A ORGANIZATION OF PAPER

We provide a brief overview of each section. In Section 2, we define the simulated tempering and ST Teleporting algorithms, along with the main algorithm used in this paper. In Section 3, we present the main results of our paper.

In Section $\boxed{\mathbb{D}}$ we cast Algorithm $\boxed{2}$ as a continuous time process with Markov generator \mathscr{L} . We then show that the Markov generator \mathscr{L} satisfies the decomposition assumptions of Theorem $\boxed{\mathsf{E}.1}$ in Section $\boxed{\mathsf{E}}$

The analysis in Section E is similar to the work done in G et al. (2018c). We show that under basic assumptions the Poincaré constant corresponding to a stationary distribution $p_i(x) = \sum_{j=1}^{M} w_{ij} p_{ij}(x)$ of the Markov process P can be bounded by a function of Poincaré constants corresponding to the component measures and the Poincaré constant of the projected chain capturing transitions between components (defined in the assumptions of Theorem E.1). Since we've shown in Section D that the continuous time process corresponding to Algorithm I satisfies the assumptions of Theorem I and I the decomposition theorem allows us to proceed after finding a bound on the Poincaré constant of the projected chain.

One obstacle in our temperature ladder is the cross terms that appear by defining $\tilde{p}_{\beta} \propto \sum_k \alpha_k \pi_k(x) \cdot \sum_k w_{\beta,k} q_{\beta}(x-x_k)$. Ideally our algorithm is able to mix well into the aligned components $\pi_k(x)q_{\beta}(x-x_k)$ while ignoring the cross terms which will naturally have negligible weight. Under reasonable assumptions, as we will later show, it makes sense to refer to the portion of the product where j=k, the aligned components, as the good portion. In Section F we prove chi-squared divergence bounds for the good portion of the stationary distribution. We show that this can be bounded by a function which depends on the Poincaré constant corresponding to the good set as well as an expected value that describes the "flow" into the good set.

Our main algorithm, Algorithm [l] inductively runs Algorithm [l] to estimate the partition functions at the subsequent level. To estimate the partition functions, Algorithm [l] runs ST teleporting to the current level and collects N samples. The samples at level l are used to obtain a Monte Carlo estimate of the partition functions at the next level yielding weights $\{w_{l+1}, k\}_{k=1}^{M}$ and r_{l+1} . With these weights the algorithm is then ran one more time to level l+1 obtaining another N samples. This time the samples are used to get an estimate of the level weights by empirical occupancy and this occupancy is used to adjust the level weightings $\{r_i\}_{i=1}^{l+1}$.

In Section G.3 we show that under the inductive hypothesis, Assumptions G.1 and Assumptions 3.1 weights $\{r_l\}_{l=1}^L$ and $\{w_{l,k}\}_{l\in[1,L],k\in[1,M]}$ can be chosen to maintain level and component balance between the partition functions. More precisely, the weights are chosen so that there exists a constant C_1 such that $\frac{1}{C_1} \leq \frac{w_{l,k}Z_{l,k}}{w_{l,k'}Z_{l,k'}} \leq C_1$ for $k,k' \in [1,M]$ and there exists a constant C_2 such that $\frac{1}{C_2} \leq \frac{r_lZ_l}{r_{l'}Z_{l'}} \leq C_2$ for $l,l' \in [1,L]$. Maintaining this level balance prevents bottlenecks (a mode having low weight at a level so that) is is hard to obtains samples at subsequent temperatures, and so allows for bounds on the Poincaré constant of the projected chain; see Lemma G.10

In Section H, we prove the main results, which follow from the results in Section G.3.

Sections [I] and [I.2] show the general settings in which the assumptions of the main theorem hold. Assumptions [3.1] focus on the initial distribution and tempering scheme used to run Algorithm [I]. In Section [I] we show that Assumptions [3.1] hold in \mathbb{R}^d for $q_i(x)$ chosen to be Gaussians and in the general case where the component measure of the target function is specified as $p_k(x) = e^{-f_k(x)}$, where $f_k(x)$ is L-smooth. We also show that these assumptions hold on the hypercube, with analogous assumptions made on $q_i(x)$ and $p_k(x)$. Assumptions [1.1] focus on the target measure $p(x) = \sum_{k=1}^M \alpha_k p_k(x)$. In Section [1.2] we show families of target measures where Assumptions [1.1]

B BACKGROUND

B.1 NOTATION

 We denote the target distribution on Ω by

$$\pi(x) \propto e^{-V(x)}$$

and assume it decomposes as a mixture

$$\pi(x) = \sum_{k=1}^{M} \alpha_k \pi_k(x)$$

where $\pi_k(x)$ are normalized component measures with corresponding weights α_k . The set of warm start points is given by $\{x_1,\ldots,x_M\}\subset\Omega$. The tempering functions are denoted $q_\beta(\cdot)$ and are unnormalized distributions satisfying $q_\beta\to\delta_0$, where δ_0 is the Dirac delta measure, as $\beta\to\infty$ and $q_\beta=1$ for $\beta=0$. The unnormalized tempered distributions are given by

$$\tilde{p}_{\beta}(x) = \pi(x) \sum_{k=1}^{M} w_{\beta,k} q_{\beta}(x - x_k)$$
(B.1)

where $w_{\beta,k}$ are learned weights. In Section G.3 we define the following for ease of computation. The target measure tilted by $q_{\beta}(x-x_k)$ on level l is given by

$$\bar{\pi}_{l,k}(x) = \pi(x) \cdot q_l(x - x_k)$$

and the component measure aligned with its correcting tempering function is denoted by

$$\tilde{\pi}_{l,k}(x) = \pi_k(x) \cdot q_l(x - x_k).$$

The partition functions corresponding to these measures are given by $\bar{Z}_{l,k}$ and $Z_{l,k}$ respectively. In Section G.3 we also make use of the unnormalized joint distribution over the temperature levels this is defined to be

$$\tilde{p}(x,i) = \sum_{j=1}^{l} r_j^{(l)} \tilde{p}_j(x) I\{i=j\}.$$
(B.2)

Similarly, we define the normalized version to be

$$p(x,i) = \sum_{j=1}^{l} \omega^{j} p_{j}(x) I\{i=j\}$$

where $\omega^j = r_j^{(l)} Z_j$. In the context of Section F we will occasionally refer to the "good" part of the distribution and will denote this unnormalized portion by

$$\tilde{p}_0(x,i) = \sum_{i=1}^{l} r_i^{(l)} \sum_{k=1}^{M} \alpha_k w_{i,k} \pi_k(x) q_i(x - x_k) I\{i = j\}.$$

The marginal over the levels of the good portion is then denoted by

$$p_{i0}(x) \propto \sum_{k=1}^{M} \alpha_k w_{i,k} \pi_k(x) q_i(x - x_k). \tag{B.3}$$

We can then express the normalized joint distribution as a mixture of the good and bad portions by

$$p(x,i) = \alpha_0 p_0(x,i) + (1 - \alpha_0) p_1(x,i)$$

where $\alpha_0 = \frac{\sum_i \int_{\Omega} \tilde{p}_0(x,i) dx}{\sum_i \int_{\Omega} \tilde{p}(x,i) dx}$ is the component weight of the good portion.

B.2 MOTIVATING EXAMPLES

To motivate tempering to colder temperatures, corresponding to more peaked distributions, we show that in high dimensions, flat components of the mixture distribution can cause the teleport process to have low acceptance probabilities. This leads to poor mixing of the projected chain—mixing between modes—which in turn leads to long run times. In our algorithm, the projected chain at the coldest level is the probability flow between component measures after an affine translation which overlaps the warm start points.

Example B.1. Let $\pi(x) = \frac{1}{2}N(0,I_d) + \frac{1}{2}N(\mu_1,\sigma I_d)$ be the mixture of two Gaussians in \mathbb{R}^d and define the teleport function to be the translation $g_{ij}(x) = x - \mu_i + \mu_j$. Then the probability of transitioning from $\mu_0 = 0$ to μ_1 denoted $P(\{0\},\{1\})$ is given by

$$P(\{0\}, \{1\}) = \min \left\{ \frac{(1/2\pi)^{\frac{d}{2}} \det(\sigma I)^{-\frac{1}{2}} \exp(-\frac{1}{2\sigma}||x + \mu_1 - \mu_1||_2^2)}{(1/2\pi)^{\frac{d}{2}} \det(I)^{-\frac{1}{2}} \exp(-\frac{1}{2}||x||_2^2)}, 1 \right\}$$

$$= \min \left\{ \frac{\left(\frac{1}{\sigma}\right)^{\frac{d}{2}} \exp(-\frac{1}{2\sigma}||x||_2^2)}{\exp(-\frac{1}{2}||x||_2^2)}, 1 \right\}$$

$$= \min \left\{ \left(\frac{1}{\sigma}\right)^{\frac{d}{2}} \exp\left(\frac{\sigma - 1}{2\sigma}||x||_2^2\right), 1 \right\}$$

It becomes clear that for $\sigma > 1$ as $d \to \infty$ and $||x|| \propto \sigma$ we have that $P(\{0\}, \{1\}) \to 0$.

The following example shows that in high dimensions a bimodal mixture of Gaussians with different variances can have exponentially bad weight distortion when power tempering is applied. Power tempering is one of the most standard tempering methods that takes the target distribution $\pi(x) \propto e^{-V(x)}$ and raises it to the inverse temperature β so that at each level $\pi_{\beta}(x) \propto \pi(x)^{\beta}$. The same issue arises when tempering towards a prior, $\pi_{\beta}(x) \propto \pi(x)^{\beta} q(x)^{1-\beta}$.

Example B.2. (Roberts et al.) (2022)) Given target density $\pi(x) = \frac{1}{2}N(x;0,I_d) + \frac{1}{2}N(x;\mu_1,\sigma I_d)$ and assuming the power tempered target can be given by the mixture (Woodard et al.) (2009a)

$$\pi(x) = W_{0,\beta}N(0, \frac{I_d}{\beta}) + W_{1,\beta}N(\mu_1, \frac{\sigma I_d}{\beta})$$

where the weights are given by $W_{i,\beta} \propto \left(\frac{1}{2}\right)^{\beta} |\sigma I_d|^{\frac{1-\beta}{2}}$. In our case this yields the ratio

$$\frac{W_{1,\beta}}{W_{0,\beta}} = \sigma^{d(1-\beta)},$$

which is exponentially bad in the dimension.

ALGORITHM DETAILS

```
Algorithm 2 Vanilla ALPS Main Algorithm
840
            INPUT: Temperature scale \beta_1 > \beta_2 > \cdots > \beta_l, weights \{\overline{w_{i,k}}\} for i \in [1,l], k \in [1,M] and
841
            \{r_i\}_{i=1}^L, time T and rates \lambda, \gamma.
             1: Sample (x,1) \sim \sum_{k=1}^{M} w_{1,k} \pi_{1,k}
2: while T_n < T do
843
844
845
                     Set T_{n+1} = T_n + \xi_{n+1} with \xi_{n+1} \sim \exp(\gamma)
                     if i = 1 (base level) then
846
             4:
                        Set T'_{n+1}=T'_n+\xi'_{n+1} with \xi'_{n+1}\sim\exp(\lambda) if T'_{n+1}< T_{n+1} then
             5:
847
             6:
848
                            Run K_1 for \xi'_{n+1} time (discretized)
             7:
849
                            Choose j, j' \in [1, M] and accept transition to (g_{jj'}(x), 1) with pr. \min \left\{ \frac{g_{jj'}^{\#} p_1(x)}{p_1(x)}, 1 \right\}
850
             8:
851
             9:
852
                            Run K_1 for \xi_{n+1} time (discretized)
            10:
853
                            Transition to (x,2) with pr. \min \left\{ \frac{r_2 p_2(x)}{r_1 p_1(x)}, 1 \right\}
854
            11:
855
                        end if
            12:
856
                     else
            13:
857
            14:
                        Run K_i for \xi_{n+1} time (discretized)
858
                        Choose i' = i \pm 1 with pr. \frac{1}{2} transition to (x, i') with pr. \min \left\{ \frac{r_{i'}p_{i'}(x)}{r_ip_i(x)}, 1 \right\}.
            15:
859
            16:
861
                     Let \tilde{T} = \min \{T_{n+1}, T'_{n+1}\} then set T_{n+1} = \tilde{T} and T'_{n+1} = \tilde{T}
            17:
862
            18: end while
863
            19: if final state is (l, x), return sample x. Otherwise, re-run the chain.
```

Algorithm 3 Reweighting via Partition Function Estimation

- 1: Part 1: Estimate component weights for level l+1
- 2: Run $\hat{p}_t(x,i)$ from Algorithm 2 to the *l*-th level and obtain samples $\{(x_j,i_j)\}_{j=1}^N \sim p(x,i)$.
- 3: **for** k = 1, ..., M **do**
- Set

865

866

868

870 871

872

873

874 875

876

877 878 879

880

883

885 886 887

893 894

895 896

897

899

900

901

902 903

904

905 906

907 908

909

910 911

912

913

914

915 916

917

$$w_{l+1,k} = \frac{1}{\frac{1}{N} \sum_{j=1}^{N} \frac{\bar{\pi}_{l+1,k}(x_j)}{\bar{p}(x_j, i_j)} I\{i_j = l\}}$$

- 5: end for
- 6: Part 2: Estimate weight for level l + 1
- 7: Run $\hat{p}_t(x,i)$ from Algorithm 2 again to the *l*-th level and obtain samples $\{(x_j,i_j)\}_{i=1}^N \sim p(x,i)$.
- 8: Set

$$r_{l+1}^{(l)} = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} \frac{\left(\sum_{j} \alpha_{j} \pi_{j}(x_{j})\right) \left(\sum_{k} w_{l+1,k} q_{l+1}(x_{j} - x_{k})\right)}{\tilde{p}(x_{j}, i_{j})} I\{i_{j} = l\}}$$

- 9: Part 3: Re-estimate level weights
- 10: Run $\hat{p}_t(x,i)$ from Algorithm 2 again to the l+1-th level and obtain samples $\{(x_j,i_j)\}_{j=1}^N \sim$ p(x,i)
- 11: **for** $i = 1, \ldots, l+1$ **do**
- Set

$$r_i^{(l+1)} = r_i^{(l)} / \frac{1}{N} \sum_{j=1}^{N} I\{i_j = i\}$$

- 13: **end for** 14: Scale $r_1^{(l+1)}$ by C_2
- 15: Return $\{w_{l+1,k}\}_{k=1}^{M}$ and $\{r_i^{(l+1)}\}_{i=1}^{l+1}$

CONTINUOUS TIME PROCESS

D.1 LEAP-POINT PROCESS

We define a continuous version of the leap-point process at the coldest temperature. In this setting, the process is defined on the mixture distribution $\sum_{k=1}^{M} w_k q_k(x)$ and can freely jump from any q_i to q_j . Jumps are made according to the Poisson point process at time intervals $T_n - T_{n-1} \sim$ Exponential(γ). This specifies the projected chain as a continuous time process on the state space given by the modes, where the probability flow between the modes is compared using the pushforward $g_{ij}^{\#}$. This allows us to express the generator of the process \mathcal{L}_{tel} on Ω as the sum of the Markov processes on the continuous state space and the transitions between the modes.

Definition D.1. For $i, j \in [n]$, we define the function $g_{ij}(x)$ to be a function that "teleports" $x \in \Omega$ from mode i to mode j and satisfies the following properties:

1. g_{ii} is the identity,

$$q_{ii}(x) = x$$
.

2. g_{ij} is the inverse of g_{ji} ,

$$g_{ij}(g_{ji}(x)) = x.$$

3. g_{ij} is transitive,

$$g_{ki}(g_{ik}(x)) = g_{ij}(x).$$

Definition D.2. We define the continuous leap-point Markov process K_{leap} with rate γ on Ω as follows:

1. Let T_n be a Poisson point process with rate γ so that,

$$T_n - T_{n-1} \sim Exp(\gamma)$$

- 2. The Markov process with state $x \in \Omega$ evolves according to K on the time interval $[T_{n-1}, T_n)$.
- 3. At time T_n , with randomly chosen $i, j \in [1, M]$, the Markov process takes a jump to $x \mapsto g_{ij}(x)$ with probability

$$\frac{1}{M}\min\bigg\{\frac{g_{ij}^{\#}q(x)}{q(x)},1\bigg\},\quad\forall j\neq i$$

and stays at x otherwise.

Lemma D.3. Let K_{leap} be the leap-point Markov process with rate γ with stationary distribution $q(x) = \sum_{i=1}^{M} w_i q_i(x)$ on Ω . Then the continuous process has the generator \mathcal{L}_{leap} given by,

$$\mathcal{L}_{leap}f(x) = \mathcal{L}_{ld}f(x) + \frac{\gamma}{M} \sum_{i=1}^{M} \sum_{j=1}^{M} \min \left\{ \frac{g_{ij}^{\#}q(x)}{q(x)}, 1 \right\} \left(f(g_{ij}(x)) - f(x) \right).$$

Proof. Let $P_t f(x) = \mathbb{E}_K[f(x_t)|x_0 = x]$ be the expected value after running the chain for time t. Then we decompose the conditional expectation by considering the number of jumps the Poisson process takes. Here, we let H be the kernel of the jump process and calculate

$$\begin{split} P_t f(x) &= \mathbb{P}(N_t = 0) \cdot P_t f(x) + \int_0^t P_s H P_{t-s} f(x) \mathbb{P}(t_1 = ds, N_t = 1) + \mathbb{P}(N_t = 2) h \\ &= (1 - \gamma t + O(t^2)) P_t f(x) + \int_0^t P_s H P_{t-s} f(x) (\gamma + O(s)) ds + O(t^2) h \\ &\frac{\partial}{\partial t} (P_t f)|_{t=0} = -\gamma f(x) + \mathcal{L}_{ld} f(x) + \gamma H f + O(t) \end{split}$$

By specifying

$$Hf(x) = f(x) + \frac{1}{M} \sum_{i=1}^{M} \sum_{j=1}^{M} \min \left\{ \frac{g_{ij}^{\#} q(x)}{q(x)}, 1 \right\} \left(f(g_{ij}(x)) - f(x) \right)$$

we get the desired operator \mathcal{L} .

Corollary D.4. The corresponding Dirichlet form for the process \mathcal{L}_{leap} is given by

$$\mathscr{E}(f,f) = -\langle f, \mathscr{L}_{ld} f \rangle_q + \frac{\gamma}{2M} \sum_{i=1}^M \sum_{j=1}^M \int_{\Omega} \min \left\{ g_{ij}^\# q(x), q(x) \right\} \bigg(f(g_{ij}(x)) - f(x) \bigg)^2.$$

Proof. Using reversibility, we compute

$$\begin{split} \mathscr{E}(f,f) &= -\langle f, \mathscr{L}_{leap} f \rangle_q \\ &= -\langle f, \mathscr{L}_{ld} \rangle_q + \frac{\gamma}{M} \sum_{i=1}^M \sum_{j=1}^M \int_{\Omega} \min \left\{ \frac{g_{ij}^\# q(x)}{q(x)}, 1 \right\} \left(f(g_{ij}(x)) - f(x) \right) f(x) q(x) dx \\ &= -\langle f, \mathscr{L}_{ld} \rangle_q + \frac{\gamma}{2M} \sum_{i=1}^M \sum_{j=1}^M \int_{\Omega} \min \left\{ g_{ij}^\# q(x), q(x) \right\} \left(f(g_{ij}(x)) - f(x) \right)^2. \end{split}$$

D.2 SIMULATED TEMPERING TELEPORT PROCESS

We now decompose the simulated tempering version of the Markov process. In this setting, the process is defined to have stationary distribution $p(x,i) = \sum_j r_j p_j(x) I\{i=j\}$ on $\Omega \times [L]$, where $\sum_i r_i = 1$ and p_j can be expressed as the mixture $p_j = \sum_{k=1}^M w_k p_{kj}$. The Markov process moves between temperatures according to the simulated tempering chain, at each temperature

running Langevin diffusion till the next jump. At the coldest temperature, as in Section $\boxed{D.1}$ the Markov process leaps between modes of the distribution corresponding to a Poisson point process. In Section $\boxed{D.1}$ we found the generator \mathcal{L}_{leap} at the coldest level. By applying \mathcal{L}_{leap} to the simulated tempering results in $\boxed{\text{Ge et al.}}$ $\boxed{(2018c)}$ we are able to compute the generator \mathcal{L}_{Tel} for the Simulated Tempering with Teleporting Sampler.

Definition D.5. We define the continuous Simulated Tempering with Teleporting Markov process K_{Tel} on $\Omega \times [L]$ with jump rate λ (between temperatures) and leap rate γ (at coldest temperature between modes) as follows:

1. Let T_n be a Poisson point process with rate λ so that,

$$T_n - T_{n-1} \sim Exp(\lambda)$$
.

2. If $i \neq 1$, the Markov process with state (x,i) evolves according to K_i on the interval $[T_{n-1},T_n)$.

At time T_n , the Markov process jumps to (x, i') with probability

$$\frac{1}{2}\min\left\{\frac{r_{i'}p_{i'}(x)}{r_{i}p_{i}(x)},1\right\}, \text{ for } i'=i\pm 1$$

and stays at (x, i) otherwise.

3. Let $T'_{n'}$ be a Poisson point process with rate γ so that,

$$T'_{n'}-T'_{n'-1}\sim Exp(\gamma).$$

4. If i = 1, Let $\tilde{T} = \min(T_n, T'_{n'})$, the Markov process with state (x, 1) evolves according to K_1 on the interval $[T'_{n'-1}, \tilde{T})$.

If $\tilde{T} = T'_{n'}$, the Markov process leaps to $(x,1) \mapsto (g^{\#}_{jj'}(x),1)$ with probability

$$\frac{1}{M}\min\left\{\frac{g_{jj'}^{\#}p_{1}(x)}{p_{1}(x)}, 1\right\}, \quad \forall j' \neq j$$

and stays at (x, 1) otherwise.

If $\tilde{T} = T_n$, the Markov process jumps to (x, 2) with probability

$$\frac{1}{2}\min\left\{\frac{r_2p_2(x)}{r_1p_1(x)},1\right\}$$

and stays at (x, 1) otherwise.

Lemma D.6. (Lemma 5.1 Ge et al. (2018c)) Let M_i , $i \in [L]$ be a sequence of continuous Markov process with state space Ω , generators \mathcal{L}_i , and unique stationary distributions p_i . Then the continuous simulated tempering Markov process M_{st} with rate λ and relative probabilities r_i has generator \mathcal{L}_{st} defined by the following equation, where $f = (f_1, \ldots, f_L) \in \prod_{i=1}^L \mathcal{D}(\mathcal{L}_i)$:

$$(\mathscr{L}f)(i,y) = (\mathscr{L}_i f_i)(y) + \frac{\lambda}{2} \left(\sum_{1 \le j \le L, j = i \pm 1} \min \left\{ \frac{r_j p_j(x)}{r_i p_i(x)}, 1 \right\} (f_j(x) - f_i(x)) \right).$$

The corresponding Dirichlet form is given by,

$$\mathscr{E}(f,f) = -\sum_{i=1}^{L} r_i \langle f_i, \mathscr{L}_i f_i \rangle_{p_i} + \frac{\lambda}{4} \left(\sum_{1 \leq i \leq L, j=i\pm 1} \int_{\Omega} \min \left\{ r_j p_j(x), r_i p_i(x) \right\} (f_j(x) - f_i(x))^2 \right) dx.$$

In Ge et al. (2018c), the authors determine the Dirichlet form of the generator \mathcal{L} for the simulated tempering Markov process. In their setting, \mathcal{L}_i for all $1 \leq i \leq L$ is the Langevin diffusion generator. In our setting, the generator for the teleport sampler, \mathcal{L}_{leap} in Lemma D.3, takes the place of the generator at the coldest temperature \mathcal{L}_1 . We will maintain the notation of \mathcal{L}_i , $1 \leq i \leq L$ as the Langevin diffusion generator and replace \mathcal{L}_{leap} with \mathcal{L}_1 in the previous Lemma.

Corollary D.7. Let all assumptions and notation hold from Lemma D.6 then the Dirichlet form for the continuous time annealed leap-point Markov process \mathcal{L}_{Tel} is given by

$$\mathscr{E}(f,f) = \sum_{i=1}^{L} r_i \mathscr{E}_i(f_i, f_i) + \frac{\gamma \cdot r_1}{2M} \sum_{j=1}^{M} \sum_{i=1}^{M} \int_{\Omega} \min \left\{ g_{ij}^{\#} p_1(x), p_1(x) \right\} \left(f_1(g_{ij}(x)) - f_1(x) \right)^2 dx + \frac{\lambda}{4} \sum_{i \le i \le L, j = i \pm 1} \int_{\Omega} \min \left\{ r_j p_j(x), r_i p_i(x) \right\} \left(f_j(x) - f_i(x) \right)^2 dx$$

Proof.

$$\mathscr{E}(f,f) = -\langle f_1, \mathscr{L}_{leap} f_1 \rangle_{p_1} - \sum_{i=2}^{L} r_i \langle f_i, \mathscr{L}_i f_i \rangle_{p_i} + \frac{\lambda}{4} \bigg(\sum_{1 \le i \le L, j = i \pm 1} \int_{\Omega} \min \bigg\{ r_j p_j(x), r_i p_i(x) \bigg\} (f_j(x) - f_i(x))^2 \bigg) dx$$

by Corollary D.4

$$\begin{split} &= -r_1 \langle f_1, \mathcal{L}_1 f_1 \rangle_{p_1} + \frac{\gamma \cdot r_1}{2M} \sum_{j=1}^M \sum_{i=1}^M \int_{\Omega} \min \left\{ g_{ij}^\# p_1(x), p_1(x) \right\} \left(f_1(g_{ij}(x)) - f_1(x) \right)^2 dx \\ &- \sum_{i=2}^L r_i \langle f_i, \mathcal{L}_i f_i \rangle_{p_i} + \frac{\lambda}{4} \sum_{i,j \leq L, j=i\pm 1} \int_{\Omega} \min \left\{ r_j p_j(x), r_i p_i(x) \right\} \left(f_j(x) - f_i(x) \right)^2 dx \\ &= - \sum_{i=1}^L r_i \langle f_i, \mathcal{L}_i f_i \rangle_{p_i} + \frac{\gamma \cdot r_1}{2M} \sum_{j=1}^M \sum_{i=1}^M \int_{\Omega} \min \left\{ g_{ij}^\# p_1(x), p_1(x) \right\} \left(f_1(g_{ij}(x)) - f_1(x) \right)^2 dx \\ &+ \frac{\lambda}{4} \sum_{i,j \leq L, j=i\pm 1} \int_{\Omega} \min \left\{ r_j p_j(x), r_i p_i(x) \right\} \left(f_j(x) - f_i(x) \right)^2 dx \end{split}$$

Lemma D.8. Let K_{Tel} be the annealed leap-point Markov process with generator \mathcal{L}_{ALPS} on $\Omega \times [L]$ and stationary distribution $p(x,i) = \sum_j r_j p_j(x) I\{i=j\}$. We also make the following assumptions,

- 1. Each $p_i(x) = \alpha_i \pi_{0,i} + (1 \alpha_i) \pi_{1,i}$ where each $\pi_{j,i} = \sum_k w_{ji}^{(k)} \pi_{j,i}^{(k)}$.
- 2. For each Markov process M_i there exists a decomposition

$$\langle f_i, \mathscr{L}_i f \rangle_{p_i} \le \sum_k w_{ik} \langle f_i, \mathscr{L}_{ik} f_i \rangle_{p_{ik}},$$

where \mathcal{L}_{ik} is the generator of some Markov process M_{ik} with stationary distribution $p_{ik}(x)$.

