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A APPENDIX

A.1 TRAINING PROCESS

The following Alg provides a detailed description of the training process for the proposed C?INet
method.

Algorithm 1 Training Process of C2INet.

Input: The training trajectories from K task domains {X;, Y;}X |, with a maximum prior queue
capacity of ~, training L epochs for each task.
Output: The optimized model parameters 6*.
1: for eachi € [1, K] do

2:  foreachj e [1,L] do
3: if j = 1 then
4: if Online Mode then
5: Sample S trajectories from the current task.
6: Obtain the initial prior based on the sampled data and enqueue it.
7: else if Offline Mode then
8: Cluster the accessible data and enqueue the cluster centers.
9: end if
10: end if
11: Maximize the loss function of the causal intervention model Eq[I0]to optimize model pa-
rameters 6.
12: if j mod |£| =0 then
13: if Online Mode then
14: Calculate the new component based on Eq[8Jand Eq[9]and add it to the prior queue.
15: else if Offline Mode then
16: Optimize the obtained components in the prior queue based on Eq[8]and Eq[9]
17: end if
18: end if
19:  end for
20:  if the queue length exceeds y then
21: Pruning is performed according to Eq[I0]until the quantity is reduced below .
22:  endif
23: end for

24: return The optimized model parameters 6*

A.2 DETAILS SUPPLEMENT

A.2.1 DERIVATIONS OF THE CAUSAL INTERVENTION IN SECTION 2.3

We begin by introducing causal interventions and the related do-calculus techniques, which can
be regarded as the axioms underlying our methodological derivations. Let us assume P(Y|X)
represents the conditional probability of Y given the variable X as an observed known. Clearly,
within the system, if other confounding factors are informationally associated with x, then P(Y|X)
cannot accurately measure the direct relationship from X to Y. To address this issue, the formula
P(Y|do(X)) is used to represent an intervention applied to X, specifically assigning a fixed value
X = z, severing the informational pathways from other variables to X, thereby obtaining the direct
effect between the variables. The identification of causal effects here follows the backdoor criterion
(Pearl, 2016). As we will see, the do-calculus provides us with tools to identify causal effects using
the causal assumptions encoded in the causal graph. It consists of three inference rules that allow
us to map interventional and observational distributions whenever certain conditions are satisfied in
the Structural Causal Models G, which is a Directed Acyclic Graph (DAG) that describes causal
attributes and their interactions (Neal,2020). Let X, Y, Z, and W be arbitrary disjoint sets of nodes
in a causal DAG G. Let G denote the graph obtained by deleting from G all arrows pointing to
nodes in X and G'x denote the graph obtained by deleting from G all arrows emerging from nodes
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in X. To represent the deletion of both incoming and outgoing arrows, we use the notation G ,.
The following three rules are valid for every interventional distribution compatible with G.

Rule 1 (Insertion/deletion of observations):
P(y|do(x), z,w) = P(y|do(z),w), if(Y L Z|X,W)g. (13)
Rule 2 (Action/observation exchange):
P(y|do(z), do(z), w) = P(y|do(z), z, w), if(Y 1L Z|X, W)ey, - (14)
Rule 3 (Insertion/deletion of actions):

P(y|do(z),do(z), w) = P(y|do(x),w), if(Y L Z|X,W)¢g (15)

XZ(W)'

Next, we present the derivation process for P(Y|do(X)) in the main text. Specifically, based on
the intervention on X in the Structural Causal Model as depicted in Fig. [ and the formula for
conditional probability, we can deduce:

P(Yl|do(X)) = Eﬁ%; P(Y|do(X), Z,C)
= Eigf,; P(Y|do(X),Z,C)P(Z|do(X),C)P(C|do(X)) (16)

= Erz P(Y|X, 2,C)P(Z]X,0)P(C|X).
P(C)

In the above process, given that Y 1l X|Z,C and Z 1 X|C in Gx, according to the
Action/observation exchange Rule, it can be derived that P(Y|do(X), Z,C) = P(Y|X, Z,C') and
P(Z|do(X),C) = P(Z|X,C). Similarly, with C' I X in G, by applying the Insertion/Deletion
of Actions Rule, it can be deduced that P(Cldo(X)) = P(C|X).

