
Under review as a conference paper at ICLR 2021

A ORGANIZATION

The Appendices contain additional technical content and are organized as follows. In Appendix B,
we present additional results for Filterpd for when the underlying distribution only has bounded 2nd

moment and RGD− Filterpd for logistic regression and generalized linear models. In Appendix C,
we present details to supplement the empirical evidence in Section 3. In Appendix D, we present
supplementary experimental results for mean estimation. In Appendix E, we detail the hyperparam-
eters used for experiments in Section 5.2. Finally, in Appendix F and G we give the proofs for the
propositions in Section 2 and Appendix B.

B SUPPLEMENTARY THEORETICAL RESULTS

B.1 GUARANTEES FOR Filterpd UNDER BOUNDED 2nd MOMENT

Theorem 3. Suppose {zi}ni=1 ∼ P , where P has bounded 2nd moment and n satisfies the relation
in (3). Then Algorithm 1 when instantiated for T ∗ = �C log(1/δ)� steps returns an estimate �θδ such
that, with probability at least 1− 4δ, δ ∈ (0, 0.25):

��θδ − µ�2 �
�

trace (Σ) log(p/δ)

n

Remarks: In the univariate setting, Theorem 3 shows that Filterpd achieves the optimal sub-
Gaussian deviation bound. In the multivariate setting, our theoretical upper bounds are weaker

than the guarantees of GMOM (Minsker, 2015); they achieve a rate of
�

trace(Σ) log(1/δ)
n (note the

dependence on p).

B.2 OPTIMUM T FOR HEAVY-TAILED LINEAR REGRESSION

In Theorem 2, we stated the rate of convergence of RGD− Filterpd to θ∗, which is given by:

��θt − θ∗�2 ≤ κt�θ∗ − θ0�2 +
C2σ

1− κ

��
trace (Σx)

n/T

�
+

C2σ

1− κ

��
�Σx�2 log(T/δ)

n/T

�

Note that setting T ≈ log1/κ

�
σ
�

trace(Σx)
n +

�
�Σx�2 log(1/δ)

n

�
suggests that upto log-

arithmic factors for sufficiently large number of samples, we get an error rate of

�O
�
σ

��
trace(Σx)

n +
�

�Σx�2 log(1/δ)
n

��
where �O(·) hides logarithmic factors. In comparison, er-

ror rates in Prasad et al. (2020); Hsu & Sabato (2016) - which have studied this problem as well –

scale as �O
��

trace(Σx) log(1/δ)
n

�
. Other previous works in statistics (Fan et al., 2017; Sun et al.,

2019) achieve similar rates, but under the additional assumption that the covariates are sub-Gaussian.
Recently, Cherapanamjeri et al. (2020) also studied the problem of heavy-tailed linear regression,
when the covariates are isotropic and have certifiably bounded 8th moments. In this setting, barring
logarithmic factors, they achieve the same rate as us, but at a better worst-case sample complexity
of p3/2, whereas we have p3. However, the proposed estimator in Cherapanamjeri et al. (2020) is
based on a degree 8 sum-of-squares program and is not yet practical and they only focus on the when
Σx is identity.

B.3 GUARANTEES FOR RGD− Filterpd FOR GENERALIZED LINEAR MODELS

In this setting, we observe data {(x1, y1), . . . (xn, yn)}, where each (xi, yi) ∈ Rp ×Y . We suppose
that the (x, y) pairs sampled from the true distribution Pθ∗ are linked via a linear model such that
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when conditioned on the covariates x, the response variable has the distribution:

Pθ∗(y|x) ∝ exp

�
y �x, θ∗� − Φ(�x, θ∗�)

c(σ)

�
(7)

Here c(σ) is a fixed and known scale parameter and Φ : R �→ R is the link function. We focus on
the random design setting where the covariates x ∈ Rp, have mean 0, and covariance Σx. We use
the negative conditional log-likelihood as our loss function, i.e.

L̄(θ; (x, y)) = −y �x, θ�+ Φ(�x, θ�) (8)

Here we assume that the covariates have bounded 8th moment and that Φ�(·) is smooth around θ∗.
Specifically, we assume that there exist universal constants LΦ,2k, B2k such that

Ex

�
|Φ�(�x, θ�)− Φ�(�x, θ∗�)|2k

�
≤ LΦ,2k�θ∗ − θ�2k2 +BΦ,2k, for k = 1, 2

We also assume that Ex[
��Φ(t)(�x, θ∗�)

��k] ≤ MΦ,t,k for t ∈ {1, 2, 4}, where Φ(t)(·) is the tth-
derivative of Φ(·).
Theorem 4. Consider the statistical model in (7). Given n pairs of samples, where n satisfies
the condition in (3), then RGD− Filterpd when initialized at θ0 with stepsize η = 2/(τu+τ�) and
confidence δ then, it returns iterates {�θt}Tt=1 which with probability at least 1− δ satisfy:

��θt − θ∗�2 ≤ κt�θ∗ − θ0�2 +
C∗

1− κ

��
trace (Σx)

n/T
+

�
�Σx�2 log(1/δ/T)

n/T

�
, (9)

where C∗ = C2

�
B

1
4

Φ,4 + c(σ)1/2M
1
4

Φ,2,2 + c(σ)
3
4M

1
4

Φ,4,1

�
for some contraction parameter κ < 1.

B.4 GUARANTEES FOR RGD− Filterpd FOR LOGISTIC REGRESSION

In this setting, we observe data {(x1, y1), . . . (xn, yn)}, where each (xi, yi) ∈ Rp × {0, 1}. We
suppose that the (x, y) pairs sampled from the true distribution Pθ∗ are linked via a linear model
such that when conditioned on the covariates x, the response variable has the distribution:

Pθ∗(y = 1|X = x) = σ(�x, θ∗�) (10)

where σ(z) = 1/(1+exp(−z))). We seek to minimize the negative log-likelihood, given as:

L̄(θ; (x, y)) = − log(σ(�x, θ�)) = −y �x, θ�+ log(1 + exp(�x, θ�)) (11)

The Hessian of the population risk is given by

∇2R(θ) = Ex

�
σ(�x, θ�)(1− σ(�x, θ�))xxT

�
.

Note that as θ diverges, the minimum eigenvalue of the Hessian approaches 0 and the loss is no
longer strongly convex. To prevent this, we take the parameter space Θ to be bounded i.e. Θ = {θ :
θ ∈ Rp, �θ�2 ≤ B} for some finite B > 0.

Corollary 5. Consider the statistical model in (10). Given n pairs of samples, where n satisfies the
condition in (5), RGD− Filterpd when initialized at θ0 with step size η = 2/(τu+τ�) and confidence
parameter δ returns iterates {�θt}Tt=1 which with probability at least 1− δ satisfy:

��θt − θ∗�2 ≤ κt�θ∗ − θ0�2 +
��

trace (Σx)
n/T

+

�
�Σx�2 log(1/δ/T)

n/T

�
(12)

for some contraction parameter κ < 1.
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(a) Training DCGAN on
CIFAR-10

(b) Training DCGAN on MNIST (c) Training Real-NVP on
CIFAR-10

Figure 5: Variation of estimated α-index across different iterations for different models and datasets.
(a) shows the variation of the estimated index for the generator gradient norms of DCGAN when
trained on the CIFAR-10 dataset. (b) shows the variation of the estimated index for the generator
gradient norms of DCGAN when trained on the MNIST dataset. (c) shows the variation of the esti-
mated index for complete gradient norms over iterations for Real-NVP trained on the CIFAR-10
dataset

C SUPPLEMENTARY DETAILS REGARDING THE EMPIRICAL STUDY IN
SECTION 3

First, we present the variation of the estimated α-index computed using the α-index estimator dis-
cussed in Section 3. To compute this α-index, we sample 10000 gradients from the models. There-
fore, the estimated α-index at iteration t is that computed after sampling 10000 gradients at the end
of the tth iteration. Figure 5 showcases this variation.

While these estimated indices can be used to judge how heavy the tail of a distribution is as compared
to a normal distribution, there are some drawbacks of the used estimator which have been highlighted
earlier. To validate our the α-index estimation for heavy-tailedness, we also use the kurtosis ratio to
measure heavy-tailedness relative to a normal distribution. Given n samples {Xi}ni=1, the estimated
kurtosis ratio is given by:

�κ =

1

n

n�

i=1

(Xi − X̄)4

�
1

n

n�

i=1

(Xi − X̄)2

�2

where X̄ =
1

n

n�

i=1

Xi. For samples from a normal distribution, this tends to 3 as n → ∞. A quantity

greater than 3 could be indicative of heavy-tailedness.

