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A ORGANIZATION OF PAPER

We provide a brief overview of each section. In Section[2] we define the simulated tempering and ST
Teleporting algorithms, along with the main algorithm used in this paper. In Section [3] we present
the main results of our paper.

In Section [D, we cast Algorithm [2] as a continuous time process with Markov generator .. We
then show that the Markov generator .Z satisfies the decomposition assumptions of Theorem|E.1|in
Section[E.

The analysis in Section E is similar to the work done in |Ge et al. (2018c). We show that un-
der basic assumptions the Poincaré constant corresponding to a stationary distribution p;(z) =
Zj\il w;jpij(x) of the Markov process P can be bounded by a function of Poincaré constants cor-
responding to the component measures and the Poincaré constant of the projected chain capturing
transitions between components (defined in the assumptions of Theorem [E.T). Since we’ve shown
in Section [D that the continuous time process corresponding to Algorithm [I] satisfies the assump-
tions of Theorem [3.3] the decomposition theorem allows us to proceed after finding a bound on the
Poincaré constant of the projected chain.

One obstacle in our temperature ladder is the cross terms that appear by defining pg o >, apmi(x)-
> rwpkqs(x — xy). Ideally our algorithm is able to mix well into the aligned components
7, (2)gs(x — ) while ignoring the cross terms which will naturally have negligible weight. Under
reasonable assumptions, as we will later show, it makes sense to refer to the portion of the product
where j = k, the aligned components, as the good portion. In Section|F, we prove chi-squared diver-
gence bounds for the good portion of the stationary distribution. We show that this can be bounded
by a function which depends on the Poincaré constant corresponding to the good set as well as an
expected value that describes the “flow” into the good set.

Our main algorithm, Algorithm (1} inductively runs Algorithm [3|to estimate the partition functions
at the subsequent level. To estimate the partition functions, Algorithm [3] runs ST teleporting to
the current level and collects N samples. The samples at level [ are used to obtain a Monte Carlo
estimate of the partition functions at the next level yielding weights {w; 1, k}2L, and 7;41. With
these weights the algorithm is then ran one more time to level [ 4 1 obtaining another N samples.
This time the samples are used to get an estimate of the level weights by empirical occupancy and

this occupancy is used to adjust the level weightings {r; ﬁi}

In Section we show that under the inductive hypothesis, Assumptions and Assumptions
weights {r;}%, and {wik }ieq1,0),ke1,a1) can be chosen to maintain level and component bal-
ance between the partition functions. More precisely, the weights are chosen so that there exists a

constant C such that C% < wurZik < 0 for k, k' € [1, M] and there exists a constant Cy such

- ’Ulek/ Zl,k"
that C% < % < Cs for 1,1’ € [1, L]. Maintaining this level balance prevents bottlenecks (a mode

having low weight at a level so that) is is hard to obtains samples at subsequent temperatures, and
so allows for bounds on the Poincaré constant of the projected chain; see Lemma

In Section H, we prove the main results, which follow from the results in Section|G.3

Sections [I| and show the general settings in which the assumptions of the main theorem hold.
Assumptions [3.1] focus on the initial distribution and tempering scheme used to run Algorithm [1}
In Section |I, we show that Assumptions hold in R? for g;() chosen to be Gaussians and in the
general case where the component measure of the target function is specified as py(z) = e~ /+(*),
where fj(z) is L-smooth. We also show that these assumptions hold on the hypercube, with
analogous assumptions made on ¢;(x) and pg(x). Assumptions focus on the target measure
p(z) = Zf:[:l agpr(x). In Section we show families of target measures where Assumptions
hold.
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B BACKGROUND

B.1 NOTATION

We denote the target distribution on 2 by

m(z) o eV (@),

and assume it decomposes as a mixture

M
m(x) = Z apm(x)
k=1

where 7 (x) are normalized component measures with corresponding weights ay,. The set of warm
start points is given by {z1,...,2p} C Q. The tempering functions are denoted gg(-) and are
unnormalized distributions satisfiying gg — do, where Jy is the Dirac delta measure, as 8 — oo and
gg = 1 for 8 = 0. The unnormalized tempered distributions are given by

M

Pp(x) = m(@) Y ws kas(x — k) (B.1)
k=1

where wg . are learned weights. In Section we define the following for ease of computation.
The target measure tilted by gg(xz — 1) on level [ is given by

k() =m(x) - qlr — xx)
and the component measure aligned with its correcting tempering function is denoted by
Tk(x) = mp(z) - @ — zx).