A.2.2 DERIVATIONS OF THE OBJECTIVE FUNCTION IN SECTION 3

Eq. [ presents our optimization objective, with the detailed derivation of the second term, the KL
divergence, as follows:

Z]Ez;u? 10 KL[Q;(C|X)| P(C)]

Ep(e,(x) KLIQi(C|X)ak—1(... as(ar P (C) + (1 — 1) Bo(C))

rm»

+(1—a)P5(0) +...) + (1 — ag 1) Pr(O)]
K K-1 K—1 A X
= Epex) KLQ(CIX)| [T s (@) + [] (1 = a)Bo(C) + -+ + (1 = ax 1) P (CO)].
i=1 j=1 j=2
a7
K—1
For the convenience of calculation, We define M<x_1(C) = H a; P (C) + H a;(1 —

o) Py(C) 4 - + ag_1(1 — ag_2)Pg_1(C). Inspired by |Egor0v et al| (2021), Eqn 17| can be
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simplified as follows according to the calculation formula of limit:

K
=Y Epex) KLQi(C|X) | (a1 M<x 1(C) + (1 — ax 1) Pk (C))]

i=1

K
Qi(C|X)
Ep g (x)) Eqi(clx)[log =
; (E:(30) FQ:(C1X) OtK_lﬂng_l(C)+(1—OZK_1)PK(C)

K ~
Mc<g_1(C) (1 —ax-1)Pk(C)
- _ v _ilog ==K 1601
> Epr.(x) Eq.(clx)lax -1log + log(1 + e Merc 1 (C)

P Qi(C|X)
M1 (C) (1 —ax 1) Pie(C)
]\/ng—l(C)

Qi(C1X)

]

)]

)]

K
— Y Ep(z(x) Eq.cix)[log +log(ovg—1 +
=1

3 Mk (C Py (C
= — ;EP(Ei(X)) EQZ(CX)[IOgCi_I((C,l)(()) + log((1 — aK_l)(M;;(l()C’) —1)+1)]

S Q:(C1X)
~ > Epe,x) [KLQi(CIX)[[M<x 1 (C)] — (1 — a 1) (P (C)———5 = 1)] + o(ax 1)
P Mk a(©)
(18)
The derivation of the penultimate line utilizes an approximation by taking the limit value.

A.3 RELATED WORK

A.3.1 LEARNING-BASED TRAJECTORY PREDICTION

End-to-end trajectory prediction using deep learning has become the mainstream because it can ac-
count for multiple factors contributing to prediction accuracy. The most common approach involves
sequential networks, which take the past path points of multiple agents across several frames, along
with various attributes, to predict future movements. These networks include Recurrent Neural Net-
works (RNN) (Zyner et al., 2018 [2017), Long Short-Term Memory (LSTM) models (Alahi et al.,
2016; Salzmann et al., 2020; | Xin et al.,[2018), and Graph Convolutional Networks (GCN) (Shi et al.,
2021} [Li et al.} 2019). These architectures extract attributes like speed, direction, road characteris-
tics, and interactions, yielding high-dimensional vector representations or feature distributions in
latent space. Decoders or sampling methods then use these representations to predict future trajec-
tories.

Attention-based methods extract relational patterns in both time and space (Wu et al.| 2021} [Kim
et al., 2020; Messaoud et al., 2020), with attention mechanisms controlling the flow of critical in-
formation. Transformer-based architectures are prominent in this category. For instance, Liu et al.
(Liu et al., 2021) propose a multi-modal architecture with stacked transformers to capture features
from trajectories, road data, and social interactions. Similarly, Zhao et al. [Zhao et al.| (2021) utilize
a transformer with residual layers and pooling operations to integrate geographical data for learn-
ing interactions. The Spatio-Temporal Transformer Networks (S2TNet) (Chen et al [2021b)) use a
spatio-temporal transformer for interactions and a temporal transformer for sequences. Generative
Adpversarial Networks (GANs) (Gupta et al., [2018)) also capture the data distribution, generating di-
verse and plausible trajectory predictions. Alternatively, large language models have been applied
to generate trajectories based on semantics (Lan et al.| 2024; Peng et al., 2024).

