on the Synthetic Dataset and
SDD Dataset, corresponding to the results described in Section 5.3.

A.4.2 TRAINING PROCESS CURVE

Fig.4 displays the ADE’s statistics for each model across various tasks during the training process,
corresponding to the results described in Section 5.4.

A.4.3 METRICS FOR EACH TASK SEPARATELY

In Fig.5-7, we provide a detailed representation of performance metrics (ADE) across various tasks,
all within the same continual learning framework outlined in Sec. 5.3. The severity of catastrophic
forgetting differs across tasks for the ETH-UCY dataset, as depicted in Fig.5. Taking the "univ" task
as an example, while most models maintain reasonable performance, the original STGAT shows the
weakest results. In contrast, C2INet performs significantly better due to its effective intervention
in counteracting environmental influences on trajectory representations. When training progresses
to the "eth" task, the task complexity increases significantly, resulting in an ADE of over 1.3 for
all models. Additionally, the performance on the previously completed "univ" task deteriorates,
with its ADE rising above 0.7. C2INet exhibits the least amount of forgetting, as it effectively
retains knowledge from past tasks. The fifth plot illustrates the effects of forgetting across tasks
after completing the entire training cycle. It is evident that while the "hotel" task demonstrates
post-training solid performance, it has a detrimental impact on other tasks, likely due to gradient

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: The table presents the model’s average performance across all previously encountered tasks
on Synthetic Dataset. The first column lists the newly added tasks in the continual learning setup,
with the preceding colon indicating the average trajectory prediction results for all tasks encountered
up to that point. All results are averaged over five runs, with the best outcomes highlighted in bold
and the second-best results underlined. Color blocks indicate the ranking of different backbones for
comparison.

TASK 0.1 :0.2 :0.3 :0.4 :0.5 :0.6
STGAT 0.15/0.20 0.17/0.24 0.19/0.25 0.21/0.31 0.25/0.33 0.28/0.36
STGCNN 0.65/1.16 0.50/0.92 0.39/0.75 0.36/0.62 0.39/0.67 0.42/0.65
PECNet 0.10/0.15 0.14/0.17 0.17/0.20 0.18/0.23 0.23/0.25 0.24/0.26
COUNTERFACTUAL 0.07/0.13 0.06/0.09 0.08/0.12 0.10/0.12 0.15/0.16 0.18/0.22
INVARIANT 0.07/0.15 0.11/0.16 0.15/0.18 0.21/0.19 0.28/0.24 0.37/0.38
ADAPTIVE 0.15/0.21 0.17/0.23 0.19/0.29 0.18/0.27 0.23/0.31 0.29/0.36
EWC 0.09/0.14 0.08/0.15 0.11/0.19 0.15/0.25 0.17/0.30 0.21/0.35
MoG 0.11/0.17 0.09/0.16 0.13/0.20 0.15/0.26 0.19/0.34 0.22/0.37
Coresets 0.09/0.14 0.08/0.14 0.10/0.21 0.14/0.23 0.16/0.28 0.20/0.33
GCRL+STGAT 0.04/0.08 0.07/0.12 0.12/0.16 0.17/0.23 0.20/0.29 0.23/0.33
GCRL+STGCNN 0.24/0.43 0.30/0.57 0.28/0.52 0.31/0.49 0.35/0.59 0.40/0.66
C2INet-online+STGAT 0.09/0.16 0.07/0.13 0.10/0.19 0.14/0.24 0.17/0.29 0.20/0.34
C2INet-online+STGCNN 0.36/0.59 0.34/0.54 0.25/0.46 0.26/0.49 0.30/0.55 0.34/0.59
C2INet-offline+STGAT 0.08/0.13 0.07/0.12 0.11/0.19 0.14/0.25 0.16/0.27 0.18/0.27
C2INet-offline+STGCNN 0.34/0.55 0.31/0.49 0.27/0.45 0.29/0.51 0.28/0.46 0.31/0.51

Table 3: The table presents the model’s average performance across all previously encountered tasks
on SDD Dataset. The first column lists the newly added tasks in the continual learning setup, with
the preceding colon indicating the average trajectory prediction results for all tasks encountered up
to that point. All results are averaged over five runs, with the best outcomes highlighted in bold
and the second-best results underlined. Color blocks indicate the ranking of different backbones for
comparison.