The partition functions corresponding to these measures are given by Z; 5, and Z;  respectively. In
Section|[G.3] we also make use of the unnormalized joint distribution over the temperature levels this
is defined to be

l
plr,i) = rVp(a)1{i = 5}. (B.2)
j=1

Similarly, we define the normalized version to be
l
pla,i) =Y wp(x)I{i = j}
j=1

where w’ = 1V Z ;. In the context of Section we will occasionally refer to the “good” part of the

distribution and will denote this unnormalized portion by

! M
po(x, i) = Zr,gl) Zakwi’kwk(x)qi(x —zp)I{i=j}.
=1 k=1

The marginal over the levels of the good portion is then denoted by

M
pio(x) Z apw; xR ()i (T — ). (B.3)
k=1

We can then express the normalized joint distribution as a mixture of the good and bad portions by

p(x,i) = aopo(z,7) + (1 — ao)p1(z,17)

_ Ez [Q ﬁo(xqi)dw

= S eds is the component weight of the good portion.
1JQ ?

where o
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B.2 MOTIVATING EXAMPLES

To motivate tempering to colder temperatures, corresponding to more peaked distributions, we show
that in high dimensions, flat components of the mixture distribution can cause the teleport process
to have low acceptance probabilities. This leads to poor mixing of the projected chain—mixing
between modes—which in turn leads to long run times. In our algorithm, the projected chain at the
coldest level is the probability flow between component measures after an affine translation which
overlaps the warm start points.

Example B.1. Let w(z) = 3N (0,14) + 5N (p1,014) be the mixture of two Gaussians in R and
define the teleport function to be the translation g;j(x) = x — p; + p;. Then the probability of

transitioning from po = 0 to 1 denoted P ({0}, {1}) is given by

_1
(1/27)% det (o) 2 exp(—55 ||z + p1 — p1ll3) 1}
1

|
(1/2m)% det(I) ™ exp(—1[][3)

- [ @ ol )

exp(—zllzll)

d
1\?2 o—1 9
mln{(g) eXp( 5 ||:U|2>7 }

It becomes clear that for 0 > 1 as d — oo and ||z|| o< o we have that P({0}, {1}) — 0.

P({0},{1}) = min {

The following example shows that in high dimensions a bimodal mixture of Gaussians with different
variances can have exponentially bad weight distortion when power tempering is applied. Power
tempering is one of the most standard tempering methods that takes the target distribution 7(x) o
e~V(®) and raises it to the inverse temperature /3 so that at each level 75(x)  7(z)”. The same
issue arises when tempering towards a prior, 75 () oc 7(x)?q(z)! 5.

Example B.2. (Roberts et al. (2022)) Given target density w(z) = 2N (230, I4) + 3N (2; p1, 01q)

and assuming the power tempered target can be given by the mixture|\Woodard et al. (2009a))

ol
)+ W N . )

La

m(x) = Wy gN(0, 3

where the weights are given by W; g (%)6 lo14] 52 In our case this yields the ratio

Wip _ jaa-p)
Wo.s ’

which is exponentially bad in the dimension.
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C ALGORITHM DETAILS

Algorithm 2 Vanilla ALPS Main Algorithm
INPUT: Temperature scale 31 > B2 > --- > [, weights {w; .} fori € [1,1],k € [1, M] and
{ri}E |, time T and rates A, 7.

1: Sample (z,1) ~ 224:1 W1 KTk
2: while T,, < T do
3 SetTy41 =T + &ng1 with &1 ~ exp(y)

4: if i = 1 (base level) then
5: SetT) . =T, +&, .1 with&), | ~exp(A)
6: if T} | < T4 then
7: Run K for &, time (discretized)
#* x
8: Choose j, j' € [1, M] and accept transition to (g;;/(x), 1) with pr. min { g";'llz;() ), 1}
9: else
10: Run K for &, time (discretized)
11: Transition to (x, 2) with pr. min { :fi?gg , 1}
12: end if
13:  else
14: Run K; for £, time (discretized)
15: Choose ¢/ = 4 & 1 with pr. % transition to (z,4’) with pr. min {w, 1}.
16:  end if

17:  LetT = min {Tn+17 T7/z+1} then set 15,41 = T and T, 1= T
18: end while
19: if final state is (, x), return sample x. Otherwise, re-run the chain.
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Algorithm 3 Reweighting via Partition Function Estimation

1: Part 1: Estimate component weights for level | + 1
2: Run py(z,4) from Algorithmto the [-th level and obtain samples {(x;,i;)}_; ~ p(x,1).
3:fork=1,...,M do
4:  Set
1
Wit1,k = N 7 T .
¥ i S =1
5: end for
6: Part 2: Estimate weight for level | 4+ 1
7: Run py(z, 7) from Algorithmagain to the I-th level and obtain samples {(x;, ¢;) };VZI ~ p(x,1).
8: Set
e e )
1N (2 emi(@)) | 2k witreqs (2 —ak) .
N 2i=1 peEn Hij =1}

9: Part 3: Re-estimate level weights
10: Run p;(x,7) from Algorithm [2|again to the [ 4 1-th level and obtain samples {(z;,7;)} =, ~

p(, 1)
11: fori=1,...,1+ 1do
12:  Set
| X
I4+1 l . .
RS> WIUED)
Jj=1
13: end for

14: Scale rng) by Cs

15: Return {wy41 12~ and {r{Hy i

[ =1

D CoNTINUOUS TIME PROCESS

D.1 LEAP-POINT PROCESS

We define a continuous version of the leap-point process at the coldest temperature. In this setting,

the process is defined on the mixture distribution 22/[:1 wkqr(z) and can freely jump from any
g; to g;. Jumps are made according to the Poisson point process at time intervals T;, — T;,_1 ~
Exponential(-y). This specifies the projected chain as a continuous time process on the state space
given by the modes, where the probability flow between the modes is compared using the pushfor-

ward gZ"; . This allows us to express the generator of the process .Z}; on €2 as the sum of the Markov
processes on the continuous state space and the transitions between the modes.

