
Algorithm 4: Find a path {Wµk} via a particular scheduling for µk when a is unknown.

Input: µ0 2
h

a2

4(a2+1)3 ,
a2

4

⌘
, " > 0

Output: {Wµk}1k=0

1 ba 
p
4(µ0 + ") // 8" � 0 s.t. ba < a

2 Wµ0  GradientFlow(gµ0 ,0)
3 for k = 1, 2, . . . do
4 Let µk+1 2

h
(2/ba)2/3 µ4/3

k , µk

⌘

5 Wµk+1  GradientFlow(gµk+1 ,Wµk)
6 end
7 return {Wµk}1k=0

A Practical Implementation of Algorithm 2408

We present a practical implementation of our homotopy algorithm in Algorithm 4. The updating409

scheme for µk is now independent of the parameter a, but as presented, the initialization for µ0410

still depends on a. This is for the following reason: It is possible to make the updating scheme411

independent of a without imposing any additional assumptions on a, as evidenced by Lemma 4 below.412

The initialization for µ0, however, is trickier, and we must consider two separate cases:413

1. No assumptions on a. In this case, if a is too small, then the problem becomes harder and414

the initial choice of µ0 matters.415

2. Lower bound on a. If we are willing to accept a lower bound on a, then there is an416

initialization for µ0 that does not depend on a.417

In Corollary 1, we illustrate this last point with the additional condition that a >
p
5/27. This418

essentially amounts to an assumption on the minimum signal, and is quite standard in the literature419

on learning SEM.420

Lemma 4. Under the assumption a2

4(a2+1)3  µ0 <
a2

4 , the Algorithm 4 outputs the global optimal421

solution to (6), i.e.422

lim
k!1

Wµk = WG.

It turns out that the assumption in Lemma 4 is not overly restrictive, as there exist pre-determined423

sequences of {µk}1k=0 that can ensure the effectiveness of Algorithm 4 for any values of a greater424

than a certain threshold.425

B From Population Loss to Empirical Loss426

The transformation from population loss to empirical can be thought from two components. First,427

with a given empirical loss, Algorithms 2 and 3 still achieve the global minimum, WG, of problem428

6, but now the output from the Algorithm is an empirical estimator â, rather than ground truth a,429

Theorem 1 and Corollary 1 would continue to be valid. Second, the global optimum, WG, of the430

empirical loss possess the same DAG structure as the underlying W⇤. The finite-sample findings431

in Section 5 (specifically, Lemmas 18 and 19) of Loh and Bühlmann [31], which offer sufficient432

conditions on the sample size to ensure that the DAG structures of WG and W⇤ are identical.433

C From Continuous to Discrete: Gradient Descent434

Previously, gradient flow was employed to address the intermediate problem (7), a method that435

poses implementation challenges in a computational setting. In this section, we introduce Algorithm436

6 that leverages gradient descent to solve (7) in each iteration. This adjustment serves practical437

considerations. We start with the convergence results of Gradient Descent.438

Definition 1. f is L-smooth, if f is differentiable and 8x, y 2 dom(f) such that krf(x) �439

rf(y)k2  Lkx� yk2.440
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Algorithm 5: Gradient Descent(f, ⌘,W0, ✏)
Input: function f , step size ⌘, initial point W0, tolerance ✏

Output: Wt

1 t 0
2 while krf(Wt)k2 > ✏ do
3 Wt+1  Wt � ⌘rf(Wt)
4 t t+ 1
5 end

Algorithm 6: Homotopy algorithm using gradient descent for solving (1).

Input: Initial W�1 = W (x�1, y�1), µ0 2
h

a2

4(a2+1)3
(1+�)4

(1��)2 ,
a2

4
(1��)3(1��)4

(1+�)2

⌘
,

⌘0 = 1
µ0(a2+1)+3a2 , ✏0 = min{�aµ0, µ

3/2
0 }

Output: {Wµk}1k=0
1 Wµ0,✏0  Gradient Descent(gµ0 , ⌘0,W�1, ✏0)
2 for k = 1, 2, . . . do
3 Let µk = (2µ2

k�1)
2/3 (a+✏k�1/µk�1)

2/3

(a�✏k�1/µk�1)4/3

4 Let ⌘k = 1
µk(a2+1)+3a2

5 Let ✏k = min{�aµk, µ
3/2
k }

6 Wµk,✏k  Gradient Descent(gµk , ⌘k,Wµk�1 , ✏k)
7 end

Theorem 3 (Nesterov et al. 33). If function f is L-smooth, then Gradient Descent (Algorithm 5) with441

step size ⌘ = 1/L, finds an ✏-first-order stationary point (i.e. krf(x)k2  ✏) in 2L(f(x0)� f
⇤)/✏2442

iterations.443

One of the pivotal factors influencing the convergence of gradient descent is the selection of the step444

size. Theorem 3 select a step size ⌘ = 1
L . Therefore, our initial step is to determine the smoothness445

of gµ(W ) within our region of interest, A = {0  x  a, 0  y  a
a2+1}.446

Lemma 5. Consider the function gµ(W ) as defined in Equation 7 within the region A = {0  x 447

a, 0  y  a
a2+1}. It follows that for all µ � 0, the function gµ(W ) is µ(a2 + 1) + 3a2-smooth.448

Since gradient descent is limited to identifying the ✏ stationary point of the function. Thus, we study449

the gradient of gµ(W ) = µf(W ) + h(W ), i.e. rgµ(W ) has the following form450

rgµ(W ) =

✓
µ(x� a) + y

2
x

µ(a2 + 1)y � aµ+ yx
2

◆

As gradient descent is limited to identifying the ✏ stationary point of the function, we, therefore, focus451

on kgµ(W )k2  ✏. This can be expressed in the subsequent manner:452

krgµ(W )k2  ✏) �✏  µ(x� a) + y
2
x < ✏ and � ✏  µ(a2 + 1)y � aµ+ yx

2  ✏

As a result,453

{(x, y) | krgµ(W )k2  ✏} ✓ {(x, y) | µa� ✏

µ+ y2
 x  µa+ ✏

µ+ y2
,

µa� ✏

x2 + µ(a2 + 1)
 y  µa+ ✏

x2 + µ(a2 + 1)
}

Here we denote such region as Aµ,✏454

Aµ,✏ = {(x, y) | µa� ✏

µ+ y2
 x  µa+ ✏

µ+ y2
,

µa� ✏

x2 + µ(a2 + 1)
 y  µa+ ✏

x2 + µ(a2 + 1)
} (10)

Figure 6 and 7 illustrate the region Aµ,✏.455
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Figure 6: An example of Aµ,✏ is depicted for a = 0.6, µ = 0.009, and ✏ = 0.00055. The yellow
region signifies ✏ stationary points, denoted as Aµ,✏ and defined by Equation (10). Aµ,✏ is the disjoint
union of A1

µ,✏ and A
2
µ,✏, which are defined by Equations (21) and (22), respectively.

456

Figure 7: Here is a localized illustration of Aµ,✏ that includes the point (x⇤
µ, y

⇤
µ). This region, referred

to as A1
µ,✏, is defined in Equation (21).

457

Given that the gradient descent can only locate ✏ stationary points within the region Aµ,✏ during458

each iteration, the boundary of Aµ,✏ becomes a critical component of our analysis. To facilitate clear459

presentation, it is essential to establish some pertinent notations.460
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•
8
><

>:

x =
µa

µ+ y2
(11a)

y =
µa

µ(a2 + 1) + x2
(11b)

If the system of equations yields only a single solution, we denote this solution as (x⇤
µ, y

⇤
µ).461

If it yields two solutions, these solutions are denoted as (x⇤
µ, y

⇤
µ), (x

⇤⇤
µ , y

⇤⇤
µ ), with x

⇤⇤
µ < x

⇤
µ.462

In the event that there are three distinct solutions to the system of equations, these solutions463

are denoted as (x⇤
µ, y

⇤
µ), (x

⇤⇤
µ , y

⇤⇤
µ ), (x⇤⇤⇤

µ , y
⇤⇤⇤
µ ), where x

⇤⇤⇤
µ < x

⇤⇤
µ < x

⇤
µ.464

•
8
>><

>>:

x =
µa� ✏

µ+ y2
(12a)

y =
µa+ ✏

µ(a2 + 1) + x2
(12b)

If the system of equations yields only a single solution, we denote this solution as (x⇤
µ,✏, y

⇤
µ,✏).465

If it yields two solutions, these solutions are denoted as (x⇤
µ,✏, y

⇤
µ,✏), (x

⇤⇤
µ,✏, y

⇤⇤
µ,✏), with x

⇤⇤
µ,✏ <466

x
⇤
µ,✏. In the event that there are three distinct solutions to the system of equations, these467

solutions are denoted as (x⇤
µ,✏, y

⇤
µ,✏), (x

⇤⇤
µ,✏, y

⇤⇤
µ,✏), (x

⇤⇤⇤
µ,✏ , y

⇤⇤⇤
µ,✏ ), where x

⇤⇤⇤
µ,✏ < x

⇤⇤
µ,✏ < x

⇤
µ,✏.468

•
8
>><

>>:

x =
µa+ ✏

µ+ y2
(13a)

y =
µa� ✏

µ(a2 + 1) + x2
(13b)