Then for some weight α the following decomposition holds

$$\langle f, \mathcal{L}_{Tel} f \rangle_p \le \alpha \langle f, \mathcal{L}_{Tel,0} f \rangle_{\pi_0} + (1 - \alpha) \langle f, \mathcal{L}_{Tel,1} f \rangle_{\pi_1},$$

where $\mathcal{L}_{ALPS,k}$ is the continuous time annealed leap-point process with stationary distribution $\pi_k \propto \sum_i \alpha_i r_i \pi_{ki}$.

Proof. We consider the following,

$$\langle f, \mathcal{L}_{tel} \rangle_{p} = \underbrace{\sum_{i=1}^{L} r_{i} \langle f_{i}, \mathcal{L}_{i} f_{i} \rangle_{p_{i}}}_{\mathbf{A}} - \underbrace{\frac{\gamma \cdot r_{1}}{2M} \sum_{j=1}^{M} \sum_{i=1}^{M} \int_{\Omega} \min \left\{ g_{ij}^{\#} p_{1}(x), p_{1}(x) \right\} \left(f_{1}(g_{ij}(x)) - f_{1}(x) \right)^{2} dx}_{\mathbf{B}}$$

$$- \underbrace{\frac{\lambda}{4} \sum_{i \leq i \leq L, j = i \pm 1} \int_{\Omega} \min \left\{ r_{j} p_{j}(x), r_{i} p_{i}(x) \right\} \left(f_{j}(x) - f_{i}(x) \right)^{2} dx}_{\mathbf{C}}$$

We proceed by finding an upper bound on each part, starting with A.

$$A = \sum_{i=1}^{L} r_i \langle f_i, \mathcal{L}_i f_i \rangle_{p_i}$$

By assumption 2 we can decompose the generator \mathcal{L}_i ,

$$\leq \sum_{i=1}^{L} r_i (\alpha_i \langle f_i, \mathcal{L}_{i0} f_i \rangle_{\pi_0} + (1 - \alpha_i) \langle f_i, \mathcal{L}_{i1} f_i \rangle_{\pi_1}).$$

To find an upper bound on **B** it is worth noting by assumption 1 we have that

$$p_1(x) = \alpha_1 p_{1,good} + (1 - \alpha_1) p_{1,bad}.$$

Which by change of notation we let $p_{1,good} = \pi_{1,0}$ and $p_{1,bad} = \pi_{1,1}$.

$$-B = -\frac{\gamma \cdot r_{1}}{2M} \sum_{j=1}^{M} \sum_{i=1}^{M} \int_{\Omega} \min \left\{ g_{ij}^{\#} p_{1}(x), p_{1}(x) \right\} \left(f_{1}(g_{ij}(x)) - f_{1}(x) \right)^{2} dx$$

$$= -\frac{\gamma \cdot r_{1}}{2M} \sum_{j=1}^{M} \sum_{i=1}^{M} \int_{\Omega} \min \left\{ g_{ij}^{\#} (\alpha_{1} \pi_{1,0} + (1 - \alpha_{1}) \pi_{1,1}), (\alpha_{1} \pi_{1,0} + (1 - \alpha_{1}) \pi_{1,1}) \right\} \left(f_{1}(g_{ij}(x)) - f_{1}(x) \right)^{2} dx$$

$$\leq -\frac{\gamma \cdot r_{1}}{2M} \sum_{j=1}^{M} \sum_{i=1}^{M} \int_{\Omega} \min \left\{ \alpha_{1} g_{ij}^{\#} \pi_{1,0}, \alpha_{1} \pi_{1,0} \right\} \left(f_{1}(g_{ij}(x)) - f_{1}(x) \right)^{2} dx$$

$$-\frac{\gamma \cdot r_{1}}{2M} \sum_{i=1}^{M} \sum_{j=1}^{M} \int_{\Omega} \min \left\{ (1 - \alpha_{1}) g_{ij}^{\#} \pi_{1,1}, (1 - \alpha_{1}) \pi_{1,1} \right\} \left(f_{1}(g_{ij}(x)) - f_{1}(x) \right)^{2} dx.$$

Lastly we have that

$$-C = -\frac{\lambda}{4} \sum_{i \le i \le L, j = i \pm 1} \int_{\Omega} \min \left\{ r_j p_j(x), r_i p_i(x) \right\} \left(f_j(x) - f_i(x) \right)^2 dx$$

$$= -\frac{\lambda}{4} \sum_{i \le i \le L, j = i \pm 1} \int_{\Omega} \min \left\{ r_j(\alpha_j \pi_{0,j} + (1 - \alpha_j) \pi_{1,j}), r_i(\alpha_i \pi_{0,i} + (1 - \alpha_i) \pi_{1,i}) \right\} \left(f_j(x) - f_i(x) \right)^2 dx$$

$$\leq -\frac{\lambda}{4} \sum_{i \le i \le L, j = i \pm 1} \int_{\Omega} \min \left\{ r_j \alpha_j \pi_{0,j}, r_i \alpha_i \pi_{0,i} \right\} \left(f_j(x) - f_i(x) \right)^2 dx$$

$$-\frac{\lambda}{4} \sum_{i \le i \le L, j = i \pm 1} \int_{\Omega} \min \left\{ r_j (1 - \alpha_j) \pi_{1,j}, r_i (1 - \alpha_i) \pi_{1,i} \right\} \left(f_j(x) - f_i(x) \right)^2 dx.$$

By our bounds on A, B and C and choosing normalizing constant $\alpha = \sum_i r_i \alpha_i$ we can express

$$\langle f, \mathscr{L}_{Tel} f \rangle_p \leq \alpha \langle f, \mathscr{L}_{Tel,0} f \rangle_{\pi_0} + (1 - \alpha) \langle f, \mathscr{L}_{Tel,1} f \rangle_{\pi_1}.$$

E MARKOV PROCESS DECOMPOSITION

In this section we bound the Poincaré constant corresponding to the continuous time Markov process defined in Section D The analysis in this section is similar to that of the analysis found in Ge et al. (2018c), where the Poincaré constant corresponding to the whole chain is bounded by the Poincaré constants corresponding to local components and the Poincaré constant corresponding to the projected chain. This decomposition reduces the mixing time analysis to finding a bound on the Poincaré constant of the projected.

Theorem E.1. Let K_{Tel} be the Markov process in definition $\boxed{D.5}$ with stationary distribution $p(x,k) = \sum_{i=1}^{L} r_i \sum_{j=1}^{M} w_{ij} P_{ij}(x) I\{k=i\}$. Let $K_i \ 1 \leq i \leq L$ be the Markov process on Ω with generator \mathcal{L}_i with stationary distribution $P_i(x) = \sum_{j=1}^{M} w_{ij} P_{ij}(x)$. More specifically, $K_1 = K_{leap}$ as in definition $\boxed{D.2}$ with generator $\mathcal{L}_1 = \mathcal{L}_{leap}$ (Lemma $\boxed{D.3}$). The function $f = (f_1, \ldots, f_L) \in [L] \times \Omega$ and the Dirichlet form is $\mathcal{E}_p(f, f) = \langle f, \mathcal{L}_{ALPS} f \rangle_P$. Assume the following hold.

1. There exists a decomposition

$$\langle f, \mathcal{L}_i f \rangle_{P_i} \le \sum_{j=1}^M \langle f, \mathcal{L}_{ij} f \rangle_{P_{ij}}$$

where \mathcal{L}_{ij} is the generator of some Markov process with K_{ij} with stationary distribution P_{ij} .

2. Each distribution P_{ik} satisfies a Poincaré inequality

$$Var_{P_{ij}}(f) \leq C\mathscr{E}_{ij}(f,f).$$

3. We define the projected chain as

$$\bar{T}((i,j),(i',j')) = \begin{cases}
\int_{\Omega} \min\left\{\frac{w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x)}{w_{1j} \cdot P_{1j}(x)}, 1\right\} P_{1j}(x) dx, & i = i' = 1 \\
\int_{\Omega} \min\left\{\frac{r_{i}' w_{i'j} \cdot P_{i'j}(x)}{r_{i} w_{ij} \cdot P_{ij}(x)}, 1\right\} P_{ij}(x) dx, & i' = i \pm 1 \text{ and } j = j' \\
0 & \text{otherwise}
\end{cases}$$
(E.1)

Let $\bar{P}(\{i,j\}) = r_i w_{ij}$ be the stationary distribution of \bar{T} . Where \bar{T} satisfies the Poincaré inequality

$$Var_{\bar{P}}(\bar{f}) \leq \bar{C} \cdot \mathscr{E}_{\bar{P}}(\bar{f}, \bar{f})$$

with $\bar{f}(\{i,j\}) = \mathbb{E}_{P_{ij}}(f_i)$. Then K_{ALPS} satisfies the Poincaré inequality

$$Var_P(f) \le \max \left\{ C(1 + (6M + 12)\bar{C}, \frac{6M\bar{C}}{\gamma}, \frac{12\bar{C}}{\lambda} \right\} \mathcal{E}(f, f)$$

Proof. We begin by considering the following,

$$\operatorname{Var}_{P}(f) = \sum_{i=1}^{L} \sum_{j=1}^{M} r_{i} w_{ij} \int_{\Omega} \left(f_{i} - \mathbb{E}_{P}(f) \right)^{2} P_{ij}(dx)$$

$$= \sum_{i=1}^{L} \sum_{j=1}^{M} r_{i} w_{ij} \int_{\Omega} \left(f_{i} - \mathbb{E}_{P_{ij}}(f_{i}) + \mathbb{E}_{P_{ij}}(f_{i}) - \mathbb{E}_{P}(f) \right)^{2} P_{ij}(dx)$$

$$= \sum_{i=1}^{L} \sum_{j=1}^{M} r_{i} w_{ij} \int_{\Omega} \left(f_{i} - \mathbb{E}_{P_{ij}}(f_{i}) \right)^{2} P_{ij}(dx) + \sum_{i=1}^{L} \sum_{j=1}^{M} r_{i} w_{ij} \left(\mathbb{E}_{P_{ij}}(f_{i}) - \mathbb{E}_{P}(f) \right)^{2}$$

$$= \sum_{i=1}^{L} \sum_{j=1}^{M} r_{i} w_{ij} \operatorname{Var}_{P_{ij}}(f_{i}) + \operatorname{Var}_{\bar{P}}(\bar{g})$$

$$\begin{array}{ll} \mathbf{1188} \\ \mathbf{1189} \\ \mathbf{1190} \\ \mathbf{1190} \\ \mathbf{1191} \\ \mathbf{1192} \\ \mathbf{1193} \\ & \leq C \sum_{i=1}^{L} \sum_{j=1}^{M} r_i w_{ij} \mathscr{E}_{ij}(f_i, f_i) + \bar{C} \mathscr{E}_{\bar{P}}(\bar{f}, \bar{f}) \\ & \leq C \sum_{i=1}^{L} r_i \mathscr{E}_i(f_i, f_i) + \bar{C} \mathscr{E}_{\bar{P}}(\bar{f}, \bar{f}) \\ & \\ \mathbf{1193} \\ \end{array}$$

We now decompose the Dirichlet form $\mathcal{E}_{\bar{P}}(\bar{f},\bar{f})$ per Lemma J.1.

$$\mathscr{E}_{\bar{P}}(\bar{f},\bar{f}) = \sum_{(i,j)\in[L]\times[M]} \sum_{(i',j')\in[L]\times[M]} \left(\mathbb{E}_{P_{i'j'}}(f_{i'}) - \mathbb{E}_{P_{ij}}(f_{i}) \right)^{2} \bar{P}(\{i,j\}) \bar{T}(\{i,j\},\{i',j'\})$$

By applying the definition of \bar{T}

$$= \underbrace{r_{1} \sum_{j=1}^{M} \sum_{j'=1}^{M} w_{1j} \left(\mathbb{E}_{P_{1j'}}(f_{1}) - \mathbb{E}_{P_{1j}}(f_{1}) \right)^{2} \int_{\Omega} \min \left\{ \frac{w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x)}{w_{1j} \cdot P_{1j}(x)}, 1 \right\} P_{1j}(x) dx}_{\mathbf{A}} + \underbrace{\sum_{j=1}^{M} \sum_{\substack{1 \leq i \leq L \\ i'=j+1}} r_{i} w_{ij} \left(\mathbb{E}_{P_{i'j}}(f_{i'}) - \mathbb{E}_{P_{ij}}(f_{i}) \right)^{2} \int_{\Omega} \min \left\{ \frac{r'_{i} w_{i'j} \cdot P_{i'j}(x)}{r_{i} w_{ij} \cdot P_{ij}(x)}, 1 \right\} P_{ij}(x) dx}_{\mathbf{A}}$$

the

expressions we let $\delta_{(1,i),(1,i')}^g$

$$\int_{\Omega} \min \left\{ w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x), w_{1j} \cdot P_{1j}(x) \right\} dx \qquad \text{and} \qquad \text{let} \qquad Q_{(1,j),(1,j')}^{g}(x) = 0$$

 $\frac{1}{\delta_{(1,j),(1,j')}^g} \min \left\{ w_{1j'} \cdot g_{jj'}^\# P_{1j'}(x), w_{1j} \cdot P_{1j}(x) \right\} \text{ be the normalized distribution.}$ Then we consider the following,

$$A = r_1 \sum_{j=1}^{M} \sum_{j'=1}^{M} w_{1j} \left(\mathbb{E}_{P_{1j'}}(f_1) - \mathbb{E}_{P_{1j}}(f_1) \right)^2 \int_{\Omega} \min \left\{ \frac{w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x)}{w_{1j} \cdot P_{1j}(x)}, 1 \right\} P_{1j}(x) dx$$

$$= r_1 \sum_{j=1}^{M} \sum_{j'=1}^{M} \left(\mathbb{E}_{P_{1j'}}(f_1) - \mathbb{E}_{P_{1j}}(f_1) \right)^2 \int_{\Omega} \min \left\{ w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x), w_{1j} P_{1j}(x) \right\} dx$$

by a change of measure on the first term,

$$= r_1 \sum_{j=1}^{M} \sum_{j'=1}^{M} \left(\int_{\Omega} f_1 \circ g_{jj'}(x) g_{jj'}^{\#} P_{1j'}(dx) - \int_{\Omega} f_1(x) P_{1j}(dx) \right)^2 \delta_{(1,j),(1,j')}^g$$

$$= 3r_1 \sum_{j=1}^{M} \sum_{j'=1}^{M} \left[\left(\int_{\Omega} f_1 \circ g_{jj'}(x) \left(Q_{(1,j),(1,j')}^g(dx) - g_{jj'}^{\#} P_{1j'}(dx) \right) \right)^2 + \left(\int_{\Omega} \left(f_1 \circ g_{jj'}(x) - f_1(x) \right) Q_{(1,j),(1,j')}^g(dx) \right)^2 + \left(\int_{\Omega} f_1(x) \left(P_{1j}(dx) - Q_{(1,j),(1,j')}^g(dx) \right) \right)^2 \right] \delta_{(1,j),(1,j')}^g$$

By Lemma J.2

By applying the definition of $Q_{(1,i),(1,i')}^g$,

```
\leq 3r_1 \sum_{m=1}^{M} \sum_{m=1}^{M} \left[ \operatorname{Var}_{g_{jj'}^{\#}P_{1j'}}(f_1 \circ g_{jj'}) \chi^2(Q_{(1,j),(1,j')}^g || g_{jj'}^{\#}P_{1j'}) + \operatorname{Var}_{P_{1j}}(f_1) \chi^2(Q_{(1,j),(1,j')}^g || P_{1j}) \right] \delta_{(1,j),(1,j')}^g
1245
1246
                     +3r_1\sum_{i=1}^{M}\sum_{j'=1}^{M}\int_{\Omega}\left(f_1\circ g_{jj'}(x)-f_1(x)\right)^2\min\left\{w_{1j'}\cdot g_{jj'}^{\#}P_{1j'}(x),w_{1j}\cdot P_{1j}(x)\right\}dx
1247
1249
1250
                 By Lemma G3 Ge et al. (2018c
1251
                     \leq 3r_1 \sum_{m=1}^{M} \sum_{m=1}^{M} \left[ w_{1j'} \operatorname{Var}_{g_{jj'}^{\#} P_{1j'}} (f_1 \circ g_{jj'}) + w_{1j} \operatorname{Var}_{P_{1j}} (f_1) \right]
1252
1253
1254
                     +3r_1 \sum_{i=1}^{M} \sum_{i'=1}^{M} \int_{\Omega} \left( f_1 \circ g_{jj'}(x) - f_1(x) \right)^2 \min \left\{ w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x), w_{1j} \cdot P_{1j}(x) \right\} dx
1256
1257
                     = 3r_1 \sum_{i=1}^{M} \sum_{j=1}^{M} \left[ w_{1j'} \operatorname{Var}_{P_{1j'}}(f_1) + w_{1j} \operatorname{Var}_{P_{1j}}(f_1) \right]
1258
1260
                     +3r_1 \sum_{i=1}^{M} \sum_{j=1}^{M} \int_{\Omega} \left( f_1 \circ g_{jj'}(x) - f_1(x) \right)^2 \min \left\{ w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x), w_{1j} \cdot P_{1j}(x) \right\} dx
1261
1262
                     \leq 6r_1M \cdot C\mathscr{E}_1(f_1, f_1) + 3r_1\sum_{i=1}^{M}\sum_{j=1}^{M}\int_{\Omega} \left(f_1 \circ g_{jj'}(x) - f_1(x)\right)^2 \min\left\{w_{1j'} \cdot g_{jj'}^{\#} P_{1j'}(x), w_{1j} \cdot P_{1j}(x)\right\} dx
1264
1265
1266
                      \leq 6r_1M \cdot C\mathscr{E}_1(f_1, f_1) + 3r_1\sum_{i=1}^{M}\sum_{j=1}^{M}\int_{\Omega} \left(f_1 \circ g_{jj'}(x) - f_1(x)\right)^2 \min\left\{P_1 \circ g_{jj'}(x), P_1(x)\right\} dx
1267
1268
1269
                 The bound for (B) should mimic the bound for (B) in Theorem 6.3 of Ge et al. (2018c). The proof is
1270
                 included for sake of completeness. Denote by \delta_{(i,j),(i',j')} = \int_{\Omega} \min \left\{ \frac{r_i' w_{i'j'}}{r_i w_{ij}} \cdot P_{i'j'}(x), P_{ij}(x) \right\} dx
1271
1272
                 and Q_{(i,j),(i',j')}(x) = \frac{1}{\delta_{(i,j),(i',j')}} \min \left\{ \frac{r_i'w_{i'j'}}{r_iw_{ij}} \cdot P_{i'j'}(x), P_{ij}(x) \right\} be the normalized distribution.
1273
1275
1276
                B = \sum_{i=1}^{M} \sum_{1 \le i \le L} r_i w_{ij} \left( \mathbb{E}_{P_{i'j}}(f_{i'}) - \mathbb{E}_{P_{ij}}(f_i) \right)^2 \int_{\Omega} \min \left\{ \frac{r'_i w_{i'j} \cdot P_{i'j}(x)}{r_i w_{ij} \cdot P_{ij}(x)}, 1 \right\} P_{ij}(x) dx
1277
1279
1280
                     \leq 3\sum_{j=1}^{m}\sum_{1\leq i\leq L} \left[ \operatorname{Var}_{P_{ij}}(f_i)\chi^2(Q_{(i,j),(i',j)}||P_{ij}) + \operatorname{Var}_{P_{i'j}}(f_{i'})\chi^2(Q_{(i,j),(i',j)}||P_{i'j}) \right]
1283
                     + \int_{\Omega} (f_i - f_{i'})^2 Q_{(i,j),(i',j)}(dx) \cdot r_i w_{ij} \delta_{(i,j),(i',j)}
1284
1285
1286
                 By Lemma G3 Ge et al. (2018c)
1287
                  , \leq 3 \sum_{j=1} \sum_{\substack{1 \leq i \leq L \\ i' = i' = i'}} \mathrm{Var}_{P_{ij}}(f_i) \frac{r_i w_{ij} \delta_{(i,j),(i',j)}}{\delta_{(i,j),(i',j)}} + \mathrm{Var}_{P_{i'j}}(f_{i'}) \frac{r_i w_{ij} \delta_{(i,j),(i',j)}}{\delta_{(i',j),(i,j)}}
1288
                     +3\int_{\Omega} (f_i - f_{i'})^2 \min \left\{ r_{i'} w_{i'j} \cdot P_{i'j}(x), r_i w_{ij} P_{ij}(x) \right\} dx
1292
                     \leq 3\sum_{j=1}^{M}\sum_{1\leq i\leq L}r_{i}w_{ij}\operatorname{Var}_{P_{ij}}(f_{i}) + r_{i'}w_{i'j}\operatorname{Var}_{P_{i'j}}(f_{i'}) + 3\sum_{1\leq i\leq L}\int_{\Omega}(f_{i} - f_{i'})^{2}\min\left\{r_{i'}\sum_{j=1}^{M}w_{i'j}\cdot P_{i'j}(x), r_{i}\sum_{j=1}^{M}w_{ij}P_{ij}(x)\right\}
1295
```

$$\leq 12C \sum_{j=1}^{M} \sum_{\substack{1 \leq i \leq L \\ i'=i+1}} r_i \mathcal{E}_i(f_i, f_i) + 3 \sum_{\substack{1 \leq i \leq L \\ i'=i+1}} \int_{\Omega} (f_i - f_{i'})^2 \min\left\{r_{i'} P_{i'}(x), r_i P_i(x)\right\} dx$$

Combining terms A and B with the bound on the intra-mode variance we have that,

$$\begin{split} Var_P(f) &\leq C \sum_{i=1}^L r_i \mathscr{E}_i(f_i, f_i) \\ &+ \bar{C} \bigg[6r_1 M \cdot C \mathscr{E}_1(f_1, f_1) + 3r_1 \sum_{j=1}^M \sum_{j'=1}^M \int_{\Omega} \bigg(f_1 \circ g_{jj'}(x) - f_1(x) \bigg)^2 \min \bigg\{ P_1 \circ g_{jj'}(x), P_1(x) \bigg\} dx \\ &+ 12C \sum_{i=1}^L r_i \mathscr{E}_i(f_i, f_i) + 3 \sum_{\substack{1 \leq i \leq L \\ i' = i+1}} r_i w_{ij} \bigg(\mathbb{E}_{P_{i'j}}(f_{i'}) - \mathbb{E}_{P_{ij}}(f_i) \bigg)^2 \int_{\Omega} \min \bigg\{ r_i' P_{i'}(x), r_i P_i(x) \bigg\} dx \bigg] \end{split}$$

Grouping like terms and comparing to the Dirichlet form in Corollary D.7

$$\leq C(1 + \bar{C}(6M + 12)) \sum_{i=1}^{L} r_{i} \mathcal{E}_{i}(f_{i}, f_{i})$$

$$+ \frac{6\bar{C}M}{\gamma} \frac{\gamma \cdot r_{1}}{2M} \sum_{j=1}^{M} \sum_{j'=1}^{M} \int_{\Omega} \min \left\{ P_{1} \circ g_{jj'}(x), P_{1}(x) \right\} \left(f_{1} \circ g_{jj'}(x) - f_{1}(x) \right)^{2} dx$$

$$+ \frac{12\bar{C}}{\lambda} \frac{\lambda}{\lambda} \sum_{\substack{1 \leq i \leq L \\ i' = i+1}} r_{i} w_{ij} \left(f_{i'}(x) - f_{i}(x) \right)^{2} \int_{\Omega} \min \left\{ r'_{i} P_{i'}(x), r_{i} P_{i}(x) \right\} dx \right]$$

By applying the dirichlet form in Corollary D.7

$$\leq \max \left\{ C(1 + (6M + 12)\bar{C}, \frac{6M\bar{C}}{\gamma}, \frac{12\bar{C}}{\lambda} \right\} \mathcal{E}(f, f)$$

F LOCAL CONVERGENCE FOR A MARKOV PROCESS

In this section we show that for a Markov chain P_t , with stationary mixture distribution $\pi = \sum_k w_k \pi_k$, the weight adjusted distribution $p_{T,0} = p_T \frac{\pi_0}{\pi} / \int_{\Omega} p_T \frac{\pi_0}{\pi}$ converges to the component π_0 in chi-squared divergence, where $p_T = \nu_0 P_t$ for some initial probability measure ν_0 . This can be applied to the mixture measure $\tilde{p}_\beta(x) \propto \pi(x) \cdot \sum_{k=1}^M w_{\beta,k} q_\beta(x-x_k)$, on the extended state space $\Omega \times [L]$. Since on the target level $\beta_L = 0$, there is no bad component, the divergence $\chi^2(p_{T,good}||p_{good})$ provides us with a good indication of how close we are at the target level. The following Lemma provides us with an upper bound on $\chi^2(p_{T,good}||p_{good})$ in terms of the Poincaré constant on p_{good} .

