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Abstract1

Agentic systems offer a potential path to2

solve complex clinical tasks through collabora-3

tion among specialized agents, augmented by4

tool use and external knowledge bases. Nev-5

ertheless, for chest X-ray (CXR) interpreta-6

tion, prevailing methods remain limited: (i)7

reasoning is frequently neither clinically inter-8

pretable nor aligned with guidelines, reflect-9

ing mere aggregation of tool outputs; (ii) mul-10

timodal evidence is insufficiently fused, yield-11

ing text-only rationales that are not visually12

grounded; and (iii) systems rarely detect or re-13

solve cross-tool inconsistencies and provide no14

principled verification mechanisms. To bridge15

the above gaps, we present RadAgents, a16

multi-agent framework that couples clinical pri-17

ors with task-aware multimodal reasoning and18

encodes a radiologist-style workflow into a mod-19

ular, auditable pipeline. In addition, we in-20

tegrate grounding and multimodal retrieval-21

augmentation to verify and resolve context con-22

flicts, resulting in outputs that are more reli-23

able, transparent, and consistent with clinical24

practice.25

Keywords: Multi-agent system, multimodal26

reasoning, chest X-ray, image interpretation.27

Data and Code Availability We use the fol-28

lowing public datasets: MIMIC-CXR-JPG (Johnson29

et al., 2019), MS-CXR (Boecking et al., 2022), and30

MS-CXR-T (Bannur et al., 2023), which are accessi-31

∗ Work done as an intern at Oracle Health AI.

ble under their respective data use agreements. We 32

plan to release the code after obtaining organizational 33

approval. 34

Institutional Review Board (IRB) This work 35

does not require IRB approval. 36

1. Introduction 37

Chest X-ray (CXR) imaging is a cornerstone of pul- 38

monary screening, diagnosis, and follow-up, account- 39

ing for the largest share of diagnostic radiology exam- 40

inations performed worldwide each year (Cid et al., 41

2024). Yet systematic assessment of thoracic struc- 42

tures remains labor-intensive, imposing a substantial 43

time burden on radiologists (Fallahpour et al., 2025). 44

The gradual introduction of AI into clinical practice 45

shows promise for alleviating this workload (Zhang 46

et al., 2024; Tanno et al., 2025). However, prevail- 47

ing systems fall short on complex multimodal rea- 48

soning, such as integrating findings across disparate 49

image regions, which is central to radiologists’ prac- 50

tice; most adhere to end-to-end designs in which the 51

visual encoder executes a single, front-end pass and 52

subsequent reasoning proceeds purely in text (Wang 53

et al., 2025). This encode-once, text-only paradigm 54

decouples the reasoning trajectory from evolving vi- 55

sual evidence, leading to failures on tasks that re- 56

quire iterative re-inspection, precise measurements, 57

and cross-comparisons (Liu et al., 2025). 58

A promising path for clinical reasoning is to aug- 59

ment large language models, including multimodal 60
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variants, with external tools (Lu et al., 2025). By61

