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Algorithm 4: Find a path {W,, } via a particular scheduling for y, when a is unknown.

Input: pg € {ﬁ, %) e>0
OUtPUt: {Wuk}iozo

a < /4(po +¢) // Ye>0s.t. a<a

Wy, < GradientFlow(g,,,0)
fork=1,2,...do

Let s € [/ i/, )

Wy < GradientFlow(gy,.,,, Wy,)

6 end
7 return {W,, }3°,

A Practical Implementation of Algorithm

We present a practical implementation of our homotopy algorithm in Algorithm . The updating
scheme for py, is now independent of the parameter a, but as presented, the initialization for g
still depends on a. This is for the following reason: It is possible to make the updating scheme
independent of a without imposing any additional assumptions on a, as evidenced by Lemmald]below.
The initialization for pg, however, is trickier, and we must consider two separate cases:

1. No assumptions on a. In this case, if a is too small, then the problem becomes harder and
the initial choice of y matters.

2. Lower bound on a. If we are willing to accept a lower bound on a, then there is an
initialization for pg that does not depend on a.

In Corollary E, we illustrate this last point with the additional condition that @ > +/5/27. This
essentially amounts to an assumption on the minimum signal, and is quite standard in the literature
on learning SEM.

Lemma 4. Under the assumption ﬁ < < “7‘2, the Algorithmoutputs the global optimal

solution 1o (), i.e.
lim W, = We.
k—o0

It turns out that the assumption in Lemmaf is not overly restrictive, as there exist pre-determined
sequences of {1 }7° , that can ensure the effectiveness of Algorithm lél for any values of a greater
than a certain threshold.

B From Population Loss to Empirical Loss

The transformation from population loss to empirical can be thought from two components. First,
with a given empirical loss, Algorithms[2 and 3 still achieve the global minimum, W, of problem
|6, but now the output from the Algorithm is an empirical estimator G, rather than ground truth a,
Theorem |I and Corollary E would continue to be valid. Second, the global optimum, W, of the
empirical loss possess the same DAG structure as the underlying W,.. The finite-sample findings
in Section 5 (specifically, Lemmas 18 and 19) of Loh and Biihlmann [31]], which offer sufficient
conditions on the sample size to ensure that the DAG structures of W and W, are identical.

C From Continuous to Discrete: Gradient Descent

Previously, gradient flow was employed to address the intermediate problem (7), a method that
poses implementation challenges in a computational setting. In this section, we introduce Algorithm
[6 that leverages gradient descent to solve in each iteration. This adjustment serves practical
considerations. We start with the convergence results of Gradient Descent.

Definition 1. f is L-smooth, if f is differentiable and Nz,y € dom(f) such that |V f(x) —
Vil < Lijz = yll2.
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Algorithm 5: Gradient Descent(f, n, Wy, €)

Input: function f, step size 7, initial point Wy, tolerance €
Output: W,

1t+0

2 while ||V f(W,)]]2 > edo

3 Wipr <= Wy =V f(Wy)
4 t+—t+1

5 end

Algorithm 6: Homotopy algorithm using gradient descent for solving (T)).

o> (1+8)* o2 (1-0)*(1-p)*
4(a?+1)% (1-B)% 4 (1+B)? ’
/2}

Input: Initial W_; = W(z_1,y_1), o €

1 . 3
M0 = jotarnTsa- € = min{Bago, g
Output: {W,, 172,
1 Wy ,eo < Gradient Descent(gy,,no, W-1,€p)
2 fork=1,2,...do

tep_ - 2/3
3| Letp = (2} )2/ {Ete=imaiy
_ 1
4 | Letny = e
5 Let ¢, = min{Bauk,ui/z}
6 Wy,.en < Gradient Descent(g,,, Mk Wy, €k)
7 end

as1 Theorem 3 (Nesterov et al. 33). If function f is L-smooth, then Gradient Descent (Algorithm[3) with
a2 step size n = 1/L, finds an e-first-order stationary point (i.e. |V f(z)||2 < €) in 2L(f(z°) — f*)/€?
443 iterations.

444 One of the pivotal factors influencing the convergence of gradient descent is the selection of the step

445 size. Theorem |3[select a step size n = % Therefore, our initial step is to determine the smoothness

446 of g, (W) within our region of interest, A = {0 <2 <q,0<y < a%ﬂ}

447 Lemma 5. Consider the function g,,(W) as defined in Equation@within the region A = {0 < z <
ss  a,0 <y < g} It follows that for all > 0, the function g, (W) is w(a® + 1) + 3a-smooth.

449 Since gradient descent is limited to identifying the € stationary point of the function. Thus, we study
450 the gradient of g, (W) = pf(W) + h(W),i.e. Vg, (W) has the following form

x —a)+ vy
Vou(W) = <u(aygr Dy )f a/szr y:cz)

451 As gradient descent is limited to identifying the € stationary point of the function, we, therefore, focus
452 on || g, (W)||2 < e. This can be expressed in the subsequent manner:

Vg (W)l < e= —e < plz —a) +y?r<e and —e < ,u(a2 + 1)y — ap +ya® < e
453 As aresult,

pna + €

a— € a-+e a — €
{(@9) | IVgu(W)ls < €} € {(z,y) | Bt <a< & a <y< }

pty? T T pty? 2t p(a? £ 1) 22 + p(a® + 1)
asa  Here we denote such region as 4, .
na — € Hna + € na — € na + €
Aye={(z, <z< : <y< ——— 10
e = y)|u+y2* ~uty? x2+u(a2+1)*y*x2+u(a2+1)} (10)

455 Figure[6]and [7]illustrate the region A, ..
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Plot @ =0.6, u = 0.009, £ =0.00055

(X1 ¥0) = Xpe, Yie)
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y=vVu G-1+5

OV ey = G- %
KperVme) e =_ aute

e Yiue y x2+pa?+1)
oy

ue Yo e ey = MZE

- Y= e
(Xe Ve )

0.0+

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 6: An example of A, . is depicted for a = 0.6, i = 0.009, and € = 0.00055. The yellow
region signifies € stationary points, denoted as A,, . and defined by Equation (10). A, . is the disjoint
union of A, - and A” _, which are defined by Equations and (22)), respectively.

€

Plot a =0.6, u = 0.009, £ =0.00055

0.10
* Ly e y=Vu-@-n+f
o (v VN rrorr s yyer 3
LIPS 7 E— o
1 ey s
0.08 — y—vuaix fY J— 'V_xuamaz[.n
T YT rmen
0.06 4
N
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0.02
0.00 4
0.45 0.50 0.55 0.60 0.65 0.70

X

Figure 7: Here is a localized illustration of A, . that includes the point (z7;, y},). This region, referred

to as A;IL,E’ is defined in Equation (21)).