Lemma F.1. Suppose that for a Markov generator \mathcal{L} , with stationary distribution $\pi = \sum_{k=0}^{\ell} \alpha_k \pi_k$, $\langle f, \mathcal{L}f \rangle_{\pi} \leq \sum_{k} \alpha_k \langle f, \mathcal{L}_k f \rangle_{\pi_0}$ for all f, where \mathcal{L}_0 has stationary measure π_0 and Poincaré constant C. Let \overline{p}_T be the distribution of X_t where $t \sim \mathsf{Unif}(0,T)$, $K_0 = \chi^2(p_0 \| \pi)$, and $\overline{p}_{T,0} = \overline{p}_T \frac{\pi_0}{\pi} / \int_{\Omega} \overline{p}_T \frac{\pi_0}{\pi}$. Then

$$\operatorname{Var}_{\pi_0}\left(\frac{\bar{p}_T}{\pi}\right) \leq \frac{K_0 C}{\alpha_0 T}$$

or equivalently,

$$\chi^{2}(\overline{p}_{T,0}\|\pi_{0}) \leq \frac{K_{0}C}{\alpha_{0}\left[\mathbb{E}_{\overline{p}_{T}}\left(\frac{\pi_{0}}{\pi}\right)\right]^{2}T}.$$

Proof. We have that

$$\frac{d}{dt}\chi^2(p_t||\pi) = -\left\langle \frac{p_t}{\pi}, \mathcal{L}\frac{p_t}{\pi} \right\rangle,\,$$

SO

$$K_{0} = \chi^{2}(p_{0} \| \pi) \geq \int_{0}^{T} \left\langle \frac{p_{s}}{\pi}, \mathcal{L} \frac{p_{s}}{\pi} \right\rangle ds$$

$$\geq \int_{0}^{T} \sum_{k=0}^{\ell} \alpha_{k} \left\langle \frac{p_{s}}{\pi}, \mathcal{L}_{k} \frac{p_{s}}{\pi} \right\rangle ds$$

$$\geq \frac{1}{C} \int_{0}^{T} \sum_{k=0}^{\ell} \alpha_{k} \operatorname{Var}_{\pi_{k}} \left(\frac{p_{s}}{\pi} \right) ds$$

$$\geq \frac{\alpha_{0}}{C} \int_{0}^{T} \operatorname{Var}_{\pi_{0}} \left(\frac{p_{s}}{\pi} \right) ds$$

$$\geq \frac{\alpha_{0}T}{C} \mathbb{E}_{s \sim \mathsf{Unif}(0,T)} \operatorname{Var}_{\pi_{0}} \left(\frac{p_{s}}{\pi} \right)$$

$$\geq \frac{\alpha_{0}T}{C} \operatorname{Var}_{\pi_{0}} \left(\frac{\overline{p}_{T}}{\pi} \right). \tag{F.1}$$

Now

$$\operatorname{Var}_{\pi_{0}}\left(\frac{\overline{p}_{T}}{\pi}\right) = \operatorname{Var}_{\pi_{0}}\left(\frac{\overline{p}_{T}\frac{\pi_{0}}{\pi}}{\pi_{0}}\right) = \left[\mathbb{E}_{\overline{p}_{T}}\left(\frac{\pi_{0}}{\pi}\right)\right]^{2} \operatorname{Var}_{\pi_{0}}\left(\frac{\overline{p}_{T,0}}{\pi_{0}}\right) = \left[\mathbb{E}_{\overline{p}_{T}}\left(\frac{\pi_{0}}{\pi}\right)\right]^{2} \chi^{2}(\overline{p}_{T,0} \| \pi_{0}). \tag{F.2}$$

Lemma F.2. Consider an ergodic Markov process on Ω with stationary distribution π . Suppose $\pi = \alpha_0 \pi_0 + (1 - \alpha_0) \pi_1$ for measures π_0 , π_1 . For any measure ν_0 on Ω ,

$$\mathbb{E}_{x_0 \sim \nu_0, t \sim \mathsf{Unif}(0, T)} \left[\alpha_0 \frac{d\pi_0}{d\pi} (x_t) \right] \ge \frac{\alpha_0}{2 \left\| \frac{d\nu_0}{d\pi_0} \right\|_{L^{\infty}}}$$

$$\mathbb{E}_{x_0 \sim \nu_0, t \sim \mathsf{Unif}(0, T)} \left[\alpha_0 \frac{d\pi_0}{d\pi} (x_t) \right] \ge \frac{\alpha_0}{12(\chi^2(\nu_0 || \pi_0) + 1)}$$

For example, if $\pi_0 = \pi|_A$, then $\alpha_0 = \pi(A)$ and

$$\mathbb{E}_{x_0 \sim \nu_0, t \sim \mathsf{Unif}(0,T)} \left[\alpha_0 \frac{d\pi_0}{d\pi}(x_t) \right] = \mathbb{P}_{x_0 \sim \nu_0, t \sim \mathsf{Unif}(0,T)}(x_t \in A).$$

Proof. For a trajectory $x: \mathbb{R}_{\geq 0} \to \Omega$ of the Markov process, define

$$F_x(t) = \int_0^t \alpha_0 \frac{d\pi_0}{d\pi}(x_s) \, ds$$

(which we can interpret as the proportion of time it is in the component π_0). Note that this is a continuous, differentiable, non-decreasing function. We will write $F^{-1}(r)$ to mean $\min F^{-1}(\{r\})$. Define the random variables

$$T_r := F_x^{-1}(r) = \min\left\{ u : \int_0^u \alpha_0 \frac{d\pi_0}{d\pi}(x_s) \, ds \ge r \right\}$$

$$T_{t,r} := F_x^{-1}(F_x(t) + r) - t = \min\left\{ u : \int_t^{t+u} \alpha_0 \frac{d\pi_0}{d\pi}(x_s) \, ds \ge r \right\}.$$

Then

$$\begin{split} \mathbb{E}_{x_0 \sim \nu_0, t \sim \mathsf{Unif}(0,T)} \left[\alpha_0 \frac{d\pi_0}{d\pi}(x_t) \right] &= \frac{1}{T} \int_0^T \mathbb{E}_{x_0 \sim \nu_0} \alpha_0 \frac{d\pi_0}{d\pi}(x_t) \, dt \\ &= \frac{1}{T} \int_0^T \mathbb{P}_{x_0 \sim \nu_0} \left(\int_0^T \alpha_0 \frac{d\pi_0}{d\pi}(x_t) \geq r \right) \, dr \\ &= \frac{1}{T} \int_0^T \mathbb{P}_{x_0 \sim \nu_0} (T_r \leq T) \, dr \\ &= \frac{1}{T} \int_0^T \left(1 - \mathbb{P}_{x_0 \sim \nu_0} T_r \right) \, dr \\ &\geq \frac{1}{T} \int_0^T \left(1 - \frac{\mathbb{E}_{x_0 \sim \nu_0} T_r}{T} \right) \vee 0 \, dr \end{split}$$

where the last inequality follows from Markov's inequality. We now calculate $\mathbb{E}_{x_0 \sim \pi_0} T_r$ by a counting-in-two-ways argument; then we will use a change-of-measure inequality. Note that for $x_0 \sim \pi$, x_t also has distribution π , so

$$\mathbb{E}_{x_{0} \sim \pi_{0}} T_{r} = \int_{\Omega} \mathbb{E}[T_{r} | x_{0} = x] d\pi_{0}(x)
= \int_{\Omega} \mathbb{E}[T_{r} | x_{0} = x] \frac{d\pi_{0}}{d\pi}(x) d\pi(x)
= \frac{1}{T} \int_{\Omega} \int_{0}^{T} \mathbb{E}\left[T_{t,r} \frac{d\pi_{0}}{d\pi}(x_{t}) | x_{0} = x\right] dr d\pi(x)
\leq \frac{1}{T} \mathbb{E} \int_{0}^{T} ((F_{x}^{-1}(F_{x}(t) + r) \vee T) - t) \frac{d\pi_{0}}{d\pi}(x_{t}) dt + \frac{1}{\alpha_{0}T} \int_{0}^{T} \mathbb{E}[T_{t,r} \mathbb{1}_{T_{t,r} \geq T - t}] dt
= \frac{1}{\alpha_{0}T} \mathbb{E} \int_{0}^{T} ((F_{x}^{-1}(F_{x}(t) + r) \vee T) - t) F_{x}'(t) dt + \frac{1}{\alpha_{0}T} \int_{0}^{T} \mathbb{E}[T_{t,r} \mathbb{1}_{T_{r} \geq t}] dt.$$

where (F.3) uses the fact that for any t, the distribution of x_t is still π . Because $\mathbb{E} T_{t,r} < \infty$, $g(t) := \mathbb{E} [T_{t,r} \mathbb{1}_{T_r \geq t}] \to 0$ by the Dominated Convergence Theorem. Now if g(t) is bounded and $\lim_{t \to \infty} g(t) = 0$, then $\lim_{T \to \infty} \frac{1}{T} \int_0^T g(t) \, dt = 0$, so the second term converges to 0 as $T \to \infty$. We focus on the first term. Change of variable gives

$$\int_0^T ((F_x^{-1}(F_x(t) + r) \vee T) - t)F_x'(t) dt = \int_0^{F_x(T)} (F_x^{-1}(y + r) \vee T) - F_x^{-1}(y) dy$$
$$= \int_0^{F_x(T)} \int_{F_x^{-1}(y)}^{F_x^{-1}(y + r) \vee T} dz dy.$$

This is the measure of

$$\begin{aligned} & \left\{ (y,z) : 0 \le y \le F_x(T), F_x^{-1}(y) \le z \le F_x^{-1}(y+r) \lor T \right\} \\ & \subseteq \left\{ (y,z) : y \le F_x(z) \le y+r, z \le T \right\} \\ & = \left\{ (y,z) : F_x(z) - r \le y \le F_x(z), 0 \le z \le T \right\} \end{aligned}$$

which evidently has measure Tr. Hence taking $T \to \infty$,

$$\mathbb{E}_{x_0 \sim \pi_0} T_r \le \frac{1}{\alpha_0 T} \cdot Tr = \frac{r}{\alpha_0}.$$

Let $K_{\infty} = \left\| \frac{d\nu_0}{d\pi_0} \right\|_{\infty}$ and $K_2^2 = \chi^2(\nu_0 \| \pi_0) + 1$. For the first bound,

$$\begin{split} \mathbb{E}_{x_0 \sim \nu_0} T_r &\leq K_\infty \mathbb{E}_{x_0 \sim \pi_0} T_r \leq \frac{K_\infty r}{\alpha_0} \\ \Longrightarrow & \mathbb{E}_{x_0 \sim \nu_0, t \sim \mathrm{Unif}(0, T)} \left[\alpha_0 \frac{d\pi_0}{d\pi} (x_t) \right] \geq \frac{1}{T} \int_0^T \left(1 - \frac{\mathbb{E}_{x_0 \sim \nu_0} T_r}{T} \right) \vee 0 \, dr \\ & \geq \frac{1}{T} \int_0^T \left(1 - \frac{K_\infty r}{\alpha_0 T} \right) \vee 0 \, dr = \frac{\alpha_0}{2K_\infty} \end{split}$$

For the second bound, let

$$G = \left\{ x : \frac{d\nu_0}{d\pi_0}(x) \le \frac{K_2^2}{\varepsilon} \right\}$$

and note by Markov's inequality that

$$\begin{split} \mathbb{P}_{x_0 \sim \nu_0}(T_r > T) & \leq P\left(G^c\right) + \mathbb{P}_{x_0 \sim P_0}(T_r > T \land x_0 \in G) \\ & \leq \varepsilon + \frac{K_2^2}{\varepsilon} \frac{\mathbb{E}_{x_0 \sim \pi_0} T_r}{T} \\ & \leq \varepsilon + \frac{K_2^2}{\varepsilon} \frac{r}{\alpha_0 T} \\ & = 2K_2 \sqrt{\frac{r}{\alpha_0 T}} \end{split} \qquad \text{taking } \varepsilon = K_2 \sqrt{\frac{r}{\alpha_0 T}}. \end{split}$$

Then

$$\begin{split} \mathbb{E}_{x_0 \sim \nu_0, t \sim \mathsf{Unif}(0,T)} \left[\alpha_0 \frac{d\pi_0}{d\pi}(x_t) \right] &= \frac{1}{T} \int_0^T (1 - \mathbb{P}_{x_0 \sim \nu_0}(T_r > T)) \, dr \\ &\leq \frac{1}{T} \int_0^T \left(1 - 2K_2 \sqrt{\frac{r}{\alpha_0 T}} \right) \vee 0 \, dr = \frac{\alpha_0 T}{12K_2^2}. \end{split}$$

Lemma F.3. On the state space $\Omega \times [L]$ we define the measures

$$\pi(x,i) := \sum_{j=1}^{L} \omega^{j} \pi^{j}(x) I\{j=i\}$$

$$\pi_{0}(x,i) := \sum_{j=1}^{L} \omega_{0}^{j} \pi_{0}^{j}(x) I\{j=i\}$$

where $\pi^i(x)$ is a p.m. on Ω with component p.m. $\pi^i_0(x)$. Consider running the Markov chain P on $\Omega \times [L]$ with stationary measure $\pi(x,i)$ from initial measure $\nu_0(x,i)$. Let $\overline{p}_T(x,i)$ be the distribution of X_t where $t \sim \mathsf{Unif}(0,T)$ and $X_0 \sim \nu_0(x,i)$. Then

$$\int_{\Omega} \left(\frac{\overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} \bigg/ \int_{\Omega} \overline{p}_T(x,i) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} dx}{\pi_0^L(x)} - 1 \right)^2 \pi_0^L(x) dx \leq \frac{\chi^2 \left(\nu_0(x,i) || \pi(x,i) \right) \cdot C_{PI} \left(\pi_0(x,i) \right)}{\alpha_0 \omega_0^L \cdot \left(\int_{\Omega} \overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} dx \right)^2 \cdot T},$$

where α_0 is the component weight of $\pi_0(x,i)$ in $\pi(x,i) = \alpha_0 \pi_0(x,i) + (1-\alpha_0)\pi_1(x,i)$.

Proof. We consider the following,

$$\begin{array}{ll} & \text{Var}_{\pi_{0}(x,i)} \left(\overline{p}_{T}(x,i) \frac{\pi_{0}(x,i)}{\pi(x,i)} \middle/ \pi_{0}(x,i) \right) = \sum_{i=1}^{L} \int_{\Omega} \left(\frac{\overline{p}_{T}(x,i) \frac{\pi_{0}(x,i)}{\pi(x,i)}}{\pi_{0}(x,i)} - \mathbb{E}_{\pi_{0}(x,i)} \left[\overline{p}_{T}(x,i) \frac{\pi_{0}(x,i)}{\pi(x,i)} \middle/ \pi_{0}(x,i) \right] \right)^{2} \pi_{0}(x,i) dx \\ & = \sum_{i=1}^{L} \int_{\Omega} \left(\frac{\overline{p}_{T}(x,i) \frac{\pi_{0}(x,i)}{\pi(x,i)}}{\pi_{0}(x,i)} - \mathbb{E}_{\pi_{0}(x,i)} \left[\frac{\overline{p}_{T}(x,i)}{\pi(x,i)} \right] \right)^{2} \pi_{0}(x,i) dx \\ & = \sum_{i=1}^{L} \omega_{0}^{i} \int_{\Omega} \left(\frac{\overline{p}_{T}(x,i) \frac{\pi_{0}(x,i)}{\pi(x,i)}}{\pi_{0}(x,i)} - \int_{\Omega} \frac{\pi_{0}(x,i)}{\omega_{0}^{i}} \frac{\overline{p}_{T}(x,i)}{\pi(x,i)} + \int_{\Omega} \frac{\pi_{0}(x,i)}{\omega_{0}^{i}} \frac{\overline{p}_{T}(x,i)}{\pi(x,i)} - \mathbb{E}_{\pi_{0}(x,i)} \left[\frac{\overline{p}_{T}(x,i)}{\pi(x,i)} \right] \right)^{2} \pi_{0}^{i}(x) dx \\ & = \sum_{i=1}^{L} \omega_{0}^{i} \int_{\Omega} \left(\frac{\overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)}}{\pi_{0}(x,i)} - \int_{\Omega} \pi_{0}^{L}(x) \frac{\overline{p}_{T}(x,L)}{\omega_{0}^{L}\pi^{L}(x)} \right)^{2} \pi_{0}^{L}(x) dx \\ & \geq \omega_{0}^{L} \int_{\Omega} \left(\frac{\overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)}}{\pi_{0}^{L}(x)} \middle/ \int_{\Omega} \overline{p}_{T}(x,L) \frac{\overline{\pi_{0}^{L}(x)}}{\omega_{L}\pi^{L}(x)}} dx \right)^{2} \pi_{0}^{L}(x) dx \\ & = \omega_{0}^{L} \int_{\Omega} \left(\frac{\overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)}}{\pi_{0}^{L}(x)} \middle/ \int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)}} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}\pi^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega_{L}^{L}(x)} dx \right)^{2} \pi_{0}^{L}(x) dx \cdot \left(\int_{\Omega} \overline{p}_{T}(x,L)$$

Note that $\overline{p}_T(x,L)$ is the non-normalized component of the p.m. at the L-th level. However, this is homogeneous in the numerator of the previous expression therefore we have that this equals

$$\begin{array}{ll} \textbf{1514} \\ \textbf{1515} \\ \textbf{1516} \\ \textbf{1517} \end{array} = \omega_0^L \int_{\Omega} \left(\frac{\overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} \bigg/ \int_{\Omega} \overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} dx}{\pi_0^L(x)} - 1 \right)^2 \pi_0^L(x) dx \cdot \left(\int_{\Omega} \overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} dx \right)^2,$$

To finish the proof, we apply Lemma F.1 which says

$$\operatorname{Var}_{\pi_0(x,i)}\left(\overline{p}_T(x,i)\frac{\pi_0(x,i)}{\pi(x,i)}\middle/\pi_0(x,i)\right) \leq \frac{\chi^2\left(\nu_0(x,i)||\pi(x,i)\right) \cdot C_{PI}\left(\pi_0(x,i)\right)}{\alpha_0 \cdot T}$$

Therefore we have that

$$\int_{\Omega} \left(\frac{\overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} \bigg/ \int_{\Omega} \overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} dx}{\pi_0^L(x)} - 1 \right)^2 \pi_0^L(x) dx \leq \frac{\chi^2 \left(\nu_0(x,i) || \pi(x,i) \right) \cdot C_{PI} \left(\pi_0(x,i) \right)}{\alpha_0 \omega_0^L \cdot \left(\int_{\Omega} \overline{p}_T(x,L) \frac{\pi_0^L(x)}{\omega^L \pi^L(x)} dx \right)^2 \cdot T}.$$

Lemma F.4. Let $\tilde{X}_t = (X,i) \in \Omega \times [L]$ and $\tilde{Y} = (Y,i) \in \Omega \times [L]$ with \tilde{X}_t drawn from the density $\overline{p}_T(x,i) \frac{\pi_0(x,i)}{\pi(x,i)} \bigg/ Z$, where \overline{p}_T is the distribution of X_t with $t \sim \mathsf{Unif}(0,T)$,

 $Z = \sum_{i=1}^L \int_{\Omega} \overline{p}_T(x,i) \frac{\pi_0(x,i)}{\pi(x,i)} dx$, and $\tilde{Y} \sim \pi_0(x,i)$. On the state space $\Omega \times [L]$ we define the measures

$$\pi(x,i) := \sum_{j=1}^{L} \omega^{j} \pi^{j}(x) I\{j=i\}$$

$$\pi_{0}(x,i) := \sum_{j=1}^{L} \omega_{0}^{j} \pi_{0}^{j}(x) I\{j=i\}$$

and the relation $\pi(x,i) = \alpha_0 \pi_0(x,i) + (1-\alpha_0)\pi_1(x,i)$. Then

$$\int_{\Omega} \overline{p}_{T}(x,L) \frac{\pi_{0}^{L}(x)}{\omega^{L} \pi^{L}(x)} dx \geq \frac{1}{2 \left\| \frac{\nu_{0}}{\pi_{0}} \right\|_{-1}} - \left(\frac{\chi^{2} \left(\nu_{0}(x,i) || \pi(x,i) \right) \cdot C_{PI} \left(\pi_{0}(x,i) \right)}{\alpha_{0} (\omega_{0}^{L})^{2} \cdot T} \right)^{\frac{1}{2}}.$$

Proof. By Lemma F.1, for $\epsilon = \frac{K_0 C}{\alpha_0 \left[\mathbb{E}_{\overline{p}_T} \left(\frac{\pi_0}{\pi}\right)\right]^2 T}$, we have that

$$\chi^2 \left(\overline{p}_T(x,i) \frac{\pi_0(x,i)}{\pi(x,i)} \middle/ Z \middle| \pi_0(x,i) \right) \le \epsilon.$$

The data processing inequality for random variables with f(x) = I(x = L) yields for any random variables \tilde{X}, \tilde{Y} that

$$\chi^2\bigg(\tilde{X}_t \ \bigg| \ \tilde{Y}\bigg) \geq \chi^2\bigg(I\{\tilde{X}_t = L\} \ \bigg| \ I\{\tilde{Y} = L\}\bigg)$$

$$\implies \chi^2\bigg(\overline{p}_T(x,i)\frac{\pi_0(x,i)}{\pi(x,i)}\bigg/Z \ \bigg| \ \pi_0(x,i)\bigg) \geq \chi^2\bigg(\text{Bernoulli}\left(\frac{\int_{\Omega}\overline{p}_T(x,L)\frac{\omega_0^L\pi_0^L(x)}{\omega^L\pi^L(x)}dx}{\sum_i\int_{\Omega}\overline{p}_T(x,i)\frac{\pi_0(x,i)}{\pi(x,i)}dx}\right) \ \bigg| \ \text{Bernoulli}(\omega_0^L)\bigg)$$

The chi-squared divergence of two Bernoulli random variables is lower bounded by

$$\geq \left| \frac{\int_{\Omega} \overline{p}_{T}(x,L) \frac{\omega_{0}^{L} \pi_{0}^{L}(x)}{\omega^{L} \pi^{L}(x)} dx}{\sum_{i} \int_{\Omega} \overline{p}_{T}(x,i) \frac{\pi_{0}(x,i)}{\pi(x,i)} dx} - \omega_{0}^{L} \right|^{2}.$$

This yields a lower bound of

$$\int_{\Omega} \overline{p}_T(x, L) \frac{\omega_0^L \pi_0^L(x)}{\omega^L \pi^L(x)} dx \ge \left(\omega_0^L - \epsilon^{\frac{1}{2}}\right) \sum_i \int_{\Omega} \overline{p}_T(x, i) \frac{\pi_0(x, i)}{\pi(x, i)} dx$$

Applying Lemma F.1 yields

$$\geq \omega_0^L \int_{\Omega} \overline{p}_T(x,i) \frac{\pi_0(x,i)}{\pi(x,i)} dx - \left(\frac{\chi^2(\nu_0(x,i)||\pi(x,i)) \cdot C_{PI}(\pi_0(x,i))}{\alpha_0 \cdot T} \right)^{\frac{1}{2}}$$

which by Lemma F.2 is

$$\geq \frac{\omega_0^L}{2||\frac{\nu_0}{\pi_0}||_{\infty}} - \left(\frac{\chi^2(\nu_0(x,i)||\pi(x,i)) \cdot C_{PI}(\pi_0(x,i))}{\alpha_0 \cdot T}\right)^{\frac{1}{2}}$$

This yields

$$\int_{\Omega} \overline{p}_{T}(x, L) \frac{\pi_{0}^{L}(x)}{\omega^{L} \pi^{L}(x)} dx \ge \frac{1}{2||\frac{\nu_{0}}{\pi_{0}}||_{\infty}} - \left(\frac{\chi^{2}(\nu_{0}(x, i)||\pi(x, i)) \cdot C_{PI}(\pi_{0}(x, i))}{\alpha_{0}(\omega_{0}^{L})^{2} \cdot T}\right)^{\frac{1}{2}}.$$

G ESTIMATING PARTITION FUNCTIONS

In this section we show how to approximate the weights $w_{i,k}$ and r_i . Partition function approximation is standard for stimulated tempering on non-normalized distributions. One approach is to run the ST algorithm to the lth level and then acquire a Monte Carlo estimate of the partition function at the next level, see Ge et al. (2018c). However, in our setting, we also require an estimate of $Z_{i,k} = \int_{\Omega} \alpha_k \pi_k(x) q_i(x-x_k) dx$. Without access to the component functions $\pi_k(x)$ of the target measure $\pi(x) = \sum_k \alpha_k \pi_k(x)$, it is not possible to directly estimate $Z_{i,k}$ via Monte Carlo. Fortunately, we only require an estimate up to polynomial factors, so we can use the assumption that after tilting towards the warm start point, a significant chunk of the mass of $\pi(x)q_i(x-x_k)$ comes from $\pi_k(x)q_i(x-x_k)$ (Definition 1.1(2)). Hence, it will suffice to estimate $\bar{Z}_{i,k} = \int_{\Omega} \pi(x)q_i(x-x_k) dx$.

To obtain an estimate of $Z_{i,k}$, we define

$$\bar{\pi}_{l,k}(x) = p(x) \cdot q_l(x - x_k),$$

where $p(x) = \sum_k \alpha_k p_k(x)$ is the target function. Since we assume oracle access to the target p(x) up to normalization and $q_l(x)$ is chosen, we can freely evaluate $\bar{\pi}_{l,k}(x)$. Next we define $\hat{p}_t(x,i) = \nu_0 P_{ST,tel}^t$ to be the distribution of a sample at the i-th level after running the ALPS process for time t from an initial distribution ν_0 . This Markov process converges to the joint distribution of $p_i(x) = p(x) \cdot \sum_{k=1}^M w_{i,k} q_i(x-x_k)$ over the levels $i \in [1,l]$. Below we state the inductive hypothesis which assumes component and level balance (def. 2.3) is maintained through level l.

Assumption G.1. (Inductive Hypothesis) Let $Z_l = \int_{\Omega} \tilde{p}_l(x) dx$ and $Z_{l,k} = \int_{\Omega} \alpha_k \pi_k(x) q_l(x - x_k) dx$, and U be a given parameter. We make the following assumptions at the l-th level:

H1(l) (Component balance)

$$\frac{w_{i,k}Z_{i,k}}{w_{i,k'}Z_{i,k'}} \in \left[\frac{1}{C_1}, C_1\right] \quad \textit{for all } k, k' \in [1, M] \textit{ and } i \in [1, l],$$

where $C_1 = poly(\frac{U}{c_{tilt}})$.

H2(l) (Level balance)

$$\frac{r_j^{(l)} Z_j}{r_{j'}^{(l)} Z_{j'}} \in \left[\frac{1}{C_2}, C_2\right] \text{ for all } j, j' \in [1, l],$$

where
$$C_2 = poly(\frac{U}{c_{*,...}^2})$$
.

The following lemma follows directly from the inductive hypothesis.

Lemma G.2. Let Assumptions 1.1 and G.1 hold and let $\bar{Z}_{i,k} = \int_{\Omega} \pi(x)q_i(x-x_k)dx$. Then

$$\frac{w_{i,k}Z_{i,k}}{w_{i,k'}\bar{Z}_{i,k'}} \in \left[\frac{c_{tilt}}{C_1}, \frac{C_1}{c_{tilt}}\right] \ \ \textit{for all} \ k,k' \in [1,M] \ \textit{and} \ i \in [1,l].$$

The following two lemmas make clear how the inductive hypothesis is used to bound the weight component of modes at varying levels. Lemma G.3 shows that in the context of Algorithm 3 reweighting the level weight $r_1^{(l)}$ at the initial level yields weights which still satisfies the inductive hypothesis $\mathbf{H2}(l)$ but with a different constant. By placing more mass on the first level, the level re-weighting allows for a good portion of our target distribution to be aligned with our initialization. Therefore, in this section, the level weights $\{r_i^{(l)}\}_{i=1}^l$ will be replaced with $\{\hat{r}_i^{(l)}\}_{i=1}^l$ in the following section. This will allow us to consider the practical scaling where the initial level is up-weighted. Note that this pushes the work of the inductive hypothesis H2(l) onto the following lemma.

