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A REPRODUCIBILITY

We finetuned 80 models across two different model sizes and 4 different data sets; 40 models were
finetuned using Bloom560M and another 40 models were finetuned using Bloom 1.1B. On average,
finetuning took approximately 1 hour per model, which makes for 80 GPU hours. Regarding the main
experiments, we conducted unlearning using both GA and ICUL. First, for ICUL we ran inference
across 3 context length configurations across 80 models and each run took 2 hours on average. This
amount to 480 GPU hours. Second, for GA, the situation was very similar. Updating the models
using GA across 3 learning rate configurations for all 80 models where each run took approximately
2 hours amounts to another 480 GPU hours. Finally, we ran the additional sensitivity experimnts on
SST-2 using Bloom 1.1B. These experiments were conducted for 10 models, using 3 context length
configurations and 3 sensitivity setups, where each model run took approximately 1.5 hours, which
makes for a total of 135 GPU hours. In total, we used 1175 GPU hours which approximately amounts
to 49 GPU days. Note that these numbers include run times to find competitive learning rates and
context lengths.

B ADDITIONAL RELATED WORKS

Here we briefly discuss additional related works that study (supervised) in-context learning theoreti-
cally (Xie et al., 2022; Akyürek et al., 2023; Von Oswald et al., 2023; Nagler, 2023; Zhang et al.,
2023; Mahankali et al., 2023; Panigrahi et al., 2023; Ahn et al., 2023). Initially, Garg et al. (2022)
empirically showed that linear transformers can learn simple function classes like linear regressors
in-context. Inspired by these observations, Von Oswald et al. (2023) puts forth a weight construction
for trained transformers that implements a single step of gradient descent in a forward pass, which
has subsequently been studied in more detail showing that the corresponding weight construction is
globally optimal (Zhang et al., 2023; Mahankali et al., 2023; Ahn et al., 2023) and that gradient flow
reaches this optimum (Zhang et al., 2023).

C ADDITIONAL EXPERIMENTAL RESULTS

Both ICUL and GA have each one crucial parameter, namely the context length and the learning
rate. Here we investigate the impact that these parameters have on unlearning success and model
performance.

Vary the context length on ICUL. For ICUL, changing the context length can significantly improve
results in terms of unlearning success as seen in Figure 5. In terms of model performance, the
situation is more nuanced as can be seen from Figure 6. While the context length has clear impact on
forget points, test points seem to be impacted very little by the number of context examples.

Vary the learning rate on GA. For GA, changing the learning rate can dramatically improve results,
where smaller learning rates usually significantly improve results in terms of unlearning success and
model performance as shown in Figures 7 and 8.

D DETAILS ON THE MACHINE UNLEARNING EVALUATION

We term an unlearning algorithm U successful if an auditor A cannot tell if information from the
forget set Sf still exists within the model after applying the unlearning procedure U , or whether the
model was exclusively trained on the retain set S\Sf . We refer to the model after the unlearning
procedure was applied as the “unlearned model”, while we call the model trained on the retain set the
“retrained model”. Using this motivation, we define unlearning success as follows:

Framing Unlearning Success as a Hypothesis Testing Problem. Given the setup described in
the previous section, it is reasonable to employ an hypothesis test to make an educated guess about
whether the model after unlearning f̄ still contains information from the forget set or not, i.e.,

H0 : Sf ⊂ S vs. H1 : Sf ̸⊂ S, (3)

where rejecting the null hypothesis corresponds to inferring that the forget set Sf is not part of
the model (anymore) whereas failing to reject the null hypothesis means to detect the presence of
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Figure 5: Varying context length for ICUL. Same setup as in Figure 3. We plot the MI attack
performance using log scaled ROC curves across different datasets and model sizes. The MI attacks
were run against the updated models f̄ , which was updated using ICUL. The closer to the diagonal,
which amounts to the adversary randomly guessing whether a forget point is still part of the model
or not, the better. The numbers in brackets denote the best parameters and the numbers after that
show the AUC ±1 standard deviation across 10 evaluation runs. The black dashed line represents the
baseline performance of not removing the point where the same attack is run on the model fθ(S), as
described in Section 5.1. Shades indicate ±1 standard deviation across 10 evaluation runs.

