Under review as a conference paper at ICLR 2022

A  PROOFS AND ADDITIONAL ANALYSIS

A.1 DERIVING THE LOWER BOUND (PROOF OF LEMMA

We first formulate the sampling procedure on starting states sy, waypoints s,,, goals s, and the
corresponding time horizon variable ¢; and f. Then we derive a variational lower bound on the
target log density of Eq.[2] We then show that optimizing the variational lower bound through an EM
procedure is equivalent to breaking the goal-reaching task into a sequence of easier sub-problems.
Finally, we wrapped up this section with a practical algorithm.

Data Generation Process. The generative model for which inference corresponds to our planning
procedure can be formulated as follows. The episode starts by sampling an initial state sg ~ po(so).
Then it samples a geometric random variable ¢, ~ Geom(1 — ) and roll out the policy 7(a | s, sq)
for exactly ¢; steps, starting from state so. We define s,, to be the state where we end up (i.e.,
5w = 84,). Thus, s, is sampled s,, ~ pg(E'(I)'l\’fg)(sH | so). We then sample another geometric
random variable t5 ~ Geom(1 — ) and roll out the policy m(a | s, s4) for exactly ¢; steps, starting

from state s,,. We define s, to be the state where we end up (i.e., s4 £ s, 1t,). Thus, 54 is sampled

Sg ~ pg(e'(‘)';;g) (St+ | sw). Note that the time index of the final state s, is a sample from a negative

binomial distribution: ¢ + to N B(p =1—+,n = 2). We can equivalently express the sampling

of 54 as s ~ p}r\,(c:g};;-’z,om(s“r | s0). We illustrate the data generative process in Fig. ?? (top).

Inference process. Under the formulation of the data generation process above, we then aim to
answer the following question in the inference procedure: what intermediate states would a policy
visit if it eventually reached the goal state s,? Formally, we will estimate a distribution g(s,, |
50,89) ~ p(sw | S0,54). We illustrate the inference process in Fig. ?? (bottom).

We learn ¢(s,, | S0, Sq) by optimizing a evidence lower bound on our main objective (Eq. IZI)

o Rkbintom 51+ = 5y | s0) =10 [ BEL (s = 5y | 5w )b (s | subds, )
7(-]-,s 7(-|-,s Q(Sw | S aSO)
= log / Plsons " (5t = 80 | su)pGron” (su | s0) ot b ds
w g»
(6)
> / a(su | 59,50) (108 PG (504 = 85 | 50) +10g DGt (50 | 50) — log (s | 9, 50) ) dsu
(7
é £(7T7Q(5w ‘ Sg, 50)) (8)

Note that s, is conditionally independent of sy given s,, (see Fig. ?? (top)), so the p™ (¢4 = $g | Sw)
terms on the RHS need not be conditioned on sy. The evidence lower bound, £, depends on two
quantities: the goal-conditioned policy and the distribution over waypoints. The objective for the
goal-conditioned policy is to maximize the probabilities of reaching the waypoint and reaching the
final state. The objective for the waypoint distribution is to select waypoints s,, that satisfy two
important properties: the current policy should have a high probability of successfully navigating
from the initial state to the waypoint and from the waypoint to the final goal. Note that the optimal
choice for the waypoint distribution automatically depends on the current capabilities of the goal-
conditioned policy.

Before optimizing the lower bound, we introduce a subtle modification to the lower bound:

La(m,q(sw | 59, 50)) £ / a(s0 | 50,50) (108 PEa™ (s = 54 | 50) +log Pl (su | 50) — og a(su | 54,50) ) s

The difference, highlighted in orange, is that the probability of reaching the waypoint is computed
for a goal-conditioned policy that is commanded to reach that waypoint, rather than the final goal.
In Appendix ??, we show that this new objective is also an evidence lower bound on the same goal-
reaching objective (Eq. [2), but modified such that the sequence of commanded goals is treated as an
additional latent variable.
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A.2 THE OPTIMAL WAYPOINT DISTRIBUTION (PROOF OF LEMMA [2]

This section proves Lemma 2]

Proof. Recall that our goal is to solve the following maximization problem:

L B a0 [108PGn” (5er = 50 | 50) +108pg0 " (5w | 50) ~ loga(su | 5y, 50)]
Sw|[9g,50