Lemma G.3. Let **H2**(l) hold and let $\hat{r}_1^{(l)} = l \cdot C_2 r_1^{(l)}$ and $\hat{r}_j^{(l)} = r_j^{(l)}$ for all j = 2, ..., l. Then

$$\frac{1}{l \cdot C_2^2} \le \frac{\hat{r}_j^{(l)} Z_j}{\hat{r}_k^{(l)} Z_k} \le l \cdot C_2^2$$

for all $k, j \in [1, l]$.

Proof. The conclusion is clear for $j, k \neq 1$, which remain unscaled, by the inductive hypothesis $\frac{1}{C_2} \leq \frac{\hat{r}_j^{(l)} Z_j}{\hat{r}_k^{(l)} Z_k} \leq C_2$.

It suffices to show $\frac{\hat{r}_j^{(l)}Z_j}{\hat{r}_1^{(l)}Z_1} \in \left[\frac{1}{l \cdot C_2^2}, l \cdot C_2^2\right]$; then the same bound follows for the reciprocal. By **H2**(*l*) applied to $r_j^{(l)}$,

$$\frac{\hat{r}_j^{(l)}Z_j}{\hat{r}_1^{(l)}Z_1} = \frac{1}{l \cdot C_2} \frac{r_j^{(l)}Z_j}{r_1^{(l)}Z_1} \in \left[\frac{1}{l \cdot C_2} \cdot \frac{1}{C_2}, \frac{1}{l \cdot C_2} \cdot C_2 \right] \subset \left[\frac{1}{l \cdot C_2^2}, l \cdot C_2^2 \right],$$

as needed.

Note that H1(l) says that components at the same level are approximately balanced, while H2(l) says that different levels as a whole are approximately balanced. Putting these together, we obtain that components at different levels are also approximately balanced.

Lemma G.4 (Balancing between all components at all levels). Given Assumptions [1.1] and Assumptions [G.1] we have

$$\frac{\hat{r}_{i}^{(l)}w_{i,k}Z_{i,k}}{\hat{r}_{i'}^{(l)}w_{i',k'}Z_{i',k'}} \in \left[\frac{1}{C},C\right] \quad \textit{for all } i,i' \in [1,l] \textit{ and } k,k' \in [1,M],$$

where

$$C = \frac{lC_2^2 C_1^2}{c_{tilt}}.$$

Proof. We start by using the tilting assumption and Lemma G.3.

$$\begin{split} \frac{1}{lC_{2}^{2}} &\leq \frac{\hat{r}_{i}^{(l)}Z_{i}}{\hat{r}_{i'}^{(l)}Z_{i'}} \leq \frac{\frac{1}{c_{tilt}}\hat{r}_{i}^{(l)}\sum_{j}w_{i,j}Z_{i,j}}{\hat{r}_{i'}^{(l)}\sum_{j}w_{i',j}Z_{i',j}} \\ &= \frac{\frac{1}{c_{tilt}}\hat{r}_{i}^{(l)}w_{i,k}Z_{i,k}\sum_{j}\frac{w_{i,j}Z_{i,j}}{w_{i,k}Z_{i,k}}}{\hat{r}_{i'}^{(l)}w_{i',k'}Z_{i',k'}\sum_{j}\frac{w_{i',j}Z_{i',j}}{w_{i',l}Z_{i',lk'}}} \end{split}$$

By inductive assumption H1(l),

$$\leq \frac{\frac{1}{c_{tilt}}\hat{r}_{i}^{(l)}w_{i,k}Z_{i,k}M \cdot C_{1}}{\hat{r}_{i'}^{(l)}w_{i',k'}Z_{i',k'}M \cdot \frac{1}{C_{1}}}$$

$$= \frac{C_{1}^{2}}{c_{tilt}}\frac{\hat{r}_{i'}^{(l)}w_{i,k}Z_{i,k}}{\hat{r}_{i'}^{(l)}w_{i',k'}Z_{i',k'}}$$

$$\implies \frac{c_{tilt}}{C_{2} \cdot C_{1}^{2}} \leq \frac{\hat{r}_{i}^{(l)}w_{i,k}Z_{i,k}}{\hat{r}_{i'}^{(l)}w_{i',k'}Z_{i',k'}}.$$

Since the above lower bound holds for all $i, i' \in [1, l]$ and $k, k' \in [1, M]$ the reciprocal holds as an upper bound.

Proof Overview: In the context of Algorithm 3:

1. We show that $\boxed{\mathbf{H1}(l+1)}$ by showing the following,

$$\frac{1}{N}\sum_{j=1}^{N}\frac{\bar{\pi}_{l+1,k}(x_{j})}{\tilde{p}(x_{j},i_{j})}I\{i_{j}=l\}\underbrace{\approx}_{\text{(A)}}\mathbb{E}_{\hat{p}_{t}}\left[\frac{\bar{\pi}_{l+1,k}}{\tilde{p}(x,i)}I\{i=l\}\right]\underbrace{\approx}_{\text{(B)}}\mathbb{E}_{p}\left[\frac{\bar{\pi}_{l+1,k}}{\tilde{p}(x,i)}I\{i=l\}\right]\underbrace{\approx}_{\text{(C)}}\mathbb{E}_{p}\left[\frac{\tilde{\pi}_{l+1,k}}{\tilde{p}(x,i)}I\{i=l\}\right]=\frac{Z_{l+1,k}}{Z_{l+1,k}}I\{i=l\}$$

where in the (B) and (C) steps we show that the two terms are within a constant factor.

- (a) In Lemma G.5, we prove (A) using Chebyshev's inequality.
- (b) In Lemma G.6, we prove (B) by utilizing the work in Section F which shows convergence of the Markov process to the "good" part of the stationary distribution.
- (c) In Lemma G.7, we show (C) by using the tilting coefficient c_{tilt} to compare $\bar{\pi}_{l,k}$ and $\tilde{\pi}_{l,k}$.
- 2. We obtain an estimate for the partition function of $\tilde{p}_{l+1}(x) = \left(\sum_{j} \alpha_{j} \pi_{j}(x)\right) \left(\sum_{k} w_{l+1,k} q_{l+1}(x-x_{k})\right)$ by again showing that

$$\frac{1}{N}\sum_{j=1}^N\frac{\tilde{p}_{l+1}(x_j)}{\tilde{p}(x_j,i_j)}I\{i_j=l\}\underbrace{\approx}_{(\Lambda)}\mathbb{E}_{\hat{p}_t}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]\underbrace{\approx}_{(\mathbb{R}^n)}\mathbb{E}_p\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]=\frac{Z_{l+1}}{Z}.$$

- (a) In Lemma G.5 we prove (A) as an application of Chebyshev's inequality.
- (b) In Lemma G.8 we prove (B') in a similar fashion to Lemma G.6 for (B).
- 3. We then show $\boxed{\mathbf{H2}(l+1)}$ by level rebalance.

We split the work of this section into three subsections. The first, Subsection G.1 finds bounds between the ratios of the expectations terms from the proof overview. These bounds contain several constants which depend on the spectral gap and the mixing time of the projected chain. In Subsection G.2 we give an upper bound on the spectral and analyze the mixing time of the projected chain. Lastly, Subsection G.3 combines the results from the previous two subsections to show that running Algorithm 3 mains the level balance in the inductive hypothesis.

G.1 BOUNDING THE APPROXIMATIONS

Lemma G.5 (A: Chebyshev). Given i.i.d. samples $x_i \sim \pi$ for $1 \leq i \leq N$ with $\frac{\mathbb{E}_{\pi}\left[f^2\right]}{\mathbb{E}_{\pi}\left[f\right]^2} \leq R$, then with probability $\geq 1 - \delta$,

$$1 - \epsilon \le \frac{\frac{1}{N} \sum_{i=1}^{N} f(x_i)}{\mathbb{E}_{\pi}[f]} \le 1 + \epsilon$$

where $\epsilon = \sqrt{\frac{R}{N \cdot \delta}}$.

Proof. This is a simple application of Chebyshev's inequality,

$$\mathbb{P}\left(\left|\frac{\frac{1}{N}\sum_{i=1}^{N}f(x_i)}{\mathbb{E}_{\pi}[f]}-1\right| > \epsilon\right) = \mathbb{P}\left(\left|\frac{1}{N}\sum_{i=1}^{N}f(x_i)-\mathbb{E}_{\pi}[f]\right| > \epsilon \cdot \mathbb{E}_{\pi}[f]\right) \le \frac{\mathbb{E}_{\pi}[f^2]}{n\epsilon^2\mathbb{E}_{\pi}[f]^2} \le \frac{R}{n\epsilon^2}.$$

Letting
$$\epsilon = \sqrt{\frac{R}{N \cdot \delta}}$$
 yields the desired result.

In the following Lemma G.6 we are able to show that $\mathbb{E}_{\hat{p}_t}\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right] \asymp \mathbb{E}_p\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]$.

This is a consequence of our results in Section F that show \hat{p}^t converges to the good part of p(x).

Lemma G.6 (B). Given Assumptions 1.1 and Assumptions 3.1

$$c_{tilt}\left(\frac{1}{2||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}} - \left(1 + \chi^{2}\left(\pi_{l+1,k} \mid |\pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta\right) \leq \frac{\mathbb{E}_{\hat{p}_{T}}\left[\frac{\bar{\pi}_{l+1,k}(x)}{\bar{p}(x,i)}I\{i=l\}\right]}{\mathbb{E}_{p}\left[\frac{\bar{\pi}_{l+1,k}(x)}{\bar{p}(x,i)}I\{i=l\}\right]} \leq \left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}},$$

where
$$\Delta = \left(\frac{\chi^2\left(\nu_0(x,i)||p(x,i)\right)\cdot C_{PI}\left(p_0(x,i)\right)}{\alpha_0(\omega_0^L)^2\cdot T}\right)^{\frac{1}{2}}$$
.

Proof. Upper bound. Note that for any $f \geq 0$ and $p \ll q$ that $\frac{\mathbb{E}_p f}{\mathbb{E}_q f} = \frac{\mathbb{E}_q \frac{\mathrm{d}p}{\mathrm{d}q} f}{\mathbb{E}_q f} \leq \left\| \frac{\mathrm{d}p}{\mathrm{d}q} \right\|_{L^\infty}$. Applying this here and then using contraction gives

$$\frac{\mathbb{E}_{\hat{p}_T}\left[\frac{\bar{\pi}_{l+1,k}(x)}{\bar{p}(x,i)}I\{i=l\}\right]}{\mathbb{E}_p\left[\frac{\bar{\pi}_{l+1,k}(x)}{\bar{p}(x,i)}I\{i=l\}\right]} = \left\|\frac{\hat{p}_T(x,i)}{p(x,i)}\right\|_{L^{\infty}} \le \left\|\frac{\nu_0(x,i)}{p(x,i)}\right\|_{L^{\infty}}.$$

<u>Lower bound.</u> For the lower bound, we first compare the denominator to just the integral of the kth component, i.e. $Z_{l,k}$, using the tilting assumption. Noting that $\tilde{p}(x,i)I\{i=l\}=r_l\tilde{p}_l(x)$ and denoting $\hat{p}_{l,T}(x)=\hat{p}_T(x,l)$. Also note that in order to apply the lemmas in Section F we define $\pi_0(x,i)=\omega_0^l\pi_{l,k}(x)I\{i=l\}+\sum_{j=1}^{l-1}w_0^jp_j(x)I\{j=i\}$. Then we obtain the lower bound

$$\frac{\mathbb{E}_{\hat{p}_{T}}\left[\frac{\bar{\pi}_{l+1,k}(x)}{\bar{p}(x,i)}I\{i=l\}\right]}{\mathbb{E}_{p}\left[\frac{\bar{\pi}_{l+1,k}(x)}{\bar{p}(x,i)}I\{i=l\}\right]} = \frac{\int_{\Omega}\hat{p}_{l,T}(x)\frac{\bar{\pi}_{l+1,k}(x)}{r_{l}\bar{p}_{l}(x)}dx}{\int_{\Omega}\omega^{l}p_{l}(x)\frac{\bar{\pi}_{l+1,k}(x)}{r_{l}\bar{p}_{l}(x)}dx} = \frac{\int_{\Omega}\hat{p}_{l,T}(x)\frac{\bar{\pi}_{l+1,k}(x)}{r_{l}\bar{p}_{l}(x)\frac{\bar{\pi}_{l+1,k}(x)}{\bar{r}_{l}}dx}}{\int_{\Omega}\omega^{l}p_{l}(x)\frac{\bar{\pi}_{l+1,k}(x)}{r_{l}\bar{p}_{l}(x)\frac{\bar{t}_{l}}{\bar{t}_{l}}dx}}$$

replacing $r_l^{(l)}$ are constants, so canceling terms yields

$$= \frac{\int_{\Omega} \hat{p}_{l,T}(x) \frac{\bar{\pi}_{l+1,k}(x)}{p_l(x)} dx}{\int_{\Omega} \omega^l \bar{\pi}_{l+1,k}(x)}.$$

Next we apply the definition of $\bar{\pi}_{l+1,k}$ and $\pi(x) = \sum_k \alpha_k \pi_k(x)$

$$=\frac{\int_{\Omega} \hat{p}_{l,T}(x) \left[\frac{\pi(x) \cdot q_{l+1}(x-x_k)}{\omega^l p_l(x)}\right] dx}{\int_{\Omega} \pi(x) \cdot q_{l+1}(x-x_k) dx} \ge \frac{\int_{\Omega} \hat{p}_{l,T}(x) \left[\frac{\alpha_k \pi_k(x) \cdot q_{l+1}(x-x_k)}{\omega^l p_l(x)}\right] dx}{\int_{\Omega} \pi(x) \cdot q_{l+1}(x-x_k) dx}$$

by tilting, Assumption 1.1(2)

$$\geq c_{tilt} \frac{\int_{\Omega} \hat{p}_{l,T}(x) \left[\frac{\alpha_k \pi_k(x) \cdot q_{l+1}(x-x_k)}{\omega^l p_l(x)}\right] dx}{\int_{\Omega} \alpha_k \pi_k \cdot q_{l+1}(x-x_k) dx} = c_{tilt} \int_{\Omega} \hat{p}_{l,T}(x) \left[\frac{\alpha_k \pi_k(x) \cdot q_{l+1}(x-x_k) / Z_{l+1,k}}{\omega^l p_l(x)}\right] dx$$

$$= c_{tilt} \mathbb{E}_{\pi_{l,k}} \left[\frac{\hat{p}_{l,T}}{\pi_{l,k}} \frac{\pi_{l+1,k}}{\omega^l p_l}\right] = c_{tilt} \cdot \mathbb{E}_{\pi_{l,k}} \left[\frac{\pi_{l+1,k}}{\pi_{l,k}} \cdot \frac{\hat{p}_{l,T} \frac{\pi_{l,k}}{\omega^l p_l}}{\pi_{l,k}}\right],$$

where we write it in this way so we can use the closeness of $\pi_{l+1,k}$ to $\pi_{l,k}$ and the convergence of $\hat{p}_{l,T}$ to the good part $\pi_{l,k}$ of p on the lth level. Let $\Delta = \left(\frac{\chi^2\left(\nu_0(x,i)||p(x,i)\right)\cdot C_{PI}\left(p_0(x,i)\right)}{\alpha_0(\omega_0^l)^2\cdot T}\right)^{\frac{1}{2}}$. We first bound the expectation when $\hat{p}_{l,T}\frac{\pi_{l,T}}{\omega^l p_l}$ is normalized to a probability distribution:

$$\begin{split} & \left| \mathbb{E}_{\pi_{l,k}} \left[\frac{\pi_{l+1,k}}{\pi_{l,k}} \cdot \frac{\hat{p}_{l,T} \frac{\pi_{l,k}}{p_{l}} \bigg/ \int_{\Omega} \hat{p}_{l,T} \frac{\pi_{l,k}}{p_{l}} dx}{\pi_{l,k}} \right] - 1 \right| \\ & \leq \mathbb{E}_{\pi_{l,k}} \left| \left(\frac{\pi_{l+1,k}}{\pi_{l,k}} - 1 \right) \cdot \left(\frac{\hat{p}_{l,T} \frac{\pi_{l,k}}{p_{l}} \bigg/ \int_{\Omega} \hat{p}_{l,T} \frac{\pi_{l,k}}{p_{l}} dx}{\pi_{l,k}} - 1 \right) \right| \end{split}$$

by Cauchy-Schwarz,

$$\leq \chi^{2} \left(\pi_{l+1,k} \mid \mid \pi_{l,k} \right)^{\frac{1}{2}} \cdot \chi^{2} \left(\frac{\hat{p}_{l,T} \frac{\pi_{l,k}}{p_{l}}}{\int_{\Omega} \hat{p}_{l,T} \frac{\pi_{l,k}}{p_{l}} dx} \mid \mid \pi_{l,k} \right)^{\frac{1}{2}}$$

by Lemma F.3,

$$\leq \chi^2 \left(\pi_{l+1,k} \mid \mid \pi_{l,k} \right)^{\frac{1}{2}} \cdot \frac{\Delta}{\int_{\Omega} \nu_0 P^T(x,i) \frac{\pi_{l,k}}{\omega^l p_l(x)} dx}$$

Multiplying by $\int_{\Omega} \hat{p}_{l,T} \frac{\pi_{l,k}}{\omega^l p_l} dx$, we have that

$$\mathbb{E}_{\pi_{l,k}} \left[\frac{\pi_{l+1,k}}{\pi_{l,k}} \cdot \frac{\hat{p}_{l,T} \frac{\pi_{l,k}}{\omega^{l} p_{l}}}{\pi_{l,k}} \right] \ge \int_{\Omega} \hat{p}_{l,T} \frac{\pi_{l,k}}{\omega^{l} p_{l}} dx - \chi^{2} \left(\pi_{l+1,k} \mid | \pi_{l,k} \right)^{\frac{1}{2}} \cdot \Delta.$$

It remains to lower-bound this first term, which is the fraction of mass that is considered to "belong" to the kth component after running for time T, compared to the fraction for the stationary distribution. This is lower-bounded by Lemma F.4,

$$\mathbb{E}_{\pi_{l,k}} \left[\frac{\pi_{l+1,k}}{\pi_{l,k}} \cdot \frac{\hat{p}_{l,T} \frac{\pi_{l,k}}{\omega^{l} p_{l}}}{\pi_{l,k}} \right] \geq \frac{1}{2 \left\| \frac{\nu_{0}(x,i)}{p_{0}(x,i)} \right\|_{\infty}} - \Delta - \chi^{2} \left(\pi_{l+1,k} \mid\mid \pi_{l,k} \right)^{\frac{1}{2}} \cdot \Delta.$$

Lemma G.7. (C) Given assumptions 1.1 then

$$1 \leq \frac{\mathbb{E}_{p(x,i)} \left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)} I\{i=l\} \right]}{\mathbb{E}_{p(x,i)} \left[\frac{\tilde{\pi}_{l+1,k}}{\bar{p}(x,i)} I\{i=l\} \right]} \leq \frac{1}{c_0}.$$

Proof. By assumptions 1.1,

$$\frac{\mathbb{E}_p\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]}{\mathbb{E}_p\left[\frac{\tilde{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]} = \frac{\int_{\Omega}p(x)q_{l+1}(x-x_k)dx}{\mathbb{E}_p\left[\frac{\tilde{\pi}_{l+1,k}}{p(x,i)}I\{i=l\}\right]} \le \frac{1}{c_0}.$$

and we also have,

$$\frac{\mathbb{E}_p\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]}{\mathbb{E}_p\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]} = \frac{\int_{\Omega}\sum_k \alpha_k p_k(x)q_{l+1}(x-x_k)dx}{\int_{\Omega}\alpha_k p_k(x)q_{l+1}(x-x_k)dx} \ge 1.$$

In the following Lemma G.8 we show that $\mathbb{E}_{\hat{p}_t}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right] \asymp \mathbb{E}_p\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]$. Conceptually and proof-wise this is the same as Lemma G.6. The only difference is that now we are showing the closeness in the importance estimate holds for the entire next level $\tilde{p}_{l+1}(x)$ with the learned weights $w_{l+1,k}$.

Lemma G.8. (B') Given Assumptions 1.1 and Assumptions 3.1 Then

$$c_{tilt} \cdot \left(\frac{1}{2||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}} - \left(1 + \chi^2 \left(\pi_{l+1,k} \mid |\pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta_{C_1}\right) \leq \frac{\mathbb{E}_{\hat{p}_T} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\}\right]}{\mathbb{E}_p \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\}\right]} \leq \left\|\frac{\nu_0(x,i)}{p(x,i)}\right\|_{L^{\infty}},$$

where
$$\Delta_{C_1} = \left(\frac{C_1^2 \cdot \chi^2\left(\nu_0(x,i)||\pi(x,i)\right) \cdot C_{PI}\left(\pi_0(x,i)\right)}{\alpha_0(\omega_0^L)^2 \cdot T}\right)^{\frac{1}{2}}$$
.

Proof. We show that by normalizing \tilde{p} ,

$$\frac{\mathbb{E}_{\hat{p}_{T}}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}\right]}{\mathbb{E}_{p}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}\right]} = \frac{\sum_{i} \int_{\Omega} \frac{\hat{p}_{T}(x,i)}{p(x,i)} p(x,i) \frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\} dx}{\mathbb{E}_{p}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\}\right]} \\
\leq \frac{\left\|\frac{\hat{p}_{T}(x,i)}{p(x,i)}\right\|_{L^{\infty}} \sum_{i} \int_{\Omega} \left|\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} | p(x,i) I\{i=l\} dx}{\mathbb{E}_{p}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\}\right]} \\
= \left\|\frac{\hat{p}_{T}(x,i)}{p(x,i)}\right\|_{L^{\infty}}$$

By contraction,

$$\leq \left\| \frac{\nu_0(x,i)}{p(x,i)} \right\|_{L^{\infty}}$$

Denote $\hat{p}_{l,T}(x) = \hat{p}_T(x,l)$. Then we obtain the lower bound

$$\frac{\mathbb{E}_{\hat{p}_T}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]}{\mathbb{E}_{p_l}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]} = \frac{\mathbb{E}_{\hat{p}_T(x,l)}\left[\frac{\tilde{p}_{l+1}(x)}{\omega^l p_l(x)}\right]}{\int_{\Omega}\tilde{p}_{l+1}(x)dx} \geq \frac{\mathbb{E}_{\hat{p}_{l,T}}\left[\frac{\sum_k w_{l+1,k}\alpha_k \pi_k(x) \cdot q_l(x-x_k)}{\omega^l p_l(x)}\right]}{\int_{\Omega}\tilde{p}_{l+1}(x)dx}$$

by tilting assumptions 1.1

$$\geq c_{tilt} \frac{\mathbb{E}_{\hat{p}_{l,T}} \left[\frac{\sum_{k} w_{l+1,k} \alpha_{k} \pi_{k}(x) \cdot q_{l}(x-x_{k})}{\omega^{l} p_{l}(x)} \right]}{\int_{\Omega} \sum_{k} w_{l+1,k} \alpha_{k} \pi_{k}(x) \cdot q_{l}(x-x_{k}) dx} = \mathbb{E}_{\hat{p}_{l,T}} \left[\frac{\frac{1}{Z_{l+1,0}} \sum_{k} w_{l+1,k} \alpha_{k} \pi_{k}(x) \cdot q_{l}(x-x_{k})}{\omega^{l} p_{l}(x)} \right]$$

Let $p_{i,0}(x) = \frac{1}{Z_{l+1,0}} \sum_k w_{i,k} \alpha_k \pi_k(x) \cdot q_i(x-x_k)$, where $Z_{l+1,0} = \sum_k w_{l+1,k} Z_{l+1,k}$

$$= c_{tilt} \cdot \mathbb{E}_{p_{l,0}} \left[\frac{p_{l+1,0}}{p_{l,0}} \cdot \frac{\hat{p}_{l,T} \frac{p_{l,0}}{\omega^l p_l}}{p_{l,0}} \right].$$

Let
$$\Delta_{C_1} = \left(\frac{C_1^2 \cdot \chi^2 \left(\nu_0(x,i) || \pi(x,i) \right) \cdot C_{PI} \left(\pi_0(x,i) \right)}{\alpha_0(\omega_0^L)^2 \cdot T} \right)^{\frac{1}{2}}$$
 then we can show

$$\mathbb{E}_{p_{l,0}}\left[\frac{p_{l+1,0}}{p_{l,0}} \cdot \frac{\hat{p}_{l,T} \frac{p_{l,0}}{\omega^{l} p_{l}}}{p_{l,0}}\right] \geq \frac{1}{2||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}} - \left(1 + \chi^{2} \left(\pi_{l+1,k} \mid |\pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta_{C_{1}}.$$

Consider the following

$$\begin{split} & \left| \mathbb{E}_{p_{l,0}} \left[\frac{p_{l+1,0}}{p_{l,0}} \cdot \frac{\hat{p}_{l,T} \frac{p_{l,0}}{\omega^{l} p_{l}} \bigg/ \int_{\Omega} \hat{p}_{l,T} \frac{p_{l,0}}{\omega^{l} p_{l}} dx}{p_{l,0}} \right] - 1 \right| \\ & \leq \mathbb{E}_{p_{l,0}} \left| \left(\frac{p_{l+1,0}}{p_{l,0}} - 1 \right) \cdot \left(\frac{\hat{p}_{l,T} \frac{p_{l,0}}{p_{l}} \bigg/ \int_{\Omega} \hat{p}_{l,T} \frac{p_{l,0}}{p_{l}} dx}{p_{l,0}} - 1 \right) \right|. \end{split}$$

By Cauchy-Shwarz,

$$\leq \chi^{2} \left(p_{l+1,0} \mid \mid p_{l,0} \right)^{\frac{1}{2}} \cdot \chi^{2} \left(\frac{\hat{p}_{l,T} \frac{p_{l,0}}{p_{l}}}{\int_{\Omega} \hat{p}_{l,T} \frac{p_{l,0}}{p_{l}} dx} \mid \mid p_{l,0} \right)^{\frac{1}{2}}.$$

Since $p_{i,0}(x) = \sum_k \frac{w_{i,k}Z_{i,k}}{\sum_j w_{i,j}Z_{i,j}} \pi_{i,k}(x)$ the ratio r in the context of Lemma J.4 is given by $r = \frac{\frac{w_{l+1,k}Z_{l+1,k}}{\sum_j w_{l+1,j}Z_{l+1,j}}}{\frac{w_{l,k}Z_{l,k}}{Z_{i,k}}}$. Using the inductive hypothesis (H1) this can be upper bounded by $r \leq C_1^2$.