If the system of equations yields only a single solution, we denote this solu-469

tion as (x⇤
µ,✏_, y

⇤
µ,✏_). If it yields two solutions, these solutions are denoted470

as (x⇤
µ,✏_, y

⇤
µ,✏_), (x

⇤⇤
µ,✏_, y

⇤⇤
µ,✏_), with x

⇤⇤
µ,✏_ < x

⇤
µ,✏_. In the event that there are471

three distinct solutions to the system of equations, these solutions are denoted as472

(x⇤
µ,✏_, y

⇤
µ,✏_), (x

⇤⇤
µ,✏_, y

⇤⇤
µ,✏_), (x

⇤⇤⇤
µ,✏_, y

⇤⇤⇤
µ,✏_), where x

⇤⇤⇤
µ,✏_ < x

⇤⇤
µ,✏_ < x

⇤
µ,✏_.473

Remark 4. There always exists at least one solution to the above system of equations. When µ is474

sufficiently small, the above system of equations always yields three solutions, as demonstrated in475

Theorem 5, and Theorem 9.476

The parameter ✏ can substantially influence the behavior of the systems of equations (12a),(12b) and477

(13a),(13b). A crucial consideration is to ensure that ✏ remains adequately small. To facilitate this,478

we introduce a new parameter, �, whose specific value will be determined later. At this stage, we479

merely require that � should lie within the interval (0, 1). We further impose a constraint on ✏ to480

satisfy the following inequality:481

✏  �aµ (14)

Following the same procedure when we deal with ✏ = 0. Let us substitute (12a) into (12b), then we482

obtain an equation that only involves the variable y483

r✏(y;µ) =
a+ ✏/µ

y
� (a2 + 1)� (µa� ✏)2/µ

(y2 + µ)2
(15)

Let us substitute (12b) into (12a), then we obtain an equation that only involves the variable x484

t✏(x;µ) =
a� ✏/µ

x
� 1� (µa+ ✏)2/µ

(µ(a2 + 1) + x2)2
(16)

Proceed similarly for equations (13a) and (13b).485

r✏_(y;µ) =
a� ✏/µ

y
� (a2 + 1)� (µa+ ✏)2/µ

(y2 + µ)2
(17)
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486

t✏_(x;µ) =
a+ ✏/µ

x
� 1� (µa� ✏)2/µ

(µ(a2 + 1) + x2)2
(18)

Given the substantial role that the system of equations 12a and 12b play in our analysis, the existence487

of ✏ in these equations complicates the analysis, this can be avoided by considering the worst-case488

scenario, i.e., when ✏ = �aµ. With this particular choice of ✏, we can reformulate (15) and (16) as489

follows, denoting them as r�(y; ✏) and r�(x; ✏) respectively.490

r�(y;µ) =
a(1 + �)

y
� (a2 + 1)� µa

2(1� �)2

(y2 + µ)2
(19)

491

t�(x;µ) =
a(1� �)

x
� 1� µa

2(1 + �)2

(µ(a2 + 1) + x2)2
(20)

The functions r✏(y;µ), r✏_(y;µ), and r�(y;µ) possess similar properties to r(y;µ) as defined in492

Equation (8), with more details available in Theorem 7 and 8. Additionally, the functions t✏(x;µ),493

t✏_(x;µ), and t�(x;µ) share similar characteristics with t(x;µ) as defined in Equation (9), with more494

details provided in Theorem 9.495

As illustrated in Figure 6, the ✏-stationary point region Aµ,✏ can be partitioned into two distinct areas,496

of which only the lower-right one contains (x⇤
µ, y

⇤
µ) and it is of interest to our analysis. Moreover,497

(x⇤
µ,✏, y

⇤
µ,✏) and (x⇤⇤

µ,✏, y
⇤⇤
µ,✏) are extremal point of two distinct regions. The upcoming corollary498

substantiates this intuition.499

Corollary 3. If µ < ⌧ (⌧ is defined in Theorem 5(v)), assume ✏ satisfies (14), � satisfies
⇣

1+�
1��

⌘2
500

a
2 + 1, systems of equations (12a),(12b) at least have two solutions. Moreover, Aµ,✏ = A

1
µ,✏ [A

2
µ,✏501

A
1
µ,✏ = Aµ,✏ \ {(x, y) | x � x

⇤
µ,✏, y  y

⇤
µ,✏} (21)

502

A
2
µ,✏ = Aµ,✏ \ {(x, y) | x  x

⇤⇤
µ,✏, y � y

⇤⇤
µ,✏} (22)

Corollary 3 suggests that Aµ,✏ can be partitioned into two distinct regions, namely A
1
µ,✏ and A

2
µ,✏.503

Furthermore, for every (x, y) belonging to A
1
µ,✏, it follows that x � x

⇤
µ,✏ and y  y

⇤
µ,✏. Similarly,504

for every (x, y) that lies within A
2
µ,✏, the condition x  x

⇤⇤
µ,✏ and y � y

⇤⇤
µ,✏ holds. The region A

1
µ,✏505

represents the “correct" region that gradient descent should identify. In this context, identifying the506

region equates to pinpointing the extremal points of the region. As a result, our focus should be on507

the extremal points of A1
µ,✏ and A

2
µ,✏, specifically at (x⇤

µ,✏, y
⇤
µ,✏) and (x⇤⇤

µ,✏, y
⇤⇤
µ,✏). Furthermore, the508

key to ensuring the convergence of the gradient descent to the A1
µ,✏ is to accurately identify the “basin509

of attraction” of the region A
1
µ,✏. The following lemma provides a region within which, regardless of510

the initialization point of the gradient descent, it converges inside A
1
µ,✏.511

Lemma 6. Assume µ < ⌧ (⌧ is defined in Theorem 5(v)),
⇣

1+�
1��

⌘2
 a

2+1. Define Bµ,✏ = {(x, y) |512

x
⇤⇤
µ,✏ < x  a, 0  y < y

⇤⇤
µ,✏}. Run Algorithm 5 with input f = gµ(x, y), ⌘ = 1

µ(a2+1)+3a2 ,W0 =513

(x(0), y(0)), where (x(0), y(0)) 2 Bµ,✏, then after at most 2(µ(a2+1)+3a2)(gµ(x(0),y(0))�gµ(x
⇤
µ,y

⇤
µ))

✏2514

iterations, (xt, yt) 2 A
1
µ,✏.515

Lemma 6 can be considered the gradient descent analogue of Lemma 2. It plays a pivotal role in the516

proof of Theorem 4. In Figure 6, the lower-right rectangle corresponds to Bµ,✏. Lemma 6 implies517

that the gradient descent with any initialization inside Bµk+1,✏k+1 will converge to A
1
µk+1,✏k+1

at last.518

Then, by utilizing the previous solution Wµk,✏k as the initial point, as long as it lies within region519

Bµk+1,✏k+1 , the gradient descent can converge to A
1
µk+1,✏k+1

which is ✏ stationary points region that520

contains W
⇤
µk+1

, thereby achieving the goal of tracking W
⇤
µk+1

. Following the scheduling for µk521

prescribed in Algorithm 6 provides a sufficient condition to ensure that will happen.522

We now proceed to present the theorem which guarantees the global convergence of Algorithm 6.523
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Theorem 4. If � 2 (0, 1), � 2 (0, 1),
⇣

1+�
1��

⌘2
 (1� �)(a2 + 1), and µ0 satisfies524

a
2

4(a2 + 1)3
 a

2

4(a2 + 1)3
(1 + �)4

(1� �)2
 µ0 

a
2

4

(1� �)3(1� �)4

(1 + �)2
 a

2

4

Set the updating rule525

✏k =min{�aµk, µ
3/2
k }

µk+1 =(2µ2
k)

2/3 (a+ ✏k/µk)2/3

(a� ✏k/µk)4/3

Then µk+1  (1� �)µk. Moreover, for any "dist > 0, running Algorithm 6 after K(µ0, a, �, "dist)526

outer iteration527

kWµk,✏k �WGk2  "dist (23)

where528

K(µ0, a, �, "dist) �
1

ln(1/(1� �))
max

⇢
ln

µ0

�2a2
, ln

72µ0

a2(1� (1/2)1/4)
, ln(

3(4� �)µ0

"dist
2

),
1
2
ln(

46656µ2
0

a2"dist
2
),
1
3
ln(

46656µ3
0

a4"dist
2
)

�

The total gradient descent steps are529

K(µ0,a,�,"dist)X

k=0

2(µk(a
2 + 1) + 3a2)(gµk+1(Wµk,✏k )� gµk+1(Wµk+1,✏k+1))

✏2k

2(µ0(a
2 + 1) + 3a2)

 
1

�6a6
+

 
max{3(4� �)

"dist
2

,
216
a"dist

,

✓
216
a"dist

◆2/3

,
1

�2a2
,

72

(1� (1/2)1/4)a2
}
!3!

gµ0(W
✏0
µ0
)

.O
�
µ0a

2 + a
2 + µ0

�✓ 1
�6a6

+
1

"dist
6
+

1
a3"dist

3
+

1
a2"dist

2
+

1
a6

◆

Proof. Upon substituting gradient flow with gradient descent, it becomes possible to only identify an530

✏-stationary point for gµ(W ). This modification necessitates specifying the stepsize ⌘ for gradient531

descent, as well as an updating rule for µ. The adjustment procedure used can substantially influence532

the result of Algorithm 6. In this proof, we will impose limitations on the update scheme µk, the533

stepsize ⌘k, and the tolerance ✏k to ensure their effective operation within Algorithm 6. The approach534

employed for this proof closely mirrors that of the proof for Theorem 1 albeit with more careful535

scrutiny. In this proof, we will work out all the requirements for µ, ✏, ⌘. Subsequently, we will verify536

that our selection in Theorem 4 conforms to these requirements.537

In the proof, we occasionally use µ, ✏ or µk, ✏k. When we employ µ, ✏, it signifies that the given538

inequality or equality holds for any µ, ✏. Conversely, when we use µk, ✏k, it indicates we are539

examining how to set these parameters for distinct iterations.540

Establish the Bound y
⇤⇤
µ,✏ �

p
µ First, let us consider r✏(

p
µ;µ)  0, i.e.541

r✏(
p
µ;µ) =

a+ ✏/µ
p
µ
� (a2 + 1)� µ(a� ✏/µ)2

4µ2
 0

This is always true when µ > 4/a2, and we require542

✏  2µ3/2 + aµ� 2
p
2aµ5/2 � µ3a2 when µ  4

a2

Now we name it condition 1.543

Condition 1.