Recent works further integrate map or scene information for more comprehensive prediction. CNNs
have been used to extract features from Bird’s Eye View (BEV) representations (Mangalam et al.,
20215 |Chou et al., [2020), while context rasterization techniques address Vulnerable Road User
(VRU) trajectory prediction (Cui et al., 2019; Djuric et al.| |2020). Additionally, some works (Gu
et al., [2022; L1 et al [2023; Bae et al., [2024; L1 et al.| [2024; [ Xu & Ful [2024) that integrate emerg-
ing research methods such as diffusion models have been proposed, which can effectively enhance
the performance of trajectory prediction models in challenging situations. This paper proposes a
general training method for end-to-end trajectory prediction models that enhances generalization
performance with plug-and-play flexibility.
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A.3.2 CAUSAL INFERENCE

The core objective of causal inference is to identify critical factors influencing outcomes. Structural
causal models are commonly used for modeling, with principles like backdoor adjustment employed
to intervene in causal relationships. In deep learning applications, the focus is often on analyzing
confounding factors to mitigate the impact of perturbations on model performance, as demonstrated
by methods in Johansson et al.| (2016)) and Wu et al.| (2023). In recent years, causal intervention
methods have been applied in trajectory prediction to enhance performance across domains. For
example, Chen et al.|(2021a)) employs counterfactual interventions, such as using a zero vector, to
reduce bias between training and deployment environments. [Liu et al.| (2022)) highlights that target
trajectory Y is often correlated with observation noise and agent densities, proposing a gradient
norm penalty over empirical risk to mitigate environmental effects (Bagi et al., [2023). Addition-
ally, [Pourkeshavarz et al.|(2024) leverages disentangled representation learning to isolate invariant
and variant features, minimizing the latter’s influence on trajectory prediction. Our work addresses
catastrophic forgetting in domain-shift scenarios by learning the prior distribution of trajectory rep-
resentations across contexts to identify scenario-specific confounding factors. This approach en-
ables intuitive manipulation through controlled interventions and adapts seamlessly to continuously
evolving conditions.

A.3.3 CONTINUAL LEARNING

Continual learning aims to maintain strong model performance as new domain samples are intro-
duced, addressing catastrophic forgetting by balancing the retention of previous knowledge with the
acquisition of new tasks. The most common approach uses constraint-based methods on the loss
function, ensuring past learning directions are considered during gradient updates while adapting
to new samples (Kirkpatrick et al.| [2017; |[Lopez-Paz & Ranzato, 2017). However, these methods
often lack interpretability and accuracy, especially when current tasks differ significantly from prior
ones. An alternative approach is the rehearsal method (Wang et al.l 2019; Riemer et al., |2018)),
which reinforces past knowledge by replaying previous samples during training. Memory-based
mechanisms also preserve past information by storing samples as tasks accumulate (Chaudhry et al.,
2019). Despite some work on expanding domain generalization through meta-learning (Ivanovic
et al., [2023), limited research addresses continual learning in trajectory prediction, particularly in
mitigating forgetting and adapting to changing scenarios. Our method integrates causal inference
with a memory-based continual learning framework to develop a generalized trajectory prediction
model.