Given that the gradient descent can only locate e stationary points within the region A, . during
each iteration, the boundary of A,, . becomes a critical component of our analysis. To facilitate clear
presentation, it is essential to establish some pertinent notations.
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ua
r=—7
pty?
ua
pla? +1) + 22

(11a)

y= (11b)

~—

If the system of equations yields only a single solution, we denote this solution as (z},, y;,

If it yields two solutions, these solutions are denoted as (z};,y};), ()", y;*), with 2" < 7.
In the event that there are three distinct solutions to the system of equations, these solutions
are denoted as (z7,, y;,), (23,7, 4,7 ), (7", y;, ™), where ™ <z < ).
a— €
r=tF (12a)
Bty
a+e€
y=—7 (12b)

pla® +1) + 22

If the system of equations yields only a single solution, we denote this solution as (z7}, ., y; .)-

*

If it yields two solutions, these solutions are denoted as (7, .,y ), (z}7, ¥ ), with 77 <
x} .. In the event that there are three distinct solutions to the system of equations, these

poet
. * * ok ok sokk ) kokok sookok ok *
solutions are denoted as (7}, ., y}; o), (T}, Yi'e), (T8 yn's), where 2" < ay’ < a7, ..

ua + €
T =

= 13a
1+ y? (3
Ha — €
=— 13b
y M(a2+1) +$2 ( )
If the system of equations yields only a single solution, we denote this solu-
tion as (z}, .,y . ). If it yields two solutions, these solutions are denoted
as (z}, . ,y;c ), (@t sy ), with 23 < 2y . In the event that there are

three distinct solutions to the system of equations, these solutions are denoted as
(@ s Yhe )s @i sy ), (@i yinl ), where ™ < ap’. < .
Remark 4. There always exists at least one solution to the above system of equations. When (i is
sufficiently small, the above system of equations always yields three solutions, as demonstrated in

Theorem 5] and Theorem |9}

The parameter € can substantially influence the behavior of the systems of equations (12a),(I12b) and
(132),(13b). A crucial consideration is to ensure that € remains adequately small. To facilitate this,
we introduce a new parameter, 3, whose specific value will be determined later. At this stage, we
merely require that 3 should lie within the interval (0, 1). We further impose a constraint on € to
satisfy the following inequality:

€ < Bau (14)

Following the same procedure when we deal with ¢ = 0. Let us substitute (12a)) into (12b), then we
obtain an equation that only involves the variable y

ate/p (ha —€)?/
wi4) y ( ) (y? +p)?
Let us substitute (12b) into (12a), then we obtain an equation that only involves the variable =
a—e/p (ha+€)*/u
te(xyp) =————1— 16
wiu) == (Wl 1) + )2 (1o
Proceed similarly for equations (I3a)) and (I3b).
a—e/u (na+e)2/p
re (yip) =——15 — (a® + 1) - L0 (17)
it A TR
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T (n(a? +1) + 2?)?

N2
tg,_(x;u):““/”q (pa—e€)?/p (18)

Given the substantial role that the system of equations[I2a and [I2b]play in our analysis, the existence
of € in these equations complicates the analysis, this can be avoided by considering the Worst case
scenario, i.e., when € = Jau. With this particular choice of €, we can reformulate (I5) and (L6) as
follows, denoting them as rg(y; €) and rg(z; €) respectively.

U ) O SRR (U ellc)
21 =8 __ per+h)

The functions r.(y; i), 7e_(y; i), and r5(y; i) possess similar properties to 7(y; i) as defined in
Equation (8)), with more detalls available in Theoremﬁand[ Additionally, the functions t.(x; y),
te (x; ), and t@({L‘ p) share similar characteristics with ¢(x; i) as defined in Equation (9), with more
details provided in Theorem 9]

As illustrated in Figure @, the e-stationary point region A, . can be partitioned into two distinct areas,
of which only the lower-right one contains (z7,, y;;) and it is of interest to our analysis. Moreover,

(T}, yl*u) and (z}", y“ * ) are extremal point of two distinct regions. The upcoming corollary
substantiates this intuition.

Corollary 3. If i < 7 (7 is defined in Theorem , assume € satisfies (14), 8 satisfies (}* g) <

a® 4 1, systems of equations (12a),(12b) at least have two solutions. Moreover, A,, . = A}M U A;Que

A=Ay {(zy) o> y<y .} 1)

AZ = Ay {(z,y) |z <z y>y} (22)

Corollary |: suggests that A, . can be partitioned into two distinct regions, namely A1 . and A2
Furthermore, for every (z,%) belonging to A’ s,eo it follows that z > a7, candy <y, . Slmllarly,
for every (z,y) that lies within A2 _, the condition z < z, ' andy > y *_ holds. The region A

1€
represents the “correct” region that gradient descent should 1dent1fy In thls context, identifying the

region equates to pinpomtlng the extremal points of the reglon As a result our focus should be on

the extremal points of A}, . and A2 _, specifically at (7, ., y* .) and (7", y*.). Furthermore, the
key to ensuring the convergence of the gradient descent to the A’ 1, 18 to accurately identify the “basin
of attraction” of the region A}M. The following lemma provides a region within which, regardless of

the initialization point of the gradient descent, it converges inside A}M

2
Lemma 6. Assume pi < 7 (T is defined in Theorem , (%) < a®+1. Define B, . = {(z,y) |
o <w<a,0<y<y:’} Run Algorithmeith input f = g,(z,y),n = m,WO =
2 2 o (2
(2(0),y(0)), where (2(0),y(0)) € B,, ., then after at most 2ula +1)+3a )(g“(‘ﬁ(o)’y(o)) 90 (T )

€
. . 1
iterations, (xy,y;) € A e

Lemmal6|can be considered the gradient descent analogue of Lemma 2] It plays a pivotal role in the
proof of Theorem E In Figure |§, the lower-right rectangle corresponds to B, . LemmaEimplies
that the gradient descent with any initialization inside B,,, | ,,, Will converge to A} fhsrsens Atlast.
Then, by utilizing the previous solution W,,, ., as the initial point, as long as it lies within region
By, .1 c1y1- the gradient descent can converge to Auk+1 e Which is € stationary points region that
contains W7, thereby achieving the goal of tracking W . Following the scheduling for /ux

prescribed in Algonthm@]prowdes a sufficient condition to ensure that will happen.

We now proceed to present the theorem which guarantees the global convergence of Algorithm [6]

17



524

525

526
527

528

529

530
531
532
533
534
535
536
537

538
539
540

541

542

544
545
546

2
Theorem 4. If6 € (0,1), 8 € (0,1), (M) < (1 —96)(a® + 1), and py satisfies

1-8
2 2 4 2 (1 _ 5\3(1 _ R)4 2
S (3 Ay (e (e s
4(a®> +1)3 ~ 4(a® +1)3 (1 - B)? 4 (14 5)2 4
Set the updating rule
e =min{Bap, 1y *}

+ ex/pr)*?
L =(242)2/3 (a
HEe41 ( p’k) (a — Ek',/,uk)4/3

Then pp1 < (1 — ) ux. Moreover, for any eqist > 0, running AlgorithmEafter K (uo,a,d, cqist)
outer iteration

Wii.er. — Wall2 < eaist (23)
where
1 o 7240 3(4—8)po. 1, 466563, 1. 46656
is > ) ) [P " o
o) 2 gy e i ey i D S

The total gradient descent steps are

K(po,a,6,edis
Ho aZEd & 2(pk (CLQ +1)+ 3a2)(g#k+1 (W#kaek) — Gug4 (Wl‘k+175k+1))

2
€k

k=0

3
1 34—46) 216 [ 216 \** 1 72
<2 241 2 § €0
>~ (,LLD(a + ) + 3a ) (ﬂGG,G + <max{ EdistQ ) asdist7 (aadist) ) /82a27 (1 — (1/2)1/4)0,2} 9 O(WMU)

1 1 1 1 1
<O 2 2 -
~ (Moa +a +,u0) (BGaG + a® + PP + Peqi? + a6>

Proof. Upon substituting gradient flow with gradient descent, it becomes possible to only identify an
e-stationary point for g, (7). This modification necessitates specifying the stepsize 7 for gradient
descent, as well as an updating rule for u. The adjustment procedure used can substantially influence
the result of Algorithm[6] In this proof, we will impose limitations on the update scheme i, the
stepsize 7y, and the tolerance €, to ensure their effective operation within Algorithm[6] The approach
employed for this proof closely mirrors that of the proof for Theorem [T albeit with more careful
scrutiny. In this proof, we will work out all the requirements for 1, €, 7. Subsequently, we will verify
that our selection in Theorem [ conforms to these requirements.

