
Appendices1

A Terminal Losses2

This section provides detailed derivations of the different terminal loss functions, Lgoal(X̃T , G̃),3

compared in our generalized Bayesian inference planner. Recall, the loss function Lgoal(X̃T , G̃)4

measures the discrepancy between the terminal state distribution and the distribution of goal states,5

represented implicitly by samples X̃T and G̃ respectively.6

Kernel Maximum Mean Discrepancy (MMD). The squared MMD [1] measures discrepancy7

between two distributions p(x) and q(y), and is defined as:8

MMD2(p, q) = E[k(x, x′)]− 2E[k(x, y)] + E[k(y, y′)] (1)

where k(·, ·) is a kernel function. In the case where distributions p and q are implicit, an unbiased9

two-sample approximation of the squared MMD is given by:10
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where xi ∼ p, 1 ≤ i ≤ m and yi ∼ q, 1 ≤ i ≤ n. When applied to our setting we simply define11

Lgoal(X̃T , G̃) = MMD2(X̃T , G̃) where X̃T = {x(i)
T }Mi=1 correspond to samples from the terminal12

state associated with the corresponding trajectory particle τ (i).13

KL Divergence. A differentiable two-sample KL divergence approximation can be obtained14

through density ratio estimation via classification [2, 3]. The KL divergence between distributions p15

and q is defined as:16

DKL(p, q) = Ex∼p(x)

[
log

p(x)

q(x)

]
. (3)

This quantity can be approximated over samples x(i) ∼ p(x) if the ratio r(x) = p(x)/q(x) can be17

computed analytically:18

Ex∼p(x) [log r(x)] ≈
1

M

M∑
i=1

log r(x(i)) (4)

In the case where the goal distribution and posterior distribution are implicit, the ratio r(x) cannot19

be evaluated. Instead, the ratio can be approximated through classification, where binary label y = 120

indicates that a sample x was drawn from p and y = 0 indicates a sample was drawn from q. The21

ratio can then be approximated as:22

r∗(x) =
P (x|y = 1)

P (x|y = 0)
, (5)

which can be further simplified to:23

r∗(x) = exp(σ−1(P (y = 1 | x))). (6)

This approximation reduces the density ratio estimation to a classification problem. Thus, the ratio24

is computed by evaluating a binary classifier for each sample which can be performed efficiently.25

Intuitively, this approach assumes that the KL divergence should be highest when the classifier26

cannot distinguish between the samples from each distribution. The classifier must be trained in-27

dividually for each estimated trajectory distribution in order to use this divergence. To improve28

computational efficiency in practice, the classifier can be initialized with the result from the pre-29

vious iteration. Finally, we can define Lgoal(X̃T , G̃) = DKL(X̃T , G̃) where the KL divergence is30

approximated following Eq. (4).31

Smooth K-Nearest Neighbor. It is possible to define a differentiable two-sample test based on the32

well known k-NN algorithm as demonstrated in [4]. The Smooth K-Nearest Neighbor test possesses33
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important statistical properties such as consistency and convergence of its statistics to f -divergence.34

This is despite the complexity of having to solve a combinatorial optimization problem (nearest35

neighbor match) required by the k-NN method. Let n1 be the number of samples of p, and n2 be the36

number of samples of q. The k-NN divergence can be defined as37

DNN
α =

∫
α2p2(x) + (1− α)2q2(x)

αp(x) + (1− α)q(x)
dx, (7)

for n1/(n1 + n2) → α ∈ (0, 1).38

As proved in [5], the statistic39

1− T (X1, X2)

(n1 + n2)k
, (8)

where T (X1, X2) refers to the number of edges connecting samples in a set X1 = {xi}n1
i=1 to a40

set X2 = {xi}n2
i=1 from a k-neighborhood graph created with points in X1 and X2, converges in41

probability to the DNN
α divergence, and can be used as an efficient approximation. To make the42

computation differentiable, the authors of [6] define43

T (X1, X2) =
n∑

i=1

n∑
j=1

si({xm}n1+n2
m=1 )j , (9)

where si({xm}n1+n2
m=1 ) denotes the softmax function computed on the Euclidean distances between44

all points, except point i. As the softmax function is differentiable, the statistic in Eq. (8) becomes45

differentiable and can be used directly as our loss function Lgoal(X̃T , G̃). To avoid specifying a46

particular value for α, our implementation computes the statistic for several values and averages47

them as the final result.48

Energy Statistic. This two-sample test is based on Newton’s gravitational potential energy which49

relates two entities by the Euclidean distance between them [7]. Given two distributions p(x) and50

q(y), the energy distance is defined as:51

DE(p, q) = 2E[||x− y||2]− E[||x− x′||2]− E[||y − y′||2], (10)

where x and y are independent random variables. The corresponding two-sample statistic given two52

sets of samples X = {xi}n1
i=1 and Y = {yj}n2

j=1 can then be written as:53

DE(X,Y ) =
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This provides a computationally efficient statistic which can be directly used as our loss54

