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Abstract

Agentic systems offer a potential path to
solve complex clinical tasks through collabora-
tion among specialized agents, augmented by
tool use and external knowledge bases. Nev-
ertheless, for chest X-ray (CXR) interpreta-
tion, prevailing methods remain limited: (i)
reasoning is frequently neither clinically inter-
pretable nor aligned with guidelines, reflect-
ing mere aggregation of tool outputs; (ii) mul-
timodal evidence is insufficiently fused, yield-
ing text-only rationales that are not visually
grounded; and (iii) systems rarely detect or re-
solve cross-tool inconsistencies and provide no
principled verification mechanisms. To bridge
the above gaps, we present RadAgents, a
multi-agent framework that couples clinical pri-
ors with task-aware multimodal reasoning and
encodes a radiologist-style workflow into a mod-
ular, auditable pipeline. In addition, we in-
tegrate grounding and multimodal retrieval-
augmentation to verify and resolve context con-
flicts, resulting in outputs that are more reli-
able, transparent, and consistent with clinical
practice.

Keywords: Multi-agent system, multimodal
reasoning, chest X-ray, image interpretation.

Data and Code Availability We use the fol-
lowing public datasets: MIMIC-CXR-JPG (Johnson
et al., 2019), MS-CXR, (Boecking et al., 2022), and
MS-CXR-T (Bannur et al., 2023), which are accessi-
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ble under their respective data use agreements. We
plan to release the code after obtaining organizational
approval.

Institutional Review Board (IRB) This work
does not require IRB approval.

1. Introduction

Chest X-ray (CXR) imaging is a cornerstone of pul-
monary screening, diagnosis, and follow-up, account-
ing for the largest share of diagnostic radiology exam-
inations performed worldwide each year (Cid et al.,
2024). Yet systematic assessment of thoracic struc-
tures remains labor-intensive, imposing a substantial
time burden on radiologists (Fallahpour et al., 2025).
The gradual introduction of Al into clinical practice
shows promise for alleviating this workload (Zhang
et al., 2024; Tanno et al., 2025). However, prevail-
ing systems fall short on complex multimodal rea-
soning, such as integrating findings across disparate
image regions, which is central to radiologists’ prac-
tice; most adhere to end-to-end designs in which the
visual encoder executes a single, front-end pass and
subsequent reasoning proceeds purely in text (Wang
et al., 2025). This encode-once, text-only paradigm
decouples the reasoning trajectory from evolving vi-
sual evidence, leading to failures on tasks that re-
quire iterative re-inspection, precise measurements,
and cross-comparisons (Liu et al., 2025).

A promising path for clinical reasoning is to aug-
ment large language models, including multimodal

© K. Zhang, C.D. Barrett, J. Kim, L. Sun, T. Taghavi & K. Kenthapadi.
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variants, with external tools (Lu et al., 2025). By
delegating perceptual and classification subtasks such
as organ or region segmentation and disease classi-
fication to validated modules, the language model
can focus on planning and synthesis. Several agentic
frameworks already explore this idea, ranging from
training small models for limited tool use (Li et al.,
2024; Nath et al., 2025) to pipeline systems that in-
voke general-purpose models for more flexible oper-
ations (Jiang et al., 2025; Schmidgall et al., 2024),
although multiple agent coordination and/or debate
introduces considerable computational overhead. In
CXR interpretation, RadFabric (Chen et al., 2025)
integrates diagnostic agents with a separate reason-
ing agent, and MedRAX (Fallahpour et al., 2025)
expands task coverage by incorporating additional
task specific models. Despite gains over single-model
baselines, integration and reasoning steps are often
opaque and not aligned with clinical workflow, which
undermines trust and creates safety risks, and they
still lack explicit verification and conflict resolution.