In the proof, we occasionally use u, € or ug, €. When we employ p, €, it signifies that the given
inequality or equality holds for any p,e. Conversely, when we use py, €, it indicates we are
examining how to set these parameters for distinct iterations.

Establish the Bound y;;". > /i First, let us consider re(y/is ) <0, ie.

ate/n pla —e/p)?
I R v

This is always true when 1 > 4/a?, and we require

4
€ < 21%% + ap — 2+/2ap5/? — p3a®  when p < —
a

Now we name it condition[I]

Condition 1.

<0

re(Vs ) =

- 4
€ < 20?2 + ap — 2/ 2ap5/? — p3a®  when p < —
a

Under the assumption that Condition |I is satisfied. Since r.(y; ) is increasing function with
interval i € [Yib,e, Yub,e)» and we know yip c < /it < Yup,e and based on Theorem|[7(ii)| we have

Yb,e < Ypte < Yubes Te(y/H5 1) < 1e(y)7; 1) = 0. Therefore, ;" > /1.
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Ensuring the Correct Solution Path via Gradient Descent Following the argument when we
prove Theorem we strive to ensure that the gradient descent, when initiated at (z,,, ¢, , Ypp,ex )» Will
converge within the "correct" e 1-stationary point region (namely, ||V g, ., (W)|2 < €x41) which

includes (z* Ty y“kﬂ) For this to occur, we necessitate that:

ey L@ (a+ ep/p)'/? @ ,
Yupitsenrr = y#k+1,€k+1 > Mk > (2M )1/3W > Yuper = Yup,en (24)

Here (1), (5) are due to Corollary [3; (2) comes from the boundary we established earlier; (3) is
based on the constraints we have placed on py, and /51, which we will present as Condition [2
subsequently; (4) is from the Theorem and relationship y;, .. < Yib e, Also, from the
Lemma |9, max, <, ;. < min,>ozj, .. Hence, by invoking Lemma |6, we can affirm that our
gradient descent consistently traces the correct stationary point. Now we state condition to make it
happen,

Condition 2.
23 (a+ er/pn)*®
(a — ex/pr)?/3

In this context, our requirement extends beyond merely ensuring that p;, decreases. We further
stipulate that it should decrease by a factor of 1 — §. Next, we impose another important constraint

Condition 3.

(1= 0)pre > pir > (217)

ex < ui/Q
Updating Rules Now we are ready to check our updating rules satisfy the conditions above

ex =min{Bap, 1y}

2/3
23 (@ + €/ k)
firr1 =(20%) (@ = en/pn)i?

Check for Conditions First, we check the condition[2] condition [2|requires

oy3 (a4 ex/pr)*? (a+ex/pm)® _ (1-0)°
R Py T R P R

(1= )k = (2013

Note that €, < Bapur < apk

Jata/m? _ (482 1
(@ —ex/pe)* =7 (1= B)*a?
Therefore, once the following inequality is true, Condition [2]is satisfied.

1821 _ (1-0) @ (1-8)%(1 - )"
’“(1—5)%2S e N Sy

2 1—6 3 1—
Because 1, < j1o < %%

is satisfied under our choice of €.

from the condition we impose for 1y. Consequently, Condition

Now we focus on the Condition E Because € < afuy, if we can ensure afBuy < 2u2/2 + apg —
24/ 2@@2/ - uzaQ holds, then we can show Conditionis always satisfied.
aBux <2 + apx — 21/ 204" — pida?
24/ 2ap, 5/2 _ pia? <2py 3/2 + (1= B)apg
5/2
4(20p)% — pfa®) <4pd + (1 - B)%a’pid + 41 — B)apy
0 <4(a® + 1)pj, + (1 = B)*a’pi — 4(1 + )auz/2
0 <d(a® + D — 401 + Bapy> + (1 — B)%a>  when 0 < py, < 4/a”
1+Ba 12, (1-p)%°

0 <pp —
=T @@t T @+ 1)
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‘We also notice that

1+522 1_522 1+52
ety <0 (155) e

Because (}*g) < (1 —d)(a® + 1), the inequality above always holds and this inequality implies

that for any pup > 0
(L+B)a 172  (1—p)%®
0< pp — — 2 ~
N PP D L T PR
Therefore, Condition [2holds. Condition [3also holds because of the choice of ¢y.

Bound the Distance Let c = 72/a?, and assume that y satisfies the following
1
p<ming= (1= (1/2)"4), #a?} (25)
c

Note that when 1 satisfies (25), then 1%/% < Bap, so € = p®/2.

ps (- =8 (- < 4
o/n= i< (26)
Then
1 pla + €/p)?
te((a—e/m)(1 —cu)sp) =1— o 1= (n(a? + 1) + (a — /p)2(1 — cp)?)?
__cu pla+e/p)?
L—cp  (u(a®+ 1)+ (a—e/p)2(1 — cp)?)?
B (a+e/m)?
ZCN M(G_f/ﬂ)‘l(l_cu)‘l
B (a+a/2)?
= a/2)4(1 —cp)’

! <C 1—cu) )

72 >0
—# C a2l —cep)t 1—cu)

Then we know (a — €/u)(1 — cp) <
important to note that

Wi = Wall =y @i = 02 + G e)?
<ma { /(@5 0, = 07 + W)\ @~ @7+ 0,007}

* *
We use the fact that 2}, . < %, e, < @ Tpye, < @), o a0d Yy, o < y;, - Next, we can

Now we can bound the distance ||W,, ., — Wg]|, it is

e

a-t+€g /
separately establish bounds for these two terms. Due to , y;k75k < (2“%)1/3% -
Virr1 and (a — e /pp) (1 — cpy) <z,

V@ = 02+ U )2 < Vit + (0 — (0 — /) (1 — cgap) )2

Given thatifz}, ., < a,then \/(x;k o — @)+ (U e )? > \/(x;j“k_ —a)? + (Y}, ¢ )?- There-

* €k ;
fore, if a:u e, = @, We can use the fact that Ty e <a+ e In this case,

\/(xﬁk,Ek, —a)? 4+ (5, )2 < Vi + e/ 1k)? = Vpwer + ik < V(2 — )k
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583

584
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588

As a result, we have

[Wieeo = Wall < max{/pei1 + (@ — (@ — ex/pr) (1 — cpx))?, /(2 — 6}

2

P41+ (@ — (@ —ex/pi) (1 — cpr))” <(
<

1
1

2,2

— 0) g + (acpy + /pr —

3/2
c,uk/

)2

(1= 0) s + 3(a®P i + pu + 1)
(4 — &) g + 3a*c? i + 3¢

Wi = Well <max{y/ps1 + (a = (a — e /p) (1 = cpr))?, /(2 = 0)pur}

< max{y/ (4 — 8)x + 342223 + 32yt /(2 — )y}

:\/(4 — 0) g + 3a?cpi + 3¢

Just let

2
(4— ) < (4—6)(1—0)rpp < ZL = ) >

In(3(4 — 8)po/eaist?)

2
3a’c? i < 3a*c*(1— 6)* ud L

3¢%pj, < 3¢*(1 = 8)* g

We use the fact that iy, < (1 — §)* 0. In order to satisfy (23).