A.4 MORE ABOUT EXPERIMENTS
A.4.1 ADDITIONAL RESULTS IN CONTINUAL LEARNING SETTING

Table] and Table3] present the training results of continual learning on the Synthetic Dataset and
SDD Dataset, corresponding to the results described in Section[5.3]

A.4.2 TRAINING PROCESS CURVE

Fig[] displays the ADE’s statistics for each model across various tasks during the training process,
corresponding to the results described in Section 5.4}

A.4.3 METRICS FOR EACH TASK SEPARATELY

In Fig[5}{7] we provide a detailed representation of performance metrics (ADE) across various tasks,
all within the same continual learning framework outlined in Sec.[5.3] The severity of catastrophic
forgetting differs across tasks for the ETH-UCY dataset, as depicted in Fig[5] Taking the "univ" task
as an example, while most models maintain reasonable performance, the original STGAT shows the
weakest results. In contrast, C2INet performs significantly better due to its effective intervention
in counteracting environmental influences on trajectory representations. When training progresses
to the "eth" task, the task complexity increases significantly, resulting in an ADE of over 1.3 for
all models. Additionally, the performance on the previously completed "univ" task deteriorates,
with its ADE rising above 0.7. CZ2INet exhibits the least amount of forgetting, as it effectively
retains knowledge from past tasks. The fifth plot illustrates the effects of forgetting across tasks
after completing the entire training cycle. It is evident that while the "hotel" task demonstrates
post-training solid performance, it has a detrimental impact on other tasks, likely due to gradient
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Table 2: The table presents the model’s average performance across all previously encountered tasks
on Synthetic Dataset. The first column lists the newly added tasks in the continual learning setup,
with the preceding colon indicating the average trajectory prediction results for all tasks encountered
up to that point. All results are averaged over five runs, with the best outcomes highlighted in bold
and the second-best results underlined. Color blocks indicate the ranking of different backbones for
comparison.

TASK 0.1 :0.2 :0.3 :0.4 :0.5 :0.6
STGAT 0.15/0.20 0.17/0.24 0.19/0.25 0.21/0.31 0.25/0.33 0.28/0.36
STGCNN 0.65/1.16  0.50/0.92 0.39/0.75 0.36/0.62 0.39/0.67 0.42/0.65
PECNet 0.10/0.15  0.14/0.17 0.17/0.20 0.18/0.23  0.23/0.25 0.24/0.26
COUNTERFACTUAL  0.07/0.13  0.06/0.09 0.08/0.12 0.10/0.12 0.15/0.16 0.18/0.22
INVARIANT 0.07/0.15 0.11/0.16 0.15/0.18 0.21/0.19 0.28/0.24  0.37/0.38
ADAPTIVE 0.15/0.21 0.17/0.23  0.19/0.29 0.18/0.27 0.23/0.31 0.29/0.36
EWC 0.09/0.14  0.08/0.15 0.11/0.19  0.15/0.25 0.17/0.30 0.21/0.35
MoG 0.11/0.17  0.09/0.16 0.13/0.20 0.15/0.26  0.19/0.34  0.22/0.37
Coresets 0.09/0.14  0.08/0.14 0.10/0.21 0.14/0.23  0.16/0.28  0.20/0.33
GCRL  s7GaT [0.04/0.08 0.07/0.12 0.12/0.16 0.17/0.23  0.20/0.29  0.23/0.33
GCRL. sTGONN 0.24/0.43  0.30/0.57 0.28/0.52 0.31/0.49 0.35/0.59 0.40/0.66

C’INet-online srcar  0.09/0.16 0.07/0.13 F0:10/0:19 0:14/0.24" 0.17/0.29 0.20/0.34
C?INet-online ; srcony  0.36/0.59  0.34/0.54  0.25/0.46  0.26/0.49 0.30/0.55 0.34/0.59
C?INet-offline; s7gar | 0.08/0.13 FO07/042% 0.11/0.19  0.14/0.25

C?INet-offline; s7gonny  0.34/0.55  0.31/0.49  0.27/045 0.29/0.51 0.28/0.46 0.31/0.51

Table 3: The table presents the model’s average performance across all previously encountered tasks
on SDD Dataset. The first column lists the newly added tasks in the continual learning setup, with
the preceding colon indicating the average trajectory prediction results for all tasks encountered up
to that point. All results are averaged over five runs, with the best outcomes highlighted in bold
and the second-best results underlined. Color blocks indicate the ranking of different backbones for
comparison.