To address these limitations, we introduce RadA-
gents, a framework designed for complex multimodal
reasoning in CXR, which has three primary technical
contributions:

e We introduce clinically aware interleaved reason-
ing, a multimodal loop that combines clinical pri-
ors and study metadata with targeted image op-
erations (segment, measure, localize, compare),
so each hypothesis triggers tool use and returns
inspectable evidence, mirroring how radiologists
proceed from observation to measurement, com-
parison with prior studies, and conclusion (Fig. 6
and Appendix E).

e We propose a training-free multi-agent design,
where five sub-agents operate in clean, task-
scoped context compartments, coordinated by
an Orchestrator and reconciled by a Synthesizer.
This preserves visual grounding, supports paral-
lel execution, and composes measurement, local-
ization, characterization, comparison, and diag-
nosis (Figure 1).

e We add a lightweight context verifier and visual
retrieval-augmented generation to detect, sur-
face, and resolve inconsistencies before report-
ing, yielding more clinically aligned outputs.

e RadAgents achieves state-of-the-art perfor-
mance, outperforming strong baselines by 10.2%

on MS-CXR, 29.6% on MIMIC-CXR, and 21.5%
on MS-CXR-T. Multimodal retrieval further
contributes an average 8.0% boost over the no-
retrieval variant, mitigating context conflicts and
improving reliability.

2. Methods

RadAgents is a multi agent system with seven spe-
cialized agents (Figure 1). Five implement the clin-
ical ABCDE review scheme (Hodler et al., 2019):
Airway, Breathing, Clirculation, Diaphragm, and
Everything else. In addition, an Orchestrator agent
analyzes each query and routes tasks to the appro-
priate specialists with the required patient context
(for example, imaging view and prior studies), and
a Synthesizer agent integrates their outputs, resolves
conflicts, and produces the final output.

This design confines context to task specific com-
partments, reducing the information each agent must
process and simplifying context compression by hav-
ing each sub-agent produce an initial summary for
downstream synthesis. It also allows parallel ex-
ecution, lowering latency for long reasoning. For
common and clinically significant CXR findings such
as cardiomegaly and pleural effusion, we curate
radiologist-like workflows, the predefined templates
within RadAgents, to guide tool selection and clini-
cally grounded reasoning (see the demonstration ex-
ample in Appendix A). For out-of-template queries,
the system invokes workflow-free reasoning, preserv-
ing flexibility. The design is extensible: new tem-
plates (e.g., reasoning or tool-chains) can be added,
and some can generalize to tasks of similar scope or
category.

2.1. Task-aware Sub-Agents

Each sub-agent, also called the ABCDE agent, has
a defined purpose and domain of expertise. Each is
governed by a custom system prompt derived from
clinical guidelines and maintains its own context win-
dow (See details ). The main scope and objectives of
them are:

Airway agent: Systematically assess the central
thorax for airway patency, alignment, and paratra-
cheal lesions; for example, determine tracheal posi-
tion (midline versus deviation).

Breathing agent: Survey the lungs and pleura for
parenchymal and pleural pathology; for example, de-
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(Context: Age, Gender, \
Image: “cxr.jpg”
Q: Is the trachea
\_ midline? Y,
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task distribution,
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™
\ @/

Tools and Models

Subtask 1: segment
Subtask 2: measure
Subtask 3: verify
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Active sub-agent
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Answer
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Intent: ...
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Returned mask:
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Aggregatl_or_"’ Verification: ...
context verifier,
conflict resolution Answer: No, the
trachea is not
midline; itis
deviated to the right.

Figure 1: RadAgents framework. Each ABCDE subagent executes in parallel guided by clinical workflows,
lowering latency, preserving isolation to avoid long-context drift, and improving trustworthiness.

tect opacities (alveolar, interstitial, nodular), infil-
trates, and consolidation patterns.

Circulation agent: Evaluate the cardiac silhouette,
mediastinum, and vessels; for example, compute the
cardiothoracic ratio.

Diaphragm agent: Assess diaphragmatic integrity
and look for subdiaphragmatic air; for example, com-
pare right and left diaphragm height.

Everything Else agent: Identify other chest wall,
soft tissue, and foreign body findings.