In Figure 6, we plot the variation of �κ1/4 with iterations. We can observe that the trends more or less
seem to match; the troughs and crests are attained at the same places.

D SYNTHETIC EXPERIMENTS FOR MEAN ESTIMATION

Setup We generate x ∈ Rp from an isotropic zero-mean heavy-tailed distribution, namely the mul-
tivariate Pareto distribution. For a Pareto distribution with tail-parameter β, the kth order moments
exists only if k < β. We fix β = 3 in our experiments. In this setup, we experiment with different
n, p and δ. For each setting of (n, p, δ), cumulative metrics are reported over 2000 trials. We vary n
from 100 to 500, p from 20 to 100 and δ from 0.01 to 0.1.

Methods We compare Filterpd with two baselines: sample mean and GMOM (Minsker, 2015).

Metric and Hyperparameter Tuning For any estimator �θn,δ , we use �(�θn,δ) = ��θ − µ(P )�2 as
our primary metric. We also measure the quantile error of the estimator, i.e. Qδ(�θn,δ) = inf{α :

Pr(�(�θn,δ) > α) ≤ δ}. This can also be thought of as the length of confidence interval for a
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(a) Training DCGAN on
CIFAR-10

(b) Training DCGAN on MNIST (c) Training Real-NVP on
CIFAR-10

Figure 6: Variation of estimated kurtosis ratio across different iterations for different models and
datasets. (a) shows the variation of the estimated ratio for the generator gradient norms of DCGAN
when trained on the CIFAR-10 dataset. (b) shows the variation of the estimated ratio for the gener-
ator gradient norms of DCGAN when trained on the MNIST dataset. (c) shows the variation of the
estimated ratio for complete gradient norms over iterations for Real-NVP trained on the CIFAR-10
dataset

(a) Qδ(�θn,δ) vs.
�

log(1/δ)
for p = 20 and n = 500

(b) Qδ(�θn,δ) vs. n
for p = 20 and δ = 0.1

(c) Qδ(�θn,δ) vs. p
for n = 500 and δ = 0.1

Figure 7: Results for Heavy-Tailed Mean Estimation. Smaller values for Qδ(�θn,δ) are better.

(a) Qδ(�θn,δ) vs.
�

log(1/δ)
for p = 20 and n = 500

(b) Qδ(�θn,δ) vs. n
for p = 20 and δ = 0.1

(c) Qδ(�θn,δ) vs. p
for n = 500 and δ = 0.1

Figure 8: Results for Heavy-Tailed Mean Estimation – comparing the randomized and greedy vari-
ants of Filterpd. Smaller values for Qδ(�θn,δ) are better.

confidence level of 1 − δ. For GMOM, we follow the recommendation of (Minsker, 2015) and set
the number of blocks k is set to �3.5 log(1/δ)�. We also set the number of iterations in Filterpd to
�3.5 log(1/δ)�.

Results Figure 7 shows that our filtering estimator clearly outperforms both baselines across several
metrics. Figure 7a show that for any confidence level 1−δ, the length of the oracle confidence inter-
val (Qδ(�θn,δ)) for our estimator is better than all baselines. We also see better sample dependence
in Figure 7b, and better dimension dependence in Figure 7c.

The version of Filterpd that we implement is the greedy version, wherein we discard the point with
the maximum score, as opposed to sampling the point to discard. We conduct a comparison of both
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versions in Figure 8. Note that the variations in the metric are not significant, and that the greedy
variant performs better (marginally) than the randomized variant.

We also conduct a preliminary comparison to the spectral algorithm in Lei et al. (2020). Due to
many tuning parameters in the fast spectral estimator proposed in Lei et al. (2020), we were unable
to run a comprehensive analysis in sufficient time. However, some initial runs suggested that our
estimator performed better:

n ↓ / Estimator → Filterpd Spectral (Lei et al., 2020)
32 1.17 1.56
64 0.81 1.27
128 0.58 0.92

Table 3: Variation of �2 error ��θn,δ − θ∗�2 with n for different algorithms

The setting considered is a 20-dimensional isotropic multivariate Pareto distribution with tail param-
eter 2.2.

E HYPERPARAMETERS USED FOR THE EXPERIMENTS IN SECTION 5.2

E.1 ADDENDUM TO SECTION 5.2.1

For our experiments, we consider the following hyperparameters settings for training:

Hyperparameter Value
Learning rate 2 · 10−4

α for Streaming − Filterpd 0.75
Latent dimension 128

Discard parameter d for Streaming − Filterpd 5
ADAM (β1,β2) (0.5, 0.999)

Batch size 64
Number of points discarded in the norm removal baseline 5

Clipping parameter in Clip 10
Number of Buckets in GMOM 5

The code that we provide contains all these as defaults, and the implementation is using PyTorch
1.5.0. Further environment details are specified in the code provided.

For computing the Parzen window based log-likelihood scores, we use the original code authored
by Ian Goodfellow as a part of Goodfellow et al. (2014). For computing the Inception and MODE
scores, we sample 10000 images from the respective models trained on CIFAR10 and MNIST. For
this, we adapt code from Shane Barratt et. al. written to complement the preprint2.

We also present a comparison of times taken by the algorithms considered in the table below.

Algorithm Time Taken per iteration (s)
Sample Mean 0.029

Clipping 0.033
Norm Removal 0.926

GMOM 0.942
Streaming − Filterpd 1.609

Filterpd 5.624

Table 4: Time taken per iteration when training a DCGAN on the MNIST dataset.

2https://arxiv.org/abs/1801.01973
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The reason we see a vast difference between the groups Norm Removal, GMOM,
Streaming − Filterpd, Filterpd and Sample Mean, Clipping is because sample mean and clipping
do not require the computation of element-wise gradients, whereas the algorithms in the other group
do. As specified earlier, we use PyTorch 1.5.0, and this version of PyTorch does not have the func-
tionality to parallelize element-wise gradient computation unlike JAX, a more recent framework.
However, newer versions of PyTorch have this feature available in an experimental phase, and we
will update our codebase when this is available out of this phase. As expected, Filterpd takes the
longest, and this is due to the multiple leading eigenvector computations. As remarked in Section 4,
we see that Streaming − Filterpd is approximately 4× faster than Filterpd and due to computational
costs, we do not run Filterpd.

E.2 ADDENDUM TO SECTION 5.2.2

We implemented Streaming − Filterpd on top of the RealNVP implementation by Chris Chute3.
The implementation that we have borrowed from has retained the same hyperparameter settings as
the original implementation in Dinh et al. (2016).

F PROOF FOR THEOREM 1

We restate the theorem for brevity:

Theorem 1. Suppose {zi}ni=1 ∼ P , where P has bounded 4th moment and n satisfies

n ≥ Cr2(Σ)
log2(p/δ)

log(1/δ)
, r(Σ)

def
=

trace (Σ)

�Σ�2
(13)

Then, Filterpd when instantiated for T ∗ = �C log(1/δ)� steps returns an estimate �θδ which satisfies
with probability at least 1− 4δ, δ ∈ (0, 0.25):

��θδ − µ�2 � OPTn,Σ,δ

Proof Sketch. The proof follows the steps highlighted below:

• We first show that given an arbitrary collection of points S, and information about the size
of an unknown subset G0 ⊂ S, then Filterpd approximates the mean of the points in G0

efficiently with high probability. This is formally stated in Lemma 1.

• We then show that given n samples {xi}ni=1 from a distribution P with bounded moments,
there exists a good subset of points. This good subset satisfies the following properties:

1. The size of the set is sufficiently large.
2. The mean of the points in this set concentrates strongly around the mean of P
3. The covariance of the points is well-behaved.

We define this good subset via a good point selector O : Rp → {0, 1} as defined below:

O(x) = I {�x− µ(P )�2 ≤ R}

and the good subset is the set of points G0 def
= {xi : O(xi) = 1}. We formally state the

assertions in Lemma 2.

• For a specific setting of R in Lemma 2, we obtain the statement of Theorem 1.

Lemma 1. Let S be any arbitrary collection of points, and let G0 ⊂ S be an unknown sub-
set of size nG0 such that 8n−nG0

n + 36 log(1/δ)
n < 1

4 . Then, when Algorithm 1 is run for T ∗ =

3https://github.com/chrischute/real-nvp
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�3(n− nG0) + 18 log(1/δ)� steps on S, it returns an estimate �θδ such that with probability at least
1− δ,

����θδ −
1

nG0

�

xi∈G0

xi

���
2
� �ΣG0�1/2

2

�
n− nG0

n
+

log(1/δ)

n

�1/2

,

where ΣG0 is the covariance of the unknown subset of points.