[N~}

a
e < po(l — )k <

x]

Consequently, running Algorithm [6|after K (10, a, 6, €aist) outer iteration

where

3 = (11— 9))
< In(4665642/(a%cqist?))
=73 = 2m(1/(1 - 9))
< Edist? & In(4665613 /(acqist?))
=73 = 3Wm(1/(1-9))
In e oy
(1- (/2" = k> L2
ln i3
1 2.2
e < po(1—0)" < B2a® = k > M
ln 1=
||V[/1Lk,6k - WG||2 S Edist
o 72/140 3(4 — 5)/10 1
1 )1/4),111( 82 )7 §1n(

1
K (po,a, 6, €aist) Zm max {ln B2q2 " a2(1— (1/2

By Lemmal6]  iteration of Algorithm [6|need the following step of gradient descent

Q(Mk (a2 + 1) + 3a2)(g#k+1 (W;Ufk»ek) B guk+1(

W

Hk4+1:€k+1

)

2
€k
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Let K (po, a, 0, £4ist) satisfy R (po.a.b2as) < B2a? < HR (10,08, 2aie) —1° Hence, the total number
of gradient steps required by Algorithm[6]can be expressed as follows:
Ko, @02dist) 2(pg (a2 + 1) +3a2) (91 Wiigrer) = Inggr Wig g 10ep1))
2

k=0 €k

K (posa,8,54is4)— 1 (g (W, ) — W, K(po,a,6,eqist) _
n Mo € 9y, ( I3 L€ ) (QM (WM € ) Gy, (W;L . JEJe )
§2<M0(a2 + 1) +3a2) ( Z k+1 k: €k 2k+1 k+1:k+1 + Z k41 k>¢k 2k+1 k+1°¢k+1

€ — €
=0 k k=K (10,a,8,2qist) k

K(n0,a,8,cdist) —1 (g (W, ) — w, K (pr0,a,0,2qist) W _ %
w e Iupr1 Whpiq1,eprq) s (Iugyr Wag,er) = 9nprqr Wap i qiepiq))
2(}‘(‘:](012 1) 302) z : k41 ko €k k+1 k+1:k41 2 : k+1 k €k k+ k+ k+

B2a2u2 — u
k k=K (pq,a;8,eqist) k

K (ng,a,9, Edm)

e W, )—g W, ) Kowdedise) (g Waper) = 9 Wages11ep41)
§2<M0(a2+1)+3a2) Hi41 Hi €k Hig4+1 Pr41k+41 + Z P41 P €k Hi+4+1 Hi41:€k+1

ﬂGaG e l"3
k 0 k=K (np,a,8,eq4ist) k

<2(po(a® + 1) + 3a%)

6,6 3
=0 BCa k=0 P (no,a,8,eqist)

5 5 1 K (ng,a,8,eqist)
=2(po(a® + 1) + 3a?) ﬂﬁaﬁ k1 Wiger) = Gy s Wiy e 1))

“K(,LO a,8,e4ist)

£
Il
<)

M%

<2(uo(a® + 1) + 3a%)

) ) ) (K(;Lo
64,6
e ”K(uo a,8,edist) ke

1

1Edist) .
(g Wik ) = gupyy (Wi th >>)>

™

I
<)

=2(po(a® + 1) + 3a%)

€K (ng,a,8, Edlst)"’l))

) ((Quo(wuo,m) II K (a6, e qige) 1 VK (g 6o qig)+1

a,s a,8,e4;
<K(uo Edist) G Wagrer) = Iy s Wigo 1 repn) . K(#O:iysdlst) gy Wiger) = Guppq (WukJrl,ekJrl)))
<f}6a6

#KQ‘O @,8,€qist)

1

<2(po(a® + 1) + 3a%) (MG

) guo(Wuo,eo)

“K(no,a,a,edist)

Note from and (30), the following should holds

.2 . .\ 2/3 2
. Edist AEdist AEdist 2 2 a’i o 1/4
MK(.Uf()vav(saEdist) - mln{3(4 _ 6) ’ 216 ) ( 216 ) 7B a, 72 (]‘ (1/2) )}

Therefore,

K( ,a,0, ist)
Ho Ed Q(Nk(GQ +1) + 3a2)(guk+1 (WIMmGk) ~ Gpet1 (Wﬂk+17€k+1))

= v
3
<(pola® + 1) + 36%) . max{3(4 —8) 216 216 \¥? 1 72 ) (W)
== (6ab cdist> | QEdist | \ GEdist " B2a?7 (1 —(1/2)1/4)a? oW wo

22



593

594

595

596

597

598

599

600

602

603
604

605

606

607

608

609

D Additional Theorems and Lemmas

Theorem 5 (Detailed Property of r(y; u)). For r(y; u) in (8), then

(@) Forp >0, lim, o+ 7(y; ) = 00, (%7, 1) <0

(i) Forp >0, r(\/m,p) < 0.

e 2
(iii) For p > %

For0 < p <

a2

ry
where
4 1/3
ylb:( /’L) (a1/3_
Moreover,

dr(y; 1)

dr(y; 1)
dy

dr(y; 1)

dy

0
dy <

>0 ym <y <Yw

<0 Otherwise

(32a)

(32b)

4)1/3
= @) = @ a2 ()

b < Vi < Yub

(iv) For0 < p < %, let p(p) = r(yup, 1), then ;129’(#) < 0 and there exist a unique solution to
p(p) = 0, denoted as T. Additionally, T < .

(V) There exists a T > 0 such that, Vu > T, the equation r(y; u) = 0 has only one solution. At
W = T, the equation r(y; 1) = 0 has two solutions, and ¥ < 7, the equation r(y; u) = 0
2

has three solutions. Moreover, i < %.

(Vi) Yu < 7, the equation r(y; i) = 0 has three solution, i.e. v, <y <y

dy;
dp

Moreover,

>0

dy;”

dp

>0

TS

dy;,
dp

Yy <y < V1 <y, <y <Y,

—— < 0and &iir%)yz:O,ii_}mOyz* :O,}Lil)r%)y

Hokk
o

*ok ok
"

ko k

Theorem 6 (Detailed Property of ¢(z; u1)). For t(x; p) in ), then

(1) For p > 0, limg,_,g+ t(z; u) = oo, t(a,u) <0

. a(va?+1—a
() Ifp < ((2(,127111)

eee 2
(iii) For p > m

ForO < pu <

az

4(a?+1)3

dt(z; p)

dt(z; p)
dx
dt(z; 1)

dz

2 o\ 2
)> or | > (%) , then t(\/p(a? + 1), 1) < 0.

0
dx <

>0 ap <z <o

<0 Otherwise

23
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613

614

615

616
617

618

619

620

621

622
6!

n
w

624

625

626

627

628

629

630

where

(4pa)/3(1 — /1 — Rl ), (dpa)/3(1 + /1 — Wi,

T = 5 LTub =

Moreover,

i < Vp(a?+1) < zyp

2

(iv) For0 < p < ﬁ and let q(p) = t(xm, ), then ¢’ (1) > 0 and there exist a unique
1
.

solution to q(p) = 0, denoted as T and T < ﬁ <5

(V) There exists aT > 0 such that, Vu > 7, the equation t(x; ) = 0 has only one solution. At
w = T, the equation t(x; u) = 0 has two solutions, and ¥ < 7, the equation t(z;u) = 0

. a 1
has three solutions. Moreover, T < PTCEEAE <

(vi) Yu < 7, t(x; ) = 0 has three stationary points, i.e. x;™* < z\* < xj.