2.2. Radiologist-like Workflows

Solving different radiological tasks requires distinct
reasoning modes and corresponding evidence. Fig-
ure 6 shows that multimodal reasoning, particularly
interleaved quantitative measurements, strengthens
reasoning for enlarged heart detection, whereas a
simple grounding guided approach fails. Motivated
by this, RadAgents curates clinically driven subtasks
and workflow templates within the subagents’ system
prompts, organized into five modes: (M1) measure-
ment, (M2) localization, (M3) characterization, (M4)
relational and comparative reasoning, and (M5) di-
agnosis. Complex clinical reasoning composes these
modes and triggers the appropriate tool calls within
the agentic system; for example, judging progression
of effusion volume uses M1 and M4. A detailed de-
scription of workflows can be found in Appendix E.

2.3. Global Controller Module

The global controller comprises the Orchestrator and
the Synthesizer. The Orchestrator selects subagents
and allocates tasks with appropriate patient context,
and the Synthesizer integrates their outputs, verifies

consistency, and resolves errors and conflicts. The

major components are detailed below.

Query analysis. Given a query, the Orchestra-
tor drafts a high level plan, selects the relevant
subagents, and chooses the reasoning mode: ReAct
when no workflow is specified (Yao et al., 2023), or
Plan-and-Execute (P&E) (WANG et al., 2023) when
a workflow template is available. This keeps the sys-
tem language driven and adaptable across queries.

Tools. We employ a suite of models as tools for dis-
tinct CXR tasks: CheXagent (Chen et al., 2024b) for
VQA, MAIRA-2 (Bannur et al., 2024) for ground-
ing, the CheXpert Plus report generator (Chambon
et al., 2024), and classification and organ segmen-
tation models from TorchXRayVision (Cohen et al.,
2022). In addition, we include unique programming
tools that return zoomed-in quarter patches or serve
for measurement and calculation purposes.

Context verifier. No tool is perfect, as their ca-
pabilities are constrained by model size and training
data. When uncertainty arises, we trigger a verifi-
cation step in which an advanced multimodal LLM
serves as a judge (Chen et al., 2024a), filtering out
incorrect outputs such as erroneous masks.

Retrieval-augmented conflic resolution. Tool
outputs can conflict. On the Synthesizer side, we
apply Visual Retrieval-Augmented Generation (V-
RAG) (Chu et al., 2025): the agent retrieves clini-
cally similar chest radiographs (based on image em-
beddings from Rad-DINO (Perez-Garcia et al., 2025))
and accompanying context like patient notes and uses
these exemplars to adjudicate discrepancies among
tools (Figure 2 and Appendix F). This mirrors rou-
tine radiologic practice, in which clinicians consult
similar cases and content to calibrate interpretation.
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Tool 1
Edema
. |

>8> @

Agreement

iy

Consolidation,
Pleural effusion

Does the patient have
[disease entity] ?

Figure 2: Resolving the conflicts via V-RAG (Chu
et al., 2025).

Tool 2
Cardiomegaly

3. Experiments

3.1. Experimental Setup

To demonstrate the generality of RadAgents, we
evaluate it on three tasks with increasing reason-
ing complexity: VQA for existence and attributes
(E&A), VQA for comparison and progression (C&P),
and report generation. The data statistic and details
are shown in Table 2.

Baselines. We instantiate all agents with GPT-4o.
For comparison, we include (1) GPT-40 (Hurst et al.,
2024), (2) GPT-40 with ReAct, where tools are avail-
able via function calling but without explicit work-
flow steering, (3) GPT-40 with monolithic Workflow
where a MLLM executing ABCDE analysis end-to-
end with the same tools, retrieval, and budges as
RadAgents, and (4) two medical specialist models,
CheXagent and MedGemma (Sellergren et al., 2025).
Unless otherwise noted, the number of retrieved ex-
emplars for V-RAG is set to k = 3 (see Appendix F
for an ablation on k). We report results for two vari-
ants of RadAgents, with and without V-RAG.
Metrics. For VQA (E&A) and report generation,
we use standard CXR text metrics (explanation in
Appendix B): RadGraph F1 (Jain et al., 2021),
CheXbert macro F1 across 14 labels (Smit et al.,
2020), RaTE (Zhao et al., 2024), and GREEN (Ost-
meier et al., 2024). Because the outputs are sen-
tences, these metrics capture clinical correctness and
consistency. For VQA (C&P), where the output is
one of three choices, we report accuracy.