Lemma 2. Let P be any distribution with mean µ and covariance Σ and bounded 2k-moments for
k ∈ {1, 2}. Furthermore, define:

�µn =

�
n�

i=1

O(xi)

�−1 � n�

i=1

xiO(xi)

�
�ΣO
n =

�
n�

i=1

O(xi)

�−1 � n�

i=1

(xi − �µn)
⊗2O(xi)

�

as the sample mean and covariance of points in the good subset respectively.

For any δ ∈ (0, 0.5) such that
�√

trace(Σ)

R

�2k

+ log(1/δ)
n < c with probability at least 1− 3δ,

n− nG0

n
≤ C1

log(1/δ)

n
+

(
�
trace (Σ))2k

R2k

��µn − µ�2 � OPTn,Σ,δ +
R log(1/δ)

n
+ �Σ�1/2

2

��
trace (Σ)

R

�2k−1

��ΣO
n �2 � �Σ�2 +R�Σ�1/2

2

�
log(p/δ)

n
+

R2 log(p/δ)

n

We present the proofs of Lemmas 1 and 2 in Sections F.1 and F.2 respectively.

Complete Proof. Using Chebyshev’s inequality, we have that,

Pr (�x− µ�2 ≥ R) ≤ E[�x− µ�2k2 ]

R2k

Now, to see that E[�x − µ�2k2 ] ≤ C
��

trace (Σ)
�2k

. The case for k = 1 is clear. We now show

it for k = 2. Let Σ = QΛQT and {qi}pi=1 be the eigenvectors of Σ and let λi = qTi Σqi be the
associated eigenvalue. Then,

(x− µ)T (x− µ) =
�

i

(qTi (x− µ))2 =
�

i

ν2i , (14)

where νi = qTi (x − µ). Now, �x − µ�42 =

��
i

ν2i

�2

=
�

i ν
4
i + 2

�
i�=j ν

2
i ν

2
j . Now, since we

assume bounded fourth moments, we get that, E[ν4i ] ≤ C(qTi Σqi)
2 = Cλ2

i , Using Cauchy-Schwarz

inequality, we get that E[ν2i ν2j ] ≤
�
E[ν4i ]

�
E[ν4j ] = Cλiλj . Hence, we have that,

E[�x− µ�42] ≤ C


�

i

λ2
i + 2

�

i�=j

λiλj


 = C4trace (Σ)

2

Consequently, we have:

Pr (�x− µ�2 ≥ R) ≤ E[�x− µ�42]
R4

= C4
trace (Σ)

2

R4
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Hence, for k = 1, 2, we have that,

Pr (�x− µ�2 ≥ R) ≤

��
trace (Σ)

�2k

R2k

This leads to the fact that for xi ∼ P , Pr(O(xi) = 1) ≥ 1 − α, where α =

�√
trace(Σ)

�2k

R2k . Using
Bernstein’s inequality, we know that with probability at least 1− δ:

nG0 ≥ n

�
1− C2

log(1/δ)

n

�
⇒ n− nG0

n
� log(1/δ)

n
(15)

From Lemma 1, we have with probability at least 1− δ:

��θδ − �µn�2 � �ΣG0�1/2
2

�
n− nG0

n
+

log(1/δ)

n

�1/2

(16)

From Lemma 2, we bound �ΣG0�1/2
2 as:

�ΣG0�2 ≤ C1�Σ�2 + C2R�Σ�1/2
2

�
log(p/δ)

nG0

+R2 log(p/δ)

nG0

(17a)

�ΣG0�1/2
2 ≤ C1�Σ�

1/2
2 + C2

√
R�Σ�1/4

2
4

�
log(p/δ)

nG0

+R

�
log(p/δ)

nG0

(17b)

Plugging the above bound and (15) in (16), with R =

√
trace(Σ)

�
log(1/δ)

n

�1/4
, we get,

�ΣO
n �

1/2
2 ≤ C1�Σ�

1/2
2 + C2trace (Σ)

1/4 �Σ�1/4
2

�
log(p/δ)
nG0

�1/4

�
log(1/δ)

n

�1/8

� �� �
T1

+
�

trace (Σ)

�
log(p/δ)
nG0

�
log(1/δ)

n

�1/4

� �� �
T2

(18)

Some algebra shows that when n ≥ Cr2(Σ) log
2(p/δ)

log(1/δ) , T1, T2 ≤ O(�Σ�2), which gives:

��θδ − �µn�2 � �Σ�1/2
2

�
log(1/δ)

n
(19)

Again invoking Lemma 2, we get with probability at 1− δ:

�µ(P )− �µn�2 � OPTn,Σ,δ +
�
trace (Σ)

�
log(1/δ)

n

�3/4

� �� �
T3

(20)

Under our assumption, T3 � �Σ�1/2
2

�
log(1/δ)

n . By an application of the triangle inequality and
union bound, we obtain the statement of the theorem.
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F.1 PROOF FOR LEMMA 1

Proof. Our proof is split into two keys Lemmas. Firstly, in Lemma 3, we show that the with prob-
ability at least 1 − δ, when the algorithm terminates after T ∗

δ = �18 log(1/δ) + 3(n− nG0)�, then
the covariance of the remaining samples is well-behaved. Finally, in Lemma 4 we show that under
our assumptions that 8n−nG0

n +36 log(1/δ)
n < 1

4 , when the algorithm stops after T ∗
δ steps, the sample

mean of points, �θ
ST∗

δ
is close to the mean of G0. In particular, we show that

��θG0 − �θ
ST∗

δ
�2 ≤ C1

�
8
n− nG0

n
+ 36

log(1/δ)

n

�1/2

�ΣG0�1/2
2 , (21)

which recovers the statement of the Lemma.

Lemma 3. When Algorithm 1 is instantiated on S0 for T ∗
δ = �18 log(1/δ) + 3(n− nG0)� steps,

then with probability 1− δ,
�ΣST∗ �2 ≤ C2�ΣG0�2

Proof. At each step of Algorithm 1, we remove one sample based on the probability distribution of
the scores. Let l = 1, 2, . . . , n be the steps of the algorithm. Note that the steps of the Algorithm
are dependent, hence to obtain a high probability statement, we will have to use martingale style
analysis. The martingale analysis in the proof mostly follows from (Xu et al., 2013; Liu et al., 2020).

Let F l be the filtration generated by the sets of events until step l. At step l, let Sl be the set of
samples, Gl be the subset of G0 stil in Sl, i.e. {xi ∈ Sl ∩ G0}. Let Bl = Sl\Gl be the remaining
samples. Note that |Sl| = nl = n− l, and Sl, Gl, Bl ∈ F l.

Let τi be some score for each point. Define E l be an event variable at step l which is True if

�

i∈Gl

τi ≥
1

(γ − 1)

�

j∈Bl

τj ≡
�

i∈Gl

τi ≥
1

γ

�

j∈Sl

τj

for say γ = 3. Intuitively, this means the event is true when the sum of the scores of the good points
is larger compared to the bad points. Now, when E l is false, we sample a point j according τj and
remove it. Some algebra shows, that when E l is false, then with constant probability of 2/3, we
throw a point from Bl.

Pr(sample removed at Step l ∈ Bl|F l) =

�
i∈Bl

τi

�
j∈Sl

τj
≥ γ − 1

γ
= 2/3

Essentially, our argument shows that whenever E l is false, then we are more likely to throw a point
from the bad set. This means, that in the next iteration the fraction of bad points will reduce. To
argue more formally, let T def

= min{l : E l is true} be the first time that E l is True. Then, our goal is
to show that T is small.

To show this, based on T , define Y l, as

Y l =

�
|BT−1|+ γ−1

γ (T − 1), if l ≥ T

|Bl|+ γ−1
γ l, if l < T

Now, we show that {Y l,F l} is a supermartingale, i.e. E[Y l|F l−1] ≤ Y l−1. To see this, we split it
into three cases:
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• Case 1. l < T . This means that E l is false.

Y l − Y l−1 = |Bl|− |Bl−1|+ γ − 1

γ
, (22)

Now, |Bl| = |Bl−1| if no bad point is thrown, and |Bl| = |Bl−1|− 1 if the point thrown is
bad. Since, E l−1 is false, hence, we have that,

E[Y l − Y l−1|F l−1] = −1(Pr(sample removed at Step l − 1 ∈ Bl−1)) +
γ − 1

γ
(i)
≤0

where (i) is true because E l−1 is false.

• Case 2. l = T , This follows by construction, because at l = T , Y l = Y l−1.

• Case 3. l > T , This also follows by construction.

So, we have that Y l,F l is a supermartingale. Now, we need to bound the steps Tδ such that the
probability that the algorithm doesn’t stop in Tδ steps is less than δ, i.e.