“w
dzy, dr,” N -
— <0 > 0and lim 2, = a, lim x
du du p—0 # p—0 H
Besides,
e a(va2+1—a) a(vVa?+1+a)
maxz,” < ——————— and
n<T 2vVa? +1

a(va?+l-a),

=0, lim 2™ =0
pn—0 H

< minz*

2va? +1 >0 M

It also implies that t(ﬁ’ ) > 0 and max, <, v < min,soz;,

Lemma 7. Algorithmeith input [ = g,(x,y),z0 = ((0),y(0)) where (x(0),y(0)) € Cys3 in
@1), then ¥t > 0, (x(t),y(t)) € Cus. Moreover, lim;_, o (x(t), y(t)) = (x},,y})

Lemma 8. For any (v,y) € Cy3 in @1), and (x,y) # (=}, y;;)
9u(z,y) > guly, yy)
Theorem 7 (Detailed Property of r(y; u)). For re(y; ) in (13), then

(i) For > 0,€> 0, limy,_,o+ re(y; 1) = 00, y( =257, 1) <0

4

(ii) For p > (=€l thep Qi) 0 For( < < faz</m)

(ate/n)?’ dy = 4(ate/p)?
dre(y; 1)
Ty >0 Ylb, e <y< Yub, e
d e\Y; .
M <0 Otherwise
dy

where

o 2/3
) -

Also,

1/3 (a + E/N)l/s

(o~ /PP
Yb,p,e S \//j S Yub, e

Theorem 8 (Detailed Property of 75(y; u)). For rg(y; i) in (19), then

Yibyue < (2M2>

24
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631

632

633

634

635

636

637

638

639

640
641

642

643

644

(i) For pn>0,e >0, lim,_,o+ 73(y; 1) = 00

. a®(1-p)* drp (ys a(1-p)"
(ii) For p > 4((11_‘_5)2 , then % <0. ForO<p < 4((11+ﬁﬁ))2

dr ;
W) S s <y < Yabns (352)

< 0 Otherwise (35b)

(4M)1/3 a(l _ ﬁ)Q 1/3 (4M)1/3 1+ ﬁ 2/3
Ylb,p,8 = 9 ( 1+ 8 ) T=y/1- a?/3 ((15)2)

(40 (a1 — )2\ (' ( 148\
s =L (DYt (1

dy
drg(y; 1)
dy

where

Also,
(@ (14 )

)
Ybup S 5173 (1_p)2/3

Y8 = VIS Yub,pu,
Theorem 9 (Detailed Property of tg(x; 11)). For tg(z; u) in 20), then

(@) Forp >0, lim, o+ tg(z;p) = o0, tg(a;pu) <0

.. a2 4
(ll) FOV/,L > m%

dig(zip) _
dx
2 4
For0 < i < iy (551
dtg(x;
# >0 Tib,pu,8 < T < Tub,u,B (36a)
dts(x;
w <0 Otherwise (36b)
XL

where

1 (4dap(l+B5)*\"° (432 +1) (1= \P*
mﬁ2(1—ﬂ> VT e <<1+6>2)

1 (dap(1+ B)2\"*? a3a+1) [ 1-8 \*?
Iub#ﬁQ(M) 1+\/1(ﬂ) az(/cz )<<1+§)2) )

\(a?2+1)—1
(i) If0 < B < W s
rg(z; ) = 0 has only one solution. At i = 7g, the equation rg(x; ) = 0 has two
solutions, and ¥ < 7g, the equation rg(z; 1) = 0 has three solutions. Moreover, |1 <

a2 (B+1)?

TG (-1
W) Fo<f< (a2+1)+1
CU;TE < m;*ﬁ < .%'*”6, Besides,

a((1 - Ve +1— /(1 - B)*(a® +1) — (B+1)?)

, then there exists a T3 > 0 such that, Vi > T3, the equation

then Yy < 73, tg(x; ) = 0 has three stationary points, i.e.

max ¥, <

p<ry HoP 2va? +1
a((L - V@ F T+ VI FP@ )~ (1) _ o .
NS B
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646

647

648

649
650

651

652

654

655

656

657

658

It implies that

kk . £
max x < minzx
p<ts w8 150 w,B

Lemma 9. Under the same setting as Corollary 3]

max x,’. < minz), .
pr T o T

E Technical Proofs

E.1 Proof of Theorem 3|

Proof. For the sake of completeness, we have included the proof here. Please note that this proof can
also be found in [33].

Proof. We use the fact that f is L-smooth function if and only if for any W, Y € dom(f)
FOV) < FOV) + (VH(Y),Y = W)+ 2V — W3
Let W = W'l and Y = W', then using the updating rule W' = W' — LV f(W?)
FOVEE) <JWE) + (VW) W W)+ 2wt — w3
=5 W) = LIV SOV + 5 IV V)3
=5(W") = S IV SV B
Therefore,

(fOVO) = fF(W™)) _ 2L(F(W°) — f(W™))

n n

0<t<n—

n—1
. 1 2L
min_[[VFWOI3 < = VW3 <
t=0

2L(f(WO) = f(W™) _ » S 2L(FWVO) — f(W))

: )12 < <
oin [IVFWAIlz < - <€ =n2 =

[
O

E.2 Proof of Theorem 3]

Proof. (i) For any p > 0,

2
a a
li jp) = lim — — — —(a®+1) =
yggj(y,u) g = (a”+1) = o0
2
a ua
r(f——— =——— <0.
R U e R
(ii)
P = )
’ /T
a’ 1
= —(—-)2-d’<0
1\ L



659

660

661

662
663

664

665

666

667

668

669

670
671

672

674
675

(iv)

)

dr(y;p) _  a  da’ny
dy v P +p?
_da’py’ — a(y® + p)°
PP+’
_a((4ap)*Py? + (4ap) Py(y* + p) + (7 + 1)*) ((ap) Py — y* — )
v (v + )
For p > %, ((4a,u)1/3 -y’ —pu)<0& dr(y;”) <0.
For p < 2 LU < Y < Yub, ((ap) Y3y — 9% —p) > 0 & dr(y 1 > 0. For p < “7‘2,
Y <y or yub < ¥, (dap)Py —y? — p) <0 2 <,
Note that
dr(y; )

L =06 ((4ap) Py =y — ) = 05 (dap) P =y + £
H )

The intersection between line (4ayu)'/?

Yib < /I < Yub-

and function y + % are exactly yjp, and yyp, and

Note that for 0 < p < %,

or o Y-
— = d < <Y
T PRI V<
then g—; . < 0. Let p(1) = r(yup, p), because %'y:yub = 0, then
dp(p) _dr(yub,p) _ Or dyus | Or _or <0
d‘u d’u ay Y=Yub d’u a‘[l Y=Yub a‘[l Y=Yub

Also note that when p = % Yub = /s (1) = 7(Yub, 1) = 7(\/1, 1) < 0, and also if
@ < -, then

41)1/3
yub<(ﬂ2) 941/3 — (4/Ml)1/3
Thus,
2
Aua)/3 ) =— _ Ha —(a® 41
P ) = G Gy Y
2
a a 7(0,24»1)

T (@pa)'B () 3(4a)2/8 4 pl /B2

1 a a?

>M1/3((4G)1/3 - (4a)4/3)

—(a®+1)

a
Because @7 > (da

(Yaw, 1) > r((4pa)*/3, u) — oo as . — 0 because of the monotonicity of r(y; ) in
Theorem [5(ii1)] Combining all of these, i.e.
dp(u) a?