3.2. Existence and Attributes

The VQA questions cover seven common findings
in CXR: atelectasis, cardiomegaly, consolidation,
edema, lung opacity, pleural effusion, and pneu-
mothorax, derived from the standard test split of
MS—-CXR. Each image receives the following prompt
(details are stated in the Appendix D):

<image> Describe if [finding] is present; if
present, describe [attributes].

Table 1 shows that adding V-RAG to the agent
improves all metrics over the ablation: +0.0298
CheXbert, +0.0389 RadGraph, +0.0611 RaTE,
+0.0191 GREEN, raising Avg. from 0.4260 to 0.4632
(40.0372, +8.7%). Among baselines, MedGemma
is strongest (0.4205 Awvg.) yet remains 10.2% below
RadAgents. GPT-4o benefits from ReAct (+0.1023
Avg.) but still trails the full agent by 0.1010.

3.3. Comparison and Progression

We use MS-CXR-T to assess stability, improvement,
or worsening of a specific positive finding (consoli-
dation, edema, pleural effusion, or pneumothorax).
We only retain cases where the metadata indicates a
consensus among human reviewers. We pose a com-
parative question that explicitly references the prior
study. The prompt template is:

Given current image <image>, and previous
image <image>, decide if [finding] is
improving, stable, or worsening.

Figure 3 shows that RadAgents+V-RAG achieves
the best overall accuracy on MS-CXR-T, surpassing
the ablated agent and all LLM baselines. The order-
ing mirrors E&A, underscoring the value of retrieval
over similar studies for longitudinal reasoning.

3.4. Report Generation

We construct a MIMIC-CXR subset aligned with
MS-CXR identities so that findings queried in
VQA are represented in the corresponding reports.
Prompts request generation of the Findings section,
and all agents are activated by default. The prompt
combines the template from Section 3.2 with a cu-
rated list of clinically significant findings, following
prior work (Tu et al., 2024; Peng et al., 2025); details
appear in Appendix D.

Table 1 shows that, RadAgents attains the best
report quality (Avg. 0.4182). V-RAG contributes
+0.0335 Avg.  (+8.7%), with the largest gain
on GREEN (40.0706), plus lifts on CheXbert
(40.0315) and RaTE (+0.0406). GPT-40+ReAct
improves over GPT-40 (40.0393) but remains 0.0956
below RadAgents, while MedGemma drops on this
task (0.2686 Awvg.).
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Table 1: Evaluation on VQA (E&A) and report generation with baselines and RadAgents. The four metrics
are commensurate (each normalized to the range [0, 1]).

Method | CheXbert-macro-F1(14) RadGraph-F1 RaTE GREEN Avg.
VQA (E&A) on MS-CXR
CheXagent 0.3321 0.1817 0.4526 0.3429 0.3273
MedGemma 0.3827 0.1624 0.5648 0.5723 0.4205
GPT-40 0.3219 0.0928 0.4122 0.2127 0.2599
GPT-40 w/ ReAct 0.3613 0.1221 0.5034 0.4619 0.3622
GPT-40 w/ Workflow 0.4058 0.1617 0.5498 0.5351 0.4130
RadAgents wo/ V-RAG 0.4128 0.1925 0.5147 0.5841 0.4260
RadAgents 0.4426 0.2314 0.5758 0.6032 0.4632
Report Generation on MIMIC-CXR,
CheXagent 0.2916 0.1318 0.4129 0.1825 0.2547
MedGemma 0.2413 0.1189 0.4728 0.2416 0.2686
GPT-40 0.2237 0.1324 0.4635 0.3138 0.2833
GPT-40 w/ ReAct 0.3521 0.1329 0.4731 0.3325 0.3226
GPT-40 w/ Workflow 0.4080 0.1556 0.5187 0.3841 0.3653
RadAgents wo/ V-RAG 0.4412 0.1826 0.5238 0.3821 0.3824
RadAgents 0.4727 0.1829 0.5644 0.4527 0.4182
Specialist model 4. DiSCUSSiOH
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Figure 3: VQA results regrading progression.

