Dataset Train Filtered Train Dev Test

WebQuestions (WebQ) 3417 2,474 361 2,032
Natural Questions (NQ) 79,168 58,880 8,757 3,610
TriviaQA 78,785 60,413 8,837 11,313

Table 5: OpenQA dataset statistics. The training set is used for end-to-end training of the QA
models whereas the filtered training set is used for supervised training of the retriever (i.e., for DPR
experiments). The filtered set ignores those question-answer pairs where the evidence (Wikipedia)
document retrieved using BM25 (Robertson and Zaragoza, 2009) does not align with the provided
gold context documents. We leverage the filtered training set as provided by (Karpukhin et al., 2020).

A Dataset Details

Dataset statistics. For validation, we randomly select approximately 10% examples from the
training set. For all the datasets, we use the dataset splits from (Lee et al., 2019). We provide the size
of the training, development, and test sets in Table 5.

Pre-processing. For TriviaQA experiments, following (Izacard and Grave, 2021a), we select
human-annotated answers for training the QA model. We also filter out those questions whose answer
length is more than 5 words. Overall, this filters out 2,362 examples from the training set.

Dataset license and URLs. All the datasets are open-source and widely used by the community.
Below, we provide the URLs of the actual dataset source and their preprocessed version which is
used in this work.

¢ NQ: dataset: https://ai.google.com/research/NaturalQuestions/
download, license: https://github.com/google-research-datasets/
natural-questions/blob/master/LICENSE

e TriviaQA: dataset: http://nlp.cs.washington.edu/triviaga/, -
cense: https://github.com/mandarjoshi90/triviaga/blob/master/
LICENSE

e WebQ: dataset: https://github.com/google-research/language/
tree/master/language/orgaf#getting-the-data, license: https:
//nlp.stanford.edu/software/sempre/

* Preprocessed version: We make use of NQ, TriviaQA, and evidence datasets as open-sourced
by Karpukhin er al. (2020) here: https://github.com/facebookresearch/
DPR/blob/master/data/download_data.py.

B Additional Training Details

In addition to the details provided in §3.2, here, we provide further training details for reproducibility.

BERT and Inverse Cloze Task (ICT). We derive the implementations of BERT (Devlin et al.,
2019) and ICT (Lee et al., 2019) from the open-source Megatron-LM toolkit.” For ICT, the dual-
encoder retriever is initialized with BERT weights and then we train the model according to Lee
et al. (2019). For training, we use Wikipedia paragraphs where we truncate the maximum length of a
paragraph to 256 tokens. We list the settings and hyperparameters used for training BERT and ICT in
Table 6.

TS. We derive the implementation of T5 (Raffel et al., 2020) language model from the open-source
Megatron-LM toolkit (Shoeybi et al., 2019). We list the hyperparameters used for training T5 in
Table 6. For consistency, we train TS for the same number of steps and batch size as was done in the
original paper. Additionally, we use BERT lowercase tokenization for both T5 and BERT.

*https://github.com/NVIDIA/Megatron-LM

15

Hyperparameter BERT ICT TS MSS
Dataset Wikipedia, BookCorpus Wikipedia C4, Wikipedia, OpenWebText ~ Wikipedia
Num. Parameters 110M 220M 220M 440M
Hidden Size 768 768 768 768
Attention heads 12 12 12 12
Dropout 0.1 0.1 0.1 0.1
Optimizer Adam Adam Adam Adam
Batch Size 256 4096 2048 64
Training Steps M 100K M 82K
Warmup Ratio 0.01 0.01 0.01 0.05
Max. Learning Rate le-4 le-4 le-4 2e-5
Weight Decay le-2 le-2 le-2 le-1
Learning Rate Decay Linear Linear Linear Linear
Gradient Clipping 1.0 1.0 1.0 1.0

Table 6: Hyperparameters for training BERT, ICT, TS, and MSS models.

Hyperparameter NQ TriviaQA WebQ
Num. Parameters 440M 440M 440M
Hidden Size 768 768 768
Attention heads 12 12 12
Dropout 0.1 0.1 0.1
Optimizer Adam Adam Adam
Batch Size 64 64 16
Epochs 10 10 20
Warmup Ratio 0.01 0.01 0.01
Max. Learning Rate 2e-5 2e-5 2e-5
Weight Decay le-1 le-1 le-1
Learning Rate Decay Linear Linear Linear
Gradient Clipping 1.0 1.0 1.0
Temperate (1) 27.7 27.7 27.7

Table 7: Hyperparameters for finetuning on NQ, TriviaQA, and WebQ datasets.