Therefore by Lemma F.3 and Lemma J.4

$$\leq C_1 \chi^2 \bigg(\pi_{l+1,k} \mid \mid \pi_{l,k} \bigg)^{\frac{1}{2}} \cdot \bigg(\frac{\chi^2 \big(\nu_0(x,i) \mid \mid p(x,i) \big) \cdot C_{PI} \big(p_0(x,i) \big)}{\alpha_0 \omega_0^l \cdot T} \bigg)^{\frac{1}{2}}.$$

Together this yields,

$$\begin{split} \mathbb{E}_{p_{l,0}} \bigg[\frac{p_{l+1,0}}{p_{l,0}} \cdot \frac{\hat{p}_{l,T} \frac{p_{l,0}}{\omega^{l} p_{l}}}{p_{l,0}} \bigg] \\ & \geq \int_{\Omega} \hat{p}_{l,T} \frac{p_{l,0}}{\omega^{l} p_{l}} dx - C_{1} \chi^{2} \bigg(\pi_{l+1,k} \mid \mid \pi_{l,k} \bigg)^{\frac{1}{2}} \cdot \bigg(\frac{\chi^{2} \big(\nu_{0}(x,i) \mid \mid p(x,i) \big) \cdot C_{PI} \big(p_{0}(x,i) \big)}{\alpha_{0} \omega_{0}^{l} \cdot T} \bigg)^{\frac{1}{2}}. \\ \text{Let } \Delta_{C_{1}} &= \bigg(\frac{C_{1}^{2} \cdot \chi^{2} \big(\nu_{0}(x,i) \mid \mid p(x,i) \big) \cdot C_{PI} \big(p_{0}(x,i) \big)}{\alpha_{0} (\omega_{0}^{L})^{2} \cdot T} \bigg)^{\frac{1}{2}} \text{ and } \Delta \\ &= \bigg(\frac{\chi^{2} \big(\nu_{0}(x,i) \mid \mid p(x,i) \big) \cdot C_{PI} \big(p_{0}(x,i) \big)}{\alpha_{0} (\omega_{0}^{L})^{2} \cdot T} \bigg)^{\frac{1}{2}} \\ \text{then by Lemma} & \boxed{\text{F.4}}. \\ &\geq \frac{1}{2||\frac{\nu_{0}}{\pi_{0}}||_{\infty}} - \Delta - \chi^{2} \bigg(\pi_{l+1,k} \mid ||\pi_{l,k} \bigg)^{\frac{1}{2}} \cdot \Delta_{C_{1}} \\ &\geq \frac{1}{2||\frac{\nu_{0}}{\pi_{0}}||_{\infty}} - \bigg(1 + \chi^{2} \bigg(\pi_{l+1,k} \mid ||\pi_{l,k} \bigg)^{\frac{1}{2}} \bigg) \cdot \Delta_{C_{1}}. \end{split}$$

Lemma G.9. Let Assumptions 1.1 hold. Then

$$\begin{split} &\frac{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]^{2}} \leq \frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B}^{2}} \frac{MC_{1}}{c_{tilt}\omega^{l}} \left(\chi^{2}\left(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}\right) - 1\right) \\ &\text{with } C_{B} = c_{tilt} \left(\frac{1}{2||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}} - \left(1 + \chi^{2}\left(\pi_{l+1,k} \mid\mid \pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta\right) \text{ and} \\ &\frac{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]^{2}} \leq \frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B'}^{2}} \frac{C_{1}^{2}}{c_{tilt}^{2}\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1\right) \\ &\text{with } C_{B'} = c_{tilt} \cdot \left(\frac{1}{2||\frac{\nu_{0}(x,i)}{p(x,i)}||_{\infty}} - \left(1 + \chi^{2}\left(\pi_{l+1,k} \mid\mid \pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta_{C_{1}}\right). \end{split}$$

Proof. For any function f,

$$\mathbb{E}_{\hat{p}_{T}}\left[f(x,i)I\{i=l\}\right] = \sum_{i} \int_{\Omega} \frac{\hat{p}_{T}(x,i)}{p(x,i)} p(x,i)f(x,i)I\{i=l\}dx$$

$$\leq \left\|\frac{\hat{p}_{T}(x,i)}{p(x,i)}\right\|_{L^{\infty}} \mathbb{E}_{p}\left[f(x,i)I\{i=l\}\right] \leq \left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}} \mathbb{E}_{p}\left[f(x,i)I\{i=l\}\right].$$

By Lemma G.6

$$\mathbb{E}_{\hat{p}_T} \left[\frac{\bar{\pi}_{l+1,k}}{\tilde{p}(x,l)} I\{i=l\} \right]^2 \ge C_B^2 \cdot \mathbb{E}_p \left[\frac{\bar{\pi}_{l+1,k}(x)}{\tilde{p}(x,l)} I\{i=l\} \right]^2.$$

Therefore.

$$\frac{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]^{2}} \leq \frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B}^{2}} \cdot \frac{\mathbb{E}_{p}\left[\left(\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{p}\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]^{2}}.$$

Further simplification yields

$$\frac{\mathbb{E}_{p}\left[\left(\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{p}\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]^{2}} = \frac{\int_{\Omega}\omega^{l}p_{l}(x)\left(\frac{\bar{\pi}_{l+1,k}}{r_{l}\bar{p}_{l}(x)}\right)^{2}dx}{\left(\int_{\Omega}\omega^{l}p_{l}(x)\frac{\bar{\pi}_{l+1,k}}{r_{l}\bar{p}_{l}(x)}dx\right)^{2}} = \frac{1}{\omega^{l}}\int_{\Omega}\frac{\left(\pi_{l+1,k}/\bar{Z}_{l+1,k}\right)^{2}}{p_{l}(x)}dx.$$

Since $p_l(x) = \frac{1}{Z_l} \sum_k \pi(x) w_{l,k} q_l(x - x_k)$, by Lemma J.4 and Corollary G.2

$$\frac{1}{\omega^{l}} \int_{\Omega} \frac{\left(\pi_{l+1,k}/\bar{Z}_{l+1,k}\right)^{2}}{p_{l}(x)} dx = \frac{1}{\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid p_{l}) - 1\right) \\
\leq \frac{1}{\omega^{l}} \cdot \frac{\sum_{k'} w_{l,k'} \bar{Z}_{l,k'}}{w_{l,k} \bar{Z}_{l,k'}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1\right) \\
\leq \frac{MC_{1}}{c_{tilt}\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1\right).$$

Similarly, by Lemma G.8

$$\mathbb{E}_{\hat{p}_T} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)} I\{i=l\} \right]^2 \ge C_{B'}^2 \cdot \mathbb{E}_p \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)} I\{i=l\} \right]^2$$

where
$$C_{B'} = c_{tilt} \cdot \left(\frac{1}{2||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}} - \left(1 + \chi^2 \left(\pi_{l+1,k} \mid |\pi_{l,k} \rangle^{\frac{1}{2}} \right) \cdot \Delta_{C_1} \right).$$

Therefore,

$$\frac{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]^{2}} \leq \frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B'}^{2}} \cdot \frac{\mathbb{E}_{p}\left[\left(\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{p}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]^{2}}.$$

Further simplification yields

$$\frac{\mathbb{E}_{p}\left[\left(\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{p}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]^{2}} = \frac{\int_{\Omega}\omega^{l}p_{l}(x)\left(\frac{\tilde{p}_{l+1}(x)}{r_{l}\tilde{p}_{l}(x)}\right)^{2}dx}{\left(\int_{\Omega}\omega^{l}p_{l}(x)\frac{\tilde{p}_{l+1}(x)}{r_{l}\tilde{p}_{l}(x)}dx\right)^{2}} = \frac{\frac{\omega^{l}}{r_{l}^{2}}\int_{\Omega}\frac{p_{l+1}(x)^{2}}{p_{l}(x)}dx}{\frac{(\omega^{l})^{2}}{r_{l}^{2}}\left(\int_{\Omega}p_{l}(x)\frac{p_{l+1}(x)}{p_{l}(x)}dx\right)^{2}} = \frac{1}{\omega^{l}}\int_{\Omega}\frac{p_{l+1}(x)^{2}}{p_{l}(x)}dx.$$

Since $p_l(x) = \frac{1}{Z_l} \sum_k \pi(x) w_{l,k} q_l(x - x_k)$, by Lemma J.4 and Corollary G.2.

$$\frac{1}{\omega^{l}} \int_{\Omega} \frac{p_{l+1}(x)^{2}}{p_{l}(x)} dx \leq \frac{\frac{w_{l+1,k}\bar{Z}_{l+1,k}}{\sum_{k'} w_{l+1,k'}\bar{Z}_{l+1,k'}}}{\frac{w_{l,k}\bar{Z}_{l,k}}{\sum_{k'} w_{l,k'}\bar{Z}_{l,k'}}} \cdot \frac{1}{\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} || \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1 \right) \\
\leq \frac{C_{1}^{2}}{c_{til}^{2}\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} || \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1 \right).$$

G.2 MIXING TIME BOUNDS

Lemma G.10. Given Assumptions 3.1 let $\tilde{\pi}_0(x,i) = \sum_{j=1}^l \hat{r}_j^{(l)} \sum_{k=1}^M w_{jk} Z_{jk} \frac{\alpha_k \pi_k(x) q_j(x-x_k)}{Z_{jk}} I\{i=j\}$. In the setting of Theorem E.1 we let $\bar{\pi}_0$ be the projected chain so that $\bar{\pi}_0((i,j)) \propto \hat{r}_i^{(l)} w_{i,j} Z_{i,j}$. Then

$$C_{PI}(\pi_0(x,i)) = O(\frac{CMr \cdot l^2}{\gamma \cdot \lambda})$$

where $r = \frac{\max_{i < i' \le l} \bar{\pi}_0((i',j))}{\min(\bar{\pi}_0((i,j)),\bar{\pi}_0((i-1,j)))}$ and $C = \max_{ij} C_{ij}$. When applying the inductive hypothe-

sis

$$C_{PI}(\pi_0(x,i)) = O(\frac{C_1^3 C_2 CM \cdot l^3}{c_{tilt} \gamma \cdot \lambda}).$$

Proof. First we note that by theorem E.1 we have that

$$C_{PI}(\pi_0(x,i)) \le \max \left\{ C(1 + (6M + 12)\bar{C}), \frac{6M\bar{C}}{\gamma}, \frac{12\bar{C}}{\lambda} \right\}.$$

We are free to choose the constants γ and λ and C is the maximum of the local Poincaré constants. Therefore it is left to bound \bar{C} , the Poincaré constant of the projected chain.

We show this using the canonical path method, Lemma 1.7 Given the projected chain of the ST process there are two types of distinct edges. First consider the edge e = ((1, j), (1, k)), we have that

$$l(e) = \frac{1}{\bar{\pi}_0((i,j))P((1,j),(1,k))} \sum_{e \in \Gamma_{x,y}} \bar{\pi}_0(x)\bar{\pi}_0(y)|\gamma_{x \to y}|.$$

Given the definition of P((1,j),(1,k)) and our lower bounds in Lemma J.5 and Assumptions 3.1

$$\leq \frac{O(1)}{\min(\bar{\pi}_0((1,j)), \bar{\pi}_0((1,k)))} \sum_{e \in \Gamma_{x,y}} \bar{\pi}_0(x) \bar{\pi}_0(y) |\gamma_{x \to y}|.$$

Moreover, the longest path in our projected chain is from x = (l, k) to y = (l, j) and is of length 2l - 1 therefore

$$\leq \frac{(2l-1)O(1)}{\min\left(\bar{\pi}_{0}((1,j)), \bar{\pi}_{0}((1,k))\right)} \sum_{e \in \Gamma_{x,y}} \bar{\pi}_{0}(x)\bar{\pi}_{0}(y)
\leq \frac{(2l-1)O(1)}{\min\left(\bar{\pi}_{0}((1,j)), \bar{\pi}_{0}((1,k))\right)} \sum_{i=1}^{l} \bar{\pi}_{0}((i,j)) \sum_{i'=1}^{l} \bar{\pi}_{0}((i',k))
\leq \frac{\max_{i} \bar{\pi}_{0}((i,j))}{\min\left(\bar{\pi}_{0}((1,j)), \bar{\pi}_{0}((1,k))\right)} l(2l-1)O(1).$$

Now consider the second type of edge e = ((i, j), (i - 1, j)), we have that

$$l(e) = \frac{1}{\bar{\pi}_0((i,j))P((i,j),(i-1,j))} \sum_{e \in \Gamma_{x,y}} \bar{\pi}_0(x)\bar{\pi}_0(y)|\gamma_{x \to y}|.$$

Given the definition of P((1, j), (1, k)) and our lower bounds in Lemma J.5 and Assumptions 3.1

$$\leq \frac{O(1)}{\min\left(\bar{\pi}_0((i,j)), \bar{\pi}_0((i-1,j))\right)} \sum_{e \in \Gamma_{x,y}} \bar{\pi}_0(x)\bar{\pi}_0(y)|\gamma_{x \to y}|.$$

Moreover, the longest path in our projected chain is from x = (l, k) to y = (l, j) and is of length 2l - 1 therefore

$$\leq \frac{(2l-1)O(1)}{\min\left(\bar{\pi}_{0}((i,j)), \bar{\pi}_{0}((i-1,j))\right)} \sum_{e \in \Gamma_{x,y}} \bar{\pi}_{0}(x)\bar{\pi}_{0}(y)
\leq \frac{(2l-1)O(1)}{\min\left(\bar{\pi}_{0}((i,j)), \bar{\pi}_{0}((i-1,j))\right)} \sum_{i'=i+1}^{l} \bar{\pi}_{0}((i',j)) \left(\sum_{i'=1}^{i-1} \bar{\pi}_{0}((i',j)) + \sum_{i'=1}^{l} \bar{\pi}_{0}((i',k))\right)
\leq \frac{\max_{i < i' \leq l} \bar{\pi}_{0}((i',j))}{\min\left(\bar{\pi}_{0}((i,j)), \bar{\pi}_{0}((i-1,j))\right)} l(2l-1)O(1).$$

In the case of induction, by letting $\bar{\pi}_0((i,j)) \propto \hat{r}_i^{(l)} w_{i,j} Z_{i,j}$ and applying Lemma G.4 we have that

$$\frac{\max_{i < i' \le l} \bar{\pi}_0((i',j))}{\min(\bar{\pi}_0((i,j)), \bar{\pi}_0((i-1,j)))} \le \frac{lC_1^3 C_2}{c_{tilt}}.$$

Lemma G.11. Given assumptions 1.1, 3.1, G.1 and $\Delta = \left(\frac{\chi^2\left(\nu_0(x,i)||p(x,i)\right) \cdot C_{PI}\left(p_0(x,i)\right)}{\alpha_0(\omega_0^L)^2 \cdot T}\right)^{\frac{1}{2}}$ then choosing

$$T = \Omega\left(poly(l, M, C_1, C_2, C, \frac{1}{c_{tilt}}, \frac{1}{\lambda}, \frac{1}{\gamma}, \frac{1}{\delta_T})\right)$$

yields $\Delta \leq \delta_T$.

Proof. We have that,

$$\chi^{2}(\nu_{0}(x,i)||p(x,i))^{\frac{1}{2}} \leq ||\frac{\nu_{0}(x,i)}{p(x,i)}||_{\infty} - 1 \leq ||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}.$$

By Assumptions 3.1

$$||\frac{\nu_0(x,i)}{p(x,i)}||_{\infty} \le U.$$

By Lemma G.10 with $\tilde{p}_0(x,i) = \hat{r}_l^{(l)} w_{l,k} \tilde{\pi}_{l,k}(x) I\{i=l\} + \sum_{j=1}^{l-1} \hat{r}_j^{(l)} \tilde{p}_{j0}(x) I\{j=i\}$ we have that,

$$C_{PI}(p_0(x,i)) = O(\frac{C_1^2 C_2 CM \cdot l^2}{c_{tilt} \gamma \cdot \lambda}).$$

For $\tilde{p}_0(x,i) = \hat{r}_l^{(l)} w_{l,k} \tilde{\pi}_{l,k}(x) I\{i = l\} + \sum_{j=1}^{l-1} \hat{r}_j^{(l)} \tilde{p}_{j0}(x) I\{j = i\}$ and $\tilde{p}(x,i) = \sum_{j=1}^{l} \hat{r}_j^{(l)} p_j(x) I\{j = i\}$ with α_0 defined so that $p(x,i) = \alpha_0 p_0(x,i) + (1-\alpha_0) p_1(x,i)$ we have that

$$\alpha_{0} = \frac{\sum_{i=1}^{l} \int_{\Omega} \tilde{p}_{0}(x, i) dx}{\sum_{i=1}^{l} \int_{\Omega} \tilde{p}(x, i) dx}$$

$$\geq \frac{\hat{r}_{l}^{(l)} Z_{l0} + \sum_{i=1}^{l-1} \hat{r}_{i}^{(l)} Z_{i0} dx}{\sum_{i=1}^{l} \hat{r}_{i}^{(l)} Z_{i} dx}$$

$$\geq c_{tilt} \frac{\hat{r}_{l}^{(l)} Z_{l} + \sum_{i=1}^{l-1} \hat{r}_{i}^{(l)} Z_{i} dx}{\sum_{i=1}^{l} \hat{r}_{i}^{(l)} Z_{i} dx}$$

$$= c_{tilt}.$$

Lastly, for $\tilde{p}_0(x,i) = \hat{r}_l^{(l)} w_{l,k} \tilde{\pi}_{l,k}(x) I\{i = l\} + \sum_{j=1}^{l-1} \hat{r}_j^{(l)} \tilde{p}_{j0}(x) I\{j = i\}$ making use of Lemma G.4 and Lemma G.3 we have that

$$\begin{split} \omega_0^l &= \frac{\hat{r}_l^{(l)} w_{l,k} \int_{\Omega} \tilde{\pi}_{l,k}(x) dx}{\sum_{i=1}^l \hat{r}_i^{(l)} \sum_{k=1}^M w_{i,k} \int_{\Omega} \tilde{\pi}_{i,k}(x) dx} \\ &= \frac{\hat{r}_l^{(l)} w_{l,k} Z_{l,k}}{\sum_{i=1}^l \hat{r}_i^{(l)} \sum_{k=1}^M w_{i,k} Z_{i,k}} \\ &\geq \frac{1}{\sum_{i=1}^l \sum_{k=1}^M \frac{\hat{r}_i^{(l)} w_{i,k} Z_{i,k}}{\hat{r}_l^{(l)} w_{l,k'} Z_{l,k'}}} \\ &\geq \frac{c_{tilt}}{l \cdot Ml \cdot C_1^3 C_2}. \end{split}$$

Putting all of the bounds together we have that

$$\Delta = \left(\frac{\chi^2 \left(\nu_0(x,i) || p(x,i)\right) \cdot C_{PI} \left(p_0(x,i)\right)}{\alpha_0(\omega_0^L)^2 \cdot T}\right)^{\frac{1}{2}} \le \left(\frac{O\left(\frac{C_1^3 C_2 C M \cdot l^3}{c_{tilt} \gamma \cdot \lambda}\right) \cdot l^2 \cdot M^2 \cdot C_1^4 C_2^2}{c_{tilt}^3 \cdot T}\right).$$

Therefore choosing

$$T = \Omega \left(\frac{l^6 M^3 C C_1^7 C_2^3}{\delta_T \cdot \gamma \cdot \lambda \cdot c_{tilt}^6} \right)$$

with an appropriate constant yields $\Delta \leq \delta_T$.

G.3 Proof of induction step

In this subsection it is shown how estimating weights by Algorithm 3 maintains modal and level balance. Its important to note that Algorithm 3 has three separate Monte Carlo estimates, it'll be shown how each one is used to maintain level balance. First, Algorithm 3 estimates the modal weights at the next temperature level, the analysis of this component corresponds to Theorem G.13. Then, after estimating the modal weights, the level weight is estimated, which corresponds to Theorem G.15. Lastly, the algorithm is re-ran and samples are collected to re-adjust level weights, this corresponds to the analysis in Theorem G.17.

We show in the following lemma that the constant R from Lemma G.5 is bounded.

Lemma G.12. Let Assumptions 1.1 and Assumptions 3.1 hold. Then for $f = \frac{\bar{\pi}_{l,k}(x)}{\bar{p}(x,l)}$ and $f = \frac{\tilde{p}_{l+1}(x)}{\bar{p}(x,l)}$,

$$\frac{\mathbb{E}_{\hat{p}_T}[f^2]}{\mathbb{E}_{\hat{p}_T}[f]^2} \le R,$$

with $R = \text{poly}(l, M, C_1, C_2, \frac{1}{c_{tilt}}, U)$.

Proof. By Lemma G.9

$$\begin{split} &\frac{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)}I\{i=l\}\right]^{2}} \leq \frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B}^{2}} \frac{MC_{1}}{c_{tilt}\omega^{l}} \left(\chi^{2}\left(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k}\mid\mid\bar{\pi}_{l,k}/\bar{Z}_{l,k}\right) - 1\right) \\ &\text{with } C_{B} = c_{tilt} \left(\frac{1}{2\mid\mid\frac{\nu_{0}(x,i)}{p_{0}(x,i)}\mid\mid_{\infty}} - \left(1 + \chi^{2}\left(\pi_{l+1,k}\mid\mid\pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta\right) \text{ and } \\ &\frac{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\left(\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,l)}\right)^{2}I\{i=l\}\right]}{\mathbb{E}_{\hat{p}_{T}(x,i)}\left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)}I\{i=l\}\right]^{2}} \leq \frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B'}^{2}} \frac{C_{1}^{2}}{c_{tilt}^{2}\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k}\mid\mid\bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1\right) \\ &\text{with } C_{B'} = c_{tilt} \cdot \left(\frac{1}{2\mid|\frac{\nu_{0}(x,i)}{p(x,i)}\mid|_{\infty}} - \left(1 + \chi^{2}\left(\pi_{l+1,k}\mid\mid\pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta_{C_{1}}\right). \end{split}$$

As made explicit in Lemma G.11, with $T = \Omega(poly(l, M, C_1, C_2, C, \frac{1}{c_{tilt}}, \frac{1}{\lambda}, \frac{1}{\gamma}, \frac{1}{\delta_T}))$ the C_B and $C_{B'}$ terms can be lower bounded by $\frac{c_{tilt}}{||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}}$. Moreover, using that $||\frac{\nu_0(x,i)}{p(x,i)}||_{\infty} \le ||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}$ yields the final upper bound.

Since
$$\omega^l = \frac{\hat{r}_l^{(l)} Z_l}{\sum_k \hat{r}_k^{(l)} Z_k}$$
,

$$\frac{1}{\omega^l} = \frac{\sum_k \hat{r}_k^{(l)} Z_k}{\hat{r}_l^{(l)} Z_l} = \frac{\hat{r}_1^{(l)} Z_1 + \sum_{k=2}^l \hat{r}_k^{(l)} Z_k}{\hat{r}_l^{(l)} Z_l} = \frac{l \cdot C_2 r_1^{(l)} Z_1 + \sum_{k=2}^l r_k^{(l)} Z_k}{r_l^{(l)} Z_l} \le 2 \cdot l \cdot C_2^2.$$

Using $\left\|\frac{\nu_0(x,i)}{p(x,i)}\right\|_{L^\infty} \leq U$ and $\chi^2\left(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}\right) = O(1)$ by Assumptions 3.1 then combining the bounds yields

$$\frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B}^{2}} \frac{MC_{1}}{c_{tilt}\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1\right) \leq \frac{2lMC_{1}C_{2}^{2}U^{3}}{c_{tilt}^{3}} \cdot O(1)$$

$$\frac{\left\|\frac{\nu_{0}(x,i)}{p(x,i)}\right\|_{L^{\infty}}}{C_{B'}^{2}} \frac{C_{1}^{2}}{c_{tilt}^{2}\omega^{l}} \left(\chi^{2}(\bar{\pi}_{l+1,k}/\bar{Z}_{l+1,k} \mid\mid \bar{\pi}_{l,k}/\bar{Z}_{l,k}) - 1\right) \leq \frac{2lC_{1}^{2}C_{2}^{2}U^{3}}{c_{tilt}^{3}} \cdot O(1).$$

Theorem G.13. HI(l+1) There is $C_1 = \text{poly}\left(\frac{U}{c_{tilt}}\right)$ and $R = \text{poly}(l, M, C_1, C_2, \frac{1}{c_{tilt}}, U)$ such that the following holds: Suppose that HI(l) holds with C_1 . Then Algorithm \mathfrak{I} running the continuous process for time T time and obtaining N samples, with

$$\begin{split} T &= \Omega \Big(\operatorname{poly}(l, M, \tilde{C}, U, \frac{1}{c_{tilt}}, \frac{1}{\lambda}, \frac{1}{\gamma}, \frac{1}{\delta_T}) \Big) \\ N &= \Omega \Big(\frac{R}{s} \Big), \end{split}$$

returns weights such that with probability $1 - \delta$, HI(l + 1) holds with the same C_1 . The key choice in Algorithm \mathfrak{Z}_l is the weighting

$$w_{l,k} = \frac{1}{\frac{1}{N} \sum_{j=1}^{N} \frac{\bar{\pi}_{l+1,k}(x_j)}{\tilde{p}(x_j,i_j)} I\{i_j = l\}}$$

Proof. We have with probability $1-\delta$ that letting $c_A=1-\sqrt{\frac{R}{N\delta}}, c_B=c_{tilt}\bigg(\frac{1}{2||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}}-\bigg(1+\frac{1}{2}||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}\bigg)\bigg)\bigg)$

$$\chi^2\bigg(\pi_{l+1,k}\ \big|\big|\ \pi_{l,k}\bigg)^{\frac{1}{2}}\bigg)\cdot\Delta\bigg),\,C_A=1+\sqrt{\frac{R}{N\delta}},\,C_B=\left\|\frac{\nu_0(x,i)}{p(x,i)}\right\|_{L^\infty}\text{ and }c_C=\frac{1}{c_{tilt}},$$

$$\frac{\frac{1}{N} \sum_{j=1}^{N} \frac{\bar{\pi}_{l+1,k}(x_{j})}{\bar{p}(x_{j},i_{j})} I\{i_{j}=l\}}{\frac{Z_{l+1,k}}{Z}} = \frac{\frac{1}{N} \sum_{j=1}^{N} \frac{\bar{\pi}_{l+1,k}(x_{j})}{\bar{p}(x_{j},i_{j})} I\{i_{j}=l\}}{\mathbb{E}_{\hat{p}_{t}} \left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)} I\{i=l\} \right]} \cdot \frac{\mathbb{E}_{\hat{p}_{t}} \left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)} I\{i=l\} \right]}{\mathbb{E}_{p} \left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)} I\{i=l\} \right]} \cdot \frac{\mathbb{E}_{p} \left[\frac{\bar{\pi}_{l+1,k}}{\bar{p}(x,i)} I\{i=l\} \right]}{Z_{l+1,k}/Z}$$

$$\in [c_{A}c_{B}, C_{A}C_{B}C_{C}]$$

by applying Lemma G.5, Lemma G.6 and Lemma G.7 to the three terms respectively.