2 3 4 5 6
Context length

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Amazon

2 3 4 5 6
Context length

0.8

0.9

1.0

Ac
cu

ra
cy

SST-2

2 3 4 5 6
Context length

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Yelp

Baseline (train) Baseline (test) ICUL (test) ICUL (train) ICUL (forget)

(a) Bloom (560M parameters)

2 3 4 5 6
Context length

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Amazon

2 3 4 5 6
Context length

0.8

0.9

1.0

Ac
cu

ra
cy

SST-2

2 3 4 5 6
Context length

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Yelp

Baseline (train) Baseline (test) ICUL (test) ICUL (train) ICUL (forget)

(b) Bloom (1.1B parameters)

Figure 6: Classification performance as we vary context length for ICUL. We report classification
accuracy on train, forget and test points across all data sets and model sizes. For better readability,
±1 standard deviation was excluded from the figure.

Sf in the model and thus the unlearning procedure U did not successfully remove all information
of Sf from the model. Taking inspiration from the Neyman-Pearson lemma (Neyman & Pearson,
1933), which asserts that the optimal hypothesis test at a predetermined false-positive rate involves
thresholding the likelihood-ratio test Λ, we define the measure of unlearning success by comparing
two distributions over models:

Λ =
p
(
fθ̄

)
p
(
fθ(S\Sf )

) . (4)
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Figure 7: Varying the learning rate for GA. We plot the MI attack performance using log scaled
ROC curves across different datasets and model sizes. The MI attacks were run against the updated
models f̄ , which was updated using GA. The closer to the diagonal, which amounts to the adversary
randomly guessing whether a forget point is still part of the model or not, the better. The numbers in
brackets denote the best parameters and the numbers after that show the AUC ±1 standard deviation
across 10 evaluation runs. The black dashed line represents the baseline performance of not removing
the point where the same attack is run on the model fθ(S), as described in Section 5.1. Shades indicate
±1 standard deviation across 10 evaluation runs.
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Figure 8: Classification performance as we vary the learning rate for GA. We report classification
accuracy on train, forget and test points across all data sets and model sizes. For better readability,
±1 standard deviation was excluded from the figure.

In the first scenario, the model undergoes training using a randomly sampled training dataset S
containing the forget set Sf . Subsequently, the unlearning procedure U (approximately) removes
the forget set Sf from the trained model. The second scenario involves the model being trained
without the inclusion of the forget set Sf . Note that the likelihood ratio test in (4) is not feasible as
the distributions over models in the nominator and denominator are usually not analytically known.
To make the situation more tractable, we instead define the distribution over losses on points (x, y)
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for both models. Then, we replace both distributions from (4) with the tractable test

Λ̂ =
p
(
ℓ
(
fθ̂(x), y

))
p
(
ℓ
(
fθ(S\Sf )(x), y

)) , (5)

where ℓ denotes an appropriate loss function.

Operationalizing the Likelihood-ratio Audit Operationalizing the likelihood ratio test from (5)
requires access to the distribution of losses under the null and alternative hypotheses. While analytical
solutions are usually not available, we can readily get large samples from these two distributions.
In an ideal scenario, this entails that we would need to fit as many retain models and unlearned
models as possible for every forget set of interest. Since this approach becomes computationally too
burdensome, we use the following two-step approximation:

Approximating the distributions under H0 and H1. Here we adapt the sample splitting procedure
first introduced by Carlini et al. (2022) to forget sets with sizes J greater than 1. We train K shadow
models on random samples from the data distribution D so that a fraction p of these models are
trained on the forget set Sf = {(xj ,yj)}Jj=1, and a fraction (1 − p) are not. In particular, we
train shadow models on K = 10 subsets of D so that each forget set Sf ∈ D appears in K · p
subsets. This approach has the advantage that the same K shadow models can be used to estimate the
likelihood-ratio test for all the forget sets. Finally, we fit the parameters of two Gaussian distributions
to the confidence scores of the retain models and the unlearned models on Sf . Across all experiments,
we use p = 0.5 and J = 1.

Model losses. Instead of using the actual losses, we compute model confidences as ϕ(f(x),y) =
log(f(x)y) − log(

∑
y′ f(x)y′). This score compares the confidence the model assigns to the true

class (e.g., ‘positive’) with the confidences the model assigns to all other classes (i.e., all other words
from the approximately 250680 dimensional vocabulary). The higher the score is the more confident
the model is in the correct prediction.
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