Unsupervised pre-training with masked salient spans (MSS). For MSS training, we initialize
the retriever of our model from the ICT weights and the reader from the TS5 weights. We make use of
the Stanza toolkit (Qi et al., 2020) to segment evidence documents into sentences. We then extract
named entities from these sentences using the NER model trained on the OntoNotes-5.0 dataset
as provided by Stanza. These names entities are replaced by mask tokens. As the masked tokens
correspond to special named entities, they are referred to as salient spans. The masked sentence
is considered as the question to retrieve evidence documents and the reader is trained to generate
the named entities corresponding to the masked salient spans with the help of retrieved documents.
During retrieval, we ignore the evidence document from which the masked sentence was derived. We
list the hyperparameters of MSS training in Table 6.

Supervised training using the question-answer pairs. We provide the training details in §3.2.
We list the hyperparameters in Table 7. Apart from the number of epochs and batch size in WebQ, we
use the same hyperparameters for all the experiments. For the temperature parameter (7) in Eq. 5, we
follow Sachan et al. (2021) and set it as the square root of the hidden size.

Training Time. We run all of our experiments on a machine with 96 CPUs, 1.3TB physical memory,
and 16 A100 GPUs. We use PyTorch (Paszke et al., 2019) to implement our proposed model. With
this hardware setup, our experiments on NQ and TriviaQA took approximately 25 hours to complete,
while experiments on WebQ took roughly 8 hours to complete. Before supervised training, we also
perform a one-time unsupervised MSS pre-training for 82,000 steps that took roughly 1 week.

16

Method R@5 after ICT R@S5 after MSS

REALM (Guu et al., 2020) 13.9 38.5
EMDR? 28.0 38.6

Table 8: Retrieval recall on the NQ development set after ICT and MSS pre-training.

Method Evidence Size Evidence Dimension = GPU Memory (in FP16)
REALM (Guu et al., 2020) 13M 128 3GB
EMDR? 2IM 768 30 GB

Table 9: Comparison of evidence embeddings storage for retrieval.

C Unsupervised Pre-training and Comparisons with REALM

‘We make use of a couple of training techniques introduced in the REALM paper (Guu et al., 2020):
masked salient spans (MSS) pre-training and asynchronous evidence embedding update. There are
similarities and differences in the way in which we apply these ideas to EMDR? training.

C.1 ICT and MSS Pre-training

Both ICT and MSS are unsupervised techniques used to bootstrap the retriever so that it has a good
initial recall.

We first initialize the retriever with ICT pre-training. For ICT, similar to REALM, we follow the
settings in the ORQA paper (Lee ef al., 2019). We observe our Recall@5 to be much higher than
that reported in the REALM paper (see Table 8). We believe that our choice of 768 dimensional
embedding of each evidence document leads to better results when compared to the 128 dimensional
embedding used in REALM.

We further pre-train with MSS once the retriever weights are initialized with ICT. We use a batch
size of 64 and train for 82K steps using the EMDR? objective. In comparison, REALM uses a batch
size of 512 and trains the model for 200K steps. Even with a much smaller batch size and training
steps, EMDR? achieves similar Recall@5 after MSS training (Table 8). We hypothesize that with
a large batch size and longer training, EMDR? would be able to further improve its recall. Another
implementation detail is that EMDR? does not require the additional null document which was used
in REALM.

For low-resource datasets such as WebQ, MSS pre-training also improves the performance of the FiD
reader. As Table 3 illustrates, on WebQ, MSS pre-trained reader obtains a gain of more than 1 EM
point over the T5 reader (shaded in orange color).

C.2 Asynchronous Evidence Embedding Updates

The asynchronous evidence embedding updates are performed after every 500 steps of training and is
similar to REALM with a couple of differences. In our work, asynchronous embedding updates is
done both during MSS pre-training and supervised training, while in REALM it is performed only
during MSS pre-training. The second difference, although a minor one, we needed to compute the
embeddings of 21M evidence documents while REALM had to do this for 13M documents. We do
this by having two process groups during training, one group trains the model on 8 GPUs while the
other group performs evidence embedding computation on 8 GPUs in an asynchronous manner.

C.3 Pre-computed Evidence Embeddings Storage for Retrieval

In Table 9, we provide some comparisons between REALM and EMDR? to showcase that the retrieval
task is more challenging in our setting. Firstly, the size of evidence in REALM is 13M because
each Wikipedia article is split into 288 wordpieces while the size of evidence in EMDR? is 21M as
each Wikipedia article is split into 100 linguistic words. Second, the embedding dimension of each

17

evidence document in REALM is 128 while the embedding dimension of each evidence document in
EMDR? is 768. Due to these factors, the memory required by REALM to store evidence embeddings
(in FP16) is approximately 3 GB, while the memory required by EMDR? to store evidence embeddings
(in FP16) is 30 GB. As the GPU RAM is constrained by its capacity (40 GB maximum in A100
GPUs), it was not possible to store the entire 30 GB embeddings in each GPU. Therefore, for online
retrieval, we store the evidence embeddings in a distributed fashion over 16 GPUs and perform
distributed asynchronous MIPS for fast retrieval.