Choosing $N=\Omega(\frac{R}{\delta})$ reduces $\sqrt{\frac{R}{N\delta}}$ to a constant. Lemma G.12 provides a bound for R. Let

$$\Delta = \left(\frac{\chi^2\left(\nu_0(x,i)||p(x,i)\right) \cdot C_{PI}\left(p_0(x,i)\right)}{\alpha_0(\omega_0^L)^2 \cdot T}\right)^{\frac{1}{2}} \text{ then by taking the ratio of the two Monte Carlo estimates yields that we can take}$$

$$C = \max \left\{ C_A C_B, \frac{1}{c_A c_B, c_C} \right\} \le \frac{\left\| \frac{\nu_0(x,i)}{\pi(x,i)} \right\|_{L^{\infty}} \cdot \frac{1}{c_{tilt}}}{c_{tilt} \left(\frac{1}{2||\frac{\nu_0}{2c_0}||_{\infty}} - \left(1 + \chi^2 \left(\pi_{l+1,k} \mid || \pi_{l,k} \right)^{\frac{1}{2}} \right) \cdot \Delta \right)}.$$

The rest follows from Assumptions 3.1 and Lemma G.11 which yield

$$\chi^2 \bigg(\pi_{l+1,k} \mid \mid \pi_{l,k} \bigg)^{\frac{1}{2}} = O(1) \text{ and } \Delta = O(\delta),$$

respectively. This yields

$$C \le \frac{\left\|\frac{\nu_0(x,i)}{\pi(x,i)}\right\|_{L^{\infty}} \cdot \frac{1}{c_{tilt}}}{c_{tilt}\left(\frac{1}{2||\frac{\nu_0}{\pi_0}||_{\infty}} - \left(1 + O(1)\right) \cdot \delta\right)}$$

By choosing T so that δ is negligible

$$= \frac{2(1+\delta)}{c_{tilt}^2(1-\delta)} \left\| \frac{\nu_0(x,i)}{\pi(x,i)} \right\|_{L^{\infty}}^2$$

Which by Assumptions G.1,

$$C \le \frac{4}{c_{tilt}^2} U^2 = \text{poly}(\frac{U}{c_{tilt}}).$$

In order to simplify the proof of H2(l+1) we offload some of the work to the following lemma (G.14). This Lemma combines the bounds from the previous lemmas, Lemma G.5 and Lemma G.8 to find an upper and lower bound on $\frac{\hat{r}_k^{(l)}Z_k}{\hat{r}_{l+1}^{(l)}Z_{l+1}}$. Then the theorem that follows, Theorem G.15, details the

run time T and number of samples N required to guarantee $\frac{\hat{r}_k^{(l)}Z_k}{\hat{r}_{l+1}^{(l)}Z_{l+1}} \in [\frac{1}{C_2}, C_2]$. Its important to note that Theorem G.15 only guarantees the exist of one $k \in [1, l]$ that maintains level balance.

then with probability $1-\delta$

$$\frac{c_{tilt}}{l^2C_2^2}(1-\delta) \left(\frac{1}{2||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}} - \left(1+\chi^2\left(\pi_{l+1,k}\mid\mid\pi_{l,k}\right)^{\frac{1}{2}}\right) \cdot \Delta_{C_1}\right) \leq \frac{\hat{r}_k^{(l)}Z_k}{\hat{r}_{l+1}^{(l)}Z_{l+1}} \leq (1+\delta) \cdot \left\|\frac{\nu_0(x,i)}{p(x,i)}\right\|_{L^\infty}$$
 for all $k \in [1,l]$.

Proof. By Lemma G.5, with R as in Lemma G.12, and Lemma G.8 we have that

$$\frac{\frac{1}{N} \sum_{i=j}^{N} \frac{\tilde{p}_{l+1}(x_{j})}{\tilde{p}(x_{j}, i_{j})} I\{i_{j} = l\}}{Z_{l+1} / Z} = \frac{\frac{1}{N} \sum_{i=j}^{N} \frac{\tilde{p}_{l+1}(x_{j})}{\tilde{p}(x_{j}, i_{j})} I\{i_{j} = l\}}{\mathbb{E}_{\hat{p}_{t}} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x, i)} I\{i = l\} \right]} \cdot \frac{\mathbb{E}_{\hat{p}_{t}} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x, i)} I\{i = l\} \right]}{\mathbb{E}_{p} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x, i)} I\{i = l\} \right]} \le (1 + \delta) \cdot \left\| \frac{\nu_{0}(x, i)}{p(x, i)} \right\|_{L^{\infty}} = U.$$

Similarly, we have that

$$\frac{\frac{1}{N} \sum_{i=j}^{N} \frac{\tilde{p}_{l+1}(x_{j})}{\tilde{p}(x_{j},i_{j})} I\{i_{j}=l\}}{Z_{l+1} / Z} = \frac{\frac{1}{N} \sum_{i=j}^{N} \frac{\tilde{p}_{l+1}(x_{j})}{\tilde{p}(x_{j},i_{j})} I\{i_{j}=l\}}{\mathbb{E}_{\hat{p}_{t}} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\} \right]} \cdot \frac{\mathbb{E}_{\hat{p}_{t}} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\} \right]}{\mathbb{E}_{p} \left[\frac{\tilde{p}_{l+1}(x)}{\tilde{p}(x,i)} I\{i=l\} \right]} \\
\geq c_{tilt} (1-\delta) \left(\frac{1}{2||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}} - \left(1 + \chi^{2} \left(\pi_{l+1,k} \mid | \pi_{l,k} \right)^{\frac{1}{2}} \right) \cdot \Delta_{C_{1}} \right) = L.$$

Lastly, given that $\frac{Z_{l+1}}{Z} = \frac{Z_{l+1}}{\sum_{i=1}^{l} \hat{r}_i^{(l)} Z_i}$, we consider

$$\frac{\frac{1}{N}\sum_{i=j}^{N}\frac{\hat{p}_{l+1}(x_{j})}{\hat{p}(x_{j},i_{j})}I\{i_{j}=l\}}{Z_{l+1}\bigg/Z} = \frac{\sum_{i=1}^{l}\hat{r}_{i}^{(l)}Z_{i}}{\frac{1}{N}\sum_{i=j}^{N}\frac{\hat{p}_{l+1}(x_{j})}{\hat{p}(x_{j},i_{j})}I\{i_{j}=l\}}Z_{l+1}} \in [L,U].$$

$$\implies \frac{\hat{r}_{k}^{(l)}Z_{k}}{\frac{1}{N}\sum_{i=j}^{N}\frac{\hat{p}_{l+1}(x_{j})}{\hat{p}(x_{j},i_{j})}I\{i_{j}=l\}}Z_{l+1}} \leq U \text{ for all } k \in [1,l].$$

By the pigeonhole principle there exists $k \in [1, l]$ such that

$$\frac{L}{l} \leq \frac{\hat{r}_k^{(l)} Z_k}{\frac{1}{\frac{1}{N} \sum_{i=j}^{N} \frac{\tilde{p}_{l+1}(x_j)}{\tilde{p}(x_i, i_i)} I\{i_j = l\}} Z_{l+1}}.$$

Lemma G.3 yields for all $k \in [1, l]$

$$\frac{L}{l^2C_2^2} \leq \frac{\hat{r}_k^{(l)}Z_k}{\frac{1}{\frac{1}{N}\sum_{i=j}^N \frac{\tilde{p}_{l+1}(x_j)}{\tilde{p}(x_j,i_j)}I\{i_j=l\}}}Z_{l+1}.$$

Theorem G.15. There is $C = l^2C_2^2 \cdot O(\frac{U}{c_{tilt}})$ and $R = poly(l, M, C_1, C_2, \frac{1}{c_{tilt}}, U)$ such that the following holds: Suppose that $\mathbf{H1}(l)$ holds with C_1 and $\mathbf{H2}(l)$ holds with C_2 . By running Algorithm \mathbf{I} the continuous time process for time T and obtaining N samples with

$$T = \Omega(poly(l, M, \tilde{C}, C_1, C_2, \frac{1}{c_{tilt}}, \frac{1}{\lambda}, \frac{1}{\gamma}, \frac{1}{\delta_T}))$$
$$N = \Omega(\frac{R}{\delta}).$$

Then there exists $k \in [1, l]$ s.t. with probability $1 - \delta$

$$\frac{1}{C} \le \frac{\hat{r}_k^{(l)} Z_k}{\hat{r}_{l+1}^{(l)} Z_{l+1}} \le C.$$

The choice in Algorithm 3 is the weighting

$$\hat{r}_{l+1}^{(l)} = \frac{1}{\frac{1}{N} \sum_{i=j}^{N} \frac{\tilde{p}_{l+1}(x_j)}{\tilde{p}(x_j, i_j)} I\{i_j = l\}}.$$

Proof. By Lemma G.14 this reduces to finding the maximum between the upper bounds on

$$\frac{\frac{1}{\frac{c_{tilt}}{l^2C_2^2}(1-\delta)\left(\frac{1}{2||\frac{\nu_0(x,i)}{p_0(x,i)}||_{\infty}} - \left(1+\chi^2\left(\pi_{l+1,k}\mid|\pi_{l,k}\right)^{\frac{1}{2}}\right)\cdot\Delta_{C_1}\right)}{\frac{1}{2}}$$

and

$$(1+\delta)\cdot \left\| \frac{\nu_0(x,i)}{p(x,i)} \right\|_{L^\infty}.$$

The first term can be bounded as follows

$$\frac{\frac{c_{tilt}}{l^{2}C_{2}^{2}}(1-\delta)\left(\frac{1}{2||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}}-\left(1+\chi^{2}\left(\pi_{l+1,k}\mid|\pi_{l,k}\right)^{\frac{1}{2}}\right)\cdot\Delta_{C_{1}}\right)}{l^{2}C_{2}^{2}} \leq \frac{l^{2}C_{2}^{2}}{c_{tilt}(1-\delta)\left(\frac{1}{2||\frac{\nu_{0}(x,i)}{p_{0}(x,i)}||_{\infty}}-\left(1+\chi^{2}\left(\pi_{l+1,k}\mid|\pi_{l,k}\right)^{\frac{1}{2}}\right)\cdot\Delta_{C_{1}}\right)}.$$

Where Δ_{C_1} is Δ with an additional C_1^2 term in the numerator. However, as shown in Lemma G.11 the time is already polynomial in C_1 therefore the run time remains unchanged. This puts us in the same settings as Theorem G.13 Taking the bound in Theorem G.13 as greedy upper bound we get the same constant $C = O(\frac{U}{c_{tilt}})$ with an additional $l \cdot C_2$ scaling factor.

Theorem G.15 shows that there exists $k \in [1, l]$ such that we have good level balance for $\frac{\hat{r}_k^{(l)} Z_k}{\hat{r}_{l+1}^{(l)} Z_{l+1}}$.

However, in order to guarantee that the projected chain mixes well we require that the ratio $\frac{\hat{r}_k^{(l)}Z_k}{\hat{r}_j^{(l)}Z_j}$ be within a constant for all $j,k\in[1,l+1]$. In order to prevent the constant from becoming exponentially bad with respect to the number of levels, after estimating the level weight $r_l^{(l)}$, we re-run the chain and keep count of the number of samples at each level and adjust accordingly. The following Lemma G.16 shows that the level approximation acquired by sampling is close to the true level

weights. This Lemma is then used to prove the bound for **H2(l+1)** in Theorem G.15

Lemma G.16. Let Assumptions [1.1] and Assumptions [3.1] hold. Then

$$\frac{\alpha c_{tilt}}{2\left\|\frac{\nu_0(x,i)}{p_{good}(x,i)}\right\|_{L^{\infty}}} - \alpha \Delta \leq \frac{\mathbb{E}_{\hat{p}^T(x,i)}\left[I\{l_1=i\}\right]}{\mathbb{E}_{p(x,i)}\left[I\{l_1=i\}\right]} \leq \left\|\frac{\nu_0(x,i)}{p(x,i)}\right\|_{L^{\infty}}$$

with
$$\Delta = \left(\frac{\chi^2\left(\nu_0(x,i)||p(x,i)\right) \cdot C_{PI}\left(p(x,i)\right)}{\alpha \cdot T}\right)^{\frac{1}{2}}$$
.

Proof. An upperbound is given by,

$$\frac{\mathbb{E}_{\hat{p}^{T}(x,i)} \left[I\{l_{1} = i\} \right]}{\mathbb{E}_{p(x,i)} \left[I\{l_{1} = i\} \right]} = \frac{\sum_{i} \int_{\Omega} \frac{\hat{p}_{T}(x,i)}{p(x,i)} p(x,i) I\{l_{1} = i\}}{\mathbb{E}_{p(x,i)} \left[I\{l_{1} = i\} \right]} \\
\leq \frac{\left\| \frac{\hat{p}_{l,T}(x,i)}{p_{l}(x,i)} \right\|_{L^{\infty}} \sum_{i} \int_{\Omega} I\{l_{1} = i\} p(x,i) dx}{\mathbb{E}_{p(x,i)} \left[I\{l_{1} = i\} \right]} \\
= \left\| \frac{\hat{p}_{l,T}(x,i)}{p(x,i)} \right\|_{L^{\infty}}$$

By contraction,

$$\leq \left\| \frac{\nu_0(x,i)}{p(x,i)} \right\|_{L^{\infty}}$$

To find a lower bound first note that

$$\frac{\mathbb{E}_{\hat{p}^T(x,i)}\left[I\{l_1=i\}\right]}{\mathbb{E}_{p(x,i)}\left[I\{l_1=i\}\right]} = \frac{\sum_i \int_{\Omega} \left(\alpha \hat{p}^T(x,i) \frac{p_{good}(x,i)}{p(x,i)} + \left(\hat{p}^T(x,i) - \alpha \hat{p}^T(x,i) \frac{p_{good}(x,i)}{p(x,i)}\right)\right) I\{l_1=i\} dx}{\mathbb{E}_{p(x,i)}\left[I\{l_1=i\}\right]}$$

since $\alpha p_{good}(x, i) + (1 - \alpha)p_{bad}(x, i) = p(x, i)$

$$\geq \alpha \frac{\sum_{i} \int_{\Omega} \hat{p}^{T}(x, i) \frac{p_{good}(x, i)}{p(x, i)} I\{l_{1} = i\} dx}{\mathbb{E}_{p(x, i)} \left[I\{l_{1} = i\} \right]}$$

 let $p_{good}(x,i)$ be the good part of distribution on the extended state space. Then consider,

$$\left| \sum_{i} \int_{\Omega} \left(\frac{\hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)} / Z}{p_{good}(x,i)} - 1 \right) I\{l_{1} = i\} p_{good}(x,i) dx \right|$$

$$\leq \sum_{i} \int_{\Omega} \left| \frac{\hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)} / Z}{p_{good}(x,i)} - 1 \right| I\{l_{1} = i\} p_{good}(x,i) dx$$

$$\leq \chi^{2} \left(\frac{\hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)}}{\sum_{i} \int_{\Omega} \hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)} dx} \mid \mid p_{good}(x,i) \right)^{\frac{1}{2}}.$$

$$S^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)} \qquad I(l_{1} = i) dx > 1$$

$$\implies \sum_{i} \int_{\Omega} \frac{\hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)}}{\sum_{i} \int_{\Omega} \hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)} dx} I\{l_{1} = i\} dx \ge$$

$$\mathbb{E}_{p_{good}(x,i)} \left[I\{l_{1} = i\} \right] - \chi^{2} \left(\frac{\hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)}}{\sum_{i} \int_{\Omega} \hat{p}^{T}(x,i) \frac{p_{good}(x,i)}{p(x,i)} dx} \mid\mid p_{good}(x,i) \right)^{\frac{1}{2}}.$$

Combining the two lower bounds we have that,

$$\frac{\mathbb{E}_{\hat{p}^{T}(x,i)}\left[I\{l_{1}=i\}\right]}{\mathbb{E}_{p(x,i)}\left[I\{l_{1}=i\}\right]} \geq \frac{\alpha Z\left(\mathbb{E}_{p_{good}(x,i)}\left[I\{l_{1}=i\}\right] - \chi^{2}\left(\frac{\hat{p}^{T}(x,i)\frac{p_{good}(x,i)}{p(x,i)}}{\sum_{i}\int_{\Omega}\hat{p}^{T}(x,i)\frac{p_{good}(x,i)}{p(x,i)}dx} \mid\mid p_{good}(x,i)\right)^{\frac{1}{2}}\right)}{\mathbb{E}_{p(x,i)}\left[I\{l_{1}=i\}\right]}$$

By Lemma F.2 and using assumptions 1.1 we get,

$$\geq \frac{\alpha}{2\left\|\frac{\nu_0(x,i)}{p_{good}(x,i)}\right\|_{L^{\infty}}} \left(c_{tilt} - \chi^2 \left(\frac{\hat{p}^T(x,i)\frac{p_{good}(x,i)}{p(x,i)}}{\sum_i \int_{\Omega} \hat{p}^T(x,i)\frac{p_{good}(x,i)}{p(x,i)}} dx\right) \mid p_{good}(x,i)\right)^{\frac{1}{2}}\right).$$

Lastly by Lemma F.1 with
$$\Delta = \left(\frac{\chi^2\left(\nu_0(x,i)||p(x,i)\right) \cdot C_{PI}\left(p(x,i)\right)}{\alpha \cdot T}\right)^{\frac{1}{2}},$$

$$\geq \frac{\alpha c_{tilt}}{2\left\|\frac{\nu_0(x,i)}{p_{good}(x,i)}\right\|_{L^{\infty}}} - \alpha \Delta$$

Theorem G.17. H2(l+1) There is $C_2 = \text{poly}\left(\frac{U}{c_{tilt}}\right)$ and $R = poly(l, M, C_1, C_2, \frac{1}{c_{tilt}}, U)$ such that the following holds: Suppose that H1(l) and H2(l) holds with C_2 . Then Algorithm \mathfrak{I} running the continuous process for time T time and obtaining N samples, with

$$T = \Omega\left(\text{poly}(l, M, \tilde{C}, C_1, C_2, U, \frac{1}{c_{tilt}}, \frac{1}{\lambda}, \frac{1}{\gamma}, \frac{1}{\delta_T})\right)$$
$$N = \Omega\left(\frac{R}{\delta}\right),$$

returns weights such that with probability $1 - \delta$, H2(l + 1) holds with the same C_2 . The key choice of weights here are

$$r_i^{(l+1)} = \hat{r}_i^{(l)} / \frac{1}{N} \sum_{i=1}^{N} I\{i_j = i\}.$$

 Proof. Applying the definition of $r_i^{(l)}$ the quotient can be rewritten as

$$\frac{\int_{\Omega} r_{l_1}^{(l+1)} \tilde{p}_{l_1}(x) dx}{\int_{\Omega} r_{l_2}^{(l+1)} \tilde{p}_{l_2}(x) dx} = \frac{\int_{\Omega} r_{l_1}^{(l)} \tilde{p}_{l_1}(x) dx}{\int_{\Omega} r_{l_2}^{(l)} \tilde{p}_{l_2}(x) dx} \cdot \frac{\frac{1}{N} \sum_{j=1}^{N} I\{i_j = l_2\}}{\frac{1}{N} \sum_{j=1}^{N} I\{i_j = l_1\}}$$

$$= \frac{\mathbb{E}_{p(x,i)} \left[I\{l_1 = i\} \right]}{\mathbb{E}_{p(x,i)} \left[I\{l_2 = i\} \right]} \cdot \frac{\frac{1}{N} \sum_{j=1}^{N} I\{i_j = l_2\}}{\frac{1}{N} \sum_{j=1}^{N} I\{i_j = l_1\}}$$

$$\frac{\frac{1}{N} \sum_{j=1}^{N} I\{i_j = l_2\}}{\mathbb{E}_{p(x,i)} \left[I\{i_j = l_2\} \right]} \cdot \frac{\mathbb{E}_{p^T(x,i)} \left[I\{i_j = l_2\} \right]}{\mathbb{E}_{p(x,i)} \left[I\{i_j = l_2\} \right]}$$

$$= \frac{\frac{\frac{1}{N} \sum_{j=1}^{N} I\{i_{j} = l_{2}\}}{\mathbb{E}_{\hat{p}^{T}(x,i)} \left[I\{i = l_{2}\}\right]} \cdot \frac{\mathbb{E}_{\hat{p}^{T}(x,i)} \left[I\{i = l_{2}\}\right]}{\mathbb{E}_{p(x,i)} \left[I\{i = l_{2}\}\right]}}{\frac{\frac{1}{N} \sum_{j=1}^{N} I\{i_{j} = l_{1}\}}{\mathbb{E}_{\hat{p}^{T}(x,i)} \left[I\{i = l_{1}\}\right]} \cdot \frac{\mathbb{E}_{\hat{p}^{T}(x,i)} \left[I\{i = l_{1}\}\right]}{\mathbb{E}_{p(x,i)} \left[I\{i = l_{1}\}\right]}$$

Therefore it is sufficient to upper and lower bound $\frac{\frac{1}{N}\sum_{j=1}^{N}I\{i_{j}=l_{1}\}}{\mathbb{E}_{\hat{p}^{T}(x,i)}\left[I\{i=l_{1}\}\right]}\cdot\frac{\mathbb{E}_{\hat{p}^{T}(x,i)}\left[I\{i=l_{1}\}\right]}{\mathbb{E}_{p(x,i)}\left[I\{i=l_{1}\}\right]} \text{ for all }1\leq l \text{ which we get directly from }1$

 $l_1 \le l$ which we get directly from Lemma G.5, with R as in Lemma G.12, and Lemma G.16. This vields

$$C = \frac{1+\delta}{1-\delta} \cdot \frac{\frac{1}{\alpha} \left\| \frac{\nu_0(x,i)}{p(x,i)} \right\|_{L^{\infty}}}{\frac{c_{tilt}}{2 \left\| \frac{\nu_0(x,i)}{p_{good}(x,i)} \right\|_{L^{\infty}}} - \Delta}$$

where α is the weight of the good component of joint distribution $p(x,i) = \alpha p_{good}(x,i) + (1 - \alpha p_{good}(x,i))$ α) $p_{bad}(x,i)$. First we note that by Theorem G.15 we have

$$\frac{1}{C'} \le \frac{\hat{r}_k^{(l)}}{\hat{r}_{l+1}^{(l)}} \frac{Z_k}{Z_{l+1}} \le C'$$

where $C'=l^2\cdot C_2^2\cdot O(\frac{U}{c_{tilt}})$. By the inductive hypothesis, we know that $\frac{1}{C_2}\leq \frac{\hat{r}_iZ_i}{\hat{r}_jZ_j}\leq C_2$ for $i,j\in \mathbb{N}$ [1, l]. Together, this implies that $\frac{1}{\tilde{C}_2} \leq \frac{\hat{r}_i Z_i}{\hat{r}_j Z_j} \leq \tilde{C}_2$ for $i, j \in [1, l+1]$ with $\tilde{C}_2 = l^2 \cdot C_2^3 \cdot O(\frac{U}{c_{****}})$. Now, replacing C_2 with \tilde{C}_2 in the context of Lemma G.4 and then applied to Lemma G.10 yields

$$C_{PI}(p_{good}(x,i)) = O\left(\frac{C_1^2 \tilde{C}_2 C M l^2}{c_{tilt} \gamma \lambda}\right) = O\left(\frac{U C_1^2 C_2^3 C M \cdot l^4}{c_{tilt}^2 \gamma \cdot \lambda}\right).$$

Applying this to Lemma G.11 still yields a polynomial mixing time to bound Δ . Therefore choosing appropriately $T = \Omega\left(\operatorname{poly}(l, M, C_1, C_2, \frac{1}{c_{tilt}}, \frac{1}{\lambda}, \frac{1}{\gamma})\right)$, we have that $\Delta \leq \delta$. Since $\left\|\frac{\nu_0(x, i)}{p(x, i)}\right\|_{L^{\infty}} \leq \delta$

$$\left\| \frac{\nu_0(x,i)}{p_{good}(x,i)} \right\|_{L^{\infty}}$$
 we get

$$C \le \frac{2}{c_{tilt} \cdot \alpha} \left\| \frac{\nu_0(x,i)}{p_{good}(x,i)} \right\|_{L_{\infty}}^2 \cdot O(1).$$

By Assumptions 3.1,

$$C \leq \frac{1}{C_{tilt} \cdot \alpha} \cdot O(U^2).$$

Lastly, as shown in Lemma G.11, $\alpha \geq c_{tilt}$; therefore

$$C \le O\left(\frac{U^2}{c_{tilt}^2}\right).$$

H PROOF OF MAIN THEOREM

Proof. We will conclude the main theorem by applying Lemma F.3 to

$$\pi(x,i) \propto \sum_{l=1}^{L} \left(r_l \pi(x) \cdot \sum_{k=1}^{M} w_{l,k} q_l(x-x_k) \right) I\{i=l\},$$

with L being the target level so that $q_L(x-x_k)=1$. Rewrite $\pi(x,i)$ as

$$\pi(x,i) = \omega^L \pi(x) I\{i = L\} + \sum_{l=1}^{L-1} \omega^l \pi^l(x) I\{i = l\}.$$

To get an ϵ bound on TV-distance we note that by Cauchy-Schwarz,

$$TV(\hat{p}_T(x), \pi(x)) \le \chi^2 \left(\hat{p}_T(x) \mid\mid \pi(x)\right)^{\frac{1}{2}} = \left(\int_{\Omega} \left(\frac{\hat{p}_T(x, L) / \int_{\Omega} \hat{p}_T(x, L) dx}{\pi(x)} - 1\right)^2 \pi(x) dx\right)^{\frac{1}{2}}.$$

Lemma F.3 with $\pi_0^L = \pi^L = \pi(x)$ yields

$$\left(\int_{\Omega} \left(\frac{\hat{p}_T(x,L)/\int_{\Omega} \hat{p}_T(x,L)dx}{\pi(x)} - 1\right)^2 \pi(x)dx\right)^{\frac{1}{2}} \le \frac{\Delta}{\int_{\Omega} \frac{\hat{p}_T(x,L)}{\sigma(L)}dx}.$$
 (H.1)

where

$$\Delta := \left(\frac{\chi^2 \left(\nu_0(x,i)||\pi(x,i)\right) \cdot C_{PI}\left(\pi_0(x,i)\right)}{\alpha_0 \omega_0^L \cdot T}\right)^{\frac{1}{2}}.$$

It remains to show that (H.1) is $\leq \epsilon$. We first bound $\int_{\Omega} \frac{\hat{p}_T(x,L)}{\omega^L} dx$. By Lemma F.4, with $\pi_0 = \pi$,

$$\int_{\Omega} \frac{\hat{p}_T(x, L)}{\omega^L} dx \ge \frac{1}{2 \left\| \frac{\nu_0}{\pi_0} \right\|_{\infty}} - \frac{\Delta}{(\omega_0^L)^{\frac{1}{2}}}.$$

By Assumptions 3.1,

$$\chi^{2}(\nu_{0}(x,i)||\pi(x,i)) \leq \left\| \frac{\nu_{0}(x,i)}{\pi(x,i)} - 1 \right\|_{L^{\infty}} - 1 \leq \left\| \frac{\nu_{0}(x,i)}{\pi_{0}(x,i)} \right\|_{L^{\infty}} \leq U.$$

Then by Lemma G.10

$$C_{PI}(\pi_0(x,i)) = poly\left(C_1, C_2, \tilde{C}, M, l, \frac{1}{C_{tilt}}, \frac{1}{\gamma}, \frac{1}{\lambda}\right).$$

Next we bound α_0 and ω_0^L by using Assumption 1.1(2),

$$\alpha_{0} = \frac{\sum_{i=1}^{L} \hat{r}_{i}^{(L)} Z_{i,0}}{\sum_{i=1}^{L} \hat{r}_{i}^{(L)} Z_{i}} \ge \frac{c_{tilt} \sum_{i=1}^{L} \hat{r}_{i}^{(L)} Z_{i}}{\sum_{i=1}^{L} \hat{r}_{i}^{(L)} Z_{i}} = c_{tilt}$$

$$\omega_{0}^{L} = \frac{\hat{r}_{L}^{(L)} w_{L,k} \int_{\Omega} \tilde{\pi}_{L,k}(x) dx}{\sum_{i=1}^{L} \hat{r}_{i}^{(L)} \sum_{k=1}^{M} w_{i,k} \int_{\Omega} \tilde{\pi}_{i,k}(x) dx}$$

$$= \frac{\hat{r}_{L}^{(L)} w_{L,k} Z_{L,k}}{\sum_{i=1}^{L} \hat{r}_{i}^{(L)} \sum_{k=1}^{M} w_{i,k} Z_{i,k}}$$

$$\ge \frac{1}{\sum_{i=1}^{L} \sum_{k=1}^{M} \frac{\hat{r}_{i}^{(L)} w_{L,k} Z_{i,k}}{\hat{r}_{L}^{(L)} w_{L,k'} Z_{L,k'}}}}$$

$$\ge \frac{c_{tilt}}{L^{2} \cdot M \cdot C_{3}^{2} C_{2}},$$

where in the last step we use Lemma G.4. Therefore choosing $T=\Omega(\frac{1}{\varepsilon^2}+poly(U,C_1,C_2,\tilde{C},M,L,\frac{1}{c_{tilt}},\frac{1}{\gamma},\frac{1}{\lambda}))$ yields $\frac{\Delta}{(\omega_0^L)^{\frac{1}{2}}}\leq \frac{1}{4U},\int_{\Omega}\frac{\hat{p}_T(x,L)}{\omega^L}dx\geq \frac{1}{4U},$ and $\frac{\Delta}{\int_{\Omega}\frac{\hat{p}_T(x,L)}{\omega^L}dx}\leq \frac{1}{4U}$

arepsilon. Noting that Theorem G.13 and Theorem G.17 yield $C_1 = poly(\frac{U}{c_{tilt}})$ and $C_2 = poly(\frac{U}{c_{tilt}})$, we have that $T = \Omega(\frac{1}{\epsilon^2}poly(U,\tilde{C},M,L,\frac{1}{c_{tilt}},\frac{1}{\gamma},\frac{1}{\lambda}))$ is sufficient. Moreover, the number of samples required at each level to run Algorithm 3 to ensure failure probability at most $\frac{\delta}{L}$ for each level (and hence total failure probability at most δ) is given in Theorem G.13 and Theorem G.17 as $N = \Omega(\frac{RL}{\delta})$. $R = \text{poly}(l,M,C_1,C_2,\frac{1}{c_{tilt}},U)$ is given in Lemma G.12 and with $C_1 = poly(\frac{U}{c_{tilt}})$ and $C_2 = poly(\frac{U}{c_{tilt}})$ this reduces to $R = \text{poly}(L,M,\frac{1}{C_{tilt}},U)$. Therefore, $N = \Omega(\text{poly}(L,M,U,\frac{1}{c_{tilt}},\frac{1}{\delta}))$

I GENERAL SETTING

I.1 Tempering on \mathbb{R}^d

In this subsection, we place reasonable assumptions on the tempering function $q_l(x)$ in \mathbb{R}^d and show that Assumptions 3.1 hold. More specifically, we determine lower bounds on the probability flow between two modes of the projected chain. Lower bounding the probability flow between modes will provide us with a lower bound on the spectral gap, in turn, enabling us to upper bound the Poincaré constant \bar{C} of the projected chain from section \bar{E} . The following assumptions will be made for this subsection.