✏  2µ3/2 + aµ� 2
p
2aµ5/2 � µ3a2 when µ  4

a2

Under the assumption that Condition 1 is satisfied. Since r✏(y;µ) is increasing function with544

interval y 2 [ylb,✏, yub,✏], and we know ylb,✏ 
p
µ  yub,✏ and based on Theorem 7(ii), we have545

ylb,✏  y
⇤⇤
µ,✏  yub,✏, r✏(

p
µ;µ)  r✏(y⇤⇤µ,✏;µ) = 0. Therefore, y⇤⇤µ,✏ �

p
µ.546
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Ensuring the Correct Solution Path via Gradient Descent Following the argument when we547

prove Theorem 1, we strive to ensure that the gradient descent, when initiated at (xµk,✏k , yµk,✏k), will548

converge within the "correct" ✏k+1-stationary point region (namely, krgµk+1(W )k2 < ✏k+1) which549

includes (x⇤
µk+1

, y
⇤
µk+1

). For this to occur, we necessitate that:550

yµk+1,✏k+1

(1)
> yµk+1,✏k+1

⇤⇤ (2)
>
p
µk+1

(3)
� (2µ2

k)
1/3 (a+ ✏k/µk)1/3

(a� ✏k/µk)2/3
(4)
> yµk,✏k

⇤ (5)
> yµk,✏k (24)

Here (1), (5) are due to Corollary 3; (2) comes from the boundary we established earlier; (3) is551

based on the constraints we have placed on µk and µk+1, which we will present as Condition 2552

subsequently; (4) is from the Theorem 7(ii) and relationship y
⇤
µk,✏k < ylb,µk,✏k . Also, from the553

Lemma 9, maxµ⌧ x
⇤⇤
µ,✏  minµ>0 x

⇤
µ,✏. Hence, by invoking Lemma 6, we can affirm that our554

gradient descent consistently traces the correct stationary point. Now we state condition to make it555

happen,556

Condition 2.
(1� �)µk � µk+1 � (2µ2

k)
2/3 (a+ ✏k/µk)2/3

(a� ✏k/µk)4/3

In this context, our requirement extends beyond merely ensuring that µk decreases. We further557

stipulate that it should decrease by a factor of 1� �. Next, we impose another important constraint558

Condition 3.
✏k  µ

3/2
k

Updating Rules Now we are ready to check our updating rules satisfy the conditions above559

✏k =min{�aµk, µ
3/2
k }

µk+1 =(2µ2
k)

2/3 (a+ ✏k/µk)2/3

(a� ✏k/µk)4/3

Check for Conditions First, we check the condition 2. condition 2 requires560

(1� �)µk � (2µ2
k)

2/3 (a+ ✏k/µk)2/3

(a� ✏k/µk)4/3
) µk

(a+ ✏k/µk)2

(a� ✏k/µk)4
 (1� �)3

4

Note that ✏k  �aµk < aµk561

µk
(a+ ✏k/µk)2

(a� ✏k/µk)4
 µk

(1 + �)2

(1� �)4
1

a2

Therefore, once the following inequality is true, Condition 2 is satisfied.562

µk
(1 + �)2

(1� �)4
1

a2
 (1� �)3

4
) µk 

a
2

4

(1� �)3(1� �)4

(1 + �)2

Because µk  µ0  a2

4
(1��)3(1��)4

(1+�)2 from the condition we impose for µ0. Consequently, Condition563

2 is satisfied under our choice of ✏k.564

Now we focus on the Condition 1. Because ✏k  a�µk, if we can ensure a�µk  2µ3/2
k + aµk �565

2
q
2aµ5/2

k � µ3
ka

2 holds, then we can show Condition 1 is always satisfied.566

a�µk 2µ3/2
k + aµk � 2

q
2aµ5/2

k � µ3
ka

2

2
q
2aµ5/2

k � µ3
ka

2 2µ3/2
k + (1� �)aµk

4(2aµ5/2
k � µ

3
ka

2) 4µ3
k + (1� �)2a2µ2

k + 4(1� �)aµ5/2
k

0 4(a2 + 1)µ3
k + (1� �)2a2µ2

k � 4(1 + �)aµ5/2
k

0 4(a2 + 1)µk � 4(1 + �)aµ1/2
k + (1� �)2a2 when 0  µk  4/a2

0 µk �
(1 + �)a

(a2 + 1)
µ
1/2
k +

(1� �)2a2

4(a2 + 1)
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We also notice that567

(1 + �)2a2

(a2 + 1)2
� 4

(1� �)2a2

4(a2 + 1)
 0,

✓
1 + �

1� �

◆2

 a
2 + 1

Because
⇣

1+�
1��

⌘2
 (1� �)(a2 + 1), the inequality above always holds and this inequality implies568

that for any µk � 0569

0  µk �
(1 + �)a

(a2 + 1)
µ
1/2
k +

(1� �)2a2

4(a2 + 1)

Therefore, Condition 2 holds. Condition 3 also holds because of the choice of ✏k.570

Bound the Distance Let c = 72/a2, and assume that µ satisfies the following571

µ min{1
c

⇣
1� (1/2)1/4

⌘
,�

2
a
2} (25)

Note that when µ satisfies (25), then µ
3/2  �aµ, so ✏ = µ

3/2.

µ  1

c

⇣
1� (1/2)1/4

⌘
=

a
2

72

⇣
1� (1/2)1/4

⌘
 a

2

4
572

✏/µ =
p
µ  a

2
(26)

Then573

t✏((a� ✏/µ)(1� cµ);µ) =
1

1� cµ
� 1� µ(a+ ✏/µ)2

(µ(a2 + 1) + (a� ✏/µ)2(1� cµ)2)2

=
cµ

1� cµ
� µ(a+ ✏/µ)2

(µ(a2 + 1) + (a� ✏/µ)2(1� cµ)2)2

�cµ� µ
(a+ ✏/µ)2

(a� ✏/µ)4(1� cµ)4

�cµ� µ
(a+ a/2)2

(a� a/2)4(1� cµ)4

=µ

✓
c� 36

a2(1� cµ)4

◆

=µ

✓
72

a2
� 36

a2(1� cµ)4

◆
> 0

Then we know (a � ✏/µ)(1 � cµ) < x
⇤
µ,✏. Now we can bound the distance kWµk,✏k �WGk, it is574

important to note that575

kWµk,✏k �WGk =
q
(xµk,✏k � a)2 + (yµk,✏k)

2

max
nq

(x⇤
µk,✏k � a)2 + (y⇤µk,✏k)

2,

q
(x⇤

µk,✏k_ � a)2 + (y⇤µk,✏k)
2
o

We use the fact that x⇤
µk,✏k < xµk,✏k < a, xµk,✏k < x

⇤
µk,✏k_ and yµk,✏k < y

⇤
µk,✏k . Next, we can576

separately establish bounds for these two terms. Due to (24), y⇤µk,✏k < (2µ2
k)

1/3 (a+✏k/µk)
1/3

(a�✏k/µk)2/3
=577

p
µk+1 and (a� ✏k/µk)(1� cµk) < x

⇤
µk,✏k578

q
(x⇤

µk,✏k � a)2 + (y⇤µk,✏k)
2 

p
µk+1 + (a� (a� ✏k/µk)(1� cµk))2

Given that if x⇤
µk,✏k_  a, then

q
(x⇤

µk,✏k � a)2 + (y⇤µk,✏k)
2 �

q
(x⇤

µk,✏k_ � a)2 + (y⇤µk,✏k)
2. There-579

fore, if x⇤
µk,✏k_ � a, we can use the fact that x⇤

µk,✏k_  a+ ✏k
µk

. In this case,580

q
(x⇤

µk,✏k_ � a)2 + (y⇤µk,✏k)
2 

p
µk+1 + (✏k/µk)2 =

p
µk+1 + µk 

p
(2� �)µk
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As a result, we have581

kWµk,✏k �WGk  max{
p
µk+1 + (a� (a� ✏k/µk)(1� cµk))2,

p
(2� �)µk}

582

µk+1 + (a� (a� ✏k/µk)(1� cµk))
2 (1� �)µk + (acµk +

p
µk � cµ

3/2
k )2

(1� �)µk + 3(a2c2µ2
k + µk + c

2
µ
3
k)