2P 1 bl
a0 <0, ug&p(u) 0, p(-)<0

)4/3, it is easy to see when 1 — 0, 7((4pa)'/3, 1) — co. We know

There exists a 7 < %2 such that p(7) =0

From Theorem [5(v)} for ¢ > 7, then p(y) = 7(yup,p) > 0, and for y = 7, then
p(1) = r(Yub, ) = 0. For p < 7, then p(u) = 7(yup, p) < 0, combining Theorem

5(M[5(iD)] we get the conclusions.
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676

677

678
679
680

681

683

684

685

686

687

688

(vi)

By Theorem , Vu < 7, there exists three stationary points such that 0 < 3/:1 <y <

VI <yt <yw <y, " Because dr(yin) = 7dr(dqg“) ~ =0, then
Y=Yib Y=Yub
dr(y; p) dr(y; p) dr(y; 1)
po, SRy T
dy Y=Y, dy y=y;* dy Y=y

By implicit function theorem [[14], for solution to equation r(y; u) = 0, there exists a
unique continuously differentiable function such that y = y(u) and satisfies 7(y(u), ) = 0.
Therefore,

or o Y -p  Or o  _ddlny - dy(w) __Or/op
—_— = —qQa v a _— = —— y = —
o (n+y?)3" Oy y? (2 +p)? du or/dy
Therefore by Theorem [5(iii)}
d d d
i i anl, . <
Fly=y Hly=y Hly (i
Because lim,_,o+ Y1, = lim,,_,o+ yup = 0, then lim,,_, o+ yH = lim,, o+ y;" = 0. Letus
consider (2% (1 — cp), 1) where ¢ = 3255 (o H) and p < 5-
a
r(ag + 1( - C,u)hu)
2
a ua 9
= - (a®+1)
aZ+1 (1 C:u) ((aZ-il)Q (1 CN)Q +,LL)2
2
e ua
—@ (L) - —
1—cu (ﬁ(l—cmg‘i‘ﬂp
2
>c(a® 4+ 1)p — Ha

(g (1 — cp)?)?
16(a® + 1)*
_ 16(a? +1)*

5 ©w>0

a
By Theorem|5(iii)} then % (1 — u) < y,**, then

(I —cp),p) < lim g™ <

= lim —_
u—0+ s - Cl2 + 1

a?+1 p—)0+a2+1

Consequently,
pn—0+ a’+1
O
E.3 Proof of Theorem @]
Proof. (1) For pu > 0,
a2
1 t = lim — 1=
m, tesp) = oS0+ T wu(a? +1) >
2
a
a — 0
@H =@+ n+d
(ii)
a 1 a?
t a?+1 _— -1
( ,LL( ) M) /(12 +1 \/,E 4,&((12 + 1)2



689 If t(y/p(a? + 1), u) = 0, then

1@ wm)
\f a

2(a2+1):>u:< S+ 1)

2
690 so when y < 2(‘1;111)‘1)) or ju > (a(im) ,then t(y/p(a2 + 1), ) <0
(iii)
di(z, p)
dz
a n 4pa’x
22 (p(a®+1) +22)3
_Apaa® —a(p(a® +1) +22)?
B z2(p(a® +1) +22)3
_a((u(a® +1) +a2)° + (p(a® + 1) + 2°)(4pa) P + (4pa)*3a®) (4pa) P — p(a® +1) —
z2(pu(a? +1) +22)3
691 For p1 > ﬁ,then (4pa) Pz —p(a®>4+1) -2 < 0 & dt(a:#) < 0. Forpu < ﬁ’
692 and 1, < & < b, then (4pa)/Br—p(a®+1)—22 > 0 < dt(w’”) > 0, For 1 < ﬁ,
693 T < T OF T > Typ, (4ua)Br — pa®+1) —2? <0 & ( ’”) <0.
694 We use the same argument as before to show that
T < V/ ,u(a2 + 1) < Zyb
695 (iv) Note that for 0 < pu < ﬁ
ot 5 22— p(a®+1)
— =—qa and zp, < a2 +1) <y
op @ ey pap TS Ve <o
696 then g—t > 0. Let ¢(u) = t(xmw, i), because % . 0, then
T=T1p
d dt ot d ot ot
q(p) _dt(xw,p) Ot o O _ o -0
du du Ox|,_, du O ey OB pmy,
ag a 1/3 a 1/3 a2 a
697 Note that 4 = @212 Tub = Tib = (4#2) > t((4'u2) ) 4(a2+1)3) = pa)i’s 1>0.
— 2
698 When p < (%) , then t(1/u(a? + 1), 1) < 0 by Theorem|6(ii)l It implies that
699 q(u) < 0 when p — 0. By Theorem |6(iii), ¢(u) = t(zm, ) < t(y/p(a? +1),u) < 0.
700 Combining all of the theses, i.e.
dq(p) a?
—= >0, i <0, ——)>0
d i, a(p) (I(4(a2 n 1)3)
701 There exists a 7 < 4((12“%)3, q(7) = 0. Such 7 is the same as in Theorem [5(iv),
702 (v) We follow the same proof from the proof of Theorem
703 (vi) By Theorem|6(v), Vi < po, there exists three stationary points such that 0 < ;™ <z, <
704 m;* < Tup < :1:; < a. Because % = % = 0, then
T=T1p T=Tub
dt(z; p) 2o, dt(x; p) 20, dt(x; p) 20
dr |,_,- dr |,y dr |,
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713

714
715
716

77

718

719

720

721

722

By implicit function theorem [[14]], for solutions to equation ¢(x; 1) = 0, there exists a
unique continuously differentiable function such that z = x(x) and satisfies t(z(u), u) = 0.
Therefore,

z2—p(a+1)
o oyop _ (M=
- - a 4pa?x
dp 0t0r — %+ gty
Therefore, by Theorem [6(ii1)]

d d

& <0 % >0

771 P i

o=z o=z

Hok ok

Because 0 < x,

<z < x;* < Typ and lim,_,o+ 1, = lim, 0+ Tup = 0.
lim z** = lim x;** =0
pn—0 pn—0

Let us consider ¢(a(1 — cy), 1) where ¢ = 23 and 1 < -

t(a(l —cp); p)

a ua

Tal-a) W@+ D+ a0 — PR
o na’
T—en (a(@ 1) + (1 — )2
2

> pa
I
=H T @1 = o))

16
>cp— —p >0
a
By Theorem [6(ii1)} It implies
a(l —cp) <,
taking p — 0T on both side,

a= lim a(l —cp) < lim z* <a
n—0+ ( M)7u~>0+ b=

Hence, lim,,_,¢ xz = q.

When p = 7, because t(zp; ) = 0 and zy, > Jp(a? +1) > ay, t(x; p) is increas-
ing function between [T, Zyp) then t(y/p(a? +1); ) > t(aw;u) = 0. Moreover,
t(v/p(a? + 1), u), 1, and z* are continuous function w.r.t y, 36 > 0 which is really

small, such that p = 7 — ¢ and t(\/p(a® + 1), ) > 0, t(z1p, ) < 0 (by Theorem i

dz

and z;* > x1p, hence @‘ < 0. It implies when y decreases, then z},* increases. This
r=x "
relation holds until z7* = \/pu(a? + 1)
t(ay" ) =t/ p(a® +1), 1) =0
2
- a(vVa?+1—a)
=" 2@
a(va?+1—a a(va?+1—a 2
and /p(a?+1) = (27\/%1) Note that when p < (%) ,
t(v/p(a® +1), 1) < 0, it implies that z3* > y/p(a? + 1) and Zl%‘ > 0, thus de-

ok
Th

creasing p leads to decreasing x,". We can conclude

a(vVa?+1—a)
maxa't < ——— o
p<r H 2va? +1
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724

725

726
727

728

729

730

731

732

733

734

735
736
737

738

739

740

2 2
Note that Vus.t.(%) < p o< T,z < (@)’ 5o

a(va?2+1—a 2
t((%) 1) = 0.

Note that when & > ie. (27%)% > p(a® + 1) then
dz
dp

_a_
a?+1°

>0

—
ZIA’*IH

It implies that when y decreases, 7, also decreases. It holds true until zj, = \/u(a® +1).
The same analysis can be applied to z, like above, we can conclude that

. . _aVa®+1+a)
T T e r 1

a(vVa?+1—a) < a(vVa?+1+a) .
e W e NS

Hence

E.4 Proof of Theorem [7|8 and[9]
Proof. The proof is similar to the proof of Theorem 5]and Theorem [6] O

E.5 Proof of Lemmalll

Proof.