Pr

�
Tδ�

l=1

�
E l

�c
�

≤ δ

Note, that,

Pr

�
Tδ�

l=1

�
E l

�c
�

= Pr (T ≥ Tδ)
(ii)
≤ Pr

�
Y Tδ ≥ γ − 1

γ
Tδ

�
(23)

where (ii) follows because, if T > Tδ =⇒ Y Tδ = |BTδ |+ γ−1
γ Tδ ≥ γ−1

γ Tδ . Now,

Pr

�
Y Tδ ≥ γ − 1

γ
Tδ

�
= Pr

�
Y Tδ − Y 0 ≥ γ − 1

γ
Tδ − Y0

�

Now, defining Dl = Y l − Y l−1, and let Zl = Dl − E[Dl|D1, D2, . . . , Dl−1]. Then,

Y Tδ − Y 0 =

Tδ�

l=1

Dl =

Tδ�

l=1

Zl +

Tδ�

l=1

E[Dl|D1, D2, . . . , Dl−1]

Since, we know that {Y l,F l} is a supermartingale, hence the difference process is such that

E[Dl|D1, D2, . . . , Dl−1] ≤ 0

This implies that

Y Tδ − Y 0 ≤
Tδ�

l=1

Zl =⇒ Pr

�
Y Tδ − Y 0 ≥ γ − 1

γ
Tδ − Y0

�
≤ Pr

�
Tδ�

l=1

Zl ≥ γ − 1

γ
Tδ − Y0

�

Since, |Dl| ≤ 1, and Zl ≤ 2 are bounded, hence we can use the Azuma-Hoeffding inequality to
bound the above probability. In particular,

Pr

�
Tδ�

l=1

Zl ≥ γ − 1

γ
Tδ − Y0

�
≤ exp


−

�
γ−1
γ Tδ − Y0

�2

8Tδ



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Now, we want a Tδ such that, exp
�
− ( γ−1

γ Tδ−Y0)
2

8Tδ

�
≤ δ. Solving the quadratic, we need a Tδ such

that, �
γ − 1

γ

�2

T 2
δ −

�
8 log(1/δ) + 2Y 0 γ − 1

γ

�
Tδ + Y 2

0 ≥ 0

Some algebra shows that T ∗
δ =

�
8 log(1/δ) γ2

(γ−1)2 + 2Y 0 γ
γ−1

�
satisfies the above equation. Hence,

we know that with probability at least 1−δ, there exists at least one good event in 1 to T ∗
δ iterations.

Note than Y 0 = nB0 = n− nG0 .

While we have established that there is at least one good event in 1 to T ∗
δ iterations, suppose m ∈

[1, Tδ∗ ] is the first index such that Em is true. Next, we establish a series of deterministic results.

• When Em is True, then �ΣSm�2 ≤ 16�ΣGm�2 (See Claim 3).

• Coupling this with Claim 2, which shows that �ΣGm�2 ≤ 2�ΣG0�2, we get that �ΣSm�2 ≤
32�ΣG0�2.

• Hence, we have that with probability 1 − δ, there exists a point in time m ∈ [1, Tδ] such
that,

�ΣSm�2 ≤ 32�ΣG0�2
• Now, observe that ST∗ ⊆ Sm, i.e. the final returned set of points is a subset of the points

at m. Claim 4 shows that the covariance at ST∗
is such that �ΣST∗ �2 ≤ n−m

n−T∗ �ΣSm�2 ≤
C1�ΣSm�2.

Chaining the above arguments shows that �ΣT∗�2 ≤ C�ΣG0�2.

Next, we state and prove Lemma 4. Recall that E l is defined to be an event variable at step l which
is True if �

i∈Gl

τi ≥
1

(γ − 1)

�

j∈Bl

τj ≡
�

i∈Gl

τi ≥
1

γ

�

j∈Sl

τj ,

where Sl is set of samples at step l, and Gl = {xi ∈ Sl ∩ G0} is the subset of samples from G0

which are still in Sl. Also, recall that for Algorithm 1, the sampling weights τi at any step � are

defined as τi =
�
vT (xi − �θSl)

�2

, where v is the top unit-norm eigenvector of �ΣSl and �θSl is the

sample mean of Sl. Then, in Lemma 3 we showed that with probability 1− δ,

�Σ
ST∗

δ
�2 ≤ C2�ΣG0�2.

Lemma 4. Let φ =
n−nG0

n . Then, under the assumption that 8φ+ 36 log(1/δ)
n < 1

4 , we have that for
m = T ∗

δ

��θG0 − �θSm�2 ≤ 10
√
2

�
8φ+ 36

log(1/δ)

n

�1/2

�ΣG0�1/2
2 ,

Proof. Using Lemma 6, we get that,

��θG0 − �θSm�2 ≤
�
TV (P1, P2)

1−
�

TV (P1, P2)

�
�ΣG0�1/2

2 + �ΣSm�1/2
2

�
,

where P1 is the equal weight discrete distribution with support on Sm, and P2 is the equal weight
discrete distribution with support on G0. Lemma 3 already controls tell us that for m = T ∗

δ ,
�ΣSm�2 ≤ C2�ΣG0�2. We show next that

TV (P1, P2) ≤ 8φ+ 36
log(1/δ)

n
,

which finishes the proof of the Lemma.
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To bound the TV distance between P1 and P2, we use triangle inequality. Let P3 be the equal
weight discrete distribution with support on Gm. Let τ ∈ [1,m] ≤ Tδ be the number of ”good”
points thrown out in m ≤ Tδ steps. For γ = 3, we have that,

Tδ = 18 log(1/δ) + 3nB0

TV (P1, P2) ≤ TV (P1, P3) + TV (P3, P2) (24)

≤ nSm − nGm

nSm

+
nG0 − nGm

nG0

(25)

=
n− Tδ − (n− nB0 − τ)

n− Tδ
+

τ

n− nB0

(26)

=
nB0 + τ − Tδ

n− Tδ
+

τ

n− nB0

(27)

≤ nB0

n− Tδ
+

Tδ

n− nB0

(28)

=
φ

1− 18 log(1/δ)
n − 3φ

+
18 log(1/δ)

n + 3φ

1− φ
(29)

where φ =
nB0

n . Now under the assumption that 3φ+ 18 log(1/δ)
n < 1

2 , the first term is less than 2φ.

F.1.1 AUXILLARY RESULTS FOR PROOF OF LEMMA 1

Lemma 5. Let S be a collection of n points. And let G be a subset of S containing nG points.

Define τi =
�
vT (xi − �θS)

�2

, where v is the top unit-norm eigenvector of �ΣS and �θS is the sample

mean of S. Let λ = �ΣS�2. If λ > 1+ψ
n

nGγ −ψ�ΣG�2, then

�

i:xi∈G

τi<
1

γ

n�

j=1

τj ,

where ψ =

�
1√
n

n−nG
−1

�2

< n
nGγ .

Proof. Let �θG be the sample mean of points in G.

1

nG

�

i:xi∈G

τi =
1

nG

�

i:xi∈G

vT (xi − �θS)(xi − �θS)T v

= vT

�
1

nG

�

i:xi∈G

(xi − �θG)(xi − �θG)T
�
v +

�
vT (�θG − �θS)

�2

≤ vTΣGv + ��θG − �θS�22

≤ vTΣGv +


 1�

n
n−nG

− 1




2

� �� �
ψ

(�ΣS�2 + �ΣG�2)

≤ �ΣG�2 (1 + ψ) + ψ�ΣS�2
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Now, if �ΣS�2 ≥ 1+ψ
n

nGγ −ψ�ΣG�2, then we have that

1

nG

�

i:xi∈G

τi ≤
n

nGγ
�ΣS�2

=
n

nGγ

n�

j=1

(vT (xj − �θS))2

=⇒
�

i:xi∈G

τi ≤
1

γ

n�

j=1

τj

Claim 1. Suppose P1 is the equal weight discrete distribution with support on Sm, and P2 is the
equal weight discrete distribution with support on G0. Then, when φ =

nB0

n is such that 3φ +
18 log(1/δ)

n < 1
2 ,

TV (P1, P2) ≤ 8φ+ 36
log(1/δ)

n

Proof. To bound the TV distance between P1 and P2, we use triangle inequality. Let P3 be the
equal weight discrete distribution with support on Gm. Let τ ∈ [Tδ] be the number of ”good” points
thrown out in Tδ steps. For γ = 3, we have that,

Tδ = 18 log(1/δ) + 3nB0

TV (P1, P2) ≤ TV (P1, P3) + TV (P3, P2)

≤ nSm − nGm

nSm

+
nG0 − nGm

nG0

=
n− Tδ − (n− nB0 − τ)

n− Tδ
+

τ

n− nB0

=
nB0 + τ − Tδ

n− Tδ
+

τ

n− nB0

≤ nB0

n− Tδ
+

Tδ

n− nB0

=
φ

1− 18 log(1/δ)
n − 3φ

+
18 log(1/δ)

n + 3φ

1− φ

where φ =
nB0

n . Now under the assumption that 3φ + 18 log(1/δ)
n < 1

2 , the first term is less than
2φ.