=(4� �)µk + 3a2c2µ2
k + 3c2µ3

k

583

kWµk,✏k �WGk max{
p

µk+1 + (a� (a� ✏k/µk)(1� cµk))2,
p
(2� �)µk}

max{
q

(4� �)µk + 3a2c2µ2
k + 3c2µ3

k,
p

(2� �)µk}

=
q
(4� �)µk + 3a2c2µ2

k + 3c2µ3
k

Just let584

(4� �)µk  (4� �)(1� �)kµ0 
"dist

2

3
) k � ln(3(4� �)µ0/"dist

2)

ln(1/(1� �))
(27)

3a2c2µ2
k  3a2c2(1� �)2kµ2

0 
"dist

2

3
) k � ln(46656µ2

0/(a
2
"dist

2))

2 ln(1/(1� �))
(28)

3c2µ3
k  3c2(1� �)3kµ3

0 
"dist

2

3
) k � ln(46656µ3

0/(a
4
"dist

2))

3 ln(1/(1� �))
(29)

We use the fact that µk  (1� �)kµ0. In order to satisfy (25).585

µk  µ0(1� �)k  a
2

72
(1� (1/2)1/4)) k �

ln 72µ0

a2(1�(1/2)1/4)

ln 1
1��

(30)

µk  µ0(1� �)k  �
2
a
2 ) k � ln (µ0/(�2

a
2))

ln 1
1��

(31)

Consequently, running Algorithm 6 after K(µ0, a, �, "dist) outer iteration586

kWµk,✏k �WGk2  "dist

where587
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1
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1

2
ln(
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0
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1

3
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46656µ3
0
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�

By Lemma 6, k iteration of Algorithm 6 need the following step of gradient descent588

2(µk(a2 + 1) + 3a2)(gµk+1(Wµk,✏k)� gµk+1(Wµk+1,✏k+1))

✏2k
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Let bK(µ0, a, �, "dist) satisfy µ bK(µ0,a,�,"dist)
 �

2
a
2
< µ bK(µ0,a,�,"dist)�1. Hence, the total number589

of gradient steps required by Algorithm 6 can be expressed as follows:590
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Note from (27) and (30), the following should holds591
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593

D Additional Theorems and Lemmas594

Theorem 5 (Detailed Property of r(y;µ)). For r(y;µ) in (8), then595

(i) For µ > 0, limy!0+ r(y;µ) =1, r( a
a2+1 , µ) < 0596

(ii) For µ > 0, r(pµ, µ) < 0.597

(iii) For µ >
a2

4598

dr(y;µ)

dy
< 0

For 0 < µ  a2

4
8
>><

>>:

dr(y;µ)

dy
> 0 ylb < y < yub (32a)

dr(y;µ)

dy
 0 Otherwise (32b)

where599

ylb =
(4µ)1/3

2
(a1/3 �

q
a2/3 � (4µ)1/3) yub =

(4µ)1/3

2
(a1/3 +

q
a2/3 � (4µ)1/3)

Moreover,600

ylb 
p
µ  yub

(iv) For 0 < µ <
a2

4 , let p(µ) = r(yub, µ), then p
0(µ) < 0 and there exist a unique solution to601

p(µ) = 0, denoted as ⌧ . Additionally, ⌧ <
a2

4 .602

(v) There exists a ⌧ > 0 such that, 8µ > ⌧ , the equation r(y;µ) = 0 has only one solution. At603

µ = ⌧ , the equation r(y;µ) = 0 has two solutions, and 8µ < ⌧ , the equation r(y;µ) = 0604

has three solutions. Moreover, µ <
a2

4 .605

(vi) 8µ < ⌧ , the equation r(y;µ) = 0 has three solution, i.e. y⇤µ < y
⇤⇤
µ < y

⇤⇤⇤
µ .606

dy
⇤
µ

dµ
> 0

dy
⇤⇤
µ

dµ
> 0

dy
⇤⇤⇤
µ

dµ
< 0 and lim

µ!0
y
⇤
µ = 0, lim

µ!0
y
⇤⇤
µ = 0, lim

µ!0
y
⇤⇤⇤
µ =

a

a2 + 1

Moreover,607

y
⇤
µ < ylb <

p
µ < y

⇤⇤
µ < yub < y

⇤⇤⇤
µ

Theorem 6 (Detailed Property of t(x;µ)). For t(x;µ) in (9), then608

(i) For µ > 0, limx!0+ t(x;µ) =1, t(a, µ) < 0609

(ii) If µ <

⇣
a(

p
a2+1�a)

2(a2+1)

⌘2
or µ >

⇣
a(

p
a2+1+a)

2(a2+1)

⌘2
, then t(

p
µ(a2 + 1), µ) < 0.610

(iii) For µ >
a2

4(a2+1)3611

dt(x;µ)

dx
< 0

For 0 < µ  a2

4(a2+1)3

8
><

>:

dt(x;µ)

dx
> 0 xlb < x < xub (33a)

dt(x;µ)

dx
 0 Otherwise (33b)
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where612

xlb =
(4µa)1/3(1�

q
1� (4µ)1/3(a2+1)

a2/3 )

2
xub =

(4µa)1/3(1 +
q

1� (4µ)1/3(a2+1)
a2/3 )

2

Moreover,613

xlb 
p
µ(a2 + 1)  xub

(iv) For 0 < µ <
a2

4(a2+1)3 and let q(µ) = t(xlb, µ), then q
0(µ) > 0 and there exist a unique614

solution to q(µ) = 0, denoted as ⌧ and ⌧ <
a2

4(a2+1)3 
1
27 .615

(v) There exists a ⌧ > 0 such that, 8µ > ⌧ , the equation t(x;µ) = 0 has only one solution. At616

µ = ⌧ , the equation t(x;µ) = 0 has two solutions, and 8µ < ⌧ , the equation t(x;µ) = 0617

has three solutions. Moreover, ⌧ <
a2

4(a2+1)3 
1
27618

(vi) 8µ < ⌧ , t(x;µ) = 0 has three stationary points, i.e. x⇤⇤⇤
µ < x

⇤⇤
µ < x

⇤
µ.619

dx
⇤
µ

dµ
< 0

dx
⇤⇤⇤
µ

dµ
> 0 and lim

µ!0
x
⇤
µ = a, lim

µ!0
x
⇤⇤
µ = 0, lim

µ!0
x
⇤⇤⇤
µ = 0

Besides,620

max
µ⌧

x
⇤⇤
µ 

a(
p
a2 + 1� a)

2
p
a2 + 1

and
a(
p
a2 + 1 + a)

2
p
a2 + 1

 min
µ>0

x
⇤
µ

It also implies that t(a(
p
a2+1�a)

2
p
a2+1

;µ) � 0 and maxµµ0 x
⇤⇤
µ < minµ>0 x

⇤
µ621

Lemma 7. Algorithm 1 with input f = gµ(x, y), z0 = (x(0), y(0)) where (x(0), y(0)) 2 Cµ3 in622

(41), then 8t � 0, (x(t), y(t)) 2 Cµ3. Moreover, limt!1(x(t), y(t)) = (x⇤
µ, y

⇤
µ)623

Lemma 8. For any (x, y) 2 Cµ3 in (41), and (x, y) 6= (x⇤
µ, y

⇤
µ)624

gµ(x, y) > gµ(x
⇤
µ, y

⇤
µ)

Theorem 7 (Detailed Property of r✏(y;µ)). For r✏(y;µ) in (15), then625

(i) For µ > 0, ✏ > 0, limy!0+ r✏(y;µ) =1, y( a
a2+1 , µ) < 0626

(ii) For µ >
(a�✏/µ)4

4(a+✏/µ)2 , then dr✏(y;µ)
dy < 0. For 0 < µ  (a�✏/µ)4

4(a+✏/µ)2

8
>><

>>:

dr✏(y;µ)

dy
> 0 ylb,µ,✏ < y < yub,µ,✏ (34a)

dr✏(y;µ)

dy
 0 Otherwise (34b)

where627

ylb,µ,✏ =
(4µ)1/3
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2
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@
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Also,628

ylb,µ,✏  (2µ2)1/3
(a+ ✏/µ)1/3

(a� ✏/µ)2/3
629

ylb,µ,✏ 
p
µ  yub,µ,✏

Theorem 8 (Detailed Property of r�(y;µ)). For r�(y;µ) in (19), then630
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(i) For µ > 0, ✏ > 0, limy!0+ r�(y;µ) =1631

(ii) For µ >
a2(1��)4

4(1+�)2 , then dr�(y;µ)
dy < 0. For 0 < µ  a2(1��)4

4(1+�)2
8
>><

>>:

dr�(y;µ)

dy
> 0 ylb,µ,� < y < yub,µ,� (35a)
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dy
 0 Otherwise (35b)
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(4µ)2/3