delegating perceptual and classification subtasks such62

as organ or region segmentation and disease classi-63

fication to validated modules, the language model64

can focus on planning and synthesis. Several agentic65

frameworks already explore this idea, ranging from66

training small models for limited tool use (Li et al.,67

2024; Nath et al., 2025) to pipeline systems that in-68

voke general-purpose models for more flexible oper-69

ations (Jiang et al., 2025; Schmidgall et al., 2024),70

although multiple agent coordination and/or debate71

introduces considerable computational overhead. In72

CXR interpretation, RadFabric (Chen et al., 2025)73

integrates diagnostic agents with a separate reason-74

ing agent, and MedRAX (Fallahpour et al., 2025)75

expands task coverage by incorporating additional76

task specific models. Despite gains over single-model77

baselines, integration and reasoning steps are often78

opaque and not aligned with clinical workflow, which79

undermines trust and creates safety risks, and they80

still lack explicit verification and conflict resolution.81

To address these limitations, we introduce RadA-82

gents, a framework designed for complex multimodal83

reasoning in CXR, which has three primary technical84

contributions:85

• We introduce clinically aware interleaved reason-86

ing, amultimodal loop that combines clinical pri-87

ors and study metadata with targeted image op-88

erations (segment, measure, localize, compare),89

so each hypothesis triggers tool use and returns90

inspectable evidence, mirroring how radiologists91

proceed from observation to measurement, com-92

parison with prior studies, and conclusion (Fig. 693

and Appendix E).94

• We propose a training-free multi-agent design,95

where five sub-agents operate in clean, task-96

scoped context compartments, coordinated by97

an Orchestrator and reconciled by a Synthesizer.98

This preserves visual grounding, supports paral-99

lel execution, and composes measurement, local-100

ization, characterization, comparison, and diag-101

nosis (Figure 1).102

• We add a lightweight context verifier and visual103

retrieval-augmented generation to detect, sur-104

face, and resolve inconsistencies before report-105

ing, yielding more clinically aligned outputs.106

• RadAgents achieves state-of-the-art perfor-107

mance, outperforming strong baselines by 10.2%108

on MS-CXR, 29.6% on MIMIC-CXR, and 21.5% 109

on MS-CXR-T. Multimodal retrieval further 110

contributes an average 8.0% boost over the no- 111

retrieval variant, mitigating context conflicts and 112

improving reliability. 113

2. Methods 114

RadAgents is a multi agent system with seven spe- 115

cialized agents (Figure 1). Five implement the clin- 116

ical ABCDE review scheme (Hodler et al., 2019): 117

Airway, Breathing, Circulation, Diaphragm, and 118

Everything else. In addition, an Orchestrator agent 119

analyzes each query and routes tasks to the appro- 120

priate specialists with the required patient context 121

(for example, imaging view and prior studies), and 122

a Synthesizer agent integrates their outputs, resolves 123

conflicts, and produces the final output. 124

This design confines context to task specific com- 125

partments, reducing the information each agent must 126

process and simplifying context compression by hav- 127

ing each sub-agent produce an initial summary for 128

downstream synthesis. It also allows parallel ex- 129

ecution, lowering latency for long reasoning. For 130

common and clinically significant CXR findings such 131

as cardiomegaly and pleural effusion, we curate 132

radiologist-like workflows, the predefined templates 133

within RadAgents, to guide tool selection and clini- 134

cally grounded reasoning (see the demonstration ex- 135

ample in Appendix A). For out-of-template queries, 136

the system invokes workflow-free reasoning, preserv- 137

ing flexibility. The design is extensible: new tem- 138

plates (e.g., reasoning or tool-chains) can be added, 139

and some can generalize to tasks of similar scope or 140

category. 141

2.1. Task-aware Sub-Agents 142

Each sub-agent, also called the ABCDE agent, has 143

a defined purpose and domain of expertise. Each is 144

governed by a custom system prompt derived from 145

clinical guidelines and maintains its own context win- 146

dow (See details ). The main scope and objectives of 147

them are: 148

Airway agent: Systematically assess the central 149

thorax for airway patency, alignment, and paratra- 150

cheal lesions; for example, determine tracheal posi- 151

tion (midline versus deviation). 152

Breathing agent: Survey the lungs and pleura for 153

parenchymal and pleural pathology; for example, de- 154
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Context: Age, Gender, …

Image: “cxr.jpg”

Q: Is the trachea 
midline?

Orchestrator

Tools and Models

Pre-defined workflow,
query analysis,

task distribution,
reasoning mode

Active sub-agent

Plan

Idle sub-agent

Subtask 1: segment
Subtask 2: measure
Subtask 3: verify

Execute

Context

No context

Re-plan?

Synthesizer

Aggregation,
context verifier,

conflict resolution

Answer

Intent: …
Active Agents: … 
Returned mask: 
Returned num:
Verification: …

Answer: No, the 
trachea is not 
midline; it is 
deviated to the right.

Figure 1: RadAgents framework. Each ABCDE subagent executes in parallel guided by clinical workflows,
lowering latency, preserving isolation to avoid long-context drift, and improving trustworthiness.