Lemma 6 (Kothari et al. (2018)). Given a collection of points S of size n. Let P1 and P2 be discrete
empirical distributions on n. Then, we have that,

�Exi∼P1 [xi]− Exi∼P2[xi]�2 ≤
�
TV (P1, P2)

1−
�
TV (P1, P2)

�
��ΣP1�

1/2
2 + ��ΣP2�

1/2
2

�
(30)

where �ΣP1 is the covariance matrix when xi ∼ P1, and �ΣP2 is the empirical covariance matrix of
when xi ∼ P2

Proof. Consider a joint distribution (also called coupling) ω∗(z, z�) over S × S such that its in-
dividual marginal distributions are equal to P1 and P2; i.e. ω(z) = P1 and ω(z�) = P2 and
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ω(z �= z�) = TV (P1, P2). Then, we have that

�Exi∼P1
[xi]− Exi∼P2[xi]�2 = sup

v∈Sp−1

| �v,Ew∗ [z − z�]� |

= sup
v∈Sp−1

Ew∗ [| �v, z − z�� |]

= sup
v∈Sp−1

Ew∗ [1(z �= z�) �v, z − z�� |]

≤ (Ew∗ [(1(z �= z�))2])
1/2 sup

v∈Sp−1

Ew∗ [(�v, z − z��)2]1/2

≤ TV (P1, P2)
1/2

�
sup

v∈Sp−1

�
Ew∗

��
�v, z − Exi∼P1

[xi] + Exi∼P1
[xi]

−Exi∼P2
[xi] + Exi∼P2

[xi]− z��2
��1/2

��

≤ TV (P1, P2)
1/2

�
sup

v∈Sp−1

Ew∗

�
(�v, z − Exi∼P1

[xi]�)2
�1/2

+ �Exi∼P1
[xi]− Exi∼P2

[xi]�2
�

+ TV (P1, P2)
1/2 sup

v∈Sp−1

�
Ew∗

�
(�v, z − Exi∼P2

[xi]�)2
�1/2

�

≤
�
TV (P1, P2)

1−
�

TV (P1, P2)

�
�ΣP1

�1/2
2 + �ΣP2

�1/2
2

�

Claim 2. Under the assumption that 4φ+ 18 log(1/δ)
n < 1

2 , we have that,

�ΣGm�2 ≤ 2�ΣG0�2

Proof. We first show that �ΣGm�2 ≤ nG0

nGm
�ΣG0�2.

ΣG0 =
1

nG0

�

i∈G0

(xi − �θG0)(xi − �θG0)T (31)

=
1

nG0

�

i∈G0

(xi − �θG0)(xi − �θG0)T (I {xi ∈ Gm}+ I {xi �∈ Gm}) (32)

=
1

nG0

�

i∈G0

(xi − �θG0)(xi − �θG0)T (I {xi ∈ Gm}) (33)

+
1

nG0

�

i∈G0

(xi − �θG0)(xi − �θG0)T (I {xi �∈ Gm})
� �� �

T1

(34)

=
nGm

nG0

�
ΣGm + (�θGm − �θG0)(�θGm − �θG0)T

�
+ T1 (35)

Now for v being the top eigenvector of ΣGm , we get that,

nGm

nG0

vTΣGmv +
nGm

nG0

(vT (�θGm − �θG0))2� �� �
≥0

+ vTT1v� �� �
≥0

= vTΣG0v

Hence, we get that,

�ΣGm�2 ≤ nG0

nGm

�ΣG0�2,
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Now,

nG0

nGm

=
n− nB0

n− nB0 − τ
≤ n− nB0

n− nB0 − Tδ
=

n− nB0

n− 18 log(1/δ)− 4nB0

=
1− φ

1− 18 log(1/δ)
n − 4φ

,

where φ =
nB0

n . Under our assumption, we get that, nG0

nGm
< 2.

Claim 3. Under the assumption that φ =
nB0

n is such that 3φ + 18 log(1/δ)
n < 1

2 , and 2φ < 0.12,
then when Em is True, we have that,

�ΣSm�2 ≤ 16�ΣGm�2

Proof. Suppose P1 is the equal weight discrete distribution with support on Sm and let P3 be the
equal weight discrete distribution with support on Gm. When Em is True, we know by contrapositive

of Lemma 5 that �ΣSm�2 ≤ 1+ψm
nSm
nGmγ −ψm

�ΣGm�2, where ψm =

� √
TV (P1,P3)

1−
√

TV (P1,P3)

�2

.

Note that for TV (P1, P3) =
nSm−nGm

nSm
. Hence, nSm

nGmγ = 1
γ(1−TV (P1,P3))

For γ = 3, the term
1+ψm

nSm
nGmγ −ψm

can be rewritten solely as a function of the TV (P1, P3). In particular, it can be written
as

f(x) =

�
1 +

�
x0.5

1 − x0.5

�2
��

3
�
1− x0.5

�2 �
1 + x(0.5)

��

1− x(0.5) − 3x− 3x(1.5)

Now TV (P1, P3) = nSm−nGm

nSm
=

(n−Tδ)−(n−nB0−τ)

n−Tδ
=

nB0+τ−Tδ

n−Tδ
≤ nB0

n−Tδ
= φ

1− 18 log(1/δ)
n −3φ

.

Hence, under our assumptions, TV (P1, P3) < 0.12. Some algebra shows that under f(x) is
monotonically increasing for x < 0.12, and in particular, f(0.12) < 16. Hence, we get that
�ΣSm�2 ≤ 16�ΣGm�2.

Claim 4. Let S1 be any collection of points of size n1. Let S2 ⊆ S1 be a subset of size n2 ≤ n1.
Then, we have that

�ΣS2
�2 ≤ n1

n2
�ΣS1

�2

Proof. Let �θS2 be the mean of points in S2. Similarly, let �θS1 be mean of points in S1.

ΣS1
=

1

n1

�

i∈S1

(xi − �θS1
)(xi − �θG0)T (36)

=
1

n1

�

i∈S1

(xi − �θS1
)(xi − �θS1

)T (I {xi ∈ S2}+ I {xi �∈ S2}) (37)

=
1

n1

�

i∈S1

(xi − �θS1
)(xi − �θS1

)T (I {xi ∈ S2}) (38)

+
1

n1

�

i∈S1

(xi − �θS1
)(xi − �θS1

)T (I {xi �∈ S2})
� �� �

T1

(39)

=
n2

n1

�
ΣS2

+ (�θS2
− �θS1

)(�θS2
− �θS1

)T
�
+ T1 (40)

Now for v being the top eigenvector of ΣS2 , we get that,

n2

n1
vTΣS2

v +
nS2

nS1

(vT (�θS2
− �θS1

))2� �� �
≥0

+ vTT1v� �� �
≥0

= vTΣS1
v
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F.2 PROOF OF LEMMA 2

Proof. We controlled the size of G0 in the proof of Theorem 1.

Controlling the mean of G0. Recall from our assumption that

α+ C2
log(1/δ)

n
<

1

2
,

hence we have that |G0| = nG0 > n/2. Let �θG0 = �µn be the mean of the points in G0.

1. Controlling �µ−E[�θG0 ]�2 . This is a deterministic statement and essentially quantifies the
amount the mean can shift, when the random variable is conditioned on an event. We show
this in Claim 5 which was shown in (Steinhardt, 2018; Lai et al., 2016).