2a1/3
(1 + �)1/3

(1� �)2/3
634

ylb,µ,� 
p
µ  yub,µ,�

Theorem 9 (Detailed Property of t�(x;µ)). For t�(x;µ) in (20), then635

(i) For µ > 0, limx!0+ t�(x;µ) =1, t�(a;µ) < 0636

(ii) For µ >
a2

4(a2+1)3
(�+1)4

(��1)2637

dt�(x;µ)

dx
< 0

For 0 < µ  a2

4(a2+1)3
(�+1)4

(��1)2

8
><

>:

dt�(x;µ)

dx
> 0 xlb,µ,� < x < xub,µ,� (36a)

dt�(x;µ)

dx
 0 Otherwise (36b)

where638
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1

A

(iii) If 0 < � <

p
(a2+1)�1p
(a2+1)+1

, then there exists a ⌧� > 0 such that, 8µ > ⌧� , the equation639

r�(x;µ) = 0 has only one solution. At µ = ⌧� , the equation r�(x;µ) = 0 has two640

solutions, and 8µ < ⌧� , the equation r�(x;µ) = 0 has three solutions. Moreover, µ <641

a2

4(a2+1)3
(�+1)4

(��1)2 .642

(iv) If 0 < � <

p
(a2+1)�1p
(a2+1)+1

, then 8µ < ⌧� , t�(x;µ) = 0 has three stationary points, i.e.643

x
⇤⇤⇤
µ,� < x

⇤⇤
µ,� < x

⇤
µ,� . Besides,644

max
µ⌧�

x
⇤⇤
µ,� 

a((1� �)
p
a2 + 1�

p
(1� �)2(a2 + 1)� (� + 1)2)

2
p
a2 + 1

a((1� �)
p
a2 + 1 +

p
(1� �)2(a2 + 1)� (� + 1)2)

2
p
a2 + 1

 min
µ>0

x
⇤
µ,�
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It implies that645

max
µ⌧�

x
⇤⇤
µ,� < min

µ>0
x
⇤
µ,�

Lemma 9. Under the same setting as Corollary 3,646

max
µ⌧

x
⇤⇤
µ,✏ < min

µ>0
x
⇤
µ,✏

E Technical Proofs647

E.1 Proof of Theorem 3648

Proof. For the sake of completeness, we have included the proof here. Please note that this proof can649

also be found in [33].650

Proof. We use the fact that f is L-smooth function if and only if for any W,Y 2 dom(f)651

f(W )  f(Y ) + hrf(Y ), Y �W i+ L

2
kY �Wk22

Let W = W
t+1 and Y = W

t, then using the updating rule W
t+1 = W

t � 1
Lrf(W

t)652

f(W t+1) f(W t) + hrf(W t),W t+1 �W
ti+ L

2
kW t+1 �W

tk22

=f(W t)� 1

L
krf(W t)k22 +

1

2L
krf(W t)k22

=f(W t)� 1

2L
krf(W t)k22

Therefore,653

min
0tn�1

krf(W t)k22 
1

n

n�1X

t=0

krf(W t)k22 
2L(f(W 0)� f(Wn))

n
 2L(f(W 0)� f(W ⇤))

n

654

min
0tn�1

krf(W t)k22 
2L(f(W 0)� f(W ⇤))

n
 ✏

2 ) n � 2L(f(W 0)� f(W ⇤))

✏2

655

656

E.2 Proof of Theorem 5657

Proof. (i) For any µ > 0,658

lim
y!0+

r(y;µ) = lim
y!0+

a

y
� a

2

µ
� (a2 + 1) =1

r(
a

a2 + 1
) = � µa

2

( a
a2+1 )

2 + µ
< 0.

(ii)

r(
p
µ, µ) =

a
p
µ
� a

2

4µ
� (a2 + 1)

=� a
2

4
(
1
p
µ
� 2

a
)2 � a

2
< 0
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(iii)

dr(y;µ)

dy
=� a

y2
+

4a2µy

(y2 + µ)3

=
4a2µy3 � a(y2 + µ)3

y2(y2 + µ)3

=
a((4aµ)2/3y2 + (4aµ)1/3y(y2 + µ) + (y2 + µ)2)((4aµ)1/3y � y

2 � µ)

y2(y2 + µ)3

For µ � a2

4 , ((4aµ)1/3y � y
2 � µ) < 0, dr(y;µ)

dy < 0.659

For µ <
a2

4 , ylb < y < yub, ((4aµ)1/3y � y
2 � µ) > 0 , dr(y;µ)

dy > 0. For µ <
a2

4 ,660

y < ylb or yub < y, ((4aµ)1/3y � y
2 � µ)  0, dr(y;µ)

dy  0.661

Note that
dr(y;µ)

dµ
= 0, ((4aµ)1/3y � y

2 � µ) = 0, (4aµ)1/3 = y +
µ

y

The intersection between line (4aµ)1/3 and function y + µ
y are exactly ylb and yub, and662

ylb <
p
µ < yub.663

(iv) Note that for 0 < µ <
a2

4 ,664

@r

@µ
= �a2 y

2 � µ

(µ+ y2)3
and ylb <

p
µ < yub

then @r
@µ

���
y=yub

< 0. Let p(µ) = r(yub, µ), because @r
@y |y=yub = 0, then665

dp(µ)

dµ
=
dr(yub, µ)

dµ
=

@r

@y

����
y=yub

dyub

dµ
+

@r

@µ

����
y=yub

=
@r

@µ

����
y=yub

< 0

Also note that when µ = a2

4 , yub =
p
µ, p(µ) = r(yub, µ) = r(

p
µ, µ) < 0, and also if666

µ <
a2

4 , then667

yub <
(4µ)1/3

2
2a1/3 = (4µa)1/3

Thus,668

r((4µa)1/3, µ) =
a

(4µa)1/3
� µa

2

((4µa)2/3 + µ)2
� (a2 + 1)

=
a

(4µa)1/3
� a

2

(µ)1/3((4a)2/3 + µ1/3)2
� (a2 + 1)

>
1

µ1/3
(

a

(4a)1/3
� a

2

(4a)4/3
)� (a2 + 1)

Because a
(4a)1/3

>
a2

(4a)4/3
, it is easy to see when µ! 0, r((4µa)1/3, µ)!1. We know669

r(yub, µ) > r((4µa)1/3, µ) ! 1 as µ ! 0 because of the monotonicity of r(y;µ) in670

Theorem 5(iii). Combining all of these, i.e.671

dp(µ)

dµ
< 0, lim

µ!0+
p(µ) =1, p(

a
2

4
) < 0

There exists a ⌧ <
a2

4 such that p(⌧) = 0672

(v) From Theorem 5(iv), for µ > ⌧ , then p(µ) = r(yub, µ) > 0, and for µ = ⌧ , then673

p(µ) = r(yub, µ) = 0. For µ < ⌧ , then p(µ) = r(yub, µ) < 0, combining Theorem674

5(i),5(iii), we get the conclusions.675
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(vi) By Theorem 5(v), 8µ < ⌧ , there exists three stationary points such that 0 < y
⇤
µ < ylb <676

p
µ < y

⇤⇤
µ < yub < y

⇤⇤⇤
µ . Because dr(y;µ)

dy

���
y=ylb

= dr(y;µ)
dy

���
y=yub

= 0, then677

dr(y;µ)

dy

����
y=y⇤

µ

6= 0,
dr(y;µ)

dy

����
y=y⇤⇤

µ

6= 0,
dr(y;µ)

dy

����
y=y⇤⇤⇤

µ

6= 0

By implicit function theorem [14], for solution to equation r(y;µ) = 0, there exists a678

unique continuously differentiable function such that y = y(µ) and satisfies r(y(µ), µ) = 0.679

Therefore,680

@r

@µ
=� a

2 y
2 � µ

(µ+ y2)3
,

@r

@y
= � a

y2
+

4a2µy

(y2 + µ)3
,

dy(µ)

dµ
= �@r/@µ

@r/@y

Therefore by Theorem 5(iii),681

dy

dµ

����
y=y⇤

µ

> 0
dy

dµ

����
y=y⇤⇤

µ

> 0
dy

dµ

����
y=y⇤⇤⇤

µ

< 0

Because limµ!0+ ylb = limµ!0+ yub = 0, then limµ!0+ y
⇤
µ = limµ!0+ y

⇤⇤
µ = 0. Let us682

consider r( a
a2+1 (1� cµ), µ) where c = 32 (a2+1)3

a2 and µ <
1
2c683

r(
a

a2 + 1
(1� cµ), µ)

=
a

a
a2+1 (1� cµ)

� µa
2

( a2

(a2+1)2 (1� cµ)2 + µ)2
� (a2 + 1)

=(a2 + 1)(
cµ

1� cµ
)� µa

2

( a2

(a2+1)2 (1� cµ)2 + µ)2

�c(a2 + 1)µ� µa
2

( a2

(a2+1)2 (1� cµ)2)2

=c(a2 + 1)µ� 16(a2 + 1)4

a2
µ

=
16(a2 + 1)4

a2
µ > 0

By Theorem 5(iii), then a
a2+1 (1� cµ) < y

⇤⇤⇤
µ , then684

a

a2 + 1
= lim

µ!0+

a

a2 + 1
(1� cµ), µ)  lim

µ!0+
y
⇤⇤⇤
µ  a

a2 + 1

Consequently,685

lim
µ!0+

y
⇤⇤⇤
µ =

a

a2 + 1

686

E.3 Proof of Theorem 6687

Proof. (i) For µ > 0,688

lim
x!0+

t(x;µ) = lim
x!0+

a

x
� a

2

µ(a2 + 1)2
� 1 =1

t(a, µ) = � µa
2

(µ(a2 + 1) + a2)2
< 0

(ii)

t(
p

µ(a2 + 1), µ) =
ap

a2 + 1

1
p
µ
� a

2

4µ(a2 + 1)2
� 1
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If t(
p
µ(a2 + 1), µ) = 0, then689