Definition D.1. For i, j € [n], we define the function g;;(x) to be a function that “teleports” x € )
from mode i to mode j and satisfies the following properties:

1. g;; is the identity,

gii(z) = x.
2. g;j is the inverse of gj;,
9i3(95i()) = .
3. gij is transitive,
9k (9ir(2)) = i (@)

Definition D.2. We define the continuous leap-point Markov process K., with rate y on §) as

follows:

1. Let T}, be a Poisson point process with rate ~y so that,

Tn - Tn—l ~ Exp(’Y)
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2. The Markov process with state x € ) evolves according to K on the time interval
[Tn—laTn)~

3. At time T,,, with randomly chosen i,j € [1, M|, the Markov process takes a jump to x
gij(x) with probability

#
1 . [9Fa(x) } oy
— min e, Vj#£i
M { q(x)
and stays at x otherwise.
Lemma D.3. Let K., be the leap-point Markov process with rate vy with stationary distribution

q(x) = ZMl w;g; () on S Then the continuous process has the generator Lcq, given by,

Brap ) = L)+ 23S i {g” 71}<f(9ij(m))—f(w)>-

11]1

Proof. Let Py f(z) = Ex[f(x¢)|xo = x] be the expected value after running the chain for time ¢.
Then we decompose the conditional expectation by considering the number of jumps the Poisson
process takes. Here, we let H be the kernel of the jump process and calculate

P,f(z) = P(N;, = 0) - P,f(z) + /t P,HP,_,f(x)P(t; = ds, Ny = 1) + P(N, = 2)h

= (1At + O(2)P,f(x) / PHP,_ o f(2)(y + O(s))ds + O(t*)h

0 (Pflemo = 11 (@) + Zaf (@) + IS +O(0)

By specifying

M M #
110) = 1@+ 373 S min { 2 1 (100 - 1)
=1 j=1
we get the desired operator .Z.
O
Corollary D.4. The corresponding Dirichlet form for the process Leqyp is given by
M M 2
ST =~ Za)y+ 1 D3 [ win{affate).a) b (10500 - 1)
=1 j=1
Proof. Using reversibility, we compute
(f(f, f) = 7<f7 Zeapf>q
M M #
_ g  [9i59(x)
g+ 530S [ min { 2222 1} (1(05(0) - 1)) (@late)is
- 1 M 9
i+ 537 03 [ min{ ot oo} (S50 - 1)
i=1j=1"%
O

D.2 SIMULATED TEMPERING TELEPORT PROCESS

We now decompose the simulated tempering version of the Markov process. In this setting, the
process is defined to have stationary distribution p(z,i) = > rp;(x)I{i = j} on Q x [L],

where ). 7; = 1 and p; can be expressed as the mixture p; = 224:1 wypr;. The Markov pro-
cess moves between temperatures according to the simulated tempering chain, at each temperature
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running Langevin diffusion till the next jump. At the coldest temperature, as in Section the
Markov process leaps between modes of the distribution corresponding to a Poisson point process.
In Sectionwe found the generator .Z}.,,, at the coldest level. By applying .}, to the simulated
tempering results in|Ge et al.| (2018c) we are able to compute the generator Zr; for the Simulated
Tempering with Teleporting Sampler.

Definition D.5. We define the continuous Simulated Tempering with Teleporting Markov process
Krep on Q x [L] with jump rate \ (between temperatures) and leap rate v (at coldest temperature
between modes) as follows:

1. Let T}, be a Poisson point process with rate \ so that,
Ty —Th1~ Exp()‘)
2. If i # 1, the Markov process with state (x,1) evolves according to K; on the interval
[Tnfl ) Tn)
At time T,,, the Markov process jumps to (x,i") with probability
1 Mt
min{rlpl(x)7 1}, fori' =i+1
2 ripi ()
and stays at (x,1) otherwise.
3. Let T}, be a Poisson point process with rate  so that,

T, —T. 4 ~ Exp(7).

n

4. Ifi =1, Let T = min(T,,, T,), the Markov process with state (x,1) evolves according to
K on the interval [T, _|,T).

n’—1

IfT =T, the Markov process leaps to (x,1) (g;%j, (x), 1) with probability
#
1 . [9jyp(x) } g,
— min< — 1,, V
U { (@) 7 # ]

and stays at (x,1) otherwise.

If T = T, the Markov process jumps to (x, 2) with probability

1

L min { rap2 () 7 1}

2 r1p1(x)
and stays at (x, 1) otherwise.

Lemma D.6. (Lemma 5.1\Ge et al.|(2018c)) Let M;,i € [L] be a sequence of continuous Markov
proceses with state space ), generators £;, and unique stationary distributions p;. Then the con-
tinuous simulated tempering Markov process Mg with rate A and relative probabilities r; has gen-

erator Ly defined by the following equation, where f = (f1,..., fL) € HiL:1 D(ZL):

=@y 5 {228 g - @)

1<j<L,j=i+1 ripi(x)

The corresponding Dirichlet form is given by,

;” fi» Zifi)p :1\( Z / min {TJPJ ipi<x)}<fj<$)—fi(l‘))2>dx

1<i<L,j=i+1
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In |Ge et al. (2018c), the authors determine the Dirichlet form of the generator . for the simulated
tempering Markov process. In their setting, .%; for all 1 < i < L is the Langevin diffusion generator.
In our setting, the generator for the teleport sampler, .Zj¢,;, in Lemma takes the place of the
generator at the coldest temperature .%;. We will maintain the notation of .%;, 1 < i < L as the
Langevin diffusion generator and replace .}, With .#} in the previous Lemma.