3.5. Effectiveness of RadAgents Design

We evaluate the multi-agent design against a mono-
lithic baseline in which a single LLM follows the
ABCDE scheme (GPT-4o w/ Workflow), thereby
separating improvements attributable to multi-agent
coordination from those due to a structured workflow.
Consistent with Table 1 and Figure 3, (i) introduc-
ing a workflow confers substantial gains over ReAct,
and (ii) the multi-agent architecture further improves
performance. These effects stem from contextual iso-
lation within the workflow, which limits long-context
drift in extended reasoning chains.

In addition, we validate the context verifier and
conflict-resolution modules. On our 1,147-case
dataset, the context verifier was triggered in 37.67%
of instances. We observed a tool-conflict rate of
32.78%, of which 78.99% were resolved correctly.

In this work, we propose the first radiologist-like
agentic system, which demonstrates superior perfor-
mance in CXR interpretation. Further improvements
are required for broader application: (1) the context
verifier can only detect errors but cannot modify out-
puts, especially for visual evidence such as bounding
boxes, so stronger supporting models are needed; (2)
current experiments are limited to frontal-view im-
ages, as most existing tools are incompatible with
lateral views; (3) prompting strategies could be fur-
ther optimized; (4) the framework could be extended
to additional modalities, such as CT and MRI; and
(5) our current implementation relies on large propri-
etary models and multiple tools, making it costly and
difficult to reproduce; exploring smaller, open-source
models is a valuable direction.
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Appendix A. Demonstrations

A.1. Full reasoning trajectory for tracheal
deviation detection

Figure 5 shows the reasoning trajectory for the query
“Is the trachea midline?” The sequence proceeds as
follows: (a) the orchestrator agent analyzes the query,
activates the airway agent, and initiates actions; (b)
the returned tool context is visualized; (c) the synthe-
sizer agent integrates the context but issues a warning
due to low-confidence segmentation results, trigger-
ing the context verifier—specifically, GPT-4o0 is in-
voked to re-judge and answer the query; and (d) syn-
thesis is completed, producing the final answer with
an associated confidence score.

A.2. Failure case in CTR calculation

Most measurement reasoning relies on segmentation
or grounding tools for support. For example, measur-
ing heart width directly involves counting the number
of pixels between boundary points. However, due to
the high cost of annotation, ground-truth datasets for
training robust segmentation or grounding models are
limited. Moreover, most organ segmentation datasets
are curated from normal images; when abnormalities
obscure the organs, segmentation often fails, leading
to downstream measurement errors. Figure 4(b) il-
lustrates the segmentation masks for a normal CXR
and a CXR with effusion. In the effusion case, both
heart width and thoracic width are measured incor-
rectly due to inappropriate masks. These results fur-
ther emphasize the need for a context verifier and
resolver.

Appendix B. Clinical Evaluation
Metrics

Evaluating the quality of generated radiology reports
is non-trivial. Early works adopted general-domain
natural language processing metrics such as ROUGE
(Lin, 2004) and BLEU (Papineni et al., 2002). While
these metrics are widely used for text evaluation,
they treat differences in wording the same as clini-
cally significant errors, failing to reflect medical accu-
racy. To address this limitation, clinically informed
evaluation metrics, such as CheXbert (Smit et al.,
2020), RadGraph (Jain et al., 2021), GREEN (Ost-
meier et al.,, 2024), and RaTEScore (Zhao et al.,
2024), have been proposed to better assess clinical

Figure 4: CTR calculation with segmentation masks
on (a) normal and (b) effusion cases. In-
accurate masks in the abnormal case lead
to incorrect heart and thoracic width mea-
surements.
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ORCHESTRATOR: Analyzing query...
Query: Is the trachea midline?