1
p
µ

= 2
(a2 + 1)3/2

a
± 2(a2 + 1)) µ =

 
a(
p
a2 + 1⌥ a)

2(a2 + 1)

!2

so when µ <

⇣
a(

p
a2+1�a)

2(a2+1)

⌘2
or µ >

⇣
a(

p
a2+1+a)

2(a2+1)

⌘2
, then t(

p
µ(a2 + 1), µ) < 0690

(iii)

dt(x, µ)

dx

=� a

x2
+

4µa2x

(µ(a2 + 1) + x2)3

=
4µa2x3 � a(µ(a2 + 1) + x

2)3

x2(µ(a2 + 1) + x2)3

=
a((µ(a2 + 1) + x

2)2 + (µ(a2 + 1) + x
2)(4µa)1/3x+ (4µa)2/3x2)((4µa)1/3x� µ(a2 + 1)� x

2)

x2(µ(a2 + 1) + x2)3

For µ >
a2

4(a2+1)3 , then (4µa)1/3x�µ(a2+1)�x
2
< 0, dt(x,µ)

dx < 0. For µ <
a2

4(a2+1)3 ,691

and xlb < x < xub, then (4µa)1/3x�µ(a2+1)�x2
> 0, dt(x,µ)

dx > 0, For µ <
a2

4(a2+1)3 ,692

x < xlb or x > xub, (4µa)1/3x� µ(a2 + 1)� x
2
< 0, dt(x,µ)

dx < 0.693

We use the same argument as before to show that694

xlb <

p
µ(a2 + 1) < xub

(iv) Note that for 0 < µ <
a2

4(a2+1)3695

@t

@µ
= �a2 x

2 � µ(a2 + 1)

(µ(a2 + 1) + x2)3
and xlb <

p
µ(a2 + 1) < xub

then @t
@µ

���
x=xlb

> 0. Let q(µ) = t(xlb, µ), because @t
@x

��
x=xlb

= 0, then696

dq(µ)

dµ
=
dt(xlb, µ)

dµ
=

@t

@x

����
x=xlb

dxlb

dµ
+

@t

@µ

����
x=xlb

=
@t

@µ

����
x=xlb

> 0

Note that µ = a2

4(a2+1)3 , xub = xlb = (4µa)1/3

2 , t( (4µa)
1/3

2 ,
a2

4(a2+1)3 ) =
a

(4µa)1/3
� 1 > 0.697

When µ <

⇣
a(

p
a2+1�a)

2(a2+1)

⌘2
, then t(

p
µ(a2 + 1), µ) < 0 by Theorem 6(ii). It implies that698

q(µ) < 0 when µ ! 0+. By Theorem 6(iii), q(µ) = t(xlb, µ) < t(
p
µ(a2 + 1), µ) < 0.699

Combining all of the theses, i.e.700

dq(µ)

dµ
> 0, lim

µ!0+
q(µ) < 0, q(

a
2

4(a2 + 1)3
) > 0

There exists a ⌧ <
a2

4(a2+1)3 , q(⌧) = 0. Such ⌧ is the same as in Theorem 5(iv).701

(v) We follow the same proof from the proof of Theorem 5(v).702

(vi) By Theorem 6(v), 8µ < µ0, there exists three stationary points such that 0 < x
⇤⇤⇤
µ < xlb <703

x
⇤⇤
µ < xub < x

⇤
µ < a. Because dt(x;µ)

dx

���
x=xlb

= dt(x;µ)
dx

���
x=xub

= 0, then704

dt(x;µ)
dx

����
x=x⇤

µ

6= 0,
dt(x;µ)

dx

����
x=x⇤⇤

µ

6= 0,
dt(x;µ)

dx

����
x=x⇤⇤⇤

µ

6= 0
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By implicit function theorem [14], for solutions to equation t(x;µ) = 0, there exists a705

unique continuously differentiable function such that x = x(µ) and satisfies t(x(µ), µ) = 0.706

Therefore,707

dx

dµ
= �@t/@µ

@t/@x
= a

2

x2�µ(a2+1)
(µ(a2+1)+x2)3

� a
x2 + 4µa2x

(µ(a2+1)+x2)3

Therefore, by Theorem 6(iii)708

dx

dµ

����
x=x⇤

µ

< 0
dx

dµ

����
x=x⇤⇤⇤

µ

> 0

Because 0 < x
⇤⇤⇤
µ < xlb < x

⇤⇤
µ < xub and limµ!0+ xlb = limµ!0+ xub = 0.709

lim
µ!0

x
⇤⇤
µ = lim

µ!0
x
⇤⇤⇤
µ = 0

Let us consider t(a(1� cµ), µ) where c = 32
a2 and µ <

1
2c710

t(a(1� cµ);µ)

=
a

a(1� cµ)
� µa

2

(µ(a2 + 1) + a2(1� cµ)2)2
� 1

=
cµ

1� cµ
� µa

2

(µ(a2 + 1) + a2(1� cµ)2)2

�cµ� µa
2

(a2(1� cµ)2)2

�cµ� 16

a2
µ > 0

By Theorem 6(iii). It implies711

a(1� cµ)  x
⇤
µ

taking µ! 0+ on both side,712

a = lim
µ!0+

a(1� cµ)  lim
µ!0+

x
⇤
µ  a

Hence, limµ!0 x
⇤
µ = a.713

When µ = ⌧ , because t(xlb;µ) = 0 and xub >
p
µ(a2 + 1) > xlb, t(x;µ) is increas-714

ing function between [xlb, xub] then t(
p

µ(a2 + 1);µ) > t(xlb;µ) = 0. Moreover,715

t(
p
µ(a2 + 1), µ), xlb and x

⇤⇤
µ are continuous function w.r.t µ, 9� > 0 which is really716

small, such that µ = ⌧ � � and t(
p
µ(a2 + 1), µ) > 0, t(xlb, µ) < 0 (by Theorem 6(iv))717

and x
⇤⇤
µ > xlb, hence dx

dµ

���
x=x⇤⇤

µ

< 0. It implies when µ decreases, then x
⇤⇤
µ increases. This718

relation holds until x⇤⇤
µ =

p
µ(a2 + 1)719

t(x⇤⇤
µ , µ) = t(

p
µ(a2 + 1), µ) = 0

)µ =

 
a(
p
a2 + 1� a)

2(a2 + 1)

!2

and
p
µ(a2 + 1) = a(

p
a2+1�a)

2
p
a2+1

. Note that when µ <

⇣
a(

p
a2+1�a)

2(a2+1)

⌘2
,720

t(
p
µ(a2 + 1), µ) < 0, it implies that x⇤⇤

µ >
p

µ(a2 + 1) and dx
dµ

���
x=x⇤⇤

µ

> 0, thus de-721

creasing µ leads to decreasing x
⇤⇤
µ . We can conclude722

max
µ⌧

x
⇤⇤
µ 

a(
p
a2 + 1� a)

2
p
a2 + 1
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Note that 8µ s.t.
⇣

a(
p
a2+1�a)

2(a2+1)

⌘2
< µ < ⌧ , x

⇤⇤
µ <

⇣
a(

p
a2+1�a)

2(a2+1)

⌘2
, so723

t(
⇣

a(
p
a2+1�a)

2(a2+1)

⌘2
, µ) � 0.724

Note that when µ >
a2

a2+1 , i.e. (x⇤
µ)

2 � µ(a2 + 1) then725

dx

dµ

����
x=x⇤

µ

> 0

It implies that when µ decreases, x⇤
µ also decreases. It holds true until x⇤

µ =
p
µ(a2 + 1).726

The same analysis can be applied to x
⇤
µ like above, we can conclude that727

min
⌧

x
⇤
µ =

a(
p
a2 + 1 + a)

2
p
a2 + 1

Hence728

max
µ⌧

x
⇤⇤
µ 

a(
p
a2 + 1� a)

2
p
a2 + 1

<
a(
p
a2 + 1 + a)

2
p
a2 + 1

 min
µ>0

x
⇤
µ

729

E.4 Proof of Theorem 7,8 and 9730

Proof. The proof is similar to the proof of Theorem 5 and Theorem 6.731

E.5 Proof of Lemma 1732

Proof.

r2
gµ(x, y) =

✓
µ+ y

2 2xy
2xy µ(a2 + 1) + x

2

◆

Let �1(r2
gµ(x, y)),�2(r2

gµ(x, y)) be the eigenvalue of matrix r2
gµ(x, y), then733

�1(r2
gµ(x, y)) + �2(r2

gµ(x, y))

=Tr(r2
gµ(x, y)) = µ+ y

2 + µ(a2 + 1) + x
2
> 0

Now we calculate the product of eigenvalue734

�1(r2
gµ(x, y)) · �2(r2

gµ(W ))

=det(r2
gµ(W ))