D Comparison with Previous Work

Here we provide a discussion of how EMDR? is different from some of the previous work.

D.1 Comparison with Hard EM and Reinforced Reader-Ranker Models

There are some similarities between EMDR? and Ly, to Hard EM (Min ef al., 2019) and Reinforced
Reader-Ranker (R®; Wang ez al. (2018)), at the conceptual level even though they are not equivalent.
Training with REINFORCE involves sampling from a policy network (i.e., the retriever in our case).
We take a deterministic approach and take the top-K documents in both EMDR? and L,.,. Compared
to Hard EM, L., directly minimizes the KL divergence of the probability of a retrieved document
with the probability of an answer given that document.

At the implementation level, there are many other differences between L, (and EMDR?) with
models in (Min et al., 2019) and (Wang et al., 2018). First, we would like to note that both these
methods use TF-IDF and BM25 as their retrieval approach which are not trainable. In contrast, our
work uses a dense retriever which is trained in an end-to-end manner. We list other differences in
more detail below.

Differences with Hard EM. Min ez al. (2019) propose a hard EM approach to train an extractive
reader model for QA tasks. The context document is assumed to contain multiple mentions of the
correct answer. They propose an objective to train the reader. Specifically, during the training step,
the model is trained using maximum marginal likelihood for the first 7 steps and subsequently with
their proposed logmax objective. In their open-domain QA experiments on TriviaQA and NQ, the
retriever part is based on TF-IDF and BM25 and is non-trainable. Overall, their model is applicable
to extractive readers without retriever training. In comparison, in EMDR?Z, we train both the reader
and retriever. As such, the hard EM approach is not directly applicable to our case.

Differences with R®. This paper involves three pipelined components: retriever, ranker, and reader.
The retriever is BM25 based and is non-trainable. They jointly train the ranker and the reader. The
ranker takes 100 documents from the retriever and selects one document to give as input to the
reader (contrast this with our work that selects a set of documents). As this selection operation is
non-differentiable, their model leverages policy gradient to train the ranker. They also propose a
custom reward function based on the overlap of text between the extracted answer and the correct
answer. The reader takes a single document as input. In contrast, our approach does not involve
a ranker component, both the FiD reader and retriever are trainable, and our proposed objective
function EMDR? is end-to-end differentiable.

D.2 Comparison with Individual Top-K and Joint Top-K Models

Comparison with Individual Top-K (Sachan et al., 2021). Individual Top-K is another approach
for end-to-end training but the difference is that it applies a single-document reader while EMDR?
consists of a multi-document reader. Similar to previous methods like REALM and RAG, Individual
Top-K objective function is also defined over multiple retrieved documents but is better optimized
than them. As the performance of EMDR? is much better than Individual Top-K, EMDR? is a better
modeling approach.

Comparison with Joint Top-K (Sachan et al.,2021). While both EMDR? and Joint Top-K are end-
to-end training approaches for open-domain QA based on the FiD model, they are different in many
ways. (i) Different Objective Functions: These approaches optimize different training objectives. To

18

achieve retriever training, Joint Top-K adds the retrieval probability score of the top-K documents to
the unnormalized inter-attention scores. In this way, the reader pays more importance to those top-K
documents with a higher retriever score. There is no explicit feedback from the reader to the retriever.
In contrast, the second term in the training objective of EMDR? explicitly encourages the retriever to
improve its predictions based on the agreement with the reader’s answer-generation likelihood of
a particular top-K document. (ii) Task Performance: EMDR? objective leads to a much improved
end-to-end training algorithm. This is reflected by the performance gains over the FiD baseline.
On NQ and TriviaQA, while EMDR? leads to 4.3 and 6.4 EM points improvements respectively,
Joint Top-K obtains a much lower gain of 1 point improvement on NQ and no improvements on
TriviaQA. This demonstrates that EMDR?2 training leads to substantially better retrieval, that in
turn leads to higher gains in answer generation. These results also illustrate that EMDR? is a much
better end-to-end or joint training algorithm than Joint Top-K for the multi-document reader retriever
approaches.

E Qualitative Analysis

In Table 10, we present some representative examples of the retriever output with both MSS pre-
training and when the MSS pre-trained model is finetuned on NQ. We observe that after MSS
pre-training, the top-1 outputs are related to the question but are not relevant enough to answer them.
However, when the MSS pre-trained model is finetuned on NQ with EMDR?, the retrieval accuracy
improves with the top-1 documents being much more relevant to answer the question. The retriever’s
confidence score of the top-1 document also improves.