Note that the waypoint distribution must integrate to one. The Lagrangian can be written as
Egtoulsgso) 108 Pason " (51 = 55 | 5) +108 5™ (50 | 50) = loga(su | 55,50) |+ ( / a(sw | s0,59)dsw — 1) ’

where ) is a Lagrange multiplier. We then take the derivative with respect to g(s,, | s4, S0):

d —q(sw | 50, 84) m(-|sg) (| ysg)
= + lo 9 (s = Sq | Sw) + O 79 (s | 80) — loO Sw | Sg,50) + A
dq(sw | So,Sg) q(sw | SU,Sg) € PGeom ( t+ g | ) g PGrom ( | 0) gq( | g 0)
7"('|'75g) 77('|'ng>

= =14 10gpgon (St = 8¢ | sw) +108Pgrow (s | 50) —logg(sw | 59, 50) + A,
We then set this derivative equal to zero and solve for ¢(s,, | s4, S0):

A—1_m(|;sg) w(|5sg)
q(SW | 39530) =e PGeom . (St+ = Sg ‘ Sw)pGE()M . (Sw | 80)'

Finally, we determine the value of A such that ¢(s,, | so, s4) integrates to one. We can then express
the optimal waypoint distribution as follows:

. ok (s, | suw)pgedit) (sw | s0)
q (Sw | 59350) - ﬂ(,‘.7sg) 7(|5w)

PGeom (39 ‘ s'/u))pGEOM (8% | s0)ds,

A.3  ESTIMATING IMPORTANCE WEIGHTS (PROOF OF LEMMA [3))

This section proves Lemma 3]

Proof. Define the normalizing constant as follows

Z(s0,84) = b(s,)
02%9 7([55) 1y Close) (o ds’
PGeom (59 | Sw)pGEOM (Sw | 50) Sw

Substituting Z (s, s4) into the RHS of Eq. E|and simplifying the result, we show that it equals the
LHS of Eq.[4

09(5w75g) 09(507514))

1— Co(sw,8¢9) 1 — Co(s0, Sw) Z(s0,8)
_ Co(5w, 5g) Co(s0, Sw) b(sg)
- 1= Colowy 9 1= Cloloos sw) [ gL (s | s)pgion™ (5 | s0)dsty
Do (st = 59 | 50) Pt (514 = 5w | 50) blsg)
Yles blsw) Psou” (5 | St )pGi™ (5l | 50)dsl
_ P (st = 59 | 50)pGem™ (504 = 5w | 50) 1
Paeon® (59 | 5)PGian™ (sl | so)dsl,  blsw)

_ q(sw ‘ 50789)

b(sw)
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Figure 8: (Left)An agent must navigate from the start state to the goal state. The heatmap
visualizes the marginal state distribution of the optimal policy.

A.4 THE MARGINAL STATE DISTRIBUTION IS A BETTER INITIAL STATE DISTRIBUTION
(PROOF OF LEMMA [4)

We now provide a proof of Lemma ]

Proof. We first apply Jensen’s inequality

2
7(+|58g) _ 2:| 7(+|58g) _ i|
7(-|-s Si1 = Sq | s >E 7(-]-s Sty = Sq | S
szPGéOL‘* g>(8t+‘80,59) [pGEOM ( t+ g| w) = s“’NPGE(m‘w g)(spr‘s(),sg) pGEOM ( t+ g| w)
(| 8g) 2
= PGeom ! (SH' = 59) : 9)
We then rearrange the LHS of Eq. [0}
E alles [ mClsg) g — g Sw 2]
S“’NpGéO‘M’ g)(5t+‘5073g) pGEOM ( e+ g | )
(] 8g) _ (] 8g) _
7(1s5g) P (8w | 814 = 84)P (8t+ = sg9)
= ]Es Npg(."’sg)(ewr\m sg) |:pGEOM ! (StJr =39 ‘ 8) — ﬂ'(-I-,sg>( GE;M
w SEOM St+1°0:7 GEOM Sw
=E,__xc G (504 = 5 | 50) P (504 = 55). (10)

[+sg)
swpgeon 9 (se1150.59)

Substituting Eq.|10|into Eq. |§| and dividing both sides by p7_|~) (st4+ = s4), we obtain the desired