TASK bookstore :coupa :deathcircle :gates :hyang :nexus :little :quad
STGAT 75.96/139.81 52.99/98.06 114.63/206.93 93.75/169.37 88.40/163.33 79.88/140.89 78.35/142.09 79.56/145.67
STGCNN 75.90/139.76 52.99/98.14 114.97/207.79 94.59/172.21 91.73/170.78 82.79/153.86 83.84/157.80 81.51/153.27
PECNet 74.41/137.86 51.79/98.23 111.03/202.42 93.12/170.10 88.69/170.23 80.54/148.39 80.19/151.79 82.49/155.83
COUNTERFACTUAL 66.93/127.97 49.84/93.21 106.03/194.52 90.97/165.97 86.50/158.32 75.74/135.20 75.18/137.10 78.06/142.94
INVARIANT 71.41/132.86 52.63/98.05 108.44/197.46 94.71/170.92 90.94/166.05 78.69/149.52 76.89/149.88 80.79/143.42
ADAPTIVE 86.51/162.14 65.21/116.87 121.96/216.23 99.50/182.85 98.32/179.50 90.65/173.45 94.25/176.25 93.32/174.44
EWC 70.62/131.19 54.93/102.42 117.01/212.02 97.34/176.93 96.50/176.75 87.44/160.47 88.90/163.64 88.46/162.84
MoG 71.31/134.52 55.45/104.68 118.21/215.39 98.14/178.96 99.12/181.23 90.12/171.26 90.56/169.21 91.32/169.78
Coresets 71.25/133.82 54.98/102.72 117.02/212.03 97.35/176.96 96.49/176.72 87.47/160.51 88.93/163.67 88.50/162.89
GCRL+STGAT 76.30/140.42 54.87/101.80 117.32/212.43 97.62/177.25 96.58/176.68 87.58/160.47 89.03/163.62 88.63/162.95
GCRL+STGCNN 76.32/140.44 54.87/101.80 117.29/212.35 97.62/177.25 96.57/176.65 87.58/160.47 89.03/163.62 88.63/162.95
C2INet-online+STGAT 70.87/130.67 51.19/95.70 107.29/196.40 91.56/167.05 86.88/161.24 75.75/138.72 77.21/143.92 78.82/143.22
C2INet-online+STGCNN 70.98/130.84 51.50/96.06 107.98/196.95 91.53/166.96 86.86/161.12 75.77/140.66 77.28/143.96 78.82/143.93
C2INet-offline+STGAT 70.43/130.34 50.87/96.04 106.68/197.89 90.32/164.98 85.52/160.31 74.42/140.24 75.90/142.60 77.13/141.69
C2INet-offline+STGCNN 70.09/130.16 50.99/95.98 107.01/198.07 91.27/166.58 85.92/160.95 74.98/140.64 76.24/142.56 78.01/142.85

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

STGAT GCRL

CONTERFACTUAL EWC

C2INet-offlineC2INet-online

Figure 4: The ADE variations of the validation sets across five task scenarios and their average
performance during the training process on the ETH-UCY dataset. The x-axis represents the number
of completed training epochs, while the y-axis denotes the corresponding metric values.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

optimization disrupting the model’s adaptability to previously learned tasks. Although the ADE
curves for COUNTERFACTUAL and INVARIANT are relatively stable, their overall performance
remains suboptimal.
Fig.6 showcases the performance of various models on the Synthesis dataset. COUNTERFACTUAL
and INVARIANT exhibit relatively balanced performance across tasks "0.1" to "0.6", while base-
line models such as STGAT and GCRL experience consistent performance degradation, reflecting
their tendency to prioritize newly introduced tasks. In contrast, models designed explicitly for con-
tinual learning, such as Coresets, EWC, and the proposed C2INet, demonstrate a steady upward
performance trend, emphasizing their ability to retain knowledge from previous tasks. In task "0.1",
which contains minimal noise, these models maintain strong memory retention, underscoring their
robustness in low-noise environments.
In Fig.7, the performance curves on the SDD dataset remain relatively stable across the models.
Continual learning models, including C2INet, EWC, and Coresets, effectively mitigate catastrophic
forgetting in tasks such as "coupa". However, their performance deteriorates on more challenging
tasks like "deathcircle" due to excessive retention of information from earlier tasks. Ultimately,
C2INet-offline emerges as the best-performing model, demonstrating superior training performance
across the dataset.

Figure 5: The Average Displacement Error (ADE) on the ETH-UCY dataset for each task, averaged
over five runs under continual learning settings. The x-axis represents the sequence of completed
tasks, while the y-axis indicates the corresponding metric values.

Figure 6: The Average Displacement Error (ADE) on the Synthesis dataset for each task, averaged
over five runs under continual learning settings. The x-axis represents the sequence of completed
tasks, while the y-axis indicates the corresponding metric values.

A.4.4 QUALITATIVE RESULTS

Fig.8 mainly displays the qualitative analysis presented in the main text Section 5.5.

A.4.5 ABLATION STUDY

In Table 4, we systematically assess the contributions of several key modules to the performance of
the C2INet model in a continual learning context. The ablation process begins by isolating the impact
of the symmetric KL divergence constraint from Eq.10 (Abbreviated as "Divergence"), followed

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 7: The Average Displacement Error (ADE) on the SDD dataset for each task, averaged over
five runs under continual learning settings. The x-axis represents the sequence of completed tasks,
while the y-axis indicates the corresponding metric values.