TASK bookstore :coupa :deathcircle :gates :hyang nexus :little :quad

STGAT 75.96/139.81  52.99/98.06 114.63/206.93 93.75/169.37 88.40/163.33 79.88/140.89 78.35/142.09 79.56/145.67
STGCNN 75.90/139.76  52.99/98.14  114.97/207.79 94.59/172.21 91.73/170.78 82.79/153.86 83.84/157.80 81.51/153.27
PECNet 74.41/137.86  51.79/98.23  111.03/202.42 93.12/170.10 88.69/170.23 80.54/148.39 80.19/151.79 82.49/155.83
COUNTERFACTUAL  66.93/127.97 49.84/93.21 106.03/194.52 90.97/165.97 86.50/158.32 75.74/135.20 75.18/137.10 78.06/142.94
INVARIANT 71.41/132.86  52.63/98.05 108.44/197.46 94.71/170.92 90.94/166.05 78.69/149.52 76.89/149.88 80.79/143.42
ADAPTIVE 86.51/162.14 65.21/116.87 121.96/216.23 99.50/182.85 98.32/179.50 90.65/173.45 94.25/176.25 93.32/174.44
EWC 70.62/131.19  54.93/102.42 117.01/212.02 97.34/176.93 96.50/176.75 87.44/160.47 88.90/163.64 88.46/162.84
MoG 71.31/134.52  55.45/104.68 118.21/215.39 98.14/178.96 99.12/181.23 90.12/171.26 90.56/169.21 91.32/169.78
Coresets 71.25/133.82  54.98/102.72 117.02/212.03 97.35/176.96 96.49/176.72 87.47/160.51 88.93/163.67 88.50/162.89
GCRL; sTgar 76.30/140.42 54.87/101.80 117.32/212.43 97.62/177.25 96.58/176.68 87.58/160.47 89.03/163.62 88.63/162.95
GCRL.sr¢onn 76.32/140.44 54.87/101.80 117.29/212.35 97.62/177.25 96.57/176.65 87.58/160.47 89.03/163.62 88.63/162.95

C?INet-online , s7¢ a7 70.87/130.67 51.19/95.70  107.29/196.40 91.56/167.05 86.88/161.24 75.75/138.72 77.21/143.92 78.82/143.22
C’INet-online srcony  70.98/130.84  51.50/96.06  107.98/196.95 91.53/166.96 86.86/161.12  75.77/140.66 77.28/143.96 78.82/143.93
C?INet-offline , 57 ar

CZINet-Ofﬂine+STGC;\"N 70.09/130.16  50.99/95.98 107.01/198.07 91.27/166.58 85.92/160.95 74.98/140.64 76.24/142.56 78.01/142.85

19



Under review as a conference paper at ICLR 2025

Validation Metrics Over Epochs

Metric Value

— average validation_ADE
— validation_ADE_on_eth

—— validation_ADE_on_hotel
— validation_ADE_on_univ
— validation_ADE_on_zaral
— validation_ADE_on zara2

Training Process

STGAT

Validation Metrics Over Epochs

Metric Value

— Validation_ADE on eth

~— Validation_ADE_on_hotel
— Validation_ADE_on_univ
— Validation_ADE_on_zaral
— Validation_ADE on zara2

— average Valdation_ADE

Training Process

CONTERFACTUAL

Validation Metrics Over Epochs

Metric Value

— average_validation ADE
— validation ADE_on_eth

—— validation ADE_on_hotel
— validation_ ADE_on_univ
— validation_ADE_on_zaral
— validation_ ADE_on_zara2

