A

Algorithms.

Algorithm 1 Training DHRL

sample DI° = (s;, wpy, ag, (Se41, wpt);AStJrl)i € Bl

1:
2: relabel wp; < Wp, = agiy4,, to make D
3: update Qi‘r)itic,el and 71'(1;)1 using DI° U Dl°
4: update éoraphﬁz using ﬁio
5: if ¢ mod d then
6: sample D} = (51, t, 91,7t St1cy)i € B
7: relabel sg; < ags i, to make D
8: for (s, gt,5G:, T, Sty) in DM do
9: if 7(St4c;,, Sg¢) = 0 then
10: Ty 4— Ty < subgoal € L
11: else if use GradualPenalty then
12: r¢ < GradualPenalty(graph G, sgi, QL)
13: else
14: r¢ <— penalty pq
15: end if
16: end for A
17: update Qg and 7} using D} U D
18: end if
Algorithm 2 Farthest Point Sampling Algorithm [2]]

—_

: Input: set of states {s1, $a, ..Sk }, sampling number k, temporal distance function Dist(- — -)

2: SelectedNode =[]
3: DistList = [inf, inf, ... inf]
4: fori=1to k do
5: FarthestNode < argmax(DistList)
6: add FarthestNode to SelectedNode
7: DistFromFarthest < [Dist(FarthestNode — 1), ..., Dist(FarthestNode — sk)]
8: DistList = ElementwiseMin(DistFromFarthest, DistList)
9: end for
10: return SelectedNode
Algorithm 3 Planning with DHRL
1: while not done do
2: ift mod graph_construct_freq then
3: construct a graph G(V, E) : sample V = v(s) where s € D'° through FPS algorithm and
get edge cost E by Eq.
4. endif
50 sgr=m"(st,9¢)
6: get W : (wpro = V(5¢), WPt,1, WPt.2, ey WPLk—1, WPLE = SYt)
7. previous waypoint index idp < 0; tracking waypoint index idt <— 1; tracking time ¢, <— 0
8 forT=1tocy,do
9: get low-level action a, from 7'°(a|s., WPt idt)
10: act a, in the environment and get s 1
11: tir +=1t4+=1
12: if agent achieve wpy ;q; or t'" > Dist(wpy iap — Wpt,iar) then
13: idp += 1;idt +=1;t4,- < 0
14: end if
15: end for
16: end while

12

Algorithm 4 Gradual Penalty

1:

AN AN S

Input: graph G(V, E), subgoal sg;, Qg;aph’ 9,» gradual penalty threshold ¢y, penalty p;, penalty
P2
s if min(Q,n.0, (v € V,591)) < (1 then
ry < penalty p; < subgoal € Ly
else
ry < penalty po < subgoal € Ls
. end if

Algorithm 5 Frontier-Based Goal-Shifting (FGS)

1:

AN A

lo
graph,02°

Input: s;, graph G(V, E), goal g, cut-off threshold (,

DZSt(S7g) = log'y (1 + (1 - ’V) }g(;'aph,(‘)g (877T(S,g)|g))
if min,ev (Dist(v — g)) < (o then
Vcandidate ~V + noise
gt < rand°m~Ch°ice(Vcandidate7 Weight = - lgc;aph’% (Sta 77(515’ Vcandidate)|Vcandidate))
end if
return g;

Algorithm 6 Overview of DHRL

1:

2:
3:
4:

5:
6:
7.
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

Input: initial random Steps Trandomwalk initial steps without planning 7, /o graph, total training

step Tiotal, ENV, low-level agent Qi‘r)mc’el , Qé‘r’aph’ 9 and 71'(1;1 , high-level agent Q},‘; and ﬂ'g;

Dist(s,g) == log, (1 + (1 = 7)Qprapn.a, (5, 7(5,9)9))
for 7 = 1 to Tiota do
if Env.done then
Env.reset (episode step resets to 0)
if Use FGS then
g < FGS(G7 9, Q;aphﬂg)
end if
end if
if 7 < Trandomwalk then
a¢ < random.uniform(high = action.high, low = action.low) <l random action
elseif 7 < 7, Jo graph then
a; < vanilla HRL(sg; = 71'212 (s¢,9) and 71'(1;1 (st,89t)) < act without planning
else
if Graph G is not initialized then
Create a graph G(V, E) using FPS algorithm < initialize graph
end if
if episode step(the step of the environment) % c¢; = O then
sgr < iy (s1,9) <1 get subgoal
{wpg,1,wpr2,- - - wpe i} < Dijkstra’salgorithm(s,, sg;) < get waypoints
current waypoint index n = 1
end if
if achieved wpy ,, or tried more than Dist(wp; ,—1, WPy) to achieve wpy ,, then
current waypoint index += 1
end if
ay TP (S, WPy ny1) < get low-level action
end if
Env.step(as)
Train low-level agent Q. g, » Qpoapn 0, a0d 75, , high-level agent Qp! and !
if 7 % graph update freq = 0 then
Update Graph G(V, E) using FPS algorithm
end if
end for

13

B Proofs of Theorems.