Corollary D.7. Let all assumptions and notation hold from Lemma then the Dirichlet form for
the continuous time annealed leap-point Markov process Lre; is given by

Zn ot + B3 [ i om0} (t0,00) -~ )

j=11i=1

+§ > [l )}(fm)fi(x))de

1<i<L,j=it1

Proof.

é”(f,f>=—<f1,=sfaeapf1>m—gmﬁ,zﬁ»wZ( S [min{eme) o} - @) )

1<i<L,j=i%1

by Corollary [D4]
= rilfi B + T fz [min{otmrn@ ) (o) - 1)
_gmﬁ,z@mpﬁiwg lﬂ/mln{rjpj rips(x )}(f( ) — fi(x)>2d:c
= émﬁ,.ﬁfﬁ v Tlii/mm{gz]pl z),pr(x )}(fl(gij(x))—f1($)>2dx
+ii»‘<;:ii1/ﬂmin {Wj(@aﬁﬁ(@}(fj(w) —fi(ff))zdx
O

Lemma D.8. Let Kp.; be the annealed leap-point Markov process with generator Larps on
Q x [L] and stationary distribution p(z,i) = »_,rjp;(x)I{i = j}. We also make the following
assumptions,

1. Each p;(x) = oymo,; + (1 — oy)m1; where each mj; =, w(k)ﬂ§7i).

2. For each Markov process M; there exists a decomposition

(fisZif)ps < Zwm<fi7$kfi>pik,
%

where £y, is the generator of some Markov process M;;, with stationary distribution
Pik(T).
Then for some weight « the following decomposition holds

(s Zreif)p < alfs Lreiof)m + (L= a)(f, Lrei1 [)m s

where L a1, ps.i; is the continuous time annealed leap-point process with stationary distribution
T OC D, QT Tk
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Proof. We consider the following,

TN SR TRECS ) o Rt (A E e (T ot
2l > B
- il«; lﬂ/ mm{”ﬂpf Tipi(® >}(fj(x)fi<z>>2dx
C

We proceed by finding an upper bound on each part, starting with A.

A= Z (fir i fi),

By assumption 2 we can decompose the generator .,

Z az (fisZiofi)my + (1 = Oéi)<fi»=%1fi>m)'

To find an upper bound on B it is worth noting by assumption 1 we have that

P1(2) = 1P1,good + (1 — @1)P1,pad-

Which by change of notation we let p1 good = 71,0 and p1 pad = 71,1-

7 = leli/ min {91]101 x),p1(z )}(fl(gij(l”)) —f1(fc))2dx
2 mm {QU a1mio+ (1 —a1)my), (aamo + (1 — a1)7r1,1)} <f1(gij(:v)) _ f1(x)>2dx
<9 ii [ min {argmacmo b (itaisto) - fl(x))zda:
> 2 Qmm{ (1—on)gfima, (1 —ar)m, 1)} (fl(gij(l‘)) - fl(a:)>2dx.

Lastly we have that

—C=—2 3 /mln{rjp] ripi(x)}<fj(x)—fi($)>2dx

1<i<L,j=i%1

_ _2 3 / min {rj(ajwoyj + (1 —aj)m ), ri(aimo; + (1 — ozi)m,i)} <fj(37) - fz‘(l")) Zdl‘

i<i<L,j=i+17%

> /mm{r]aﬂoj,mmm}(fj() fi(:c)>2da:

1<i<L,j=i£1

N 2 3 / min {rj a;)m i1 — ai)m,i)} (fj(x) - fi(gc)>2dm

1<i<L,j=i%1

>

By our bounds on A, B and C and choosing normalizing constant o« = ) . r;c; We can express

(fs Zref)p < olf, Lreof)re + (1 —)(f, Lreii f)m -
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E MARKOV PROCESS DECOMPOSITION

In this section we bound the Poincaré constant corresponding to the continuous time Markov process
defined in Section [D. The analysis in this section is similar to that of the analysis found in |Ge
et al.| (2018c), where the Poincaré constant corresponding to the whole chain is bounded by the
Poincaré constants corresponding to local components and the Poincaré constant corresponding to
the projected chain. This decomposition reduces the mixing time analysis to finding a bound on the
Poincaré constant of the projected.

Theorem E.1. Let KTel be the Markov process in definition with stationary distribution
p(x, k) = Zf 1T ZJ L wi; Pij(x)I{k = i}. Let K; 1 < i < L be the Markov process
on ) with generator £; with stationary distribution P;(x) = Z;‘il w;; Pi;j(x). More specifi-
cally, K1 = Kjeqp as in definition with generator £ = .Zle;p (Lemma @ The function
f = (fi,....fr) € [L] x Q and the Dirichlet form is &,(f, f) = (f, ZLarpsf)p. Assume the
following hold.