Query Analysis (1.27s):

Intent: localization

Active Agents: [‘airway']

Analysis Focus: ['Tracheal position']

ORCHESTRATOR: Executing agents...
E: 1 agents i
Running airway...
Calling segmentation with params: {'image_path':
‘/demo/chest/tracheal_deviation.png), 'organs': ['Weasand']}
INFO: Starting segmentation process...
INFO: Validating and categorizing requested organs...
INFO: Loading and preprocessing image...
INFO: Running segmentation model...
INFO: Model prediction complete.
INFO: Generating segmentation visualization...
INFO: Visualization saved to temp/segmentation_53b03a54.png
INFO: Computing organ metrics...
INFO: Metrics computation complete.
INFO: Calculating Cardiothoracic Ratio (CTR)...
INFO: CTR status: CTR calculation requires successful segmentation of Heart,
Left Lung, and Right Lung.
INFO: Computing additional measurements...
Segmentation tool returned tuple, extracting segmentation data
Segmentation result keys: ['segmentation_image_path’, 'metrics']

ORCHESTRATOR: Running synthesis agent...

SYNTHESIS AGENT: Performing clinical reasoning...
Collected 1 total findings from 1 agents

"I DETAILED FINDINGS SUMMARY:
1. [AIRWAY] tracheal_deviation (confidence: 9.0%)
Evidence: Verifier independent assessment: The trachea appears deviated to the
right.. Disagrees with tool conclusion of 'midline’ (position: 0.514)
Measurements: tool_position=0.5142767167782366, tool_conclusion=midline,
veot_direct_assessment=The trachea appears deviated to the right.

L. Verifier DISAGREEMENT: Visual analysis contradicts tool result

@ Direct Visual A The

appears d d to the right.

X Context Verifier: Visual analysis contradicts tool result; Alternative:
ALTERNATIVE_ASSESSMENT: Right tracheal deviation is present, contrary to
tool's assessment of midline position.

[DEBUG] airway - check_tracheal_position - segmentation
Params: {

"organs": [
"Weasand"

1

Result: {
"success": true,
“result": {

_image_path": " P,

_53b03a54.png",

"metrics":
"Weasan!

"centroid": [
157.82834267413932,
470.04891913530827

1
"bbox": [14, 440, 301, 511
1
"width": 71,
"height": 287,
"aspect_ratio": 4.042253521126761,
"relative_position": {
"top": 0.1809958058189671,
"left": 0.5142767167782366,
"center_dist": 0.31932350453271696

"mean_intensity": 118.73706965572458,
"std_intensity": 24.211336890125622,
"confidence_score": 0.032431717962026596
3
}
h

INFO: Verifier analyzing original image independently (not using highlighted
segmentation)
v Completed airway in 24.76s

Agent execution completed in 24.76s

1l AGENT-SPECIFIC SUMMARY:
@ AIRWAY: 1 findings, confidence=high
w8 VV-CoT triggered
[ Executed 1 tasks

@ SYNTHESIS STRATEGY:
Pattern recognition: False
Differential diagnosis: False

Synthesis completed in 8.15s

Analysis completed in 34.19 seconds

[DEBUG] Final results saved to:
logs/agent_debug/final_results_20250714_174214.json

SUMMARY

Answer: No, the trachea is not midline; it is deviated to the right.
Confidence: 80%

Activated Agents: [‘airway']

Figure 5: RadAgents’ reasoning trajectory for tracheal deviation detection.
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correctness and utility. CheXbert is based on multi-
label classification results for 5 or 13 diseases (along
with one extra “normal” label). RadGraph con-
siders literal entity agreement considering the pos-
itive or negative context of each entity. GREEN
judges recall and precision errors by LLM prompt-
ing. RaTEScore is inspired by RadGraph but less
sensitive to phrasing by an F1-like computation which
allows semantic matching between entities based on
a cosine similarity. The metrics are computed us-
ing their official and standardized implementations:
RADGRAPH-F1!, CHEXBERT-F12, RATE SCORE?,
and GREEN*.

Appendix C. Dataset

Operating an agentic system is costly because multi-
modal multi-step reasoning entails many LLM API
calls; accordingly, we did not conduct very large
scale experiments. We evaluate on MS—-CXR and
MS-CXR-T, whose annotations enable verification
of intermediate outputs and support future reinforce-
ment learning to incentivize tool use with open source
models. For report generation, we condition on the
current study and a single prior frontal image, rather
than the full imaging history, to limit context length
and processing cost. Dataset statistics are shown in
Table 6.