tect opacities (alveolar, interstitial, nodular), infil-155

trates, and consolidation patterns.156

Circulation agent: Evaluate the cardiac silhouette,157

mediastinum, and vessels; for example, compute the158

cardiothoracic ratio.159

Diaphragm agent: Assess diaphragmatic integrity160

and look for subdiaphragmatic air; for example, com-161

pare right and left diaphragm height.162

Everything Else agent: Identify other chest wall,163

soft tissue, and foreign body findings.164

2.2. Radiologist-like Workflows165

Solving different radiological tasks requires distinct166

reasoning modes and corresponding evidence. Fig-167

ure 6 shows that multimodal reasoning, particularly168

interleaved quantitative measurements, strengthens169

reasoning for enlarged heart detection, whereas a170

simple grounding guided approach fails. Motivated171

by this, RadAgents curates clinically driven subtasks172

and workflow templates within the subagents’ system173

prompts, organized into five modes: (M1) measure-174

ment, (M2) localization, (M3) characterization, (M4)175

relational and comparative reasoning, and (M5) di-176

agnosis. Complex clinical reasoning composes these177

modes and triggers the appropriate tool calls within178

the agentic system; for example, judging progression179

of effusion volume uses M1 and M4. A detailed de-180

scription of workflows can be found in Appendix E.181

2.3. Global Controller Module182

The global controller comprises the Orchestrator and183

the Synthesizer. The Orchestrator selects subagents184

and allocates tasks with appropriate patient context,185

and the Synthesizer integrates their outputs, verifies186

consistency, and resolves errors and conflicts. The 187

major components are detailed below. 188

Query analysis. Given a query, the Orchestra- 189

tor drafts a high level plan, selects the relevant 190

subagents, and chooses the reasoning mode: ReAct 191

when no workflow is specified (Yao et al., 2023), or 192

Plan-and-Execute (P&E) (WANG et al., 2023) when 193

a workflow template is available. This keeps the sys- 194

tem language driven and adaptable across queries. 195

Tools. We employ a suite of models as tools for dis- 196

tinct CXR tasks: CheXagent (Chen et al., 2024b) for 197

VQA, MAIRA-2 (Bannur et al., 2024) for ground- 198

ing, the CheXpert Plus report generator (Chambon 199

et al., 2024), and classification and organ segmen- 200

tation models from TorchXRayVision (Cohen et al., 201

2022). In addition, we include unique programming 202

tools that return zoomed-in quarter patches or serve 203

for measurement and calculation purposes. 204

Context verifier. No tool is perfect, as their ca- 205

pabilities are constrained by model size and training 206

data. When uncertainty arises, we trigger a verifi- 207

cation step in which an advanced multimodal LLM 208

serves as a judge (Chen et al., 2024a), filtering out 209

incorrect outputs such as erroneous masks. 210

Retrieval-augmented conflic resolution. Tool 211

outputs can conflict. On the Synthesizer side, we 212

apply Visual Retrieval-Augmented Generation (V- 213

RAG) (Chu et al., 2025): the agent retrieves clini- 214

cally similar chest radiographs (based on image em- 215

beddings from Rad-DINO (Perez-Garcia et al., 2025)) 216

and accompanying context like patient notes and uses 217

these exemplars to adjudicate discrepancies among 218

tools (Figure 2 and Appendix F). This mirrors rou- 219

tine radiologic practice, in which clinicians consult 220

similar cases and content to calibrate interpretation. 221

3



RadAgents

Figure 2: Resolving the conflicts via V-RAG (Chu
et al., 2025).

3. Experiments222

3.1. Experimental Setup223

To demonstrate the generality of RadAgents, we224

evaluate it on three tasks with increasing reason-225

ing complexity: VQA for existence and attributes226

(E&A), VQA for comparison and progression (C&P),227

and report generation. The data statistic and details228

are shown in Table 2.229

Baselines. We instantiate all agents with GPT-4o.230

For comparison, we include (1) GPT-4o (Hurst et al.,231

2024), (2) GPT-4o with ReAct, where tools are avail-232

able via function calling but without explicit work-233

flow steering, (3) GPT-4o with monolithic Workflow234

where a MLLM executing ABCDE analysis end-to-235

end with the same tools, retrieval, and budges as236

RadAgents, and (4) two medical specialist models,237

CheXagent and MedGemma (Sellergren et al., 2025).238

Unless otherwise noted, the number of retrieved ex-239

emplars for V-RAG is set to k = 3 (see Appendix F240

for an ablation on k). We report results for two vari-241

ants of RadAgents, with and without V-RAG.242

Metrics. For VQA (E&A) and report generation,243

we use standard CXR text metrics (explanation in244

Appendix B): RadGraph F1 (Jain et al., 2021),245

CheXbert macro F1 across 14 labels (Smit et al.,246

2020), RaTE (Zhao et al., 2024), and GREEN (Ost-247

meier et al., 2024). Because the outputs are sen-248

tences, these metrics capture clinical correctness and249

consistency. For VQA (C&P), where the output is250

one of three choices, we report accuracy.251

3.2. Existence and Attributes252

The VQA questions cover seven common findings253

in CXR: atelectasis, cardiomegaly, consolidation,254

edema, lung opacity, pleural effusion, and pneu-255

mothorax, derived from the standard test split of256

MS–CXR. Each image receives the following prompt257

(details are stated in the Appendix D):258

<image> Describe if [finding] is present; if

present, describe [attributes].