Vgu(@,y) = (M2‘;52 u(a? —|2-x1y) + xz)
Let A1 (V2g,(z,9)), \2(V2g,(z, y)) be the eigenvalue of matrix Vg, (z, y), then
M(V2gu(@,9) + X2(Vgu(2,y))
=Tr(Vigu(z,y) = p+y* + pla® +1) + 2> >0
Now we calculate the product of eigenvalue
M(V2gu(@,9)) - A2(V2gu (W)
= det(V?g,(W))

=(u+y*)(u(a® + 1) + 2°) — 42%y?
_ pa pa
- X

() > ay

—42%y® > 0

aftyo/3 ap
=>(— >
(%) Y
1/3

Sy + g > (dap)

Note that for (z};, y},), (", y,;*"), they satisfy (I1a) and (L1b)), this fact is used in third equality and
second “&”. By (32b), we know A1 (V2g,(x,y)) - A2(V2gu(x,y)) > 0 for (a7, yr), (x5, y7),

wooYp
and A\ (V2g,(z,y)) - X2(V2gu(x,y)) < 0 for (3%, y%*), then

M(V2gu(x,y)) > 0,22(V2gu(e,y)) >0 for (z},y;0), (a7, y")

Al(Vng(x,y)) < 0or Xa(V3gu(z,9)) <0 for (2", y,,")
and
Vgu(z,y) =0
Then (z7},,y},), (), y,;**) are locally minima, (z};*,y,;*) is saddle point for g, (W). O

31



741 E.6 Proof of Lemmal/2l

gu(W)

* )

OGNy

* (X;,‘",y;”)
99,(W)

— 20

a9W) _
— W

x

Figure 8: Stationary points when p < 7

Proof. Let us define the functions as below

ya(@) =\ [n(*==)  0<z<a

yﬂg(x):’u(a2 _:Mlz)_’_m2 O0<z<a
z1(y) yQNjM 0<y<gaz
2uay) = u(g—(a2+1)) 0<y< s

742 with simple calculations,

Yur > Yuz & t(asp) >0 € (0,2, U [z, 2]
743 and

kK

Tp1 > 2 & r(yip) <0y €y, Uy,

a?+1
744 Here we divide B,, into three parts, C,1, Cp2, Cp3
Con ={(z, 9|z <z <), ym <y <y, }U{(z,y)lz), <z <a,ye<y<y,}
Cp2 :{(m,y)\xz* <z < a:Z,O <y <yuwtU {(x,y)|xz <r<a,0<y<yu}
Cus ={(z,y)|z)" <2 <),y <y <y} U{(z,9)]z), <2 <a,yu <y < Yo}

745 Also note that

V(z,y) € Cin = ag”a(i’y) >0, agua(z,y) <0
v(x7y) S CM2 = 8gua(i’ y) < 07 8gua(;’y) <0

746 The gradient flow follows
09, (z(t),y(t))
' (t SHTACAU I
(ygtD - (M?%w») = —Vgu(z(t),y(t))
oy
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748
749
750

751

752

753

754

755

756

757

758

759

761

762

764

765
766

767

then

/

W(@,y) € Cur = (igg) <0, Vgl >0 “2)
(t)

'(t
Wa € Ca= (0] >0 Vol >0 @)

Note that || Vg, || is not diminishing and bounded away from 0. Let us consider the (z(0),y(0)) €
Cy, since Vg, (z,y) # 0, —Vg,(z,y) < 0in and boundness of C|,1, it implies there exists a
finite 5 > 0 such that

(ﬂi(to),y(to)) S 8C’M1, (%(t),y(t)) S Cul for 0 <t <ty

where 0C),; is defined as
0Cu = {(z, Y|z, <z <),y =yu}tU{(z,y)lz, <z <a,y=yu} CCus
For the same reason, if (2(0),y(0)) € C,.2, there exists a finite time t; > 0,

(Jf(to),y(to)) S 8OM2, (ZL‘(t),y(t)) S CHQ for0 <t <ty

where 0C),5 is defined as

0Cp2 = {(z,y)|zy," <z <2,y =yu2} U{(z,y)lry <z < a,y =yu} € Cus
then by lemma limy o0 (2(t), y(t)) = (7}, y},)- O
E.7 Proof of Lemma[3

Proof. This is just a result of the Theorem 3] O

E.8 Proof of Lemma/3
Proof. Note that
2 _(n+y? 2xy _(n 0 y* 2xy
Vigu(W) = ( 22y p(a®+1) +:Jc2) - (0 pa?+1)) Tlowy 22

Let || - |op is the spectral norm, and it satisfies triangle inequality

) U 0 ¥ 2zy
i <[5 o), 10 %)

2
2 Yo 2zy
=p(a®+1)+ H (Qxy 22 )

The spectral norm of the second term in area A is bounded by

(2% 4+ y?) + /(22 + y2)? + 12222 < 2a* + V4a* +12a* 242

< a
(z,y)eA 2 2

op

op

We use 22 < a?,y? < a? in the inequality. Therefore,

V29, (W H < 3a® + p(a® +1)

Also, according to [5,[33]], for any f, if V2 f exists, then f is L smooth if and only if |V2f|Op < L.
With this, we conclude the proof. O

E.9 Proof of Lemmal(7l

Proof. First we prove ¥t > 0, (z(t),y(t)) € Cys3, because if (z(t),y(t)) ¢ Cls3, then there exists a

finite ¢ such that
(:E(t), y(t)) € 80#3
where 0C|,3 is the boundary of C,;3, defined as

OCu3 = {(z,yY)ly = yu1(x) ory = y,2(w), 2" <z < a}
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W.L.O.G, let us assume (2(0),y(0)) € 9Cy3 and (2(0),y(0)) # (z},,y;;). Here are four different
cases,

~ o) ify(0) =y (@(0), 25 < 2(0) <,

Z0) i9(0) = g (@(0),2; < 2(0) <a
Vu(z(t),y(t)) = < 8 i (0) = g (2(0)), 27 < 2(0) <

Z0) ifu(0) = ya(e(0)), 27 < 2(0) < a

This indicates that —Vg,,(x(t),y(t)) are pointing to the interior of C,3, then (z(t), y(t)) can not
escape C\,3. Here we can focus our attention in C),3, because V¢ > 0, (z(¢),y(t)) € C,3. For
Algorithm ]

V&) — 9 iz = -1 701
In our setting, V(z,y) € Cu3
{ Vou(r,y) #0  (z,y) # (2}, y};)
Vogu(z,y) =0 (z,y) = (z,,9,)
SO

dg,(z(t),y(t)) _ { —||Vgu||§ <0 (z,y) # (z},y,)
dt ~IVgullz =0 (z,y) = (=}, ;)
Plus, (x},,y},) is the unique stationary point of g,,(W) in C,3. By lemma

9u(2,9) > gy, y,)  (7,9) # (2, 9,)

By Lyapunov asymptotic stability theorem [28]], and applying it to gradient flow for g,,(z,y) in Cps,
we can conclude lim; o0 (2(t), y(t)) = (@}, y},)- O

E.10 Proof of Lemma§|

Proof. For any (x,y) € Cy3 inf41} and (z,y) # (z};,9},),in Algorithm W.L.O.G, we can assume
r € (z}7, x},), the analysis details can also be applied to = € (7}, a). It is obvious that 7; < ;11
and g;11 < g;. Also, lim; . (Z;,9;) = (z},,y;;). Otherwise either 7; # x or §; # y;; hold,
Algorithmﬁcontinues until lim; oo (25, 9;) = im; o0 (Yu2(95), zu1(&5)), i.e. (&5, 7;) converges
to (z},,y;:)-

Moreover, note that for any j = 0,1, ...