1. There exists a decomposition

M
(f.Zf)p Z . %ihe

where £;; is the generator of some Markov process with K;; with stationary distribution
Py
2. Each distribution Py, satisfies a Poincaré inequality

Va’l’Pi] (f) S Cgij(fv f)

3. We define the projected chain as

wlj"g#ﬂlplj’(z)

-/ _ ’
T, (7)) =4 [ min Lot Pl;J(S;)J}P (@)dz, i'=itlandj=j""

0 otherwise
B B B (E.1)
Let P({i,j}) = ryw;; be the stationary distribution of T. Where T satisfies the Poincaré

inequality - ~ o
) Varp(f) <C-&p(f.[)
with f({i,5}) = Ep,, (fi). Then K spps satisfies the Poincaré inequality

Varp(f) < maX{C(l + (6M +12)C, 6]:[0 1%\0} (f, 1)

Proof. We begin by considering the following,

Varp(f erzwz]/ ( EP(f)>2Pij(d90)

= éi“ww/ (fz p, (fi) + Ep, (f) _EP(f)>2Pij(d«T)
_iJZM:l“ww/ (fz p,,; (fi) > 55 (dx) +§;J§§lmw”( )Ep(f))2

L M
= Z Zr w;j Varp,; (fi) + Varp(g)
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L M

< szriwijgij(fia.fi) +C&s(f. f)

i=1 j=1

<CZTZ fzvfz +C£7P(f7 7)

We now decompose the Dirichlet form &5(f, f) per Lemma [.E

2
SGDH= Y 3 (Epi,jxfm—Epi( >) P T (.3}, (1. 7))

(@9 E[LIX[M] (#,5") €[L]X [M]

By applying the definition of T

M M 2 . #'/Pj’
:leZw1j<EP1j'(f1)_EP1j(f1)) /{Zmin{wvl}‘tﬁj(l‘)dm

j=1j'=1
A
3 ’ riwgr - Py
+;1;Lriwij (Epi,j(fi/) (fz)> Amln{W,l}Hj(x)dx
i'=i+l
B
To simplify the above expressions we let &7 _

(1,5),(1,57)
fQ min {w1j/ . g]#jlplj/(l‘), w1y Plj (a:)}dx and let Q?Lj),(l,j’)(x) =
1

69
(1,5).(1,47)
consider the following,

MM 2 Lt P
A=mn Z Z Wy (Eplj/(fl) - EPu(fl)) /Qmiﬂ {W, 1}P1j(33)d33
J J

min {wlj/ -gfj,Plj/(x),wlj : Plj(:c)} be the normalized distribution. Then we

Jj=1j'=1
M M 2
=T Z Z <]Ep1j/ (fl) — Eplj (f1)> / min {wlj/ . gfj/Plj/(«I%wlelj(x)}dx
j=14'=1 @
by a change of measure on the first term,
M M 2
_TIZZ </flogjj g]] Py (de) — Qfl( )Plj(dx)> 5(17J)(1,J)
j=1j'=1
M M 2 2
=5 303 ([ 7omr @@ 00 - Prytan) )+ ([ (o) - 5@ 0 (@)
Jj=1j'=1
2
(/fl (Prj(dr) = QP j) 0, >(d5”))> }5?1,1'),(14/)
By Lemma[J.2
M M
< 3m Z Z [Var # Py (f1 0955 )XQ(Q?LJ'),(L]'/)Hgfj/Plj/) + Va‘rplj(fl)XQ(Qé]l,j),(l,j’)lej)
Jj=1ly'=1

2
+/Q <f1 o gjj(x) — fl(@) Q(U 1,5 )(dx)] 5(1 7),(1,37)
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By applying the definition of Q7

(1,57
M M
< 37'1 Z Z [Var # Py fl © gjj5 )X (Q (1,5),(1,57 )ngj Pl] ) +VarP1j(f1)X (Q(lj (1,5 |P1]):| (1,5),(1,57)
Jj= 13’ 1
2
P30y [ (#roar@ - 51 winfunygf Py ) PiyGo)
j=1j'=1
By Lemma G3 |Ge et al.|(2018c)
M M
< 3n Z Z [wlﬂ’ Var gt Py ,(fl 0 gjj') +wi; Varp (fl):|
Jj=1j'=1
M M 2
+3r1) D / <f1 © gjj(x) = f (x)) min {wlj’ g1 Py (@), way - Plj(x)}dx
j=1j'=1
M M
= 3T1 Z Z [wlj/ Varplj, (fl) + w15 Varplj (fl):|
j—l j’*l
2
+3n Z Z / (fl °gjj () — f (:c)> min {wlj' - gl Puy (), wyy 'Plj(w)}dl‘
j=1j5'=1
M M 2
<o Cai(h ) 43030 S [ (froa(@) = @) minfury g Pry(o)wy - Pyl o
Jj=1j'=1

<6riM - C&(f1, f1) —|—37’122/ <flog”( ) — fl(x))Qmin{Plogjj/(x),Pl(x)}dx

Jj=1y'=1

The bound for (B) should mimic the bound for (B) in Theorem 6.3 of |(Ge et al. (2018c). The proof is

111}//

included for sake of completeness. Denote by d(; ;) (i7j) = [, min { TT o Py (x), Pij(x) }dx

and Qi jy,( j»(¥) = 5——min {w - Pyji (), Pij(x)} be the normalized distribution.