Assumption I.1. Let
$$\tilde{p}_i(x) = \sum_{k=1}^M \alpha_k p_k(x) \sum_{j=1}^M w_{i,j} q_i(x-x_j)$$
.

1. The tempering function q_i is defined as

$$q_i(x) = e^{-\beta_i \frac{||x||^2}{2}}.$$

2. We let the push forward measure $q_{jj'}^{\#}$ be defined as the translation

$$q_{jj'}^{\#}(x) = x - x_j + x_{j'}.$$

3. The function $\alpha_k p_k(x) = e^{-f_k(x)}$ where $f_k(x)$ is L-smooth.

The following Lemma will allow us to find a suitable lower bound on the probability flows between modes by bounding the χ^2 -divergence between mixture components.

Lemma I.2. Let $p_{\beta_i,good}$ be the probability distribution defined as in (B.3). Let the distribution $p_{ij} = \frac{\alpha_j p_j(x) e^{-\beta_i \frac{||x-x_j||^2}{2}}}{Z_j(\beta_i)}$ satisfy a Poincaré inequality with constant C_{ij} and $||x_j - \mathbb{E}_{p_{ij}}(x)|| \leq \delta$ for some constant $\delta \geq 0$. Lastly, let $\Delta\beta = \beta_i - \beta_{i'}$ and $\Delta\beta \in [0, \frac{1}{2C_{i,s}}]$. Then

$$\chi^2(p_{i'j}||p_{ij}) \le \frac{1}{\sqrt{1 - 2C_{LS}\Delta\beta}} \cdot \exp\left(\frac{2(dC_{LS} + \delta^2)\Delta\beta}{1 - 2C_{LS}\Delta\beta}\right) - 1.$$

In particular, for $\Delta \beta = O(\frac{1}{C_{LS}d + \delta^2})$ this is O(1).

Proof. We have

$$\chi^{2}\left(\frac{\alpha_{j}p_{j}(x)q_{\beta_{i'}}(x-x_{j})}{Z_{i'j}}||\frac{\alpha_{j}p_{j}(x)q_{\beta_{i}}(x-x_{j})}{Z_{ij}}\right) = \int_{\Omega}\left(\frac{e^{-\beta_{i'}\frac{||x-x_{j}||^{2}}{2}}Z_{ij}}{e^{-\beta_{i}\frac{||x||^{2}}{2}}Z_{i'j}}\right)^{2}\alpha_{j}p_{j}(x)e^{-\beta_{i}\frac{||x-x_{j}||^{2}}{2}}/Z_{ij}dx - 1$$

$$= \left(\frac{Z_{i,j}}{Z_{i',j}}\right)^{2}\int_{\Omega}e^{(\beta_{i}-\beta_{i'})||x-x_{j}||^{2}}\frac{\alpha_{j}p_{j}(x)e^{-\beta_{i}||x-x_{j}||^{2}}}{Z_{ij}}dx - 1$$

Further note that with $\beta_{i'} < \beta_i$ and $e^{-\beta||x-x_j||^2/2} \le 1$, it follows that

$$Z_{i,j} = \int_{\Omega} \alpha_j p_j(x) e^{-\beta_i ||x - x_j||^2/2} dx \le \int_{\Omega} \alpha_j p_j(x) e^{-\beta_{i'} ||x - x_j||^2/2} dx = Z_{i',j}.$$

2592
2593 Therefore, with
$$p_{ij} = \frac{\alpha_j p_j(x) e^{-\beta_i ||x-x_j||^2}}{Z_{ij}}$$

$$\left(\frac{Z_{i,j}}{Z_{i',j}}\right)^{2} \int_{\Omega} e^{(\beta_{i} - \beta_{i'})||x - x_{j}||^{2}} \frac{\alpha_{j} p_{j}(x) e^{-\beta_{i}||x - x_{j}||^{2}}}{Z_{ij}} dx - 1 \le \int_{\Omega} e^{\Delta \beta ||x - x_{j}||^{2}} \frac{\alpha_{j} p_{j}(x) e^{-\beta_{i}||x - x_{j}||^{2}}}{Z_{ij}} dx - 1 = \mathbb{E}_{p_{i,j}} \left[e^{\Delta \beta ||x - x_{j}||^{2}} \right].$$

Applying Lemma J.6 yields

$$\mathbb{E}_{p_{ij}}\left[e^{\Delta\beta||x-x_{j}||^{2}}\right] \leq \frac{1}{\sqrt{1-2C_{LS}\Delta\beta}} \cdot \exp\left(\frac{\Delta\beta}{1-2C_{LS}\Delta\beta}\mathbb{E}_{p_{ij}}\left[||x-x_{j}||\right]^{2}\right) \\
\leq \frac{1}{\sqrt{1-2C_{LS}\Delta\beta}} \cdot \exp\left(\frac{\Delta\beta}{1-2C_{LS}\Delta\beta}\mathbb{E}_{p_{ij}}\left[||x-\mathbb{E}_{p_{ij}}(x)||+||\mathbb{E}_{p_{ij}}(x)-x_{j}||\right]^{2}\right) \\
\leq \frac{1}{\sqrt{1-2C_{LS}\Delta\beta}} \cdot \exp\left(\frac{2\Delta\beta}{1-2C_{LS}\Delta\beta}\left(\sum_{k=1}^{d} \operatorname{Var}_{p_{ij}}(x_{k})+\delta^{2}\right)\right)$$

Lastly, applying the LSI inequality,

$$\leq \frac{1}{\sqrt{1-2C_{LS}\Delta\beta}} \cdot \exp\biggl(\frac{2(dC_{LS}+\delta^2)\Delta\beta}{1-2C_{LS}\Delta\beta}\biggr).$$

Lemma I.3. Let $p_{\beta_i,good}$ be the probability distribution defined as in (B.3). For all $1 \le j \le M$ let $\alpha_j p_j(x) = e^{-f_j(x)}$ for some L-smooth function $f_j(x)$ and let $||x_j - x_j^*|| \le D$ for some constant D > 0. Then

$$\chi^{2}\left(\frac{\alpha_{j'}q_{jj'}^{\#}p_{j'}(x)q_{1}(x-x_{j'})}{Z_{1j'}}||\frac{\alpha_{j}p_{j}(x)q_{1}(x-x_{j})}{Z_{1j}}\right) \leq \left(\frac{\beta_{1}+L}{\beta_{1}-3L}\right)^{d}e^{5\frac{L^{2}D^{2}}{\beta_{1}-3L}}-1.$$

In particular, for $\beta_1 = \Omega(L^2D^2d)$, this is O(1).

Proof. Consider the following,

$$\chi^{2} \left(\frac{\alpha_{j'} q_{jj'}^{\#} p_{j'}(x) q_{1}(x - x_{j'})}{Z_{1j'}} || \frac{\alpha_{j} p_{j}(x) q_{1}(x - x_{j})}{Z_{1j}} \right)$$

$$= \int_{\Omega} \left(\frac{\alpha_{j'} q_{jj'}^{\#} p_{j'}(x) q_{1}(x - x_{j'})}{Z_{1j'}} \middle/ \frac{\alpha_{j} p_{j}(x) q_{1}(x - x_{j})}{Z_{1j}} - 1 \right)^{2} \frac{\alpha_{j} p_{j}(x) q_{1}(x - x_{j})}{Z_{1j}} dx$$

$$= \int_{\Omega} \left(\frac{\alpha_{j'} p_{j'}(x - x_{j} + x_{j'}) q_{1}(x - x_{j})}{Z_{1j'}} \middle/ \frac{\alpha_{j} p_{j}(x) q_{1}(x - x_{j})}{Z_{1j}} - 1 \right)^{2} \frac{\alpha_{j} p_{j}(x) q_{1}(x - x_{j})}{Z_{1j}} dx$$

$$= \frac{Z_{1j}}{Z_{1j'}^{2}} \int_{\Omega} \frac{\alpha_{j'}^{2} p_{j'}(x - x_{j} + x_{j'})^{2}}{\alpha_{j} p_{j}(x)} e^{-\beta_{i} \frac{||x - x_{j}||^{2}}{2}} dx - 1$$

We continue by finding an upper bound on

$$\frac{Z_{1j}}{Z_{1j'}^2} \int_{\Omega} \frac{\alpha_{j'}^2 p_{j'} (x - x_j + x_{j'})^2}{\alpha_j p_j(x)} e^{-\beta_i \frac{||x - x_j||^2}{2}} dx = \frac{Z_{1j}}{Z_{1j'}^2} \int_{\Omega} \frac{e^{-2f_{j'}(x - x_j + x_{j'})}}{e^{-f_j(x)}} e^{-\beta_i \frac{||x - x_j||^2}{2}} dx$$

By letting $a_i p_i(x) = e^{-f_j(x)}$ for some L-smooth $f_i(x)$,

$$\leq \frac{Z_{1j}}{Z_{1j'}^2} \frac{e^{-2f_{j'}(x_{j'})}}{e^{-f_j(x_j)}} \int_{\Omega} e^{(2\nabla f_{j'}(x_{j'}) - \nabla f_j(x_j))^T (x - x_j)} e^{\frac{3}{2}L||x - x_j||^2} e^{-\beta_1 \frac{||x - x_j||^2}{2}} dx$$

Letting
$$v = 2\nabla f_{j'}(x_{j'}) - \nabla f_j(x_j),$$

$$= \frac{Z_{1j}}{Z_{1j'}^2} \frac{e^{-2f_{j'}(x_{j'})}}{e^{-f_j(x_j)}} \int_{\Omega} e^{-\frac{1}{2}(3L-\beta_1)(x-x_j+\frac{1}{3L-\beta_1}v)^T(x-x_j+\frac{1}{3L-\beta_1}v)+\frac{1/2}{3L-\beta_1}v^Tv} dx$$

$$= \frac{Z_{1j}}{Z_{1j'}^2} \frac{e^{-2f_{j'}(x_{j'})}}{e^{-f_j(x_j)}} e^{\frac{1/2}{\beta_1-3L}v^Tv} (\frac{2\pi}{\beta_1-3L})^{\frac{d}{2}}$$

We can bound $v^T v = ||2\nabla f_{j'}(x_{j'}) - \nabla f_j(x_j)||^2 \le (2L||x_{j'} - x_{j'}^*|| + L||x_j - x_j^*||)^2 \le 9L^2D^2$ $\le \frac{Z_{1j}}{Z_{1i'}^2} \frac{e^{-2f_{j'}(x_{j'})}}{e^{-f_j(x_j)}} e^{\frac{9L^2D^2}{2(\beta_1 - 3L)}} \left(\frac{2\pi}{\beta_1 - 3L}\right)^{\frac{d}{2}}$

Now we can bound the following.

$$Z_{1j} = \int_{\Omega} e^{-\beta_{i} \frac{||x-x_{j}||^{2}}{2}} e^{-f_{j}(x)} dx$$

$$\leq \int_{\Omega} e^{-f_{j}(x_{j}) + \nabla f_{j}(x_{j})^{T}(x-x_{j}) + \frac{L}{2}||x-x_{j}||^{2}} e^{-\beta_{i} \frac{||x-x_{j}||^{2}}{2}} dx$$

$$= e^{-f_{j}(x_{j})} e^{\frac{1}{2(\beta_{i}-L)}} \nabla f_{j}(x_{j})^{T} \nabla f_{j}(x_{j}) \int_{\Omega} e^{-\frac{\beta_{1}-L}{2}||x-x_{j}-\frac{1}{\beta_{1}-L}} \nabla f_{j}(x_{j})||^{2}} dx$$

$$\leq e^{-f_{j}(x_{j})} e^{\frac{L^{2}D^{2}}{2(\beta_{i}-L)}} \left(\frac{2\pi}{\beta_{1}-L}\right)^{\frac{d}{2}}$$

$$Z_{1j'} = \int_{\Omega} e^{-\beta_{i} \frac{||x-x_{j'}||^{2}}{2}} e^{-f_{j'}(x)} dx$$

$$\geq \int_{\Omega} e^{-f_{j'}(x_{j'}) - \nabla f_{j'}(x_{j'})^{T}(x_{j'}-x) - \frac{L}{2}||x-x_{j'}||^{2}}$$

$$= e^{-f_{j'}(x_{j'})} e^{\frac{1}{2(\beta_{1}+L)}} \nabla f_{j'}(x_{j'})^{T} \nabla f_{j'}(x_{j'}) \int_{\Omega} e^{-\frac{\beta_{1}+L}{2}||x-x_{j'}+\frac{1}{\beta_{1}+L}} \nabla f_{j'}(x_{j'})||^{2}} dx$$

$$= \left(\frac{2\pi}{\beta_{1}+L}\right)^{\frac{d}{2}} e^{-f_{j'}(x_{j'})} e^{\frac{\nabla f_{j'}(x_{j'})^{T} \nabla f_{j'}(x_{j'})}{2(\beta_{1}+L)}}.$$

Therefore we have that,

$$\begin{split} \frac{Z_{1j}}{Z_{1j'}^2} \frac{e^{-2f_{j'}(x_{j'})}}{e^{-f_{j}(x_{j})}} e^{\frac{9L^2D^2}{2(\beta_{1}-3L)}} \big(\frac{2\pi}{\beta_{1}-3L}\big)^{\frac{d}{2}} &\leq \frac{\left(\frac{2\pi}{\beta_{1}-L}\right)^{\frac{d}{2}}e^{-f_{j}(x_{j})}e^{\frac{L^2D^2}{2(\beta_{1}-L)}}}{\left(\frac{2\pi}{\beta_{1}+L}\right)^{d}e^{-2f_{j'}(x_{j'})}e^{2\frac{\nabla f_{j'}(x_{j'})^T\nabla f_{j'}(x_{j'})}{2(\beta_{1}+L)}}e^{\frac{9L^2D^2}{2(\beta_{1}-3L)}} \big(\frac{2\pi}{\beta_{1}-3L}\big)^{\frac{d}{2}} \\ &= \left(\frac{2\pi}{\beta_{1}-L}\right)^{\frac{d}{2}}e^{\frac{L^2D^2}{2(\beta_{1}-L)}} \big(\frac{\beta_{1}+L}{2\pi}\big)^{d}e^{-2\frac{\nabla f_{j'}(x_{j'})^T\nabla f_{j'}(x_{j'})}{2(\beta_{1}+L)}}e^{\frac{9L^2D^2}{2(\beta_{1}-3L)}} \big(\frac{2\pi}{\beta_{1}-3L}\big)^{\frac{d}{2}} \end{split}$$

for $L>0, \beta_1-L>\beta_1-3L$ and since $\frac{\nabla f_{j'}(x_{j'})^T \nabla f_{j'}(x_{j'})}{2(\beta_1+L)}>0$, we have $e^{-2\frac{\nabla f_{j'}(x_{j'})^T \nabla f_{j'}(x_{j'})}{2(\beta_1+L)}}<1$ and hence,

$$\leq \left(\frac{\beta_1 + L}{\beta_1 - 3L}\right)^d e^{5\frac{L^2 D^2}{\beta_1 - 3L}}.$$

We will show that the base case of **H1**(1) and **H2**(1) hold under Assumptions [.1] To do this we will reuse our previous analysis from this section. In Lemma [.3], we were able to show that if $\alpha_i p_i(x) = e^{-f_j(x)}$, with L-smooth $f_i(x)$ for all j, then

$$Z_{1j} \le \left(\frac{2\pi}{\beta_1 - L}\right)^{\frac{d}{2}} e^{-f_j(x_j)} e^{\frac{L^2 D^2}{2(\beta_i - L)}}$$

and

$$Z_{1j} \ge \left(\frac{2\pi}{\beta_1 + L}\right)^{\frac{d}{2}} e^{-f_j(x_j)}.$$

We first show that by choosing β_1 large enough the partition functions Z_{1k} can be well approximated. With good enough approximates of Z_{1k} , we then show that we can estimate Z_1 up to a constant factor.

Lemma I.4. Let Assumptions [1.1] hold and assume that $p(x_k) > \alpha_k p_k(x_k) > c_{tilt} p(x_k)$ (this is the limit as $\beta \to \infty$ of the tilting assumption in Assumptions [1.1]. If $\beta_1 = \Omega(\frac{L^2 D^2 d}{\epsilon})$ with appropriate constants, then

$$c_{tilt}(1-\epsilon) \cdot p(x_k) \le Z_{1k} \le (1+\epsilon) \cdot p(x_k).$$

Proof. By our previous bounds on Z_{1k} and Assumptions 1.1, we choose β_1 such that

$$1 - \epsilon \le \left(\frac{\beta_1}{\beta_1 + L}\right)^{\frac{d}{2}} \iff \beta_1 \ge \frac{L}{\left(\frac{1}{1 - \epsilon}\right)^{\frac{2}{d}} - 1}.$$

Noting that $\left(\frac{1}{1-\epsilon}\right)^{\frac{2}{d}} = 1 + \Theta\left(\frac{\epsilon}{d}\right)$ gives that it suffices for $\beta_1 = \Omega\left(\frac{Ld}{\epsilon}\right)$. In similar fashion, for the upper bound, we choose β_1 such that

$$1 + \epsilon_1 \ge \left(\frac{\beta_1}{\beta_1 - L}\right)^{\frac{d}{2}} \iff \beta_1 \ge \frac{L}{\left(\frac{1}{1 + \epsilon}\right)^{\frac{d}{2}} + 1}.$$

A similar analysis to the lower bound yields that this is satisfied when $\beta_1 = \Omega(\frac{Ld}{\epsilon_1})$. We also impose

$$1 + \epsilon_2 \ge e^{\frac{L^2 D^2}{2(\beta_1 - L)}} \iff \beta_1 = \frac{L^2 D^2}{2\ln(1 + \epsilon_2)} + L,$$

for which it suffices that $\beta_1 = \Omega(\frac{L^2D^2}{\ln(1+\epsilon_2)})$. By letting $1 + \epsilon = (1 + \epsilon_1)(1 + \epsilon_2)$ and $\epsilon_1 = \epsilon_2$, we require that $\beta_1 = \Omega\left(\frac{L^2D^2 + Ld}{\epsilon}\right)$.

Corollary I.5. *H1*(1) Taking $w_{1,k} \propto \frac{1}{p(x_k)}$ and choosing $\beta_1 = \Omega(\frac{L^2 D^2 d}{\epsilon})$ yields

$$\frac{c_{tilt}(1-\epsilon)}{1+\epsilon} \le \frac{w_{1k'}Z_{1k'}}{w_{1k}Z_{1k}} \le \frac{1+\epsilon}{c_{tilt}(1-\epsilon)},$$

i.e.

$$\frac{1}{C_1} \le \frac{w_{1k'} Z_{1k'}}{w_{1k} Z_{1k}} \le C_1,$$

where $C_1 = O(\frac{1}{c_{tilt}})$.

Lemma I.6. Let $\tilde{p}_0(x,i) = \sum_{j=1}^l \hat{r}_j^{(l)} \tilde{p}_{j0}(x) I\{i=j\}$, with $\tilde{p}_{j0}(x) = \sum_{k=1}^M w_{j,k} \alpha_k \pi_k(x) q_j(x-x_k)$. Here, $\hat{r}_1^{(l)} = C_2 r_1^{(l)}$ and $\hat{r}_j^{(l)} = r_j^{(l)}$ for $j=2,\ldots,l$. Moreover, we define the normalized $p_0(x,i) = \sum_{j=1}^l \omega_0^j p_{j0}(x) I\{i=j\}$ with $p_{j0}(x) = \frac{1}{Z_{j0}} \tilde{p}_{j0}(x)$. Lastly, by choosing

$$\nu_0(x,i) = \frac{1}{\hat{Z}_1} \sum_{k=1}^M c_{tilt} \pi(x_k) w_{1,k} \left(\frac{5L + \beta_1}{2\pi} \right)^{\frac{d}{2}} \exp\left(-\left(\frac{5L + \beta_1}{2} \right) ||x - x_k||^2 \right) I\{i = 1\},$$

we have that

$$\left\| \frac{\nu_0(x,i)}{p_0(x,i)} \right\|_{\infty} \le \frac{1+\epsilon}{c_{tilt}^2} \left(\frac{L+\beta_1+L^2D^2}{\beta_1} \right)^{\frac{d}{2}} \cdot O(1).$$

Moreover, choosing $\beta_1 = \Omega(L^2D^2d)$,

$$\left\| \frac{\nu_0(x,i)}{p_0(x,i)} \right\|_{\infty} = O\left(\frac{1}{c_{tilt}^2}\right).$$

Proof. Let $\nu_0(x,i) = \frac{1}{\hat{Z}_1} \sum_{k=1}^M \hat{w}_{1,k} \hat{q}_{1,k}(x) I\{i=k\}$ for some $\hat{q}_{1,k}$ —to be defined later. Then we can consider

$$\left\| \frac{\nu_0(x,i)}{p_0(x,i)} \right\|_{\infty} = \left\| \frac{\frac{1}{\hat{Z}_1} \sum_{k=1}^M \hat{w}_{1,k} \hat{q}_{1,k}(x)}{\omega_0^1 / Z_{10} \sum_{k=1}^M w_{1,k} \alpha_k \pi_k(x) q_j(x-x_k)} \right\|_{\infty} = \frac{1}{\hat{Z}_1} \frac{Z_{10}}{\omega_0^1} \left\| \frac{\sum_{k=1}^M \hat{w}_{1,k} \hat{q}_{1,k}(x)}{\sum_{k=1}^M w_{1,k} \alpha_k \pi_k(x) q_j(x-x_k)} \right\|_{\infty}.$$

To bound $\frac{A_1+\cdots+A_M}{B_1+\cdots+B_M}=\frac{B_1\frac{A_1}{B_1}+\cdots+B_M\frac{A_M}{B_M}}{B_1+\cdots+B_M}$ it's sufficient to bound $\frac{A_k}{B_k}$ for all k. Therefore, by using that $\alpha_k\pi_k(x)=e^{-f_k(x)}$ where $f_k(x)$ is L-smooth and $q_j(x-x_k)$ is a Gaussian centered at x_k with

variance β_1 , we consider

$$\begin{split} & \left\| \frac{\hat{w}_{1,k} \hat{q}_{1,k}(x)}{w_{1,k} \alpha_k \pi_k(x) q_j(x - x_k)} \right\|_{\infty} \\ & \leq \left\| \frac{\hat{w}_{1,k} \hat{q}_{1,k}(x)}{w_{1,k} \alpha_k \pi_k(x_k) \left(\frac{\beta_1}{2\pi}\right)^{\frac{d}{2}} \exp\left(-(x - x_k)^T \nabla f_k(x_k) - \frac{L}{2}||x - x_k||^2 - \frac{\beta_1}{2}||x - x_k||^2\right)} \right\|_{\infty} \\ & = \frac{\hat{w}_{1,k}}{w_{1,k} \alpha_k \pi_k(x_k) \left(\frac{\beta_1}{2\pi}\right)^{\frac{d}{2}}} \left\| \hat{q}_{1,k}(x) \exp\left((x - x_k)^T \nabla f_k(x_k) + \frac{L}{2}||x - x_k||^2 + \frac{\beta_1}{2}||x - x_k||^2\right) \right\|_{\infty} \end{split}$$