Comparing retriever initializations. We analyze the reader’s training loss when the retriever
is either initialized with unsupervised MSS training or with first MSS pre-training followed by
supervised DPR training (MSS + DPR). As indicated in Table 3, MSS pre-training being unsupervised
has a lower accuracy while MSS + DPR retriever has a higher accuracy. However, as is also evident
from the plots in Figure 4, retriever initialization has a marginal effect on the answer generation
performance. We see that for NQ, for the first 1200 steps, the higher accuracy MSS + DPR retriever
leads to a smaller training loss compared with the MSS retriever, after which the difference between
the two training losses diminishes as the end-to-end training improves the accuracy of the MSS
retriever. Similar trends are also observed for TriviaQA and WebQ but to a lesser extent.

Visualizing reader and retriever losses. In Figure 3, we show the trajectories of the reader and
retriever training losses when the model is initialized with MSS pre-training.

19

Questions from NQ test Answer MSS Pre-training EMDR? finetuned on NQ

what type of reaction oc- peptide bond ...Bornyl

curs to form a dipeptide diphosphate synthase ...Subsequent to this
In enzymology, bornyl coupling reaction, the
diphosphate synthase amine protecting group P

(BPPS) () is an enzyme that
catalyzes the chemical re-
action Bornyl diphosphate
synthase is involved in the
biosynthesis of the cyclic
monoterpenoid bornyl
diphosphate. As seen from
the reaction above, BPPS
takes geranyl diphosphate
as its only substrate and
isomerizes into the product,
(+)- bornyl diphosphate.
This reaction comes from
a general class of enzymes
called terpene synthases
that ...

and the ester are converted
to the free amine and car-
boxylic acid, respectively.
For many amino acids, the
ancillary functional groups
are protected. The conden-
sation of the amine and the
carboxylic acid to form
the peptide bond generally
employs coupling agents to
activate the carboxylic acid.
The Bergmann azlactone
peptide synthesis is a
classic organic synthesis
for the preparation of

when was the japanese
videogame company nin-
tendo founded

23 September 1889

...contributed to the
development of the fol-
lowing games. Creatures
(company) Ape, Inc. was
founded in March 1989
and Shigesato Itoi became
its chief executive officer.
Nintendo president Hiroshi
Yamauchi had wanted
to support new talent
in game design. Liking
Itoi§ work, he proposed
the idea of the company
to Itoi and invested in
it. Apes$ staff included
Tsunekazu Ishihara, who
later became the Pokémon
Company$§ CEO, and
Ashura Benimaru Itoh, a
renowned illustrator. They
began work on "Mother",
which released in July.
Its music was composed
by Hip Tanaka, who later
became the second CEO of
Creatures . ..

...Nintendo Co., Ltd.
is a Japanese multinational
consumer electronics and
video game company
headquartered in Kyoto.
Nintendo is one of the
world’s largest video game
companies by market
capitalisation, creating
some of the best-known
and top-selling video
game franchises, such as
“Mario”, “The Legend of
Zelda”, and “Pokémon”.
Founded on 23 September
1889 by Fusajiro Yamauchi,
it originally produced
handmade hanafuda play-
ing cards. By 1963, the
company had tried several
small niche businesses,
such as cab services and
love hotels. Abandoning
previous ventures in favour
of toys in the 1960s ...

Table 10: Examples of top-1 retrieved documents from the NQ test when the model is pre-trained
with Masked Salient Spans (MSS) or finetuned on NQ data. If the answer exists in the document it is

highlighted in blue color, and the probability of the document (Eq. 5) is indicated in

20

color.

Natural Questions

—_
=)
—

—— Reader
—— Retriever

Loss (log scale)
=

1071 - - - - -
0 2500 5000 7500 10000 12500
Steps
» TriviaQA
) —— Reader
§ —— Retriever
I 10°
\8/ e Mt s,
o] MM
—
10!

0 2500 5000 7500 10000 12500

Steps
0! WebQuestions
—— Reader
—— Retriever

Loss (log scale)
=

—_
=
—_

0 1000 2000 3000 4000
Steps

Figure 3: Reader and retriever training losses when the model is initialized with MSS pre-training.

21

Natural Questions

— MSS
— MSS + DPR

—_
)
—

Reader Loss (log scale)
S

1071 - - - - -
0 2500 5000 7500 10000 12500
Steps
T 4 TriviaQA
(4]
? —— MSS
S —— MSS + DPR
\(D/ 100_
n
(@]
—
LR
810
o 0 2500 5000 7500 10000 12500
Steps
T 4 WebQuestions
©
? — MSS
S —— MSS + DPR
2 104
(@]
-
O
©
©
o 101 , , , ,
o 0 1000 2000 3000 4000

Steps

Figure 4: Reader training loss vs steps for NQ, TriviaQA, and WebQ when the retriever is either
initialized by MSS pre-training or by MSS followed by supervised DPR training (MSS + DPR).

22