Claim 5. [General Mean shift,(Steinhardt, 2018; Lai et al., 2016)] Suppose that a distri-
bution P has mean µ and covariance Σ and bounded 2k moments. Then, for any event A
which occurs with probability at least 1− � ≥ 1

2 ,

�µ− E[x|A]�2 ≤ 2�Σ�1/2
2 �1−

1
2k (41)

Now using this Claim 5 with A being the event that O(x) = 1, we get that

�µ− E[�θG0 ]�2 ≤ 2�Σ�1/2
2 α1−1/(2k) (42)

2. Controlling ��θG0 − E[�θG0 ]�2. This term measures how quickly the samples within G0

converge to their true mean. To show this we use vector version of Bernstein’s inequality.
Let zi

def
= xi − E[�θG0 ] be the centered random variables. Then, we have that

�zi�2 ≤ �θ∗ − E[�θG0 ]�2 + �xi − θ∗�2
≤ 2�Σ�1/2

2 α1−1/(2k) +R

≤ 2R

Similarly,

E[�zi�22] = E[�x− E[x|A]�22|x ∈ A]

=
E[�x− E[x|A]�22|I {x ∈ A}]

P (A)

≤ 2E[�x− E[x|A]�22]
≤ 2E[�x− E[x]�22] + 2�θ∗ − E[x|A]�22
≤ 2trace (Σ) + 4�Σ�2α2−1/(k)

≤ 4trace (Σ)

Now, we first state the vector version of Bernstein’s inequality.

Lemma 7 ((Foucart & Rauhut, 2013, Corollary 8.45)). Let Y1, . . . , YM be independent copies of a
random vector Y ∈ Cp satisfying EY = 0. Assume �Y �2 ≤ K for some K > 0. Let,

Z = �
M�

l=1

Yl�2,E[Z2] = ME[�Y �22],σ2 = sup
�v�2≤1

E[| �v, Y � |2]

Then for t > 0,

Pr
�
Z ≥

√
EZ2 + t

�
≤ exp

�
− t2/2

Mσ2 + 2K
√
EZ2 + tK/3

�
(43)
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We use the above lemma, with Yi = zi
nG0

. Hence, we have that, K = 2R
nG0

. Hence, we have that

Z = �
nG0�
k=1

Yk�2 = ��θG0 − E[�θG0 ]�2. Hence, we have the following,

• E[Z2] ≤ n 4trace(Σ)
n2 = 4 trace(Σ)

n .

• σ2 ≤ 4�Σ�2

n2 . To see this, for any v ∈ Sp−1,

E[(vTY )2] =
1

n2
E[(vT (x− µA))

2|x ∈ A]

where µA is the conditional mean, and A is the event that x s.t. �x− µ�2 ≤ R. We know
that P (A) ≥ 1/2. Hence, we get that,

E[(vTY )2] =
1

n2

E[(vT (x− µA))
2I {x ∈ A}]

P (A)

≤ 2

n2
E[(vT (x− µA))

2]

=
2

n2

�
E[(vT (x− µ))2] + �µ− µA�22

�

=⇒ σ2 ≤ 2

n2
(�Σ�2 + �Σ�2α)

≤ 4�Σ�2
n2

Hence, we get that, with probability at least 1− δ,

��θG0 − E[�θG0 ]�2 ≤C1

�
trace (Σ)

nG0

+ C2�Σ�
1/2
2

�
log(1/δ)

nG0

+ C3R
1/2

��
trace (Σ)

nG0

�1/2 �
log(1/δ)

n0
G

+ C4R
log(1/δ)

nG0

Now, we use that
√
ab ≤ a+ b ∀ a, b ≥ 0. Hence, we get that with probability at least 1− δ

��θG0 − E[�θG0 ]�2 ≤ C5

�
trace (Σ)

nG0

+ C2�Σ�
1/2
2

�
log(1/δ)

nG0

� �� �
T1

+C3R
log(1/δ)

nG0

Using the bound on �E[�θG0 ]− µ�2 from (42), we get that,

��θG0 − µ�2 ≤ �E[�θG0 ]− µ�2 + ��θG0 − E[�θG0 ]�2

≤ T1 + C3R
log(1/δ)

nG0

+ 2�Σ�1/2
2



��

trace (Σ)

R

�2k



1−1/(2k)

= T1 + C3R
log(1/δ)

nG0

+ 2�Σ�1/2
2

�
(
�

trace (Σ))2k−1

R2k−1

�

Under our assumption that (
√

trace(Σ)

R )2k + log(1/δ)
n < c, we know that nG0 ≥ n/2. Hence, we get

get that T1 � OPTn,Σ,δ .
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Controlling the covariance of points in G0. Let G0 = {xi|O(xi) = 1} be the empirical
collection of points chosen by the oracle. Let nG0 = |G0|. Then, we study and bound the operator
norm of ΣG0 . Recall that all oracles have the form I {�xi − µ�2 ≤ R}, i.e., ∀xi s.t. O(xi) = 1, we
have that �xi − µ�2 ≤ R.

Let ΣG0 be the empirical covariance matrix. Then,

ΣG0 =
1

nG0

nG0�

i=1

(xi − �θG0)(xi − �θG0)T ,

where �θG0 is the empirical mean of the points in G0. Recentering it around the true mean θ∗ of P ,
we get that,

ΣG0 =
1

nG0

nG0�

i=1

(xi − θ∗)(xi − θ∗)T − (�θG0 − θ∗)(�θG0 − θ∗)T

Hence, we have that �ΣG0�2 ≤ � 1

nG0

nG0�

i=1

(xi − θ∗)(xi − θ∗)T

� �� �
A

�2. To control, �A�2, we use trian-

gle inequality,

�A�2 ≤ �A− E[A]�2� �� �
T1

+ �E[A]�2� �� �
T2

(44)

1. Controlling T2. Note that E[A] = E[(x− θ∗)(x− θ∗)T |x ∈ G].

E[A] =
E[(x− θ∗)(x− θ∗)T I

�
x ∈ G0

�
]

P (x ∈ G0)
(45)

Let Pr(x ∈ G0) ≥ 1− α. Hence, for any v ∈ Sp−1,

vTE[A]v =
E[(vT (x− θ∗))2I

�
x ∈ G0

�
]

P (x ∈ G0)
≤ �Σ�2

1− α

Under the assumption that α < 1
2 , we get that,

�E[A]�2 ≤ 2�Σ�2

2. Controlling T1. Note that T1 can be controlled using a concentration of measure argument,
and in particular exploits concentration of covariance for bounded random vectors.

Lemma 8 ((Vershynin, 2010, Theorem 5.44)). Let {yi}ni=1 samples such that yi ∈ Rp and
�yi�2 ≤ √

m and E[yyT ] = Σ. Then, with probability at least 1− δ,

� 1
n

n�

i=1

yiy
T
i − Σ�2 ≤ max

�
�Σ�1/2

2

�
log(p/δ)

�
m

n
, log(p/δ)

m

n

�

T1 = � 1

nG0

nG0�

i=1

(xi − θ∗)(xi − θ∗)T − E[A]�2 (46)
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We use Lemma 8 with yi = xi − θ∗. Note that
√
m = R. This means that with probability

1− δ,

T1 ≤ C1R�Σ�1/2
2

�
log(p/δ)

nG0

+R2 log(p/δ)

nG0

Hence, we get that under the assumption that α +
√
α
�

log(1/δ)
n < 1

2 , we recover statement of the
result.

G PROOF OF THEOREM 3

We restate the theorem for brevity:
Theorem 2. Suppose {zi}ni=1 ∼ P , where P has bounded 2nd moment and n satisfies the relation
in (3). Then Algorithm 1 when instantiated for T ∗ = �C log(1/δ)� steps returns an estimate �θδ such
that, with probability at least 1− 4δ, δ ∈ (0, 0.25):

��θδ − µ�2 �
�

trace (Σ) log(p/δ)

n

Proof. The proof follows a similar approach to the proof of Theorem 1, except we set a different
radius parameter R.

By Chebyshev’s and Bernstein’s inequality, we have with probability at least 1− δ:

|nG0 | ≥ n(1− C
log(1/δ)

n
) (47)

Hence, we have that,

n− nG0

n
� log(1/δ)

n
(48)

Let �µn and ΣG0 be the empirical mean and covariance of the points in G0.

From Lemma 1, we know that with probability at least 1− δ,

��θδ − �µn�2 � �ΣG0�1/2
2

�
n− nG0

n
+

log(1/δ)

n

�1/2

(49)

Using Lemma 2, we bound �ΣG0�1/2
2 .

�ΣO
n �2 ≤ C1�Σ�2 + C2R�Σ�1/2

2

�
log(p/δ)

nG0

+R2 log(p/δ)

nG0

�ΣO
n �

1/2
2 ≤ C1�Σ�

1/2
2 + C2R

1/2�Σ�1/4
2

�
log(p/δ)

nG0

�1/4

+R

�
log(p/δ)

nG0

(50)

Plugging R =

√
trace(Σ)

�
log(1/δ)

n

�1/2
, we get,

�ΣO
n �

1/2
2 ≤ C1�Σ�

1/2
2 + C2trace (Σ)

1/4 �Σ�1/4
2

�
log(p/δ)

log(1/δ)

�1/4

+

�
trace (Σ)�
log(1/δ)

n

�
log(p/δ)

n
(51)
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Plugging (48) and (51) into (49), we get that,

��θδ − �µn�2 � �Σ�1/2
2

�
log(1/δ)

n
+

�
trace (Σ) log(p/δ)

n
(52)

Using Lemma 2, and plugging R =

√
trace(Σ)

�
log(1/δ)

n

�1/2
, we get that with probability at least 1− δ,

�µ(P )− �µn�2 � OPTn,Σ,δ +

�
trace (Σ) log(p/δ)

n
(53)

Combining the above equation and 52, we recover the corollary statement.