Lgoal(X̃T , G̃) = DE(X̃T , G̃).55

A.1 Practical Considerations56

The statistics considered in this work are good local approximations of distribution divergences.57

In the case of trajectory optimization, when the terminal states in early planning iterations are far58

from the goal set, the goal loss gradients can be uninformative. We therefore include a prior in our59

set planning method consisting of a smooth uniform distribution constructed by placing a bounding60

box around the goal samples. This can be included in our framework by multiplying a prior over61

the terminal state p(xT ) with the goal likelihood in Eq. (6). This mitigates the poor divergence62

approximation in early iterations. Note that the uniform prior is insufficiently informative on its63

own, particularly in cases where the goal set is multi-modal. Furthermore, the prior needs to be64

differentiable, which is not the case for a standard uniform distribution. Therefore we define a65

smooth uniform prior in the region R = xT : a ≤ xT ≤ b as66

p(xT ) ∝ exp
(
−d(xT , R)

2
/
√

(2σ2)
)

(12)

where d (x,R) = min |x − x′|, x′ ∈ R is a distance function, and σ controls the sharpness of the67

approximation.68
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Once inference over the trajectory distributions converges, we must select a single trajectory esti-69

mate to execute. A common approach to accomplish this is by taking the mean, or weighted mean,70

of the particle set. This method is ineffective when the trajectory distribution is multi-modal. An71

alternative approach is to pick the maximum weighted particle. Our proposed set-based terminal72

losses yield a single score over the whole distribution, which does not enable weighing individual73

particles based on terminal loss. To select our final sample, we instead select the lowest cost trajec-74

tory. In practice, we also include the prior in the weight computation to avoid local minima with75

very low-cost trajectories.76

B Experiment Details77

B.1 Planar Navigation78

The agent state xt is composed of a 2D position and velocity, and the control signal ut is a 2D79

acceleration. We use known, linear dynamics in a fully observed environment for the controller80

rollouts.81

Losses. For each method, the running cost is summed over each timestep, where the cost for one82

timestep is:83

ct(xt, ut, z) = x⊤
t Qxt + u⊤

t Rut + α cSDF(xt, z) (13)

where Q and R are quadratic cost parameters for the state and action, and cSDF(xt, z) is the obstacle84

avoidance term, computed using the Signed Distance Function (SDF) over the environment z. The85

goal loss Lgoal(X̃T , G̃) is a set goal loss which is differentiable with respect to the trajectory τ .86

Implementation Details. For each of our goal set planner ablations, N = 50 samples are ran-87

domly selected from goal distribution, except for KL (Ratio Estimation), which uses N = 10088

samples. This method involves training a learned classifier so is aided by a higher sample size. For89

the closest point methods, the goal sample with the smallest Euclidean distance from the start state90

is selected. For all the methods, M = 50 particles are used to represent the trajectory distribution.91

The particles represent the discrete control signals, ut, which are 2D accelerations at each 0.1 sec-92

ond timestep over a horizon of 3 seconds. All planners are initialized with the distribution from93

the previous timestep, shifted to the current timestep, and run for 50 iterations. We use the Adam94

optimizer [8] to select the step size in the SVGD update rule.95

The KL divergence uses a 3 layer fully-connected network as the classifier, retrainined at each96

timestep. To mitigate computational complexity, we warm start the training with the weights from97

the previous timestep. The Kernel MMD uses an RBF kernel, with a bandwidth selected by applying98

the median heuristic over the goal samples [8]. The Smooth k-NN loss uses a value of k = 1.99

We use the RBF kernel for SVGD, and set the bandwidth using the median heuristic, a popular tech-100

nique for choosing the kernel bandwidth which yields a good estimate in many cases [9]. Without101

access to data consisting of trajectory samples, we assume that they are normally distributed with102

covariance σ = 1. Under these assumptions, it follows that the expected distance between samples103

drawn from the distribution is 2D, where D is the trajectory dimension.104

B.2 Grasping105

Figure 1 shows a case where the goal set planner finds a reachable point from the set, but the closest106

point method may select goal points which are in collision in some of the example scenes. This107

phenomenon helps explain the discrepancy in grasp success at the cost of increasing distance error.108
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Figure 1: Example failure execution for the closest point planner (top) compared the the goal set planner
(bottom). The closest point selected is shown in blue. The point is not reachable in the environment, causing
the robot to fail to reach it (top right). The set planner considers all the grasp samples, shown in green. It finds
a reachable grasp point and grasps successfully (bottom right).
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