Table 1 shows that adding V-RAG to the agent 259

improves all metrics over the ablation: +0.0298 260

CheXbert, +0.0389 RadGraph, +0.0611 RaTE, 261

+0.0191 GREEN, raising Avg. from 0.4260 to 0.4632 262

(+0.0372, +8.7%). Among baselines, MedGemma 263

is strongest (0.4205 Avg.) yet remains 10.2% below 264

RadAgents. GPT-4o benefits from ReAct (+0.1023 265

Avg.) but still trails the full agent by 0.1010. 266

3.3. Comparison and Progression 267

We use MS–CXR–T to assess stability, improvement, 268

or worsening of a specific positive finding (consoli- 269

dation, edema, pleural effusion, or pneumothorax). 270

We only retain cases where the metadata indicates a 271

consensus among human reviewers. We pose a com- 272

parative question that explicitly references the prior 273

study. The prompt template is: 274

Given current image <image>, and previous

image <image>, decide if [finding] is

improving, stable, or worsening.

Figure 3 shows that RadAgents+V-RAG achieves 275

the best overall accuracy on MS-CXR-T, surpassing 276

the ablated agent and all LLM baselines. The order- 277

ing mirrors E&A, underscoring the value of retrieval 278

over similar studies for longitudinal reasoning. 279

3.4. Report Generation 280

We construct a MIMIC–CXR subset aligned with 281

MS–CXR identities so that findings queried in 282

VQA are represented in the corresponding reports. 283

Prompts request generation of the Findings section, 284

and all agents are activated by default. The prompt 285

combines the template from Section 3.2 with a cu- 286

rated list of clinically significant findings, following 287

prior work (Tu et al., 2024; Peng et al., 2025); details 288

appear in Appendix D. 289

Table 1 shows that, RadAgents attains the best 290

report quality (Avg. 0.4182). V-RAG contributes 291

+0.0335 Avg. (+8.7%), with the largest gain 292

on GREEN (+0.0706), plus lifts on CheXbert 293

(+0.0315) and RaTE (+0.0406). GPT-4o+ReAct 294

improves over GPT-4o (+0.0393) but remains 0.0956 295

below RadAgents, while MedGemma drops on this 296

task (0.2686 Avg.). 297
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Table 1: Evaluation on VQA (E&A) and report generation with baselines and RadAgents. The four metrics
are commensurate (each normalized to the range [0, 1]).

Method CheXbert-macro-F1(14) RadGraph-F1 RaTE GREEN Avg.

VQA (E&A) on MS-CXR

CheXagent 0.3321 0.1817 0.4526 0.3429 0.3273
MedGemma 0.3827 0.1624 0.5648 0.5723 0.4205
GPT-4o 0.3219 0.0928 0.4122 0.2127 0.2599
GPT-4o w/ ReAct 0.3613 0.1221 0.5034 0.4619 0.3622
GPT-4o w/ Workflow 0.4058 0.1617 0.5498 0.5351 0.4130
RadAgents wo/ V-RAG 0.4128 0.1925 0.5147 0.5841 0.4260
RadAgents 0.4426 0.2314 0.5758 0.6032 0.4632

Report Generation on MIMIC-CXR

CheXagent 0.2916 0.1318 0.4129 0.1825 0.2547
MedGemma 0.2413 0.1189 0.4728 0.2416 0.2686
GPT-4o 0.2237 0.1324 0.4635 0.3138 0.2833
GPT-4o w/ ReAct 0.3521 0.1329 0.4731 0.3325 0.3226
GPT-4o w/ Workflow 0.4080 0.1556 0.5187 0.3841 0.3653
RadAgents wo/ V-RAG 0.4412 0.1826 0.5238 0.3821 0.3824
RadAgents 0.4727 0.1829 0.5644 0.4527 0.4182

Figure 3: VQA results regrading progression.