C2I Divergence Weight univ :eth :zara1 :zara2 :hotel

✓ ✓ ✓ 0.820 2.228 1.420 0.827 0.247
✓ ✓ ✗ 0.851(+0.031) 2.372(+0.144) 1.574(+0.154) 0.839(+0.012) 0.256(+0.009)

✓ ✗ ✓ 0.883(+0.063) 2.562(+0.334) 1.663(+0.243) 0.865(+0.038) 0.285(+0.038)

✗ ✗ ✗ 0.913(+0.093) 2.701(+0.473) 1.752(+0.332) 0.898(+0.071) 0.296(+0.049)

Table 4: Results of the ablation study, focusing on the performance of the C2INet model on the ETH-
UCY dataset after the removal of certain modules. The first row of the table specifies the ablated
modules and the completed training tasks. Check mark indicates the removal of the corresponding
module, while cross signifies its inclusion.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C2INet-online C2INet-offline STGAT GCRL

eth

hotel

univ

zara1

zara2

Figure 8: Qualitative results on the ETH-UCY dataset. The gray lines represent observed trajecto-
ries, the red points indicate predicted paths, and the green points denote the ground truth.

by the removal of the weight optimization procedure outlined in Eq.9, where only average weight
parameters are used (Abbreviated as "Weight"). Lastly, we completely omit the Continual Causal
Intervention mechanism to evaluate its significance.
A detailed comparison between the second and third rows of the table demonstrates that when weight
optimization is removed and average weights are used, the model’s performance initially declines
by approximately 3.7% during the early stages of training. However, the model fills the gaps as
training progresses and gradually approaches near-optimal performance. This pattern indicates that
the lack of weight optimization is mitigated as the prior queue accumulates more elements, dimin-
ishing its overall impact on model performance. Conversely, the evident 5% − 17% performance
decline observed after removing the symmetric KL divergence constraint highlights the importance
of maintaining diversity among priors. This diversity appears to be crucial in preventing overfitting
to specific tasks and ensuring that the model adapts effectively across varying environments.
In the final row, the complete removal of both KL divergence constraints related to confounding
factors (from Eq.10), alongside the exclusion of the weight optimization and divergence constraint
mechanisms, leads to the most significant performance degradation—up to 21.6%. This decline
becomes more pronounced as tasks increase, with catastrophic forgetting contributing heavily to
the sharp drop in average performance. These results underscore the Continual Causal Interven-
tion module’s essential role and the associated constraints in sustaining model robustness during
continual learning.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 9: The prediction results of C2INet-online on the ETH-UCY dataset with varying maximum
prior queue capacities γ are shown. The model regulates the number of priors through a pruning
mechanism. Dashed lines represent FDE, while solid lines indicate ADE.

A.4.6 ANALYSIS OF QUEUE CAPACITY

Fig.9 illustrates the training performance of C2INet-online across varying maximum prior queue
capacities γ. When the number of generated components surpasses γ after a task, the proposed
pruning mechanism is activated to control the queue size. The experimental results demonstrate
that the model achieves optimal performance with γ = 45, whereas γ = 15 leads to the poorest
outcomes. This finding indicates that selecting an appropriately sized prior queue is crucial for
maximizing model efficiency and effectiveness. Both huge and overly constrained prior queues
can introduce issues—such as overfitting or reduced learning capacity—highlighting the essential
function of the pruning mechanism in maintaining a balance that prevents performance degradation.
These results emphasize the importance of reasonably controlled priors to enhance model robustness
and adaptability in continual learning environments.

A.4.7 ANALYSIS OF TASK SEQUENCE

Figure 10: The prediction results of C2INet-online on the ETH-UCY dataset with different task
loading sequences are presented. The task mappings are as follows: U - univ, E - eth, Z1 - zara1, Z2
- zara2, H - hotel. Dashed lines represent FDE, while solid lines indicate ADE.

Fig.10 presents the ADE performance of the model across different training task sequences. The
results reveal that changes in the order of task training result in subtle but measurable variations
in the model’s final average performance, with a gap of approximately 7.6% between the best and
second-worst outcomes ("H-U-E-Z1-Z2" and "U-E-Z1-H-Z2"). A key observation is that the "hotel"
task, which introduces substantial noise, has a noticeable impact on the overall performance across
all tasks. Training the "hotel" task earlier in the sequence leads to improved final performance,
suggesting that the long-term forgetting effect mitigates the adverse bias caused by the noise. This

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

finding underscores the impact of task order in continual learning and highlights how forgetting
mechanisms can mitigate confounding noise within tasks.

25