GEOM
result. O

B VISUALIZATION OF STATE DENSITY MAP OF OPTIMAL POLICY

We conduct this experiment on a 2D navigation task shown in Fig. [ (left), where we have also
visualized the original initial state distribution, the state distribution of an optimal policy, and the
goal state. To conduct this experiment, we apply a state-of-the-art goal-conditioned RL algorithm
(C-learning) in the two settings with different initial state distributions. For fair evaluation, we
evaluate the policies learned in both settings using the original initial state distribution. The results
shown in Fig. 4] (right) show that starting from the optimal initial state distribution results in YYx
faster learning.

C ANALYSIS

Our analysis provides a theoretical justification for why planning accelerates the acquisition of goal-
reaching behaviors. We show two complementary claims. First, we show that a policy that performs
planning is more likely to reach the goal than a policy that does not do planning. Our second result
is that the planning process accelerates learning. This second claim is distinct because it analyses
learning progress.
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Lemma 4 (The marginal state distribution is a better initial state distribution). Let policy
w(a|s,sgy), initial state sy, and goal state s, be given. The discounted probability of reaching
goal s4 is larger if the policy is initialized at s,, ~ p(sy | So,84), as compared to a policy that is
initialized at sq:

m(:|1sg)

(| 55q)
St =S | s0) <E 7(-sg) Str = Sq | s
Dgeom ( + g | 0) Sw P9 (544 [50,89) DPgrom ( + 4 ‘ w)

See Appendix [A.4]for the proof. We emphasize that this result ignores the complexity of reaching
the waypoints s,,. This result therefore only applies in the idealized situation where the agent can
perfectly reach the waypoint. Nonetheless, it provides intuition for why p(s, | So,s4) is a good
initial state distribution.

This first result says that the policy has a higher probability of success if it starts at the marginal state
distribution of the optimal policy. Our next result shows that using the marginal state distribution of
the optimal policy also accelerates learning:

Theorem 1. Let the initial state sy and goal state s, be fixed, and let * be the optimal goal-reaching
policy:
7" € argmax p™ (s = Sg). (11)

Consider doing projecte gradient ascent on the objective function p™ (sq1 = s4) using initial state

distribution p to try to find the optimal policy for state syg. Then gradient ascent with a step size of

(|
n = (1 —7)3/(2v|A|) finds an e-optimal policy in time T = ?ﬁ‘f)ué || ot

"Sg)(swlsmsg) ||2 .
.

Po(so)
: T (-,59) _ _ ”t("'vsg) _ < 12
?ijr}pGEOM (StJr = Sg | 80) PGrom (StJr =3y | 89) =€ (12)
Proof. The proof is a direct application of Theorem 4.1 from |Agarwal et al. (2021). O

This result is important because it directly relates the sample complexity to the mismatch between

the initial state distribution pg(so) and the state distribution of an optimal policy, nggh\;sg). Our
method implicitly sets the initial state distribution equal to the marginal state distribution of the
optimal policy, thereby minimizing this upper bound on sample complexity. It is in this sense that
we say our method samples optimal waypoints.

D LEARNING DYNAMICS

D.1 LEARNING DYNAMICS.

To further gain intuition into the mechanics of our method, we visualize how the distribution over
waypoints changes during training of the 2D navigation of the four rooms environment. Fig.[9shows
the sampled waypoints. The value functions (i.e., future state classifiers) are randomly initialized
at the start of training, so the waypoints sampled at the start of training are roughly uniform over
the state space. As training progresses, the distribution over waypoints converges to the states that
an optimal policy would visit enroute to the goal. While we have only shown one goal here, our
method trains the policy for reaching all goals. This set of experiments provides important intuition
of how C-Planning works as the distribution of waypoints shrinks from a uniform distribution to the
single path connecting start state and goal state. This also provides experimental support for Eq.
as the distributions of waypoints qualitatively match well with the optimal solution.

3The projection is onto the space of feasible policies.
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Figure 9: Learning Dynamics: (Leff) Among those states that the agent is able to successfully reach early in
training, the states closest to the goal are in the corners of the two rooms on the right. (Right) At convergence,
waypoints are evenly distributed along states visited by the optimal policy, as predicted by our theory.
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