Dataset # Cases  # Images per case Has prior?
MIMIC-CXR (subset) 181 2 Yes
MS-CXR (test set) 181 1 No
MS-CXR-T 785 2 Yes

Table 2: Details of datasets used in RadAgents.

Appendix D. Prompting

The input to RadAgents includes not only the im-
age and query but also optional clinical context, such
as patient demographics, indication, acquisition tech-
nique, comparison studies, and examination details
(e.g., view/projection and region). We denote this
aggregated context as CONTEXT in the templates for
comprehensive CXR scanning and for report genera-
tion.

org/project/radgraph/0.1.2/
org/project/fichexbert/
org/project/RaTEScore/0.5.0/
org/project/green-score/0.0.8/

. https://pypi.
. https://pypi.
. https://pypi.
. https://pypi.

=W N =

11

Instruction: You are a helpful radiology
assistant. Describe what lines, tubes,
and devices are present and each of their
locations. Describe if pneumothorax is
present; if present, describe size on each
side. Describe if pleural eusion is present;
if present, describe amount on each side.
Describe if lung opacity (atelectasis,
brosis, consolidation, inltrate, lung mass,
pneumonia, pulmonary edema) is present;
if present, describe kinds and locatioms.
Describe the cardiac silhouee size. Describe
the width and contours of the mediastinum.
Describe if hilar enlargement is present;
if enlarged, describe side. Describe what
fractures or other skeletal abnormalities are
present.
Given the [view] X-ray image(s) <images>,
Q: Describe the findings in the image
following the Instructions, and Context:
{context}.

Appendix E. Reasoning modes and
agentic workflows

Why interleaved reasoning? Classical vision
and language systems compress the image once and
then reason only in text. This single pass approach
is ill suited to radiology, where clinicians iteratively
survey the study, escalate suspicious findings to mea-
surement, revisit earlier impressions as new evidence
appears, and compare with priors. RadAgents opera-
tionalizes this practice by interleaving perception and
reasoning: at intermediate points the system inspects
additional visual evidence (for example, cropped re-
gions or segmentation overlays) and updates its hy-
pothesis before proceeding. A simple protocol is a
two phase visual chain of thought (VCoT): first, a
pure visual assessment that answers the question and
cites observable evidence without tool outputs; sec-
ond, an evidence validation step that reveals tool
conclusions (for example, a measurement or a mask)
and records agreement, disagreement, or uncertainty
with a recalibrated confidence. This improves trans-
parency and reduces anchoring on imperfect tools.
Figure 6 illustrates how interleaved quantitative evi-
dence aids enlarged heart detection, whereas a simple
grounding guided approach fails.
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Plain VQA

Describe any cardiac
findings on this CXR.

L

Grounding-guided VQA

The heart Cardlac
snlh
normal is n

Multimodal Interleaved Reasoning

To confirm heart
enlargement,
the heart and
lungs must first
be detected.

To calculate
CTR, the width
should be
measured.

CTRvalue: 0.523,
which indicates
the mild
cardiomegaly

)

Figure 6: Different queries should trigger different reasoning modes. Simply cropping regions of interest and
curating visual chain-of-thought reasoning is not a panacea.

(M1) Measurement

Goal. Provide objective and reproducible judgments
for geometry constrained findings.

When. Explicit measurement requests or size abnor-
malities suggested by a sweep.

Tools. Segmentation yields organ masks and derived
metrics; the cardiothoracic ratio (CTR) uses maximal
cardiac width and thoracic width from bilateral lung
extents, with projection recorded (PA versus AP) and
raw pixel widths logged.

Evidence. Numeric values with projection, overlay
visuals of the masks used, and brief caveats.

(M2) Localization

Goal. Localize small or subtle targets that benefit
from high resolution crops.

When. Explicit localization queries or equivocal
global signals.

Tools. Grounding proposes bounding boxes; segmen-
tation constrains search when organ context matters;
crop policies adapt to target scale.