=(µ+ y
2)(µ(a2 + 1) + x

2)� 4x2
y
2

=
µa

x

µa

y
� 4x2

y
2
> 0

,(
aµ

2
)2/3 > xy

,(
aµ

2
)2/3 >

aµ

y2 + µ
y

,y +
µ

y
> (4aµ)1/3

Note that for (x⇤
µ, y

⇤
µ), (x

⇤⇤⇤
µ , y

⇤⇤⇤
µ ), they satisfy (11a) and (11b), this fact is used in third equality and735

second “,”. By (32b), we know �1(r2
gµ(x, y)) · �2(r2

gµ(x, y)) > 0 for (x⇤
µ, y

⇤
µ), (x

⇤⇤⇤
µ , y

⇤⇤⇤
µ ),736

and �1(r2
gµ(x, y)) · �2(r2

gµ(x, y)) < 0 for (x⇤⇤
µ , y

⇤⇤
µ ), then737

�1(r2
gµ(x, y)) > 0,�2(r2

gµ(x, y)) > 0 for (x⇤
µ, y

⇤
µ), (x

⇤⇤⇤
µ , y

⇤⇤⇤
µ )

738
�1(r2

gµ(x, y)) < 0 or �2(r2
gµ(x, y)) < 0 for (x⇤⇤

µ , y
⇤⇤
µ )

and739

rgµ(x, y) = 0

Then (x⇤
µ, y

⇤
µ), (x

⇤⇤⇤
µ , y

⇤⇤⇤
µ ) are locally minima, (x⇤⇤

µ , y
⇤⇤
µ ) is saddle point for gµ(W ).740
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E.6 Proof of Lemma 2741

Figure 8: Stationary points when µ < ⌧

Proof. Let us define the functions as below
8
>><

>>:

yµ1(x) =

r
µ(

a� x

x
) 0 < x  a (37a)

yµ2(x) =
µa

µ(a2 + 1) + x2
0 < x  a (37b)

8
>><

>>:

xµ1(y) =
µa

y2 + µ
0 < y <

a
a2+1 (38a)

xµ2(y) =

r
µ(

a

y
� (a2 + 1)) 0 < y <

a
a2+1 (38b)

with simple calculations,742

yµ1 � yµ2 , t(x;µ) � 0, x 2 (0, x⇤⇤⇤
µ ] [ [x⇤⇤

µ , x
⇤
µ]

and743

xµ1 � xµ2 , r(y;µ)  0, y 2 [y⇤µ, y
⇤⇤
µ ] [ [y⇤⇤⇤µ ,

a

a2 + 1
)

Here we divide Bµ into three parts, Cµ1, Cµ2, Cµ3744

Cµ1 ={(x, y)|x⇤⇤
µ < x  x

⇤
µ, yµ1 < y < y

⇤⇤
µ } [ {(x, y)|x⇤

µ < x  a, yµ2 < y < y
⇤⇤
µ } (39)

Cµ2 ={(x, y)|x⇤⇤
µ < x  x

⇤
µ, 0  y < yµ2} [ {(x, y)|x⇤

µ < x  a, 0  y < yµ1} (40)
Cµ3 ={(x, y)|x⇤⇤

µ < x  x
⇤
µ, yµ2  y  yµ1} [ {(x, y)|x⇤

µ < x  a, yµ1  y  yµ2} (41)

Also note that745

8(x, y) 2 Cµ1 )
@gµ(x, y)

@x
> 0,

@gµ(x, y)

@y
> 0

8(x, y) 2 Cµ2 )
@gµ(x, y)

@x
< 0,

@gµ(x, y)

@y
< 0

The gradient flow follows746

✓
x
0(t)

y
0(t)

◆
= �

 
@gµ(x(t),y(t))

@x
@gµ(x(t),y(t))

@y

!
= �rgµ(x(t), y(t))
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then747

8(x, y) 2 Cµ1 )
✓
x
0(t)

y
0(t)

◆
< 0, krgµk > 0 (42)

8(x, y) 2 Cµ2 )
✓
x
0(t)

y
0(t)

◆
> 0, krgµk > 0 (43)

Note that krgµk is not diminishing and bounded away from 0. Let us consider the (x(0), y(0)) 2748

Cµ1, sincergµ(x, y) 6= 0, �rgµ(x, y) < 0 in (42) and boundness of Cµ1, it implies there exists a749

finite t0 > 0 such that750

(x(t0), y(t0)) 2 @Cµ1, (x(t), y(t)) 2 Cµ1 for 0  t < t0

where @Cµ1 is defined as751

@Cµ1 = {(x, y)|x⇤⇤
µ < x  x

⇤
µ, y = yµ1} [ {(x, y)|x⇤

µ < x  a, y = yµ2} ✓ Cµ3

For the same reason, if (x(0), y(0)) 2 Cµ2, there exists a finite time t1 > 0,752

(x(t0), y(t0)) 2 @Cµ2, (x(t), y(t)) 2 Cµ2 for 0  t < t1

where @Cµ2 is defined as753

@Cµ2 = {(x, y)|x⇤⇤
µ < x  x

⇤
µ, y = yµ2} [ {(x, y)|x⇤

µ < x  a, y = yµ1} ✓ Cµ3

then by lemma 7, limt!1(x(t), y(t)) = (x⇤
µ, y

⇤
µ).754

E.7 Proof of Lemma 3755

Proof. This is just a result of the Theorem 5.756

E.8 Proof of Lemma 5757

Proof. Note that758

r2
gµ(W ) =

✓
µ+ y

2 2xy
2xy µ(a2 + 1) + x

2

◆
=

✓
µ 0
0 µ(a2 + 1)

◆
+

✓
y
2 2xy

2xy x
2

◆

Let k · kop is the spectral norm, and it satisfies triangle inequality759

��r2
gµ(W )

��
op 

����

✓
µ 0
0 µ(a2 + 1)

◆����
op
+

����

✓
y
2 2xy

2xy x
2

◆����
op

=µ(a2 + 1) +

����

✓
y
2 2xy

2xy x
2

◆����
op

The spectral norm of the second term in area A is bounded by760

max
(x,y)2A

(x2 + y
2) +

p
(x2 + y2)2 + 12x2y2

2
 2a2 +

p
4a4 + 12a4

2
= 3a2

We use x
2  a

2
, y

2  a
2 in the inequality. Therefore,761

��r2
gµ(W )

��
op  3a2 + µ(a2 + 1)

Also, according to [5, 33], for any f , if r2
f exists, then f is L smooth if and only if |r2

f |op  L.762

With this, we conclude the proof.763

E.9 Proof of Lemma 7764

Proof. First we prove 8t � 0, (x(t), y(t)) 2 Cµ3, because if (x(t), y(t)) /2 Cµ3, then there exists a765

finite t such that766

(x(t), y(t)) 2 @Cµ3

where @Cµ3 is the boundary of Cµ3, defined as767

@Cµ3 = {(x, y)|y = yµ1(x) or y = yµ2(x), x
⇤⇤
µ < x  a}
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W.L.O.G, let us assume (x(0), y(0)) 2 @Cµ3 and (x(0), y(0)) 6= (x⇤
µ, y

⇤
µ). Here are four different768

cases,769

rgµ(x(t), y(t)) =

8
>>>>>>>>>><

>>>>>>>>>>:

✓
= 0
> 0

◆
if y(0) = yµ1(x(0)), x⇤⇤

µ < x(0) < x
⇤
µ

✓
= 0
< 0

◆
if y(0) = yµ1(x(0)), x⇤

µ < x(0)  a

✓
< 0
= 0

◆
if y(0) = yµ2(x(0)), x⇤⇤

µ < x(0) < x
⇤
µ

✓
> 0
= 0

◆
if y(0) = yµ2(x(0)), x⇤

µ < x(0)  a

This indicates that �rgµ(x(t), y(t)) are pointing to the interior of Cµ3, then (x(t), y(t)) can not770

escape Cµ3. Here we can focus our attention in Cµ3, because 8t � 0, (x(t), y(t)) 2 Cµ3. For771

Algorithm 1,772

df(zt)

dt
= rf(zt)żt = �krf(zt)k22

In our setting, 8(x, y) 2 Cµ3773

⇢
rgµ(x, y) 6= 0 (x, y) 6= (x⇤

µ, y
⇤
µ)

rgµ(x, y) = 0 (x, y) = (x⇤
µ, y

⇤
µ)

so774
dgµ(x(t), y(t))

dt
=

⇢
�krgµk22 < 0 (x, y) 6= (x⇤

µ, y
⇤
µ)

�krgµk22 = 0 (x, y) = (x⇤
µ, y

⇤
µ)

Plus, (x⇤
µ, y

⇤
µ) is the unique stationary point of gµ(W ) in Cµ3. By lemma 8775

gµ(x, y) > gµ(x
⇤
µ, y

⇤
µ) (x, y) 6= (x⇤

µ, y
⇤
µ)

By Lyapunov asymptotic stability theorem [28], and applying it to gradient flow for gµ(x, y) in Cµ3,776

we can conclude limt!1(x(t), y(t)) = (x⇤
µ, y

⇤
µ).777

E.10 Proof of Lemma 8778

Proof. For any (x, y) 2 Cµ3 in 41, and (x, y) 6= (x⇤
µ, y

⇤
µ), in Algorithm 7. W.L.O.G, we can assume779

x 2 (x⇤⇤
µ , x

⇤
µ), the analysis details can also be applied to x 2 (x⇤

µ, a). It is obvious that x̃j < x̃j+1780

and ỹj+1 < ỹj . Also, limj!1(x̃j , ỹj) = (x⇤
µ, y

⇤
µ). Otherwise either x̃j 6= x

⇤
µ or ỹj 6= y

⇤
µ hold,781

Algorithm 7 continues until limj!1(x̃j , ỹj) = limj!1(yµ2(ỹj), xµ1(x̃j)), i.e. (x̃j , ỹj) converges782

to (x⇤
µ, y

⇤
µ).783

Moreover, note that for any j = 0, 1, . . .784

gµ(x̃j�1, ỹj�1) > gµ(x̃j�1, ỹj) > gµ(x̃j , ỹj)

