
Published as a conference paper at ICLR 2024

APPENDIX

A PU LOSS DERIVATION

PU losses are derived from the canonical binary classification framework. In the standard supervised
binary classification (or Positive-Negative classification, abbreviated as PN), let π := p (Y = +1) =

nP

nP+nN
be the prior probability of the positive class, g : Rd → R be an arbitrary decision function (in

our case, the detector model) and L be the loss function. The risk of g is defined as the expectation of
loss:

R(g) :=E(X,Y )∼p(x,y)[L(g(X), Y )]

=πEp[L(g(X),+1)] + (1− π)En[L(g(X),−1)]

=πRP (g,+1) + (1− π)RN (g,−1).

(11)

In canonical PN learning, R(g) can be approximated directly by losses calculated from training data
as follows:

R̂PN (g) = πR̂P (g,+1) + (1− π)R̂N (g,−1), (12)

where R̂P (g,+1) := 1
nP

∑nP

i=1 L(g(x
P
i ),+1) and R̂N (g,−1) := 1

nN

∑nN

i=1 L(g(x
N
i ),−1) are esti-

mations of the positive and negative risk, respectively.

In the PU framework, R̂N (g,−1) cannot be approximated directly via negtive samples. Alternatively,
some works (Du Plessis et al., 2014; Plessis et al., 2015) perform indirect approximation as follows:
defining pP (x) := p(x|Y = +1) and pN (x) := p(x|Y = −1), since

(1− π)pN (x) = p(x)− πpP (x), (13)

the negative risk part (which is an expectation) is obtained as

(1− π)RN (g,−1) = RU (g,−1)− πRP (g,−1), (14)

and R(g) can be approximated indirectly as

R̂uPU (g) = πR̂P (g,+1)− πR̂P (g,−1) + R̂U (g,−1), (15)

where R̂P (g,−1) := 1
nP

∑nP

i=1 L(g(x
P
i ),−1) and R̂U (g,−1) := 1

nU

∑nU

i=1 L(g(x
U
i ),−1) are esti-

mations calculated from positive and unlabeled training samples. Eq. 15 is defined as the unbiased
PU (uPU) loss (Du Plessis et al., 2014).

B ESTIMATION DETAILS OF CONFIDENCE EXPECTATION

The transition matrix Given positive probability p of a single token, we express state transition as a
band matrix P. An example matrix form of P is listed as follows:



1− p p 0 0 ... 0 0 0
1− p 0 p 0 ... 0 0 0
0 1− p 0 p ... 0 0 0

...

...

...
0 0 0 0 ... 1− p 0 p
0 0 0 0 ... 0 1− p p


Demonstration of π̃ increment with respect to lengths We try to mathematically demonstrate that
prior π̃ increases with length l. The initial state σ0 is one-hot, so the prior π̃(l) with respect to l could
be written as:

π̃(l) = E [∆(Sl)] = σ0P
lαT = P[n, :]Pl−1αT , (16)
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where P[n, :] represents the last row of transition matrix P. To demonstrate π̃ increases with l, we
alternatively demonstrate π̃(l + 1)− π̃(l) = E [∆(Sl+1)]− E [∆(Sl)] is positive.

However, sizes of states and transition matrices are different for corpora of different lengths. We
use a subscript to indicate this difference. For instance, sequence vector αl := [i/l]

l
i=0 indicates all

possible confidences in a sorted sequence; Pl indicates the transition matrix P of size (l+1)×(l+1).
Then:

E [∆(Sl+1)]− E [∆(Sl)] = Pl+1[n, :]P
l−1
l+1Pl+1α

T
l+1 −Pl[n, :]P

l−1
l αT

l (17)

Interestingly, we could leverage unique features of the sparse band matrix P. First, obviously
Pl+1[n, :] = [0;Pl[n, :]]. Further, if we compare

M := Pl+1[n, :]P
l−1
l+1 ∈ Rl+2 and K := Pl[n, :]P

l−1
l ∈ Rl+1,

we would discover that M = [0;K], namely, array M is array K prepended by a zero. (The physical
meaning of M and K is the last line of matrix Pl

l+1 and Pl
l, respectively.) Based on this discovery,

we could simplify Eq. 17:

E [∆(Sl+1)]− E [∆(Sl)] = [0;K]Pl+1α
T
l+1 −KαT

l (18)

Then we look at the concrete form of [0;K]Pl+1. For simplicity, we denote the nth element of K as
kn:

Count 0 1 2 ... n n+ 1
[0;K] 0 k0 k1 ... kn−1 kn

[0;K]Pl+1 (1− p)k0 (1− p)k1 pk0 + (1− p)k2 ... pkn−2 + (1− p)kn pkn−1 + pkn

Based on the table above, we could derive the relations between E [∆(Sl+1)] and E [∆(Sl)]:

E [∆(Sl+1)]− E [∆(Sl)] =

∑l
n=0 nkn
l + 1

+
2p

l + 1
− klp

l + 1
−

∑l
n=0 nkn

l

= −
∑l

n=0 nkn
(l + 1)l

+
2p− klp

l + 1

= −E [∆(Sl)]

l + 1
+

2p− klp

l + 1
,

(19)

which means that

E [∆(Sl+1)] =
l

l + 1
E [∆(Sl)] +

2p− klp

l + 1
, (20)

As long as we view {l×E [∆(Sl)]} as a sequence of corpus length l starting from 1×E [∆(S1)] = p,
we could solve E [∆(Sl)] for l > 1:

E [∆(Sl)] =
(2l − 1)p− p

∑l−1
n=1 kn,n

l
= 2p− p

l
(1 +

l−1∑
n=1

kn,n), (21)

where kn,n is the probability of the abstract recurrent model outputting positive confidence 1 for
a corpus of length n. However, we encounter the difficulty that the analytic solution to kn,n is
not easily solvable; we only know that kn,n is a probability bounded in (0, 1). We inspect kn,n
for relatively small p and found that kn,n quickly converges to 0. This process is demonstrated
by Figure 1, where kn,n decays in an approximately exponential manner to infinitesimally small
values (which decays much faster than reciprocals, i.e. 1/l). As a result, prior π̃ keeps increasing
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as l increases, and converges to 2p. Figure 1 (Right) confirms the convergence derived in Eq. 21.
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Figure 1: Left: kn,n (in log scale) with respect to corpus length l. Right: π̃ with respect to corpus
length l.

C PROPOSAL OF IMPOSING SPACE CLEANING ON THE HC3-ENGLISH
BENCHMARK

We use the HC3 (Guo et al., 2023) benchmark for ChatGPT corpus detection experiments. However,
we inspected HC3 corpora and discovered that the corpora are flawed: human corpora have additional
spaces before punctuations, while corpora from AI do not have this feature. The extra spacing could
directly impact the input to detectors. We list several examples below, demonstrating the obvious
difference between Human and ChatGPT corpora in the HC3 benchmark (Guo et al., 2023):

# l a b e l e d as Human
c o r p u s = ’ B a s i c a l l y t h e r e a r e many c a t e g o r i e s o f ” Bes t S e l l e r ” . ’
i n p u t i d s = [ 0 , 34480 , 89 , 32 , 171 , 6363 , 9 , 22 , 2700 , 44795 , 22 , 479 , 2 ]

c o r p u s = ’Same t h i n g f o r b e s t s e l l e r s . ’
i n p u t i d s = [ 0 , 42271 , 631 , 13 , 275 , 12649 , 479 , 2 ]

c o r p u s = ’ Also , IIRC t h e r a n k i n g s change e v e r y week or some th ing l i k e
t h a t . ’

i n p u t i d s = [ 0 , 22412 , 2156 , 3082 , 5199 , 5 , 8359 , 464 , 358 , 186 , 50 , 402 ,
101 , 14 , 479 , 2 ]

# l a b e l e d as ChatGPT
c o r p u s = ’ I t i s g e n e r a l l y n o t a c c e p t a b l e o r e t h i c a l t o a d v o c a t e f o r o r

condone t h e a s s a s s i n a t i o n o f any i n d i v i d u a l , r e g a r d l e s s o f t h e i r
a c t i o n s o r b e l i e f s . ’

i n p u t i d s = [ 0 , 243 , 16 , 3489 , 45 , 9796 , 50 , 13557 , 7 , 7156 , 13 , 50 ,
35005 , 5 , 16351 , 9 , 143 , 1736 , 6 , 6069 , 9 , 49 , 2163 , 50 , 9734 , 4 , 2 ]

c o r p u s = ’ There a r e a l s o p r a c t i c a l c o n s i d e r a t i o n s a t p l a y i n t h i s
s i t u a t i o n . ’

i n p u t i d s = [ 0 , 970 , 32 , 67 , 7708 , 19199 , 23 , 310 , 11 , 42 , 1068 , 4 , 2 ]

c o r p u s = ’ I t can a l s o l e a d t o f u r t h e r c o n f l i c t and i n s t a b i l i t y i n t h e
r e g i o n . ’

i n p u t i d s = [ 0 , 243 , 64 , 67 , 483 , 7 , 617 , 3050 , 8 , 16826 , 11 , 5 , 976 , 4 ,
2 ]