96i,3),(" 3" TiWij

Then by applying Lemma 6.4 in|Ge et al.|(2018c) yields,

B S ra, (Ers, () - Epi,7.<fi>)2 Jmin {222 1 a)a

T - Pis
j=11<i<L WS u
i =i%1l

M
S?’Z Z {VMPM'(JCZ’)XQ(Q ()i || Pig) + Varp, (fir)x Qg [Prs)

+ /Q(fi - f’i’)2Q(i7j),(i’7j)(dx):| W0 (i 5y, (it ) -
By Lemma G3 |Ge et al.| (2018c)

Ti’l,Ui‘é 1,5),(2, T, W; , i',j
» < 32 Z Varpij(fi)w + Varp, (fir )63—])(])
j=11<i<L (4,5),(4,5) (i",5),(5,5)

i’ =it1
+3/(frfw)2min {Ti’wi'j'Pi'j( ); riwig By (x )}dl"
Q
<3Z Z rlwljva‘rp fl)+rl/wljva’rp/ fz +3 Z / fz HllIl{TZ szg zy rzzwm zg

7=11<:i<L 1<:i<L
i'=it1 i'=it1
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<IZCZ Z ri&i(fi, fi) +3 Z / mln{ri/Pi/(a:),riH(:c)}d:E

Jj=1 1<1<L 1<1<L
i =i%1 i =i%1l

Combining terms A and B with the bound on the intra-mode variance we have that,

VaTP <CZ"'1 fufz

M M 2
+C{67‘1M Cé&(fr, fr) +37’1ZZ/ < 10955 ( fl(x)) min{Pl ogjj/(;v)7P1(x)}d:r

j=1j'=1

2
+1QCZ7“2 (fi,fi)+3 Z TiW;j (Ep, (fir) — pij(fi)) /min{rgﬂ-/(x),riPi(x)}dx}
Q

1<i<L
i'=it1

Grouping like terms and comparing to the Dirichlet form in Corollary

L
<C(1+C(6M +12)) > riéi(fis fi)

i=1

S [ mm{aogjjfu),Pl(a:)}(flogmx)—f1<x>)2dx

Jj=1j'=1

200 S vy (o) 56@) [ minrtpuripe o]

1<i<L
i =it1

6C’M
2

By applying the dirichlet form in Corollary [D.7]

gmax{0(1+(6M+12)C’ 6]?0 12AC} (f. f)

F LOCAL CONVERGENCE FOR A MARKOV PROCESS

In this section we show that for a Markov chain P;, with stationary mixture distribution m =
> ke WK Tk the weight adjusted distribution pr o = pr o / fQ pT 0 converges to the component
mo in chi-squared divergence, where pr = vy P; for some initial probability measure vy. This
can be applied to the mixture measure pg(z) x mw(x) - Ziw:l wg kqs(x — 1), on the extended
state space 2 x [L]. Since on the target level 8, = 0, there is no bad component, the divergence
X2(PT,good|[Pgood) Provides us with a good indication of how close we are at the target level. The
following Lemma provides us with an upper bound on x2(pr. good||Dgood) i terms of the Poincaré
constant on pgood-

Lemma F.1. Suppose that for a Markov generator £, with stationary distribution ™ = Ei:o QETE,
(£ L) e < poulfs Lif),, for all f, where £y has stationary measure mo and Poincaré
constant C. Let Py be the distribution of X; where t ~ Unif(0,T), Ko = x%(poll7), and
Dro = ﬁTCTO/fQﬁT%‘ Then

D KoC
Vars, (T) = agT

or equivalently,
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Proof. We have that

o) = — (& 22,

att m T
$0
T
Ko = x*(l) > | <’jj 2 d
/0 > ps .L”k >
Z ; kzoak Var,, (;S) ds
> %/0 Var, (%) ds
> %ESNUnif(O,T) Vary, (%)
> %V&rﬂ—o (p;) : (E.1)
Now
Vare, (%) =Vare, (P22) = [e5, ()] Vare, (%22) = [, (32)] oral
(F.2)
O

Lemma F.2. Consider an ergodic Markov process on §) with stationary distribution 7. Suppose
m = agmo + (1 — )y for measures wo, 1. For any measure vg on (),

d?TO Qo
Eogmvo,t~Uni ag—(x4)| > —+—
zo~vo,t~Unif (0,7) 0 dﬂ'( t) s dve
dmo Lo
d?T() (&%)

E ~vg,t~Uni > Z .
zo~vo,t~Unif (0,7) |:Oéo dr (xt):l 12(X2(V0||7T0)+]—)

For example, if 7 = 7|4, then ag = w(A) and
d7TQ
Esgmvo,t~Unif(0,T) [Oéodﬁ(l‘t)} = Pyymug,tnif(0,7) (Tt € A).