H PROOF OF THEOREMS FOR HEAVY-TAILED LINEAR REGRESSION AND
GENERALIZED LINEAR MODELS

H.1 COMMON PROOF TEMPLATE FOR THEOREMS 2 AND 4

We follow the template provided by Prasad et al. (2020) to prove the corollaries appearing in this
section.

• In particular, given a distribution z ∼ P , and a loss function L̄(θ, z), we look at the distribu-
tion of the gradients ∇L̄(θt, z) for any θt, and in particular calculate the trace and operator
norm of the covariance of gradients Σ(L̄(θt, z)). We show that for linear regression and
GLMs, they are of the form:

trace
�
Σ(L̄(θt, z))

�
≤ A�θt − θ∗�22 +B (54)

�Σ(L̄(θt, z))�2 ≤ C�θt − θ∗�22 +D (55)

• From Theorem 1, we know that given n samples the output of Filterpd satisfies the guar-
antee that with probability at least 1− δ,

�E[∇L̄(θt, z)]− Filterpd({∇L̄(θt, zi)}ni=1)�2

≤

�
trace

�
Σ(L̄(θt, z))

�

n
+

�
�Σ(L̄(θt, z))�2 log(1/δ)

n

or equivalently from (54) and (55),

�E[∇L̄(θt, z)]− Filterpd({∇L̄(θt, zi)}ni=1)�2

≤
��

A

n
+

�
C

n

�
�θt − θ∗�2 +

��
B

n
+

�
D log(1/δ)

n

�

• The last step is to use the following result from Prasad et al. (2020) on the stability of
gradient descent with inexact gradients.

Lemma 9 (Prasad et al. (2020)). For a given sample-size n and confidence parameter
δ ∈ (0, 1), suppose we have a gradient estimator g(θ; {∇L̄(θ, zi)}ni=1, δ) such that for any
fixed θ ∈ Θ, the estimator satisfies the following inequality:

�g(θ; {∇L̄(θ, zi)}ni=1, δ)− E[∇L̄(θt, z)]�2 ≤ α(n, δ)�θ − θ∗�2 + β(n, δ). (56)
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Then Algorithm 2 initialized at θ0 with step-size η = 2/(τ� + τu), returns iterates {�θt}Tt=1
such that with probability at least 1− δ

��θt − θ∗�2 ≤ κt�θ0 − θ∗�2 +
1

1− κ
β(�n, �δ), (57)

where �n = n/T, �δ = δ/T , κ =
�
1− 2ητ�τu

τ�+τu
+ ηα(�n, �δ) < 1 is a contraction and

θ∗ = argminθ∈Θ E[L̄(θ, z)] is the minimizer of the population loss.
• Using the above we get that

�θ̂t − θ∗�2 � κt�θ0 − θ∗�2 +
�

B

(n/T )
+

�
D log(T/δ)

(Tn)
, (58)

as long as α(�n, �δ) < τ�.
• Hence, all that remains is to calculate (A,B,C,D) for linear regression and GLMs.

H.2 PROOF OF THEOREM 2

In this section we simply focus on deriving upper bounds for the gradient distribution for Linear
Regression. This result can also be found in Prasad et al. (2020), but we provide it for the sake of
completeness. Recall that for linear regression we have that, L̄(θ, (x, y)) = 1

2 (y − xT θ)2.
Lemma 10 (Prasad et al. (2020)). Consider the model in (4). Suppose the covariates x ∈ Rp have
bounded 8th-moments and the noise w has bounded 4th moments. The following statements hold
true:

E[∇L̄(θ)] = ΣΔ

trace
�
Cov(∇L̄(θ))

�
≤ C4trace (Σ) �Σ�2� �� �

A

�Δ�22 + σ2trace (Σ)� �� �
B

,

�Cov(∇L̄(θ)�2 ≤ �Δ�22 C1�Σ�22� �� �
C

+σ2�Σ�2� �� �
D

E
��
(∇L̄(θ)− E[∇L̄(θ)])T v

�4� ≤ C2(Var[∇L̄(θ)T v])2

where Δ = θ − θ∗ and E[xxT ] = Σ.

From the above lemma, we recover the values of (A,B,C,D) for linear regression which we simply
plug into (58) to recover the statement of the corollary.

Proof. We start by deriving the results for E[∇L̄(θ)].

L̄(θ) = 1

2
(y − xT θ)2 =

1

2
(xT (Δ)− w)2

∇L̄(θ) = xxTΔ− x.w

E[∇L̄(θ)] = ΣΔ.

Next, we bound the operator norm of the covariance of the gradients ∇L̄(θ) at any point θ. Recall
the definition of covariance below:

Cov(∇L̄(θ)) = E[∇L̄(θ)∇L̄(θ)T ]− E[∇L̄(θ)]E[∇L̄(θ)]T

For any unit vector z ∈ Sp−1, we have that,

zTCov(∇L̄(θ))z = zTE[∇L̄(θ)∇L̄(θ)T ]z − (E[∇L̄(θ)]T z)2

≤ zTE[∇L̄(θ)∇L̄(θ)T ]z
=⇒ sup

z∈Sp−1

zTCov(∇L̄(θ))z ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z
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Hence, we have that

λmax(Cov(∇L̄(θ))) ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

= sup
z∈Sp−1

zTE[(xxTΔ− x.w)(xxTΔ− x.w)T ]z

= sup
z∈Sp−1

zT
�
E[xxTΔΔTxxT ] + σ2E[xxT ]

�
z

≤ sup
z∈Sp−1

zT
�
E[xxTΔΔTxxT ]

�
z + σ2�Σ�2

≤ σ2�Σ�2 + �Δ�22 sup
y,z∈Sp−1

E[(zTx)2(yT z)2]

≤ σ2�Σ�2 + �Δ�22 sup
y,z∈Sp−1

�
E [(yTx)4]

�
E [(zTx)4]

≤ σ2�Σ�2 + �Δ�22C4�Σ�22

where the second last step follows from Cauchy-Schwarz and the last step follows from our assump-
tion of bounded 4th moment - the constant C4 is from the definition of bounded 4th moment. Now
to bound the trace of the covariance matrix,

Cov(∇L̄(θ)) = E[
�
xxT − Σ)Δ− xw

� �
xxT − Σ)Δ− xw

�T
]

trace
�
Cov(∇L̄(θ))

�
= E[�(xxT − Σ)Δ− xw)�22]
= E[�(xxT − Σ)Δ�22]� �� �

T1

+E[�x�22w2]� �� �
σ2trace(Σ)

T1 = E[�(xxT − Σ)Δ�22] = ΔTE[(xxT − Σ)2]Δ

= ΔTE[(xTx)xxT + Σ2 − ΣxxT − xxTΣ]Δ

= ΔTE[(xTx)xxT ]Δ−ΔTΣ2Δ

≤ ΔTE[(xTx)xxT ]Δ

≤ �Δ�22E[(xTx)(xTu)2], where u =
Δ

�Δ�2
∈ Sp−1

≤ �Δ�22E[(xTx)2]
1/2 E[(xTu)4]

1/2

� �� �
≤√

C4�Σ�2

x
def
=

p�

i=1

(xT qi)� �� �
νi

qi, where {qi}pi=1 are eigenvectors of Σ

E[(xTx)(xTx)] = E[(
�

i

ν2i )(
�

i

ν2i )]

= E[
�

i

ν4i + 2
�

i<j

ν2i ν
2
j ]

E[ν4i ] = E[(xT qi)
4] ≤ C4E[(xT qi)

2]2 = C4λ
2
i

E[ν2i ν2j ] ≤
�
E[ν4i ]

�
E[ν4j ] = C4λiλj

E[(xTx)(xTx)] ≤ C4


�

i

λ2
i + 2

�

i<j

λiλj


 = C4trace (Σ)

2

trace
�
Cov(∇L̄(θ))

�
≤ σ2trace (Σ) + C4trace (Σ) �Σ�2�Δ�22
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We finally show that the gradients have bounded 4th moment under the conditions specified in the
statement of the theorem. We start from the LHS:

E
��
(∇L̄(θ)− E[∇L̄(θ])T v

�4� ≤ E
����(∇L̄(θ)− E[∇L̄(θ)])T v

���4
�

= E
���((xxT − Σ)Δ− wx)T v

��4
�

= E
���(ΔTx)(xT v)− (ΣΔ)T v − wvTx

��4
�

≤ 8


8


E

��(ΔTx)(xT v)
��4

� �� �
A

+E
��(ΣΔ)T v

��4
� �� �

B


+ E

��w(xT v)
��4

� �� �
C


 .