Training Process

C2INet-online

Validation Metrics Over Epochs

Metric Value

— average_validation ADE
— validation_ADE_on_eth

—— validation_ADE_on_hotel
—— validation_ADE_on_univ

— validation_ADE_on_zaral
—— validation_ADE_on_zara2

Metric Value

Metric Value

Training Process

GCRL

Validation Metrics Over Epochs

— average_validation ADE
— validation_ADE_on_eth

—— validation_ADE_on_hotel
— validation_ADE_on_univ
— validation_ADE_on_zaral
— validation_ADE_on zara2

Training Process

EWC

Validation Metrics Over Epochs

— average_validation ADE
— validation_ADE on_eth

—— validation_ADE_on_hotel
— validation_ADE_on_univ

— validation_ADE_on_zaral
M validation_ADE_on zara2

Training Process.

C2INet-offline

Figure 4: The ADE variations of the validation sets across five task scenarios and their
performance during the training process on the ETH-UCY dataset. The x-axis represents the number
of completed training epochs, while the y-axis denotes the corresponding metric values.
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optimization disrupting the model’s adaptability to previously learned tasks. Although the ADE
curves for COUNTERFACTUAL and INVARIANT are relatively stable, their overall performance
remains suboptimal.

Fig[6|showcases the performance of various models on the Synthesis dataset. COUNTERFACTUAL
and INVARIANT exhibit relatively balanced performance across tasks "0.1" to "0.6", while base-
line models such as STGAT and GCRL experience consistent performance degradation, reflecting
their tendency to prioritize newly introduced tasks. In contrast, models designed explicitly for con-
tinual learning, such as Coresets, EWC, and the proposed C2INet, demonstrate a steady upward
performance trend, emphasizing their ability to retain knowledge from previous tasks. In task "0.1",
which contains minimal noise, these models maintain strong memory retention, underscoring their
robustness in low-noise environments.

In Fig[7] the performance curves on the SDD dataset remain relatively stable across the models.
Continual learning models, including C2INet, EWC, and Coresets, effectively mitigate catastrophic
forgetting in tasks such as "coupa". However, their performance deteriorates on more challenging
tasks like "deathcircle" due to excessive retention of information from earlier tasks. Ultimately,
C?INet-offline emerges as the best-performing model, demonstrating superior training performance
across the dataset.

Figure 5: The Average Displacement Error (ADE) on the ETH-UCY dataset for each task, averaged
over five runs under continual learning settings. The x-axis represents the sequence of completed
tasks, while the y-axis indicates the corresponding metric values.

Figure 6: The Average Displacement Error (ADE) on the Synthesis dataset for each task, averaged
over five runs under continual learning settings. The x-axis represents the sequence of completed
tasks, while the y-axis indicates the corresponding metric values.

A.4.4 QUALITATIVE RESULTS

Fig[§ mainly displays the qualitative analysis presented in the main text Section 5.5}

A.4.5 ABLATION STUDY

In Table[d] we systematically assess the contributions of several key modules to the performance of
the C2INet model in a continual learning context. The ablation process begins by isolating the impact
of the symmetric KL divergence constraint from Eq[I0] (Abbreviated as "Divergence"), followed
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boskstore coupa deatheicle gates

Figure 7: The Average Displacement Error (ADE) on the SDD dataset for each task, averaged over
five runs under continual learning settings. The x-axis represents the sequence of completed tasks,
while the y-axis indicates the corresponding metric values.

C?1 Divergence Weight univ :eth :zaral :zara2 :hotel
v v v 0.820 2.228 1.420 0.827 0.247
v v X 0.851(+0.031) 2.372(+0.144) 1.574(+0.154) 0.839(+0.012) 0.256(+0.009)
v X v 0.883(+0.063) 2.562(+0.334) 1.663(+0.243) 0.865(+0.038) 0.285(+0.038)
X X X 0.913(+0.093) 2.701(+0.473) 1.752(+0.332) 0.898(+0.071) 0.296(+0.049)

Table 4: Results of the ablation study, focusing on the performance of the C2INet model on the ETH-
UCY dataset after the removal of certain modules. The first row of the table specifies the ablated
modules and the completed training tasks. Check mark indicates the removal of the corresponding
module, while cross signifies its inclusion.
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Figure 8: Qualitative results on the ETH-UCY dataset. The gray lines represent observed trajecto-
ries, the red points indicate predicted paths, and the green points denote the ground truth.

by the removal of the weight optimization procedure outlined in Eq[9] where only average weight
parameters are used (Abbreviated as "Weight"). Lastly, we completely omit the Continual Causal
Intervention mechanism to evaluate its significance.