g;t(ij—hgj—l) > gu(a?j—lvgj) > gu('i_ngj)

Because
. . - . 09, (Tj-1,7) , - . L
Iu(Tj—1,5-1) — gu(Tj—1,75) = W(yjl — ;) wherey € (7;,7;-1)
Note that D9, (i 7
Gu\Tj—1,Y ~ ~ ~ ~
# > 0= gu(Tj-1,0-1) > 9u(Tj-1,7))
By the same reason,

9u(Zj-1,95) > 9u(5, 9;)
By Lemma E, (z};,y;,) is local minima, and there exists a 7, > 0 and any {(z,y) | [|(z,y) —
(@ yille < 7rut,9u(@,y) > gulwy,yy,) Since lim; o0 (%4, 75) = (¥}, y;;), there exists a J > 0
such that Vj > J, |[(Z;,9;) — (z},,9;,)|l2 < ry, combining them all

9u(®, ) > 9u(T5,95) > gu(z),,vy)
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Algorithm 7: Path goes to (z7;, y;:)

Input: (z,y) € Cus, 1 (y), yu2(z) as (38a),(37D)
Output: {(Z;,7;)}72,

(5:07 go) — (l‘, y)

forj =1,2,...do

9j < Yua(Zj-1)
Tj <+ zp1(i-1)
end

E.11 Proof of Lemma/

Proof. From the proof of Theorem|I] any any scheduling for p;, satisfies following will do the job
(2/a)?3 i’ < < pp
Note that in Algorithm we have @ = /4(jo + €) < a, then it is obvious
(2/a)* %, < (2/@)* P

The same analysis for Theorem [I] can be applied here. O

E.12 Proof of Lemma 6]

Proof. By the Theoremand Lemmaand the fact that A}L’E is p-stationary point region, we use the
same argument as proof of Lemma to demonstrate the gradient descent will never go to Aie. O

E.13 Proof of Lemma[9l

Proof. By Theorem|[9(1v)
maxzy,5 < ML, 5

*k
€

We also know from the proof of Corollarylgl, zy <z gandxy 5 <z . Consequently,

* 3k . *
max x < minx
n<ts e — >0 €

Because 73 > 7, s0

* ok < *ok < . *
mex e < max i < mina,
O
E.14 Proof of Corollary ]|
Proof. Note that
a? < 1 >0

—= <= a

4(a®+1)3 — 27
when a > 2—57, then % > o = 21—7 > ﬁ, it satisfies condition in Lemma E we obtain the
same result. O
E.15 Proof of Corollary2|
Proof. Use Theorem and Theorem [6(v1). O
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E.16 Proof of Corollary 3]
Proof. 1t is easy to know that

rays i) > re(y; ) > r(y; 1)
and

ta(zsp) <te(zsp) <t(z;p)

and when p < 7, there are three solutions to 7(y; 1) = 0 by Theorem E Also, we know from
Theorem |7} [§]

lim r.(y; pu) = 0o lim rg(y; p) = oo
i, e(yi 1) i, sy 1)
L 2
Note that when (%) <a?+1

(1+58)

o (Vi 1) = RS At

<0 Vp>0
Vi 4p

Therefore,

0 > g/ ) > re(V/15 ) > (/15 )

Also, we know that for y,;, defined in Theorem [5(iii), we know r(yup; ) > 0 from Theorem[5(iv)|
Therefore,

rﬁ(yub;luf) > re(?Jub?:“’) > r(yub;:u') >0

Besides, /& < yub. By monotonicity of 73(y; 1) and r.(y; i) from the Theorem and Theorem
[8(ii)| it implies that there are at least two solutions to 75 (y; i) and re(y; ). From the geometry
of 75(y; 1), re(y; 1), 7(y; 1) and tg(x; ), te(w; p), t(z; p), it is trivial to know that xy, . < 7,
Yie Z Y Tpiie 2 T Ye S Y-

Finally, for every point (z,y) € Al

.- there exists a pair €1, €o, each satisfying |e1| < e and |e3] <,
such that (x, y) is the solution to

m_ua+61 na + €o

RN YT R+ )

We can repeat the same analysis above to show that 2}, . < z, y;; . > y. Applying the same logic
toV(z,y) € A2, we find 27, > x, y, . < y. Thus, (7, y},) is the extreme point of A}, . and

f,e?
(3%, y*) is the extreme point of A” _, we get the results. O

F Experiments Details

In this section, we present experiments to validate the global convergence of Algorithm [6. Our
goal is twofold: First, we aim to demonstrate that irrespective of the starting point, Algorithm [6
using gradient descent consistently returns the global minimum. Second, we contrast our updating
scheme for ju, €}, as prescribed in Algorithm [6 with an arbitrary updating scheme for y, €. This
comparison illustrates how inappropriate setting of parameters in gradient descent could lead to
incorrect solutions.
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F.1 Random Initialization Converges to Global Optimum

Algorithm 6 fora =2 B=0.01 6 =0.4 o =0.2034
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(a) Random Initialization 1
Algorithm 6 for a =2 B=0.01 6 = 0.4 1p = 0.2034
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(b) Random Initialization 2
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(d) Random Initialization 4

Figure 9: Trajectory of the gradient descent path with the different initializations for a = 2. We
observe that regardless of the initialization, Algorithm [6 always converges to the global minimum.

Initial o = 4

a? (1-8)°(1-p)*
(1+8)?
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(d) Random Initialization 4

(¢) Random Initialization 3

Figure 10: Trajectory of the gradient descent path with the different initializations for a = 0.5. We
observe that regardless of the initialization, Algorithm [6 always converges to the global minimum.

Initial pg = % (1_(‘51)i(51)_26)4
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g7 F.2  Wrong Specification of § Leads to Spurious Local Optimial

Algorithm 6 for @ =0.5 =0.01 6 =0.4 o =0.0127 Algorithm 6 for a =0.5 B =0.01 6 = 0.1 g = 0.0429
0.5 05
0.4 \end 0.4
*
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\ -
0.3 {estart \ 0.3 {estart _p” \
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e . \
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Figure 11: Trajectory of the gradient descent path for two difference d. Left: S violates requirement
2
(%) < (1 —6)(a® + 1) in Theorem 4, leading to spurious local minimum. Right: 3 follows
2
requirement (%) < (1 —94)(a® + 1) in Theorem E, leading to global minimum. Initial o =

a2 (1-0)*(1-p)*
4 (1+8)2

sss  F.3 Wrong Specification of 3 Leads to Incorrect Solution

Algorithm 6 fora =2 B=0.6 6 = 0.4 o = 0.0022 Algorithm 6 for a =2 =0.01 6 =0.4 o = 0.2034
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Figure 12: Trajectory of the gradient descent path for two difference 3. Left: 5 violates requirement

2
(%) < (1-6)(a®+1) in Theorem , leading to incorrect solution. Right: 3 follows requirement

2
(%) < (1-9)(a® + 1) in Theorem , leading to global minimum. Initial g = 1—2%
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Algorithm 6 for a =0.5 B =0.01 6 =0.15 pp =0.0361
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.

!
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i
@end
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x

(a) Bad scheduling

F.4 Faster decrease of ;:;, Leads to Incorrect Solution

Algorithm 6 for a =0.5 B =0.01 6 =0.15 pp =0.0361

@Start

0.0

(b) Good scheduling

Figure 13: Trajectory of the gradient descent path for two difference update rules for p with the
same initialization. Left: “Bad scheduling” uses a faster-decreasing scheme for 1, leading to an
incorrect solution, even a non-local optimal solution. Right: “Good scheduling” follows updating

rule for iy, in Algorithm
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leading to the global minimum. Initial py =

a? (1-8)°(1-p)*
4 (1+p)?