The last step follows from two applications of the following inequality:

Cr inequality If X and Y are random variables such that E|X|r < ∞ and E|Y |4 < ∞ where
r ≥ 1 then:

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r) .

Now to control each term:

• Control of A. Using Cauchy-Schwarz and the fact that C8 is bounded for x, where C8 is
the constant appearing the definition of bounded 8th moment, we get:

A ≤
�
E[|ΔTx|8]

�
E[|xT v|8] (59)

� �Δ�42C8�Σ�42. (60)

• Control of B. Using the fact that |ΣΔT v| ≤ �Σ�2|ΔT v| ≤ �Σ�2�Δ�2, we get:

B � �Δ�42�Σ�42

• Control of C. Since w and x are independent, and have bounded moments, we can bound
C as:

C � C4�Σ�22

Therefore the E
��
(∇L̄(θ)− E[∇L̄(θ])T v

�4� � c+ �Σ�42�Δ�42.

For the RHS:
Var(∇L̄(θ)T v)2 = (vTCov(∇L̄(θ))v)2 ≤ �Cov(∇L̄(θ))�22

We saw that the �Cov(∇L̄(θ))�2 � c+�Σ�22�Δ�22, so both the LHS and RHS scale with �Σ�42�Δ�42,
and this completes the proof.

H.3 PROOF OF THEOREM 4

In this section we simply focus on deriving upper bounds for the gradient distribution for GLMs.
This result can also be found in Prasad et al. (2020), but we provide it for the sake of completeness.
Recall that for generalized linear models we have that,

L̄(θ; (x, y)) = −y �x, θ�+ Φ(�x, θ�). (61)

.
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Lemma 11 (Prasad et al. (2020)). Consider the model in (7). Under the pre-conditions of the
theorem, the following statements hold true:

trace
�
Cov(∇L̄(θ)

�
≤

�
C4trace (Σ)

�
LΦ,4� �� �

A

�Δ�22

+
�
C4trace (Σ)

��
BΦ,4 + c(σ)

�
3MΦ,2,2 +

�
c(σ)3MΦ,4,1

�

� �� �
B

�Cov(∇L̄(θ)�2 ≤ √
c1
�

C4�Σ�2
��

LΦ,4

�

� �� �
C

�Δ�22

+
√
c1
�

C4�Σ�2
��

BΦ,4 + c(σ)
�
3MΦ,2,2 +

�
c(σ)3MΦ,4,1

�

� �� �
D

E
��
(∇L̄(θ)− E[∇L̄(θ)])T v

�4� ≤ C2(Var[∇L̄(θ)T v])2

for some universal constant c1 > 0.

From the above lemma, we recover the values of (A,B,C,D) for GLMs which we simply plug
into (58) to recover the statement of the corollary.

H.3.1 PROOF OF LEMMA 11

Proof. The gradient ∇L̄(θ) and it’s expectation can be written as:

∇L̄(θ) = −y · x+ u(�x, θ�) · x
E[∇L̄(θ)] = E[x

�
u(xT θ)− u(xT θ∗)

�
]

where u(t) = Φ�(t).

�E[∇L̄(θ)]�2 = sup
y∈Sp−1

yTE[∇L̄(θ)]

≤ sup
y∈Sp−1

E[(yTx)
�
u(xT θ)− u(xT θ∗)

�
]

≤ sup
y∈Sp−1

�
E[(yTx)2]

�
E[(u(xT θ)− u(xT θ∗))2]

≤ C1�Σ�
1/2
2

�
LΦ,2�Δ�22 +BΦ,2

where the last line follows from our assumption of smoothness.

Now, to bound the maximum eigenvalue of the Cov(∇L̄(θ)),

λmax(Cov(∇L̄(θ))) ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

= sup
z∈Sp−1

zT
�
E
�
xxT

�
u(xT θ)− y)

�2��
z

≤ sup
z∈Sp−1

E
�
zT

�
xxT

�
u(xT θ)− y

�2�
z
�

≤ sup
z∈Sp−1

�
E [(zTx)4]

�
E
�
(u(xT θ)− y)

4
]
�
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To bound E
��
u(xT θ)− y

�4�
, we make use of the Cr inequality stated earlier.

E
��
u(xT θ)− y

�4� ≤ 8
�
E
��
u(xT θ)− u(xT θ∗)

�4�
+ E

��
u(xT θ∗)− y

�4��

≤ c1
�
LΦ,4�Δ�42 +BΦ,4 + c(σ)3MΦ,4,1 + 3c(σ)2MΦ,2,2

�

where the last line follows from our assumption that Pθ∗(y|x) is in the exponential family, hence,
the cumulants are higher order derivatives of the log-normalization function.

�Cov(∇L̄(θ))�2 ≤ √
c1
�
C4�Σ�2

��
LΦ,4�Δ�22 +

�
BΦ,4 + c(σ)

�
3MΦ,2,2 +

�
c(σ)3MΦ,4,1

�

Now, to control the trace. We have that,

Cov(∇L̄(θ)) = E[∇L̄(θ)∇L̄(θ)T ]− E[∇L̄(θ)]E[∇L̄(θ)]T

trace
�
Cov(∇L̄(θ))

�
= trace

�
E[∇L̄(θ)∇L̄(θ)T ]

�
− trace

�
E[∇L̄(θ)]E[∇L̄(θ)]T

�

≤ trace
�
E[∇L̄(θ)∇L̄(θ)T ]

�

≤ trace
�
E
�
xxT

�
u(xT θ)− y)

�2��

= E
�
trace

�
xxT

�
u(xT θ)− y)

�2��

= E[trace
�
(xxT )

�
u(xT θ)− y)2] ∵ (u(xT θ)− y)2 ∈ R

≤
�
E[trace ((xxT ))

2
]
�
E[(u(xT θ)− y)4]

≤
�
C4trace (Σ)

��
LΦ,4�Δ�22 +

�
BΦ,4 + c(σ)

�
3MΦ,2,2 +

�
c(σ)3MΦ,4,1

�

=
�
C4trace (Σ)

�
LΦ,4�Δ�22

+
�
C4trace (Σ)

��
BΦ,4 + c(σ)

�
3MΦ,2,2 +

�
c(σ)3MΦ,4,1

�

Finally, we show that the fourth moment of the gradient distribution is bounded. We have:

E
��
(∇L̄(θ)− E[∇L̄(θ])T v

�4� ≤ E
����(∇L̄(θ)− E[∇L̄(θ)])T v

���4
�

≤ 8


E[|∇L̄(θ])T v|4]� �� �

A

+E[|E[∇L̄(θ)]T v|4]� �� �
B




To control each term:

• Control of A.

E[|∇L̄(θ])T v|4] = E[(xT v)4(u(xT θ)− y)4]

≤
�
E[(xT v)8]

�
E[(u(xT θ)− y)8]

≤
�
C8�Σ�22

�
E[(u(xT θ)− u(xT θ∗))8] + E[(u(xT θ∗)− y)8]

≤
�
C8�Σ�22

����LΦ,8�Δ�82 +BΦ,8 +

8�

t,k=2

gt,kMΦ,t,k

≤
√
C�Σ�22

�
LΦ,8�Δ�42 +

�
BΦ,8 +

����
8�

t,k=2

gt,kMΦ,t,k
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where the last step follows from the fact that the 8th central moment can be written as a
polynomial involving the lower cumulants, which in turn are the derivatives of the log-
normalization function.

• Control of B.

E[|E[∇L̄(θ)]T v|4] ≤ �E[∇L̄(θ)�42 ≤ C1�Σ�22
�
L2
Φ,2�Δ�22 +B2

Φ,2

�

By assumption LΦ,k, BΦ,k,MΦ,t,k are all bounded for k, t ≤ 8, which implies that there
exist constants c1, c2 > 0 such that

E
��
(∇L̄(θ)− E[∇L̄(θ])T v

�4� ≤ c1�Σ�22�Δ�42 + c2

Previously, we say that �Cov∇L̄(θ)�2 ≤ c3�Σ�2�Δ�22 + c4, for some universal constants
c3, c4 > 0, hence the gradient ∇L̄(θ) has bounded fourth moments.
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