3.5. Effectiveness of RadAgents Design298

We evaluate the multi-agent design against a mono-299

lithic baseline in which a single LLM follows the300

ABCDE scheme (GPT-4o w/ Workflow), thereby301

separating improvements attributable to multi-agent302

coordination from those due to a structured workflow.303

Consistent with Table 1 and Figure 3, (i) introduc-304

ing a workflow confers substantial gains over ReAct,305

and (ii) the multi-agent architecture further improves306

performance. These effects stem from contextual iso-307

lation within the workflow, which limits long-context308

drift in extended reasoning chains.309

In addition, we validate the context verifier and310

conflict-resolution modules. On our 1,147-case311

dataset, the context verifier was triggered in 37.67%312

of instances. We observed a tool-conflict rate of313

32.78%, of which 78.99% were resolved correctly.314

4. Discussion 315

In this work, we propose the first radiologist-like 316

agentic system, which demonstrates superior perfor- 317

mance in CXR interpretation. Further improvements 318

are required for broader application: (1) the context 319

verifier can only detect errors but cannot modify out- 320

puts, especially for visual evidence such as bounding 321

boxes, so stronger supporting models are needed; (2) 322

current experiments are limited to frontal-view im- 323

ages, as most existing tools are incompatible with 324

lateral views; (3) prompting strategies could be fur- 325

ther optimized; (4) the framework could be extended 326

to additional modalities, such as CT and MRI; and 327

(5) our current implementation relies on large propri- 328

etary models and multiple tools, making it costly and 329

difficult to reproduce; exploring smaller, open-source 330

models is a valuable direction. 331
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Appendix A. Demonstrations554

A.1. Full reasoning trajectory for tracheal555

deviation detection556

Figure 5 shows the reasoning trajectory for the query557

“Is the trachea midline?” The sequence proceeds as558

follows: (a) the orchestrator agent analyzes the query,559

activates the airway agent, and initiates actions; (b)560

the returned tool context is visualized; (c) the synthe-561

sizer agent integrates the context but issues a warning562

due to low-confidence segmentation results, trigger-563

ing the context verifier—specifically, GPT-4o is in-564

voked to re-judge and answer the query; and (d) syn-565

thesis is completed, producing the final answer with566

an associated confidence score.567

A.2. Failure case in CTR calculation568

Most measurement reasoning relies on segmentation569

or grounding tools for support. For example, measur-570

ing heart width directly involves counting the number571

of pixels between boundary points. However, due to572

the high cost of annotation, ground-truth datasets for573

training robust segmentation or grounding models are574

limited. Moreover, most organ segmentation datasets575

are curated from normal images; when abnormalities576

obscure the organs, segmentation often fails, leading577

to downstream measurement errors. Figure 4(b) il-578

lustrates the segmentation masks for a normal CXR579

and a CXR with effusion. In the effusion case, both580

heart width and thoracic width are measured incor-581

rectly due to inappropriate masks. These results fur-582

ther emphasize the need for a context verifier and583

resolver.584

Appendix B. Clinical Evaluation585

Metrics586

Evaluating the quality of generated radiology reports587

is non-trivial. Early works adopted general-domain588

natural language processing metrics such as ROUGE589

(Lin, 2004) and BLEU (Papineni et al., 2002). While590

these metrics are widely used for text evaluation,591

they treat differences in wording the same as clini-592

cally significant errors, failing to reflect medical accu-593

racy. To address this limitation, clinically informed594

evaluation metrics, such as CheXbert (Smit et al.,595

2020), RadGraph (Jain et al., 2021), GREEN (Ost-596

meier et al., 2024), and RaTEScore (Zhao et al.,597

2024), have been proposed to better assess clinical598

Figure 4: CTR calculation with segmentation masks
on (a) normal and (b) effusion cases. In-
accurate masks in the abnormal case lead
to incorrect heart and thoracic width mea-
surements.
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Figure 5: RadAgents’ reasoning trajectory for tracheal deviation detection.
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correctness and utility. CheXbert is based on multi-599