In the examples, we show original corpus as well as their token ids after being processed by the
RoBERTa-base tokenizer. Most human corpora have an unexpected 479 token (standing for “ .”, i.e.
a space and a period), while ChatGPT corpora does not manifest this feature.
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Hence, the detector could judge the attribution of a certain corpus simply by detecting these spacing
mistakes. Embarrasingly, if we use the logical judgement of whether token id 479 is contained
in the sequence to detect human corpora, the F1 score would reach 82.12% on sentence-level test
corpora of the HC3 benchmark. The performance of such a simple logic is even better than the
officially reported performance (81.89%) of finetuned RoBERTa-base (Guo et al., 2023). Above all,
we strongly recommend later works that involve the HC3 benchmark to remove unnecessary spaces
before punctuations. We will opensource the code simple cleaning helper function that removes
unnecessary spaces.

D BASELINE REPLICATIONS

D.1 DETECTGPT

DetectGPT (Mitchell et al., 2023) is a latest open-sourced AI corpus detection baseline, but the
original paper did not report its performance on latest LLM texts. Hence, we replicate DetectGPT on
the HC3-English (Guo et al., 2023) ChatGPT corpus dataset, and compare it with our MPU method.
The experiment results are shown in Table 4, where our MPU method outcompetes DetectGPT by
large margins. There is still a visible gap between latest training-agnostic methods (e.g. DetectGPT)
and finetuned language models on ChatGPT corpora.

We also provide some detailed procedures to tailor DetectGPT for the HC3 benchmark: 1. Full-
scale HC3 corpora are always too long to perturb. Therefore, we truncate corpora as long as they
raise perturbation errors, following recommendations from authors of DetectGPT. 2. We use 100
perturbations for full-scale HC3 corpora (following DetectGPT (Mitchell et al., 2023)), but we use
10 perturbations for sentence-level HC3 because there are too many corpora. It also reflects that
DetectGPT is not very efficient for large-scale corpora compared to language model detectors, because
it requires tens of model runs for a single corpus. 3. DetectGPT uses AUROC as the classification
metric; however, this metric is not applicable to finetuned language models that output probabilities
for respective classes. Hence, given confidences of all corpora outputted from DetectGPT, we choose
1000 equally-spaced threshold between max and min values, and maintain the threshold with the
largest F1 score. Notably, this will provide an upperbound for the performance of DetectGPT, as
in real applications the threshold is pre-set; scanning for the best threshold on test sets is strictly
prohibited.

D.2 GLTR, PPL, & OPENAI

These methods have already been open-sourced on HuggingFace. We directly input all texts in the
testset to these baseline methods and measure their performances.

We have found an inconsistency in comparison to reported values while replicating GLTR (Gehrmann
et al., 2019) and RoBERTa-Finetuned (Cui et al., 2020) on the HC3-Chinese (Guo et al., 2023)
benchmark, shown in Table 11. This inconsistency is tolerable and won’t affect our final conclusion.

Method Full Sent

GLTR (Reported by Guo et al. (2023)) 89.61 44.02
GLTR (Replicated) 87.40 49.94

RoBERTa-Finetuned (Reported by Guo et al. (2023)) 98.79 83.64
RoBERTa (Replicated) 96.28±3.42 83.07±6.85

Table 11: Our replication of HC3-Chinese Guo et al. (2023) baselines compared with reported values.

E REPLICATION DETAILS

Following the training setting of Kumarage et al. (2023), we use batchsize 16, learning rate 1e− 5
for TweepFake; following the setting of Guo et al. (2023), we use batchsize 32, learning rate 5e− 5
for HC3. AdamW optimizors are adopted. Selected benchmarks are publicly accessible online.
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We use a single Nvidia Tesla V100 as the device for experiments. A single epoch of training costs
around 30 minutes. We replicate all experiments three times to avoid fluctuation, using seed=0,1,2.
The codes are opensourced at GitHub and Gitee.
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