Proof. For a trajectory z : R>o — Q of the Markov process, define

(which we can interpret as the proportion of time it is in the component 7y). Note that this is a
continuous, differentiable, non-decreasing function. We will write F~1(r) to mean min F~1({r}).
Define the random variables

T, : = Fw_l(r) = min{u : / aoﬁ(xs)ds > r}
0 dm
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Then

T dm

1 T T dﬂ'o
=7 ; Puo~ro (/0 040%(1‘15) >7r | dr

1 T
= T P-’L‘ONVO (TT' S T) d'l"
0

1
=7 - IONVO T >T))d

T,
= 1 _ .’I:()Nl/o T
T/o < — 7T ) Vv 0dr

dm 1 (7 dm
Ko~ t~Unif(0,T) [Otodﬂo(xt)} = */ By v 0 —— (1) dit
0

Y

where the last inequality follows from Markov’s inequality. We now calculate E;,,7, by a
counting-in-two-ways argument; then we will use a change-of-measure inequality. Note that for
xo ~ 7, x; also has distribution 7, so

El‘o’\'ﬂ'oTT' = / E[Tr|x0 = x]dﬂ-O(x)
Q

= [ BT = ol G2 @) ()

:7// [TH (@)|zo = 2| dr dr(z) (F3)

dmo 1 /T
S*E/T«ﬂﬂuam+->va—> (e dt+ — | E[Ti1r,, >0 di
T 0 dm Qg 0 ’

1 r I
=—FE Fo N (Fy(t VT) —t)FL(t)dt + — | E[T}, 17,5 dt.
—7E [ (M E0+ VD) 0RO d+ = [ BT

where (E.3) uses the fact that for any ¢, the distribution of x; is still 7. Because ET;, < oo,
g(t) = E[T}, 11>, — 0 by the Dominated Convergence Theorem. Now if ¢(¢) is bounded and

lim; o g(t) = 0, then limz_, o, ~ T fo t) dt = 0, so the second term converges to 0 as T — 0.
We focus on the first term. Change of varlable gives

T Fy(T)
lAKEW&@+HVﬂ—ﬂH®ﬁ=A (F (y+)VT) — F () dy

Fo(T) pF; M (y+r)VT
:/ / dz dy.
0 Fo ' (y)

This is the measure of

{.2): 0<y < F(T), F7 () <2 < Fo'(y+7r) VT
CH{,2)y < Fa(z) <y+rn2<T}
={(y,2) 1 Fo(2) —r Sy < Fo(2),0< 2 < T}
which evidently has measure T'r. Hence taking T' — oo,
1 r
Epgmrno Ty < — - Tr = —.
o o CtoT " (%))

Let K

;ng and K2 = x2(vo|mo) + 1. For the first bound,
o0

K
Eopn Ty < KooEouyome Tp < —20

dm S
g EzoNvo,tNUnif(O,T) [O‘Od;)(xt>:| > 7/ (1 - 00) vV 0dr

] )

K.

\ V
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For the second bound, let

dﬂ'o 9

G:{x;d%)gf@}

and note by Markov’s inequality that
Promve (Tr > T) < P(G°) 4+ Pyyp (T > T Ao € G)
K2 Epyrro Ir
T
K2 r

< 20
et 9 OéoT

<e+ —=

T T
=2K. taki = K.
5 aoT aking 2 o T
Then

dm
E o~ t~Unif(0,T) {Oéodwo(a?t)} = */ —Pyymry (T, > T)) dr

o Oon
—/ (1—2K21/ >\/Od 12K22'

Lemma F.3. On the state space Q x [L] we deﬁne the measures

\ N

ijﬂ'] VI{j =i}

ZWOWO M =i}

where 7'(z) is a p.m. on Q with component p.m. w}(z). Consider running the Markov chain P on
QO x [L] with stationary measure 7 (x, i) from initial measure vo(x, ). Let py(x, 1) be the distribution

of X where t ~ Unif(0,T") and Xy ~ vo(z,i). Then

)

_ & (x) — & (x)
pT(LE, L) wLﬂ.L(I)/fQ pT(a:, Z) ” L(z)dx 2 . X2 (I/o(x, Z)H?T(SC, ’L)) -Cpr (Wo(x, Z))
/ @) =1 my(x)de < 5
: o i i) -

where o is the component weight of mo(x, 1) in 7(x,1) = agmo(z, 1) + (1 — ag)m1(x,9).

Proof. We consider the following,
o (,%)

Vars, (o) (pT(:c,i)?((;”;)) / mo(x z) i /Q (p d ”(* DI [pT(x,i)?((;:;)) / wo(x,z‘)DQWO(x,i)dx

L 71'0((.L ) 7 (x Z) 2
— 7(x,1) ) ) T\T, X d
ZZ:;/Q ( 7o (1) mo (1) [ 7(x,1) ]) mo(w,7)dz
L 7ro(a: i) N — . N — . _ . 2
: s wo(z, i) pp(x,i wo(z, i) pp(x,i pr(x,i :
:ZMO/( ’ (m) _/ o(a 1) T(< _)>+/ o(a ) T(< _))_Ew,i){ T(< '>)D i (@)
i=1 Q 0 z, Z Q Wy T, 1 Q Wo (X, w(x, 1
o (T) _ 2
T UJLT(‘L () L pT(Jc,L)> L
e L /71' r)——= | 7wy (x)dz
el O Q( o 0( )CUL’]TL(Q_”,') O( )
Uy xT — 7TL xT
prl LOL()’“)/prT(x’L)wL?(L&)dx 2 mh(x) o\
-1 dx - 0—2"" 4
= ( @) ) wteie ([ et D)
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Note that py(x, L) is the non-normalized component of the p.m. at the L-th level. However, this is
homogeneous in the numerator of the previous expression therefore we have that this equals