Evidence. Boxes with confidence, region thumbnails,
and landmark distances when relevant.

(M3) Characterization

Goal. Describe texture, morphology, distribution,
and severity of parenchymal and pleural findings.
When. Opacity related queries or when a sweep sug-
gests edema, atelectasis, pneumonia, or fibrosis.

12

Tools. Zone prioritization by a classifier, lung masks
to focus attention, region crops from suspicious zones,
VQA to standardize descriptors, and VCoT to justify
labels.

Evidence. Pattern and distribution labels with sever-
ity, plus representative crops tied to the cited fea-
tures.

(M4) Relational and comparative reasoning

Goal. Determine improvement, worsening, or stabil-
ity relative to a prior study, as well as the relation-
ships between each finding like complication.

When. Explicit comparison or association requests
or any mention of a prior.

Tools. Temporal alignment of regions, adjustment for
projection or view differences when possible, signed
change statements in VCoT, and measurement deltas
for quantitative targets.

FEvidence.
statement.

Paired crops and a concise comparison

(M5) Differential Diagnosis

Goal. Synthesize evidence across modes to issue a pa-
tient level conclusion and differential with calibrated
confidence.
When. After upstream modes have supplied suffi-
cient evidence or when the query explicitly seeks a
diagnosis.

Tools. The synthesizer aggregates structured find-
ings, checks consistency, reconciles conflicts, and
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Table 3: Retrieval quality at different k values, show-
ing the trade-off between helpful and harm-

ful rates.
k | Helpful-rate | Harmful-rate
1 0.48 0.09
3 0.62 0.14
5 0.65 0.20
7 0.66 0.25
9 0.67 0.28
11 0.67 0.31

maps evidence to diagnostic statements aligned with
clinical guidance.

Evidence. A short justification that links key mea-
surements, locations, and patterns to the final con-
clusion, plus uncertainty notes when appropriate.

Appendix F. Details of V-RAG

Multimodal retrieval. We retrieve images and
their textual descriptions that align with the features
of target medical images following (Chu et al., 2025).
These references, rich in visual and textual medical
details, guide response generation. To obtain em-
beddings, we use Rad-DINO, which provides robust
representations across diverse CXR image types. For
each image X4, we extract its embedding Ejy,g =
R?, with d = 768, and store them in the embedding
memory M.

For efficient retrieval during inference, we build M
using FAISS ®, a GPU-accelerated vector search sys-
tem. We employ approximate kNN with the Hier-
archical Navigable Small World (HNSW) algorithm
(Malkov and Yashunin, 2018), enabling retrieval of
the top-k most similar images in M.

Sensitivity of k. We study how retrieval quality
changes with the number of retrieved studies k£ with
the sampled 100 cases from the MS-CXR test set used
in this study. For each setting, we compute two met-
rics: helpful-rate, the percentage of retrieved studies
that improve the answer, and harmful-rate, the per-
centage that hurt the answer. As shown in Table 3,
As k increases, the harmful rate grows more quickly
than the helpful, e.g., the helpful-rate increases from
0.48 at k = 1 to 0.65 at kK = 5, while the harmful-
rate also rises from 0.09 to 0.20. We hypothesize this
is due to longer contexts imposing a heavier reason-

5. https://github.com/facebookresearch/faiss
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ing burden and increasing hallucination, consistent
with prior LLM findings. This illustrates a trade-
off: retrieving more studies provides greater chances
of including helpful evidence but also increases the
risk of introducing misleading content. To balance
these effects, we choose k = 3 by default, achieving a
helpful-rate of 0.62 with a moderate harmful-rate of
0.14.

Augmented Inference. In the inference stage, we
encode the query image X, to obtain its embedding.
We then retrieve the top-k most similar images from
M, represented as (I, ..., ;) with their correspond-
ing reports (Ry,...,Ry). These references are ap-
pended to the input of multimodal LLM to guide
generation. The prompt is structured as:

This is the ¢-th similar image and its

report for your reference. [Reference];
According to the query image and the

references, [Question] [Query Imagel].

where each reference is denoted as (I;, R;).
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