label classification results for 5 or 13 diseases (along600

with one extra “normal” label). RadGraph con-601

siders literal entity agreement considering the pos-602

itive or negative context of each entity. GREEN603

judges recall and precision errors by LLM prompt-604

ing. RaTEScore is inspired by RadGraph but less605

sensitive to phrasing by an F1-like computation which606

allows semantic matching between entities based on607

a cosine similarity. The metrics are computed us-608

ing their official and standardized implementations:609

RadGraph-F11, CheXbert-F12, RaTE Score3,610

and GREEN4.611

Appendix C. Dataset612

Operating an agentic system is costly because multi-613

modal multi-step reasoning entails many LLM API614

calls; accordingly, we did not conduct very large615

scale experiments. We evaluate on MS–CXR and616

MS–CXR–T, whose annotations enable verification617

of intermediate outputs and support future reinforce-618

ment learning to incentivize tool use with open source619

models. For report generation, we condition on the620

current study and a single prior frontal image, rather621

than the full imaging history, to limit context length622

and processing cost. Dataset statistics are shown in623

Table 6.624

Dataset # Cases # Images per case Has prior?

MIMIC-CXR (subset) 181 2 Yes
MS-CXR (test set) 181 1 No
MS-CXR-T 785 2 Yes

Table 2: Details of datasets used in RadAgents.

Appendix D. Prompting625

The input to RadAgents includes not only the im-626

age and query but also optional clinical context, such627

as patient demographics, indication, acquisition tech-628

nique, comparison studies, and examination details629

(e.g., view/projection and region). We denote this630

aggregated context as Context in the templates for631

comprehensive CXR scanning and for report genera-632

tion.633

1. https://pypi.org/project/radgraph/0.1.2/
2. https://pypi.org/project/f1chexbert/
3. https://pypi.org/project/RaTEScore/0.5.0/
4. https://pypi.org/project/green-score/0.0.8/

Instruction: You are a helpful radiology

assistant. Describe what lines, tubes,

and devices are present and each of their

locations. Describe if pneumothorax is

present; if present, describe size on each

side. Describe if pleural eusion is present;

if present, describe amount on each side.

Describe if lung opacity (atelectasis,

brosis, consolidation, inltrate, lung mass,

pneumonia, pulmonary edema) is present;

if present, describe kinds and locations.

Describe the cardiac silhouee size. Describe

the width and contours of the mediastinum.

Describe if hilar enlargement is present;

if enlarged, describe side. Describe what

fractures or other skeletal abnormalities are

present.

Given the [view] X-ray image(s) <images>,

Q: Describe the findings in the image

following the Instructions, and Context:

{context}.

Appendix E. Reasoning modes and 634

agentic workflows 635

Why interleaved reasoning? Classical vision 636

and language systems compress the image once and 637

then reason only in text. This single pass approach 638

is ill suited to radiology, where clinicians iteratively 639

survey the study, escalate suspicious findings to mea- 640

surement, revisit earlier impressions as new evidence 641

appears, and compare with priors. RadAgents opera- 642

tionalizes this practice by interleaving perception and 643

reasoning: at intermediate points the system inspects 644

additional visual evidence (for example, cropped re- 645

gions or segmentation overlays) and updates its hy- 646

pothesis before proceeding. A simple protocol is a 647

two phase visual chain of thought (VCoT): first, a 648

pure visual assessment that answers the question and 649

cites observable evidence without tool outputs; sec- 650

ond, an evidence validation step that reveals tool 651

conclusions (for example, a measurement or a mask) 652

and records agreement, disagreement, or uncertainty 653

with a recalibrated confidence. This improves trans- 654

parency and reduces anchoring on imperfect tools. 655

Figure 6 illustrates how interleaved quantitative evi- 656

dence aids enlarged heart detection, whereas a simple 657

grounding guided approach fails. 658
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Figure 6: Different queries should trigger different reasoning modes. Simply cropping regions of interest and
curating visual chain-of-thought reasoning is not a panacea.