A detailed comparison between the second and third rows of the table demonstrates that when weight
optimization is removed and average weights are used, the model’s performance initially declines
by approximately 3.7% during the early stages of training. However, the model fills the gaps as
training progresses and gradually approaches near-optimal performance. This pattern indicates that
the lack of weight optimization is mitigated as the prior queue accumulates more elements, dimin-
ishing its overall impact on model performance. Conversely, the evident 5% — 17% performance
decline observed after removing the symmetric KL divergence constraint highlights the importance
of maintaining diversity among priors. This diversity appears to be crucial in preventing overfitting
to specific tasks and ensuring that the model adapts effectively across varying environments.

In the final row, the complete removal of both KL divergence constraints related to confounding
factors (from Eq[I0), alongside the exclusion of the weight optimization and divergence constraint
mechanisms, leads to the most significant performance degradation—up to 21.6%. This decline
becomes more pronounced as tasks increase, with catastrophic forgetting contributing heavily to
the sharp drop in average performance. These results underscore the Continual Causal Interven-
tion module’s essential role and the associated constraints in sustaining model robustness during
continual learning.
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Figure 9: The prediction results of C2INet-online on the ETH-UCY dataset with varying maximum
prior queue capacities v are shown. The model regulates the number of priors through a pruning
mechanism. Dashed lines represent FDE, while solid lines indicate ADE.

A.4.6 ANALYSIS OF QUEUE CAPACITY

Fig@ illustrates the training performance of C2INet-online across varying maximum prior queue
capacities . When the number of generated components surpasses -y after a task, the proposed
pruning mechanism is activated to control the queue size. The experimental results demonstrate
that the model achieves optimal performance with v = 45, whereas v = 15 leads to the poorest
outcomes. This finding indicates that selecting an appropriately sized prior queue is crucial for
maximizing model efficiency and effectiveness. Both huge and overly constrained prior queues
can introduce issues—such as overfitting or reduced learning capacity—highlighting the essential
function of the pruning mechanism in maintaining a balance that prevents performance degradation.
These results emphasize the importance of reasonably controlled priors to enhance model robustness
and adaptability in continual learning environments.

A.4.7 ANALYSIS OF TASK SEQUENCE

— H-U-E-Z1-22
2.00 U-H-E-Z1-22 FDE
— U-EH-Z1-22
—— U-E-Z1-H-Z2
1.751 — uEz1-Z2H

ADE/FDE
Iy = =
° N @
5 a ©
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N
a
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Taskl :Task2 :Task3 :Task4 :Task5

Figure 10: The prediction results of C2INet-online on the ETH-UCY dataset with different task
loading sequences are presented. The task mappings are as follows: U - univ, E - eth, Z1 - zaral, Z2
- zara2, H - hotel. Dashed lines represent FDE, while solid lines indicate ADE.

Fig[T0| presents the ADE performance of the model across different training task sequences. The
results reveal that changes in the order of task training result in subtle but measurable variations
in the model’s final average performance, with a gap of approximately 7.6% between the best and
second-worst outcomes ("H-U-E-Z1-Z2" and "U-E-Z1-H-Z2"). A key observation is that the "hotel"
task, which introduces substantial noise, has a noticeable impact on the overall performance across
all tasks. Training the "hotel" task earlier in the sequence leads to improved final performance,
suggesting that the long-term forgetting effect mitigates the adverse bias caused by the noise. This
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finding underscores the impact of task order in continual learning and highlights how forgetting
mechanisms can mitigate confounding noise within tasks.
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