Because785

gµ(x̃j�1, ỹj�1)� gµ(x̃j�1, ỹj) =
@gµ(x̃j�1, ỹ)

@y
(ỹj�1 � ỹj) where ỹ 2 (ỹj , ỹj�1)

Note that786
@gµ(x̃j�1, ỹ)

@y
> 0) gµ(x̃j�1, ỹj�1) > gµ(x̃j�1, ỹj)

By the same reason,787

gµ(x̃j�1, ỹj) > gµ(x̃j , ỹj)

By Lemma 1, (x⇤
µ, y

⇤
µ) is local minima, and there exists a rµ > 0 and any {(x, y) | k(x, y) �788

(x⇤
µ, y

⇤
µ)k2  rµ}, gµ(x, y) > gµ(x⇤

µ, y
⇤
µ) Since limj!1(x̃j , ỹj) = (x⇤

µ, y
⇤
µ), there exists a J > 0789

such that 8j > J , k(x̃j , ỹj)� (x⇤
µ, y

⇤
µ)k2  rµ, combining them all790

gµ(x, y) > gµ(x̃j , ỹj) > gµ(x
⇤
µ, y

⇤
µ)

791

792
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Algorithm 7: Path goes to (x⇤
µ, y

⇤
µ)

Input: (x, y) 2 Cµ3, xµ1(y), yµ2(x) as (38a),(37b)
Output: {(x̃j , ỹj)}1j=0

1 (x̃0, ỹ0) (x, y)
2 for j = 1, 2, . . . do
3 ỹj  yµ2(x̃j�1)
4 x̃j  xµ1(ỹj�1)
5 end

E.11 Proof of Lemma 4793

Proof. From the proof of Theorem 1, any any scheduling for µk satisfies following will do the job794

(2/a)2/3µ4/3
k�1  µk < µk�1

Note that in Algorithm 4, we have ba =
p
4(µ0 + ") < a, then it is obvious795

(2/a)2/3µ4/3
k�1 < (2/ba)2/3µ4/3

k�1

The same analysis for Theorem 1 can be applied here.796

E.12 Proof of Lemma 6797

Proof. By the Theorem 3 and Lemma 5 and the fact that A1
µ,✏ is µ-stationary point region, we use the798

same argument as proof of Lemma 7 to demonstrate the gradient descent will never go to A
2
µ,✏.799

E.13 Proof of Lemma 9800

Proof. By Theorem 9(iv)801

max
µ⌧�

x
⇤⇤
µ,�  min

µ>0
x
⇤
µ,�

We also know from the proof of Corollary 3, x⇤⇤
µ,✏ < x

⇤⇤
µ,� and x

⇤
µ,� < x

⇤
µ,✏. Consequently,802

max
µ⌧�

x
⇤⇤
µ,✏  min

µ>0
x
⇤
µ,✏

Because ⌧� > ⌧ , so803

max
µ⌧

x
⇤⇤
µ,✏  max

µ⌧�
x
⇤⇤
µ,✏  min

µ>0
x
⇤
µ,✏

804

E.14 Proof of Corollary 1805

Proof. Note that806

a
2

4(a2 + 1)3
 1

27
a > 0

when a >

q
5
27 , then a2

4 > µ0 = 1
27 �

a2

4(a2+1)3 , it satisfies condition in Lemma 4, we obtain the807

same result.808

E.15 Proof of Corollary 2809

Proof. Use Theorem 5(vi) and Theorem 6(vi).810
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E.16 Proof of Corollary 3811

Proof. It is easy to know that812

r�(y;µ) > r✏(y;µ) > r(y;µ)

and813

t�(x;µ) < t✏(x;µ) < t(x;µ)

and when µ < ⌧ , there are three solutions to r(y;µ) = 0 by Theorem 5. Also, we know from814

Theorem 7, 8815

lim
y!0+

r✏(y;µ) =1 lim
y!0+

r�(y;µ) =1

Note that when
⇣

1+�
1��

⌘2
 a

2 + 1816

r�(
p
µ;µ) =

a(1 + �)
p
µ

� (a2 + 1)� a
2(1� �)2

4µ
 0 8µ > 0

Therefore,817

0 � r�(
p
µ;µ) > r✏(

p
µ;µ) > r(

p
µ;µ)

Also, we know that for yub defined in Theorem 5(iii), we know r(yub;µ) > 0 from Theorem 5(iv).818

Therefore,819

r�(yub;µ) > r✏(yub;µ) > r(yub;µ) > 0

Besides, pµ < yub. By monotonicity of r�(y;µ) and r✏(y;µ) from the Theorem 7(ii) and Theorem820

8(ii), it implies that there are at least two solutions to r�(y;µ) and r✏(y;µ). From the geometry821

of r�(y;µ), r✏(y;µ), r(y;µ) and t�(x;µ), t✏(x;µ), t(x;µ), it is trivial to know that x⇤
µ,✏  x

⇤
µ,822

y
⇤
µ,✏ � y

⇤
µ, x⇤⇤

µ,✏ � x
⇤⇤
µ , y⇤µ,✏  y

⇤⇤
µ .823

Finally, for every point (x, y) 2 A
1
µ,✏, there exists a pair ✏1, ✏2, each satisfying |✏1|  ✏ and |✏2|  ✏,824

such that (x, y) is the solution to825

x =
µa+ ✏1

µ+ y2
y =

µa+ ✏2

x2 + µ(a2 + 1)

We can repeat the same analysis above to show that x⇤
µ,✏  x, y⇤µ,✏ � y. Applying the same logic826

to 8(x, y) 2 A
2
µ,✏, we find x

⇤⇤
µ,✏ � x, y⇤µ,✏  y. Thus, (x⇤

µ, y
⇤
µ) is the extreme point of A1

µ,✏ and827

(x⇤⇤
µ , y

⇤⇤
µ ) is the extreme point of A2

µ,✏, we get the results.828

F Experiments Details829

In this section, we present experiments to validate the global convergence of Algorithm 6. Our830

goal is twofold: First, we aim to demonstrate that irrespective of the starting point, Algorithm 6831

using gradient descent consistently returns the global minimum. Second, we contrast our updating832

scheme for µk, ✏k as prescribed in Algorithm 6 with an arbitrary updating scheme for µk, ✏k. This833

comparison illustrates how inappropriate setting of parameters in gradient descent could lead to834

incorrect solutions.835
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F.1 Random Initialization Converges to Global Optimum836

(a) Random Initialization 1 (b) Random Initialization 2

(c) Random Initialization 3 (d) Random Initialization 4

Figure 9: Trajectory of the gradient descent path with the different initializations for a = 2. We
observe that regardless of the initialization, Algorithm 6 always converges to the global minimum.
Initial µ0 = a2

4
(1��)3(1��)4

(1+�)2
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(a) Random Initialization 1 (b) Random Initialization 2

(c) Random Initialization 3 (d) Random Initialization 4

Figure 10: Trajectory of the gradient descent path with the different initializations for a = 0.5. We
observe that regardless of the initialization, Algorithm 6 always converges to the global minimum.
Initial µ0 = a2

4
(1��)3(1��)4

(1+�)2
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F.2 Wrong Specification of � Leads to Spurious Local Optimial837

(a) � = 0.4 (b) � = 0.1

Figure 11: Trajectory of the gradient descent path for two difference �. Left: � violates requirement⇣
1+�
1��

⌘2
 (1 � �)(a2 + 1) in Theorem 4, leading to spurious local minimum. Right: � follows

requirement
⇣

1+�
1��

⌘2
 (1 � �)(a2 + 1) in Theorem 4, leading to global minimum. Initial µ0 =

a2

4
(1��)3(1��)4

(1+�)2

F.3 Wrong Specification of � Leads to Incorrect Solution838

(a) � = 0.6 (b) � = 0.01

Figure 12: Trajectory of the gradient descent path for two difference �. Left: � violates requirement⇣
1+�
1��

⌘2
 (1��)(a2+1) in Theorem 4, leading to incorrect solution. Right: � follows requirement

⇣
1+�
1��

⌘2
 (1� �)(a2 + 1) in Theorem 4, leading to global minimum. Initial µ0 = a2

4
(1��)3(1��)4

(1+�)2
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F.4 Faster decrease of µk Leads to Incorrect Solution839

(a) Bad scheduling (b) Good scheduling

Figure 13: Trajectory of the gradient descent path for two difference update rules for µk with the
same initialization. Left: “Bad scheduling” uses a faster-decreasing scheme for µk, leading to an
incorrect solution, even a non-local optimal solution. Right: “Good scheduling” follows updating
rule for µk in Algorithm 6, leading to the global minimum. Initial µ0 = a2

4
(1��)3(1��)4

(1+�)2
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