(M1) Measurement659

Goal. Provide objective and reproducible judgments660

for geometry constrained findings.661

When. Explicit measurement requests or size abnor-662

malities suggested by a sweep.663

Tools. Segmentation yields organ masks and derived664

metrics; the cardiothoracic ratio (CTR) uses maximal665

cardiac width and thoracic width from bilateral lung666

extents, with projection recorded (PA versus AP) and667

raw pixel widths logged.668

Evidence. Numeric values with projection, overlay669

visuals of the masks used, and brief caveats.670

(M2) Localization671

Goal. Localize small or subtle targets that benefit672

from high resolution crops.673

When. Explicit localization queries or equivocal674

global signals.675

Tools. Grounding proposes bounding boxes; segmen-676

tation constrains search when organ context matters;677

crop policies adapt to target scale.678

Evidence. Boxes with confidence, region thumbnails,679

and landmark distances when relevant.680

(M3) Characterization681

Goal. Describe texture, morphology, distribution,682

and severity of parenchymal and pleural findings.683

When. Opacity related queries or when a sweep sug-684

gests edema, atelectasis, pneumonia, or fibrosis.685

Tools. Zone prioritization by a classifier, lung masks 686

to focus attention, region crops from suspicious zones, 687

VQA to standardize descriptors, and VCoT to justify 688

labels. 689

Evidence. Pattern and distribution labels with sever- 690

ity, plus representative crops tied to the cited fea- 691

tures. 692

(M4) Relational and comparative reasoning 693

Goal. Determine improvement, worsening, or stabil- 694

ity relative to a prior study, as well as the relation- 695

ships between each finding like complication. 696

When. Explicit comparison or association requests 697

or any mention of a prior. 698

Tools. Temporal alignment of regions, adjustment for 699

projection or view differences when possible, signed 700

change statements in VCoT, and measurement deltas 701

for quantitative targets. 702

Evidence. Paired crops and a concise comparison 703

statement. 704

(M5) Differential Diagnosis 705

Goal. Synthesize evidence across modes to issue a pa- 706

tient level conclusion and differential with calibrated 707

confidence. 708

When. After upstream modes have supplied suffi- 709

cient evidence or when the query explicitly seeks a 710

diagnosis. 711

Tools. The synthesizer aggregates structured find- 712

ings, checks consistency, reconciles conflicts, and 713
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Table 3: Retrieval quality at different k values, show-
ing the trade-off between helpful and harm-
ful rates.

k Helpful-rate Harmful-rate

1 0.48 0.09
3 0.62 0.14
5 0.65 0.20
7 0.66 0.25
9 0.67 0.28
11 0.67 0.31

maps evidence to diagnostic statements aligned with714

clinical guidance.715

Evidence. A short justification that links key mea-716

surements, locations, and patterns to the final con-717

clusion, plus uncertainty notes when appropriate.718

Appendix F. Details of V-RAG719

Multimodal retrieval. We retrieve images and720

their textual descriptions that align with the features721

of target medical images following (Chu et al., 2025).722

These references, rich in visual and textual medical723

details, guide response generation. To obtain em-724

beddings, we use Rad-DINO, which provides robust725

representations across diverse CXR image types. For726

each image Ximg, we extract its embedding Eimg =727

Rd, with d = 768, and store them in the embedding728

memory M.729

For efficient retrieval during inference, we build M730

using FAISS 5, a GPU-accelerated vector search sys-731

tem. We employ approximate kNN with the Hier-732

archical Navigable Small World (HNSW) algorithm733

(Malkov and Yashunin, 2018), enabling retrieval of734

the top-k most similar images in M.735

Sensitivity of k. We study how retrieval quality736

changes with the number of retrieved studies k with737

the sampled 100 cases from the MS-CXR test set used738

in this study. For each setting, we compute two met-739

rics: helpful-rate, the percentage of retrieved studies740

that improve the answer, and harmful-rate, the per-741

centage that hurt the answer. As shown in Table 3,742

As k increases, the harmful rate grows more quickly743

than the helpful, e.g., the helpful-rate increases from744

0.48 at k = 1 to 0.65 at k = 5, while the harmful-745

rate also rises from 0.09 to 0.20. We hypothesize this746

is due to longer contexts imposing a heavier reason-747

5. https://github.com/facebookresearch/faiss

ing burden and increasing hallucination, consistent 748

with prior LLM findings. This illustrates a trade- 749

off: retrieving more studies provides greater chances 750

of including helpful evidence but also increases the 751

risk of introducing misleading content. To balance 752

these effects, we choose k = 3 by default, achieving a 753

helpful-rate of 0.62 with a moderate harmful-rate of 754

0.14. 755

Augmented Inference. In the inference stage, we 756

encode the query image Xq to obtain its embedding. 757

We then retrieve the top-k most similar images from 758

M, represented as (I1, . . . , Ik) with their correspond- 759

ing reports (R1, . . . , Rk). These references are ap- 760

pended to the input of multimodal LLM to guide 761

generation. The prompt is structured as: 762

This is the i-th similar image and its

report for your reference. [Reference]i
... According to the query image and the

references, [Question] [Query Image].

where each reference is denoted as (Ii, Ri). 763
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