Now letting $\hat{q}_{1,k} = \left(\frac{\alpha}{2\pi}\right)^{\frac{d}{2}} \exp\left(-\frac{\alpha}{2}||x-x_k||^2\right)$,

$$= \frac{\hat{w}_{1,k} \left(\frac{\alpha}{2\pi}\right)^{\frac{d}{2}}}{w_{1,k} \alpha_k \pi_k(x_k) \left(\frac{\beta_1}{2\pi}\right)^{\frac{d}{2}}} \left\| \exp\left((x - x_k)^T \nabla f_k(x_k) + \frac{L}{2} ||x - x_k||^2 + \frac{\beta_1}{2} ||x - x_k||^2 - \frac{\alpha}{2} ||x - x_k||^2 \right) \right\|_{\infty}$$

$$= \frac{\hat{w}_{1,k} \left(\frac{\alpha}{2\pi}\right)^{\frac{d}{2}}}{w_{1,k} \alpha_k \pi_k(x_k) \left(\frac{\beta_1}{2\pi}\right)^{\frac{d}{2}}} \left\| \exp\left(\frac{L + \beta_1 - \alpha}{2} \left\| x - x_k + \frac{\nabla f_k(x_k)}{L + \beta - \alpha} \right\|^2 - \frac{\nabla f_k(x_k)^T \nabla f_k(x_k)}{2(L + \beta_1 - \alpha)} \right) \right\|_{\infty}$$

Choose $\alpha = \beta_1 + L + L^2 D^2 > \beta_1 + L$; then

Choose
$$\alpha = \beta_1 + L + L^2 D^2 > \beta_1 + L$$
; then
$$\leq \frac{\hat{w}_{1,k} \left(\frac{L + \beta_1 + L D^2}{2\pi}\right)^{\frac{d}{2}}}{w_{1,k} \alpha_k \pi_k(x_k) \left(\frac{\beta_1}{2\pi}\right)^{\frac{d}{2}}} \left\| \exp\left(-\frac{L D^2}{2} \left\| x - x_k + \frac{\nabla f_k(x_k)}{L + \beta - \alpha} \right\|^2 + \frac{\nabla f_k(x_k)^T \nabla f_k(x_k)}{2L D^2} \right) \right\|_{\infty}$$

$$\leq \frac{\hat{w}_{1,k} \left(\frac{L+\beta_{1}+LD^{2}}{2\pi}\right)^{\frac{d}{2}}}{w_{1,k}\alpha_{k}\pi_{k}(x_{k})\left(\frac{\beta_{1}}{2\pi}\right)^{\frac{d}{2}}} \left\| 1 \cdot \exp\left(\frac{L^{2} \left\|x_{k}-x_{k}^{*}\right\|^{2}}{2LD^{2}}\right) \right\|_{\infty}$$

$$\leq \frac{\hat{w}_{1,k}}{w_{1,k}\alpha_k \pi_k(x_k)} \left(\frac{L + \beta_1 + LD^2}{\beta_1}\right)^{\frac{d}{2}} \left\| 1 \cdot \exp\left(\frac{L^2 D^2}{2L^2 D^2}\right) \right\|_{\infty}$$

Lastly, by the assumption that $\alpha_k \pi_k(x_k) \ge c_{tilt} \pi(x_k)$ we have

$$\leq \frac{\hat{w}_{1,k}}{w_{1,k}c_{tilt}\pi(x_k)} \left(\frac{L+\beta_1+LD^2}{\beta_1}\right)^{\frac{d}{2}} \cdot O(1)$$

Therefore we have a bound given by

$$\left\| \frac{\nu_0(x,i)}{p_0(x,i)} \right\|_{\infty} \le \frac{1}{\hat{Z}_1} \frac{Z_{10}}{\omega_0^1} \frac{\hat{w}_{1,k}}{w_{1,k} c_{tilt} \pi(x_k)} \left(\frac{L + \beta_1 + L^2 D^2}{\beta_1} \right)^{\frac{d}{2}} \cdot O(1).$$

Lastly by choosing $\hat{w}_{1,k} = c_{tilt}\pi(x_k)w_{1,k}$, the same estimate we use for the component measure weights, we get

$$=\frac{1}{\hat{Z}_1}\frac{Z_{10}}{\omega_0^1}\left(\frac{L+\beta_1+L^2D^2}{\beta_1}\right)^{\frac{d}{2}}\cdot O(1).$$

This yields a bound of

$$\left\| \frac{\nu_0(x,i)}{p_0(x,i)} \right\|_{\infty} \le \frac{Z_{10}}{\hat{Z}_1} \frac{1}{\omega_0^1} \left(\frac{L + \beta_1 + L^2 D^2}{\beta_1} \right)^{\frac{d}{2}} \cdot O(1).$$

Since, by definition of $\nu_0(x,i)$, $\hat{Z}_1 = c_{tilt} \sum_{k=1}^M w_{1,k} \pi(x_k)$ we get that

$$\left\| \frac{\nu_0(x,i)}{p_0(x,i)} \right\|_{\infty} \leq \frac{\sum_{k=1}^{M} w_k Z_{1k}}{c_{tilt} \sum_{k=1}^{M} w_{1,k} \pi(x_k)} \frac{1}{\omega_0^1} \left(\frac{L + \beta_1 + L^2 D^2}{\beta_1} \right)^{\frac{d}{2}} \cdot O(1)$$

$$= \frac{\sum_{k=1}^{M} w_k \frac{Z_{1k}}{\pi(x_k)} \pi(x_k)}{c_{tilt} \sum_{k=1}^{M} w_{1,k} \pi(x_k)} \frac{1}{\omega_0^1} \left(\frac{L + \beta_1 + L^2 D^2}{\beta_1} \right)^{\frac{d}{2}} \cdot O(1).$$

By Lemma I.4

$$\leq \frac{1+\epsilon}{c_{tilt}} \frac{1}{\omega_0^1} \left(\frac{L+\beta_1+L^2D^2}{\beta_1} \right)^{\frac{d}{2}} \cdot O(1).$$

Lastly, we have that $\omega_0^1 = \frac{\hat{r}_1^{(l)} Z_{10}}{\sum_{i=1}^l \hat{r}_i^{(l)} Z_{i0}}$; therefore

$$\frac{1}{\omega_0^1} = \frac{\sum_{i=1}^l \hat{r}_i^{(l)} Z_{i0}}{\hat{r}_1^{(l)} Z_{10}} \le \frac{1}{c_{tilt}} \frac{\sum_{i=1}^l \hat{r}_i^{(l)} Z_i}{\hat{r}_1^{(l)} Z_1} = \frac{1}{c_{tilt}} \frac{l \cdot C_2 r_1^{(l)} Z_1 + \sum_{i=2}^l r_i^{(l)} Z_i}{l \cdot C_2 r_1^{(l)} Z_1} \le \frac{2}{c_{tilt}}.$$

Lemma I.7. Let Assumptions [I.1] and [I.1] hold. Let $\max_j ||\mathbb{E}_{\mu_{l,j,k}}[x] - x_k|| \leq \delta_c$ with $\mu_{l,j,k} = \frac{\alpha_j \pi_j(x) e^{\frac{-\beta_l ||x-x_k||^2}{2}}}{2}$ and define $C_{LS}^* = \max_{i,j} C_{LS}^{(ij)}$. Then

$$\chi^2\left(\frac{\bar{\pi}_{l+1,k}}{\bar{Z}_{l+1,k}} \mid\mid \frac{\bar{\pi}_{l,k}}{\bar{Z}_{l,k}}\right) \le \frac{1}{\sqrt{1 - 2C_{LS}^* \Delta \beta}} \cdot \exp\left(\frac{\Delta \beta \left(C_{LS}^* d + \delta_c^2\right)}{1 - 2C_{LS}^* \Delta \beta}\right).$$

In particular, if $\Delta \beta = O(\frac{1}{C_{LS}d + \delta_z^2})$ this is O(1).

Proof. By Lemma G.9 it's left to upper bound $\chi^2(\frac{\bar{\pi}_{l+1,k}}{Z_{l+1,k}} \mid\mid \frac{\bar{\pi}_{l,k}}{Z_{l,k}})$. Let $\Delta\beta = \beta_l - \beta_{l+1}$, simplification of the χ^2 term yields,

$$\chi^{2}\left(\frac{\bar{\pi}_{l+1,k}}{\bar{Z}_{l+1,k}} \mid\mid \frac{\bar{\pi}_{l,k}}{\bar{Z}_{l,k}}\right) = \frac{\bar{Z}_{l,k}^{2}}{\bar{Z}_{l+1,k}^{2}} \int_{\Omega} e^{\Delta\beta \mid\mid x-x_{k}\mid\mid^{2}} \frac{\pi(x)e^{-\beta_{l}\frac{\mid\mid x-x_{k}\mid\mid^{2}}{2}}}{\bar{Z}_{l,k}} dx$$

 $\frac{\bar{Z}_{l,k}^2}{\bar{Z}_{l+1,k}^2} \le 1$ since $\beta_{l+1} < \beta_l$ therefore

$$\leq \sum_{j} \frac{Z_{l,j,k}}{\bar{Z}_{l,k}} \int_{\Omega} e^{\Delta\beta ||x-x_{k}||^{2}} \frac{\alpha_{j} \pi_{j}(x) e^{\frac{-\beta_{l}||x-x_{k}||^{2}}{2}}}{Z_{l,j,k}} dx.$$

 $\text{Let } \mu_{l,j,k}(x) = \frac{\alpha_j \pi_j(x) e^{\frac{-\beta_l ||x-x_k||^2}{2}}}{Z_{l,j,k}} \text{ then by Lemma } \boxed{\text{J.6}} \text{ with } \Delta\beta \in [0,\frac{1}{2C_{LS}^*}]$

$$\leq \sum_{j} \frac{Z_{l,j,k}}{\bar{Z}_{l,k}} \frac{1}{\sqrt{1 - 2C_{LS}^* \Delta \beta}} \cdot \exp\left(\frac{\Delta \beta}{1 - 2C_{LS}^* \Delta \beta} \mathbb{E}_{\mu_{l,j,k}} \left[||x - x_k||\right]^2\right).$$

Lastly, by the triangle inequality and applying LSI with $\max_j ||\mathbb{E}_{\mu_{l,j,k}}[x] - x_k|| \le \delta_c$

$$\leq \frac{1}{\sqrt{1 - 2C_{LS}^* \Delta \beta}} \cdot \exp\left(\frac{\Delta \beta \left(C_{LS}^* d + \delta_c^2\right)}{1 - 2C_{LS}^* \Delta \beta}\right).$$

Finally, we prove Proposition 3.2 as corollary of the previous Lemmas.

Proof. (Proposition 3.2) Lemma I.2 with choice of $\Delta\beta=O(\frac{1}{C_{LS}d+r^2})$ yields $\chi^2\left(\pi_{l+1,k}||\pi_{l,k}\right)=O(1)$. Lemma I.3 with choice of $\beta_1=\Omega(L^2D^2d)$ yields $\chi^2\left(\pi_{1,k}||\pi_{1,j}\right)=O(1)$. Lemma with choice of $\Delta\beta=O(\frac{1}{C_{LS}d+r^2}$ yields $\chi^2(\frac{\bar{\pi}_{l+1,k}}{Z_{l+1,k}}||\frac{\bar{\pi}_{l,k}}{Z_{l,k}})=O(1)$.

Corollary [.5] guarantees level balance from definition [2.3] on level 1. Lastly, Lemma [.6] with an appropriate choice of $\nu_0(x,i)$ yields $U=O(\frac{1}{c_{ijt}^2})$

Since the warmest level is $\beta_L=0$ and the coldest is $\beta_1=\Omega(L^2D^2d)$ with choice of $\Delta\beta=O(\frac{1}{C_{LS}d+r^2})$ this yields $\frac{\beta_1-\beta_L}{\Delta\beta}=\Omega(L^2D^2d^2C_{LS}r^2)$ levels. Therefore with respect to dimensionality we require $\Omega(d^2)$ levels.

I.2 MIXTURE OF GAUSSIANS

 In Section [.1] we showed that given exponential tempering functions, Assumptions [3.1] hold. This shows that the theory work in Section [G.3] holds in a general setting. It is left to show that for a family of target functions, Assumptions [1.1] hold. In this subsection we will show that for a mixture of Gaussians with different variances, Assumptions [1.1] hold, which, in conjunction with Section [1.1] gives a broad setting for Theorem [3.3] to be applied. For simplicity we consider the case of spherical Gaussians.

Proposition I.8. Assume the setting of Section [I.1] outlined in Assumptions [I.1] Additionally, assume that the mixture components of the target measure $\sum_k \alpha_k \pi_k(x) = \sum_k \alpha_k \left(\frac{a_k}{\pi}\right)^{\frac{d}{2}} e^{-a_k \|x-\mu_k\|^2}$. We make the following technical assumptions that quantify distance between modes let $\Delta_i = \frac{\beta_i}{1+\frac{\beta_i}{2}}$ and

$$d_{ik} = \|\mu_i - x_k\| \text{ then we require } d_{kk}^2 \le d_{jk}^2, \frac{d}{2\max\{\Delta_k, \Delta_j\}} \log\left(\frac{\Delta_j}{\Delta_k}\right) \le d_{jk}^2 - d_{kk}^2 \text{ and } \frac{\Delta_k}{\Delta_j} \le \frac{d_{jk}^2}{d_{kk}^2}.$$

Then Assumptions 1.1 hold with constants

$$c_0 = \min_k \alpha_k$$

$$C_{\rm P}^{(\beta)} = \frac{1}{\min_k a_k + \frac{\beta}{2}}.$$

Proof. We will show that each of the three parts of Assumptions [1.1] hold.

- 1. Holds by definition.
- 2. At the target level $\beta_L=0$ the inequality $\int_\Omega \alpha_k \pi_k(x) dx \geq c_0 \sum_j \int_\Omega \alpha_j \pi_j(x) dx$ is equivalent to $\alpha_k \geq c_0 \implies c_0 = \min_k \alpha_k$. To show this for any β_l we want to find the maximum c_0 that satisfies

$$\frac{\int_{\Omega} \alpha_k \pi_k(x) q_l(x - x_k) dx}{\sum_j \int_{\Omega} \alpha_j \pi_j(x) q_l(x - x_k) dx} \ge c_0.$$

We show this by finding an upper bound on the quotient

$$\frac{\int_{\Omega} \alpha_{j} \pi_{j}(x) q_{l}(x - x_{k}) dx}{\int_{\Omega} \alpha_{k} \pi_{k}(x) q_{l}(x - x_{k}) dx} = \frac{\alpha_{j} \left(\frac{a_{j}}{\pi}\right)^{\frac{d}{2}} \int_{\Omega} e^{-a_{j}||x - \mu_{j}||^{2} - \beta_{l}||x - x_{k}||^{2}} dx}{\alpha_{k} \left(\frac{a_{k}}{\pi}\right)^{\frac{d}{2}} \int_{\Omega} e^{-a_{k}||x - \mu_{k}||^{2} - \beta_{l}||x - x_{k}||^{2}} dx}$$

$$= \frac{\alpha_{j} \left(\frac{a_{j}}{\pi}\right)^{\frac{d}{2}} \left(\frac{\pi}{a_{j} + \beta}\right)^{\frac{d}{2}} \exp\left(\frac{\|a_{j} \mu_{j} + \beta x_{k}\|^{2}}{a_{j} + \beta_{l}} - a_{j}||\mu_{j}||^{2} - \beta_{l}||x_{k}||^{2}\right)}{\alpha_{k} \left(\frac{a_{k}}{\pi}\right)^{\frac{d}{2}} \left(\frac{\pi}{a_{k} + \beta}\right)^{\frac{d}{2}} \exp\left(\frac{\|a_{k} \mu_{k} + \beta x_{k}\|^{2}}{a_{k} + \beta_{l}} - a_{k}||\mu_{k}||^{2} - \beta_{l}||x_{k}||^{2}\right)}.$$

Rewriting the exponential terms $\exp\left(\frac{\|a_i\mu_i+\beta x_i\|^2}{a_i+\beta_l}-a_i\|\mu_i\|^2-\beta_l\|x_i\|^2\right)=\exp\left(\frac{-a_i\beta_l}{a_i+\beta_l}||\mu_i-x_i||^2\right)$ yields,

$$= \frac{\alpha_j}{\alpha_k} \left(\frac{1 + \frac{\beta_l}{a_k}}{1 + \frac{\beta_l}{a_j}} \right)^{\frac{d}{2}} \exp\left(\frac{a_k \beta_l}{a_k + \beta_l} \|\mu_k - x_k\|^2 - \frac{a_j \beta_l}{a_j + \beta_l} \|\mu_j - x_k\|^2 \right).$$

To simplify the above expression let $\Delta_i = \frac{\beta_l}{1 + \frac{\beta_l}{a_i}}$ and $d_{ik} = \|\mu_i - x_k\|$. The above is at most $\frac{\alpha_j}{\alpha_k}$ iff

$$\frac{d}{2}\log\left(\frac{\Delta_j}{\Delta_k}\right) + \Delta_k d_{kk}^2 - \Delta_j d_{jk}^2 \le 0. \tag{I.1}$$

Consider 3 cases.

Case 1 (equal variance): Assume $a_k = a_j$. In this case $\Delta_k = \Delta_j$ and (I.1) is satisfied when $d_{kk} \leq d_{jk}$.

Case 2: $a_k \leq a_j$ which is equivalent to $\Delta_k \leq \Delta_j$. In this case,

$$\frac{d}{2}\log\left(\frac{\Delta_j}{\Delta_k}\right) + \Delta_k d_{kk}^2 - \Delta_j d_{jk}^2 \le \frac{d}{2}\log\left(\frac{\Delta_j}{\Delta_k}\right) + \max\{\Delta_k, \Delta_j\}(d_{kk}^2 - d_{jk}^2)$$

which is at most 0 when

$$\frac{d}{2\max\{\Delta_k,\Delta_j\}}\log\left(\frac{\Delta_j}{\Delta_k}\right) \leq d_{jk}^2 - d_{kk}^2.$$

Case 3: $a_j \leq a_k$ which is equivalent to $\Delta_j \leq \Delta_k$. In this case,

$$\frac{d}{2}\log\left(\frac{\Delta_j}{\Delta_k}\right) + \Delta_k d_{kk}^2 - \Delta_j d_{jk}^2 \le \Delta_k d_{kk}^2 - \Delta_j d_{jk}^2,$$

which is at most 0 when

$$\frac{\Delta_k}{\Delta_j} \le \frac{d_{jk}^2}{d_{kk}^2}.$$

In all three cases we have that

$$\frac{\alpha_j}{\alpha_k} \left(\frac{1 + \frac{\beta_l}{a_k}}{1 + \frac{\beta_l}{a_j}} \right)^{\frac{d}{2}} \exp\left(\frac{a_k \beta_l}{a_k + \beta_l} \|\mu_k - x_k\|^2 - \frac{a_j \beta_l}{a_j + \beta_l} \|\mu_j - x_k\|^2 \right) \le \frac{\alpha_j}{\alpha_k}.$$

Since this holds for all j, k we have that

$$\frac{\int_{\Omega}\alpha_k\pi_k(x)q_l(x-x_k)dx}{\sum_{j}\int_{\Omega}\alpha_j\pi_j(x)q_l(x-x_k)dx}\geq \frac{1}{\sum_{j}\frac{\alpha_j}{\alpha_k}}=\alpha_k.$$

Therefore since this must hold for all k we have that $c_{tilt} = \min_k \alpha_k$.

3. Let $V_j = -\log \pi_j$. We have $\nabla^2 V_j(x) \succeq \left(a_j + \frac{\beta}{2}\right)I$. Since $V_j(x)$ is α -strongly convex with $\alpha = a_j + \frac{\beta}{2}$, then $\alpha_j \pi_j(x) e^{-\beta_l ||x - x_k||^2}$ satisfies an Poincaré inequality (and log-Sobolev inequality) with $C_{\rm P}^{(\beta)} = \frac{1}{a_i + \frac{\beta}{2}}$.

J Appendix

Lemma J.1. ((Levin et al.) 2017 Lemma 13.6)) For a reversible transition matrix P with stationary distribution π , the associated Dirichlet form is

$$\mathscr{E}(f,f) = \frac{1}{2} \sum_{x,y \in \Omega} \left(f(x) - f(y) \right)^2 \pi(x) P(x,y).$$

Lemma J.2. (HCR inequality Lehmann (1983)) Let P,Q be measures with $P \ll Q$ and f a measurable function. Then

$$\left(\mathbb{E}_{Q}(f) - \mathbb{E}_{P}(f)\right)^{2} \leq \operatorname{Var}_{P}(f)\chi^{2}(Q||P).$$

Lemma J.3. ((Lee & Santana-Gijzen 2024 Lemma 20)) If the Markov semigroup P_t is reversible with stationary distribution π , then

$$\frac{d^2}{dt^2} \operatorname{Var}_{\pi}(P_t f) \ge 0.$$

Hence, $-\frac{d}{dt}\operatorname{Var}_{\pi}(P_t f) = -2\langle P_t f, \mathcal{L} P_t f \rangle$ is strictly decreasing.

Proof. We compute

$$\begin{split} \frac{d^2}{dt^2} \operatorname{Var}_{\pi}(P_t f) &= \frac{d}{dt} \left(\frac{d}{dt} \operatorname{Var}_{\pi}(P_t f) \right) \\ &= \frac{d}{dt} 2 \left\langle P_t f, \mathscr{L} P_t f \right\rangle \\ &= 2 (\left\langle \mathscr{L} P_t f, \mathscr{L} P_t f \right\rangle + \left\langle P_t f, \mathscr{L}^2 P_t f \right\rangle) \end{split}$$
 Since \mathscr{L} is self-adjoint,

 $= 4 \langle \mathcal{L}P_t f, \mathcal{L}P_t f \rangle$ = 4 $\|\mathcal{L}P_t f\|_{L^2(\pi)}^2 \ge 0$.

Lemma J.4. Let $P = \sum_{k=1}^{M} w_k P_k$ and $Q = \sum_{k=1}^{M} w_k' Q_k$ be distributions where $w_k, w_k' \ge 0$ and P_k, Q_k are distributions. Suppose $\frac{w_k}{w_k'} \le r$ for all k. Then

$$\chi^2(P||Q) \le r \cdot \sum_k w_k \chi^2(P_k||Q_k).$$

Proof. Consider

$$\begin{split} \chi^2(P||Q) &= \int_{\Omega} \frac{\left(P(x) - Q(x)\right)^2}{Q(x)} dx \\ &= \int_{\Omega} \frac{\left(\sum_k w_k P_k(x) - \sum_k w_k' Q_k(x)\right)^2}{\sum_k w_k' Q_k(x)} dx \\ \text{Cauchy-Schwarz} \qquad \text{yields} \qquad \left(\sum_k \frac{w_k P_k(x) - w_k' Q_k(x)}{\sqrt{w_k' Q_k(x)}} \sqrt{w_k' Q_k(x)}\right)^2 \\ &\leq \end{split}$$

$$\sum_{k} \frac{\left(w_{k} P_{k}(x) - w_{k}' Q_{k}(x)\right)^{2}}{w_{k}' Q_{k}(x)} \sum_{k} w_{k}' Q_{k}(x); \text{ therefore}$$

$$\leq \int_{\Omega} \sum_{k} \frac{\left(w_{k} P_{k}(x) - w_{k}' Q_{k}(x)\right)^{2}}{w_{k}' Q_{k}(x)} dx$$

$$\begin{split} &-J_{\Omega} \sum_{k} w_{k}^{2} Q_{k}(x) \\ &= \int_{\Omega} \sum_{k} \frac{w_{k}^{2} P_{k}(x)^{2}}{w_{k}^{\prime} Q_{k}(x)} dx - 2 \int_{\Omega} \sum_{k} \frac{w_{k} w_{k}^{\prime} P_{k}(x) Q_{k}(x)}{w_{k}^{\prime} Q_{k}(x)} dx + \int_{\Omega} \sum_{k} \frac{w_{k}^{\prime}^{2} Q_{k}(x)^{2}}{w_{k}^{\prime} Q_{k}(x)} dx \\ &= \int_{\Omega} \sum_{k} \frac{w_{k}^{2} P_{k}(x)^{2}}{w_{k}^{\prime} Q_{k}(x)} dx - 2 \int_{\Omega} \sum_{k} w_{k} P_{k}(x) dx + \int_{\Omega} \sum_{k} w_{k}^{\prime} Q_{k}(x) dx \\ &= \sum_{k} \frac{w_{k}^{2}}{w_{k}^{\prime}} \int_{\Omega} \frac{P_{k}(x)^{2}}{Q_{k}(x)} dx - 1 \\ &= \sum_{k} \frac{w_{k}^{2}}{w_{k}^{\prime}} \chi^{2}(P_{k}||Q_{k}) \leq r \sum_{k} w_{k} \chi^{2}(P_{k}||Q_{k}). \end{split}$$

Lemma J.5. *Ge et al.* (2018c) Let p, q be probability distribution functions. Then

$$\int_{\Omega} \min\{p(x), q(x)\} dx \ge 1 - \sqrt{\chi^2(q||p)}.$$

Proof. We have that

$$\left(\int_{\Omega} q - \min\{p, q\} dx\right)^2 \le \int_{\Omega} \frac{(q - \min\{p, q\})^2}{q} dx \le \chi^2(q||p).$$

Therefore

$$\int_{\Omega} \min\{p, q\} dx \ge 1 - \sqrt{\chi^2(q||p)}.$$

Lemma J.6. (Bakry et al. (2014); Bobkov & Tetali (2006)) Suppose that μ satisfies a log-Sobolev inequality with constant C_{LS} . Let f be a 1-Lipschitz function. Then

1. (Sub-exponential concentration) For any $t \in \mathbb{R}$,

$$E_{\mu}e^{tf} \le e^{t\mathbb{E}_{\mu}f + \frac{C_{LS}t^2}{2}}.$$

This holds in both the continuous <u>Bakry et al.</u> (2014) and discrete <u>Bobkov & Tetali</u> (2006) setting.

2. (Sub-gaussian concentration) For any $t \in [0, \frac{1}{C_{LS}})$,

$$\mathbb{E}_{\mu} e^{\frac{tf^2}{2}} \le \frac{1}{\sqrt{1 - C_{LS}t}} \exp\left(\frac{t}{2(1 - C_{LS}t)} (\mathbb{E}_{\mu} f)^2\right).$$

Lemma J.7 (Method of Canonical Paths (Corollary 13.21, Levin et al. (2017)). Let P be a reversible and irreducible transition matrix with stationary distribution π . Define $Q(x,y) = \pi(x)P(x,y)$ and suppose Γ_{xy} is a choice of E-path for each x and y, and let

$$B = \max_{e \in E} \frac{1}{Q(e)} \sum_{x,y,e \in \Gamma_{xy}} \pi(x) \pi(y) |\Gamma_{xy}|.$$

The the spectral gap satisfies $\gamma \geq B^{-1}$.

K LLM USAGE

LLMs used for light editing and coding aid.