Derivation of equation 1. If a given policy), requires n steps to get from current s to a goal g, the
~-discounted return is Qo (s, (s, g)|g) = (=1) + (=1)y + (=1)¥*--- (=1)y" "' = —11_—"*".

-

Thus, the temporal distance between s to g(= n) is derived from 4™ — 1 = (1 — v)Qio(s, 7(s, g)|g) as

n=log, (1+ (1 —7)Qw(s,7(s,9)lg))- (3)
Definition B.1. Wq (s¢,59:) = (wpt,0, Wpt,1, ..., WPt,k) is a sequence of waypoint obtained by the graph
search algorithm and w(Wa, 7) = wpt,i € Wa (8¢, sgt) is the waypoint that is given to low-level policy at 7.
Given the transition distribution of the environment 7 (S-41|$-,a,), the transition data
(S5 Gt, SGt, T (St4ep» Gt), St+c;,) from the high-level policy’s replay buffer has been obtained as
t+cp—1
lo
siven =[] T(serrlsr ar) - mg (arlsr, wWa,, 7)), “

T=t

where ﬂg’ and Gg are the previous low-level policy and graph respectively. Also, by using a different graph G

lo*

and an optimal policy 7%, we get a new transition data (s, ge, Sg¢, T (St » 9t), Stte,,), Where

t+cp—1

Sttpe, = H T (741|857, ar) - 7 (ar|sr, wWa, 1)) 5)

T=t

For given s; and s¢,, , we define the off-policy error rate, which is the normalized distance error with respect
to the total traversal distance according to the change of W}f and Gg to 7'°* and G, as

_ Dist(¥(stye,) = Y(Stte,))
P(G) = Dist(¥(st) = Y(Sttey))

Lemma B.2. Suppose that Dist(- — -) in Eq. is Lipschitz continuous. Then, there exists a constant L > 0
such that Vx and y, max(Dist(x — y), Dist(y — x)) < L||x — y||, where || - || is the Euclidean norm, since
Dist(z — x) = 0. Then, any €/ L—resolution graph w.r.t the Euclidean norm, whose existence is trivial, is an
e—resolution graph w.r.t Dist(- — -).

6)

Proof of Theorem

Proof. Let C°79 be one of the shortest paths from s to g and T" be the distance of C* 9. Alsolet p; € C°* 79 be a
point that Dist(¢(s) — p1) = ¢; — €. Then, Jwp: € V s.t. max(Dist(p1 — wp1), Dist(wp1 — p1)) <€,
because G is an e—resolution graph. Since Dist(- — -) is a temporal distance, it satisfies the triangular
inequality and then, Dist(¢(s) — wp1) < Dist(¢¥(s) — p1) + Dist(p1 — wp1) < (¢ —€) + € = ¢; and
Dist(wpr — g) < Dist(wpr — p1) + Dist(pr = g) < e+ (T —ci+€) =T — ¢ + 2e.

Repeating the above procedure, let p;y1 € C*Pi79 be a point that Dist(wp; — pi+1) = ¢ — €. Then,
Jwpit1 € V s.t. max(Dist(pi+1 — wpit1), Dist(wpiy1 — pi+1)) < €. Then, Dist(wp; — wpi+1) < ¢
and Dist(wpi+1 — g) < T — (¢ + 1) + 2(2 + 1)e. Consequently, the agent after 7" time-step will be closer
than the | T'/c;]*" waypoint from g. The remaining distance is less than

T — _T/CZJCL —+ QLT/CLJE. (7

Thus, if an agent follows the sequence of waypoints {s, wp1, wps, ..., g}, which is generated from a graph
search algorithm over G and 7'°*, the error rate over this path satisfies

T — LT/C[JCl + 2LT/ClJE T — (Cl — 26)(T/Cl) 2€

G) < < ==, 8

plG) < T = T a ®
Thus the off-policy error rate p is equal or less than 2¢/¢; during 7'. Since all path from s to g takes at least T’
time-steps, this upper-bound of error rate is also satisfied in all path from s to g. O

14

C Additional Results

PointMaze AntMazeSmall AntMazeComplex UR3Obstacle
1.0 o® 0.7
Lo 04 0
e os
193
@ o o 0s
8
7 0.2 03
Bos
3 02
Qo 01
o1
0.0 0.0 0.0 = e
0 100 200 300 400 500 ° 200 400 600 90 1000 0 S50 1000 1500 2000 250 3000 300 4000 O 100 200 W0 0 500 600 700
Timesteps(k) Timesteps(k) Timesteps(k) Timesteps(k)
AntMaze AntMazeBottleneck Reacher3D
040 10
© 00 035
© 030 o
1]
Boo 025 e
8 020
304
2 015 04
8., 010
= 02
005
00 000
0 s 1000 1500 2000 2500 3000 0 200 o s0 w00 o 100 20 00 400 500
Timesteps(k) Timesteps(k) Timesteps(k)
PointMaze AntMazeSmall AntMazeComplex UR3Obstacle
10 10 os 07
Q 04 oe
Los 08
S os
123
B os 06 03 04
Q
o
Zos 0s 02 o
5 02
Loz 0z 01
o1
00 00 00 00
0 100 200 200 a0 500 o 200 400 60 800 1000 O 500 1000 1500 2000 2500 3000 3500 4000 O 100 200 300 400 50 600 700
Timesteps(k) Timesteps(k) Timesteps(k) Timesteps(k)
AntMaze AntMazeBottleneck Reacher3D
040 10
035
o
& e
gos 025 -
g 020
304
« 015 04
?
010
Qo 02
005
00 000 0o
o 200 00 600 w0 1000 o 200 00 600 w0 w00 o 100 200 300 400 s00
Timesteps(k) Timesteps(k) Timesteps(k)
DHRL(OURS) — == HIRO(Dense) === HIRO(Sparse) —-= SAC

Figure 10: Comparison with shallow RL (SAC) and vanilla HRL (HIRO). The completely failed
baselines are occluded by others.

15

Easy Medium Hard
(Uniform distribution) (2 fixed initial distribution) (1 fixed initial distribution)

Figure 11: Examples of various initial state distributions.

Table 2: Performance of DHRL in various difficulties of initial state distributions.

SUCCESS RATE | EASY(UNIFORM) MEDIUM(2 FIXED POINT) HARD(1 FIXED POINT)
ANTMAZE 0.3M 80.4% 28.5% 12.2%
ANTMAZE 0.5M 87.1% 88.2% 71.5%

As shown in the table above, the wider the initial distribution, the easier it is for the agent to explore the map. In
other words, the ‘fixed initial state distribution’ condition we experimented with in this paper is a more difficult
condition than the ‘uniform initial state distribution’ that previous graph-guided RL algorithms utilize. Of course,
‘fixed initial state distribution’ requires less prior information about the state space. We further experimented
with ours (DHRL) under various types of reset conditions as shown in Table[2] As expected, our algorithm shows
faster exploration at the uniform reset point.

20 30 40 50

Figure 12: Changes in the graph level over the training; DHRL can explore long tasks with ‘fixed
initial state distribution’ and limited knowledge about the environment.

16

The numbers next to the

%869 | %S0 %Ll %00 %S0 %61 %ST %00 F1OVLSE0CUN
%9°06 | %Ly - BT - 1LY - BT LY | NSO

-JdHOVH
%I'S6 | %TSL - %S'97 : %099 - wrer | wszo 9IE d
BIOF | %070 %00 %00 %00 %00 %00 %00 | WOP Ao
%07 | %00 %00 %00 %0°0 %00 %00 %00 | ST
BL'SE | %00 %00 %00 %00 %0°0 %00 %00 | WO
%S9L | %00 %0°0 %0°0 %0°0 %0°0 %00 %00 | Weo OANdILIOH
BIT6 | %09 BI'SL %6'Sy %L'89 %80 BLO %00 | WO YNy
BSIL | BLTE %T09 %00 I %0°0 %00 %00 | NS0
BUS6 | HTTS BLES BYRS HYE8 %109 BHIFT B00 | WOT oo
%868 | BUth %EOE %0bS %6 %0°C %00 %00 | NS0
%866 | BET6 BEBY BLEG BSEE BYOIL BOE6 BEO | WSO oo
%6'96 | %EYE %SST %HI'9S B9 BELL %BSEL BT | INSTO
THHA | S"IDIH_d-1DIH_S-OVVH _d-OVMH _S-OMIH __d-OMIH _ OVS 41V SSA00NS

environment names are the time-steps for training the models. The results are averaged over 4 random
seeds and smoothed equally. -D’ and ‘-S’ mean dense reward and sparse reward respectively. We use

Table 3: Comparisons between our algorithm (DHRL) and baselines
NVIDIA RTX A5000.

17

Table 4: Hyperparameters for HRL: When evaluating the previous HRL algorithms, we used the same
hyperparameters as used in their papers. We also tried various numbers of landmarks and c¢;, which

may affect the performance in long-horizon tasks.

HIRO HRAC HIGL
high-level 7 0.005 0.005 0.005
7 Ir 0.0001 0.0001 0.0001
QM Ir 0.001 0.001 0.001
high-level 0.99 0.99 0.99
high-level train freq 10 10 10
Ch 10-50
low-level 7 0.005 0.005 0.005
7l Ir 0.0001 0.0001 0.0001
QP 1Ir 0.001 0.001 0.001
low-level ~y 0.95 0.95 0.95
hidden layer (300,300) (300,300) (300,300)
number of coverage landmarks ~y - - 20-250
number of novelty landmarks v - - 20-250
batch size 128 128 128
Table 5: Hyperparameters for SAC
SAC
hidden layer | (256, 256, 256)
actor Ir 0.0003
critic Ir 0.0003
entropy coef 0.2
T 0.005
batch size 256
¥ 0.99
Table 6: Hyperparameters for DHRL
DHRL
hidden layer (256, 256, 256)
initial episodes without graph planning 75
gradual penalty transition rate 0.2
high-level train freq 10
actor Ir 0.0001
critic Ir 0.001
T 0.005
¥ 0.99
number of landmarks 300-500
target update freq 10
actor update freq 2

18