(e, L)o@ Lm/fin 2, L) i) dr

—t [ e 1) stton [0 )

To finish the proof, we apply Lemma[F.T which says
9 . . .
mo(x, i . X° (vo(,1)||7(z,4)) - Cpr(mo(w, i)
Vot ey (B, ) ) [y ) < XLole ) Crrm(.0)

m(x, 1) ag-T
Therefore we have that

L
pole DR [ e D o & (e ) in(z 1) - Cor (ol )
/Q( i (2) 1) mo (el < g (x) -
O‘Owo ) (prT € L) T L(m)d ) -T
O
Lemma F4. Let X, = (X,i) € Qx [L]and Y = (Y,i) € Q x [L] with X; drawn

7(2,i)

from the denstty pr(x, i)l l)/Z, where Dy is the distribution of X, with t ~ Unif(0,T),

7o (x,t

Z =% fﬂ pr(x z)mdx and Y ~ mo(x,7). On the state space Q x [L] we define the
measures

ijﬁj {j =1}

ZWOWO J{j =i}

and the relation 7(x,1) = agmo(x, i) + (1 — ao)m (x,1). Then
)

I (X2 (vo(x,)||7(,)) - Cpr(mo(x, 1)) )5

v ao(wh)2-T
™0 )
Koc
Proof. By LemmalF.1, for ¢ = 7[& (T)]QT, we have that
X2 By (z, 1) mo(z,7) Z || mo(z,1) | <e.
m(x, 1) -

The data processing inequality for random variables with f(x) = I(x = L) yields for any random
variables X, Y that

X2 (Xt f/) > x? (I{f(t =L} H I{y = L})
. — whnl ()
pr(z, L) 5% dm
% <pT(x,i)7T°(x’7)/Z Wo(a:,i)> > X2<Bernoulli JaPr( LWL(; 3 H Bemouui(wg))
m(z, 1) > JoPr(,i) oy dx

The chi-squared divergence of two Bernoulli random variables is lower bounded by

prT T L)‘*’o“o( )dCC

whnl(z) L

Z prT T, wo((x z))dx

2

This yields a lower bound of
wtnl(x) 1 x,1)
Pr(z, L)——9""2d — €2 Ej / d
R e CR PO R E
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Applying Lemma[F.1]yields
> wl / T?T(x,i)ﬂo(x’i) dx — (XZ(VO(z’i)|”(m7i)) - Cpi(mo(x, 1)) )é
Q

7(x, 1) oo T
which by Lemma[F2 is
wk 3 <X2<V0(.T,i)|7r($,i)) -Cp](ﬂ'o(aj,i))>é
B 2”%”00 o - T

This yields

_ () 1 (ol )i, 9) - Cpi(molz, 1)) \ *

pr(z, L)——+ deQLO - \2 :

0 whmh () 122 ] ap(wy)? - T

G ESTIMATING PARTITION FUNCTIONS

In this section we show how to approximate the weights w; j and r;. Partition function approxima-
tion is standard for stimulated tempering on non-normalized distributions. One approach is to run
the ST algorithm to the /th level and then acquire a Monte Carlo estimate of the partition function
at the next level, see |Ge et al.| (2018c). However, in our setting, we also require an estimate of
Zi = fQ oy (2)q: (x — z1)dx. Without access to the component functions 7y () of the target
measure 7(x) = >, om(x), it is not possible to directly estimate Z; j, via Monte Carlo. Fortu-
nately, we only require an estimate up to polynomial factors, so we can use the assumption that after
tilting towards the warm start point, a significant chunk of the mass of m(z)g;(z — x)) comes from
7 (2)qi(x — x1) (Definition|1.1(2)). Hence, it will suffice to estimate Z; , = [, w(x)q;(x — xy)d.

To obtain an estimate of Z; ;,, we define

Tie(z) = p(a) - @z — ),

where p(z) = >, axpr(x) is the target function. Since we assume oracle access to the target p(x)
up to normalization and ¢;(z) is chosen, we can freely evaluate 7; (). Next we define p;(z, i) =
vo P . to be the distribution of a sample at the i-th level after running the ALPS process for
time ¢ from an initial distribution vy. This Markov process converges to the joint distribution of
pi(z) = p(x) - 224:1 w; kq;(x — x)) over the levels i € [1,1]. Below we state the inductive
hypothesis which assumes component and level balance (def. [2.3) is maintained through level /.
Assumption G.1. (Inductive Hypothesis) Let Z; = [, pi(x)dz and Zp = [, cnmi(z)qi(z —
2k )dx, and U be a given parameter. We make the following assumptions at the l-th level:

HI1(l) | (Component balance)

W; ki k 1 ! J
_HRTLE — Lk, k 1, M !
Wi g Zi ot € [01501:| forall kK" € [L,M]and i € [L,1],
where C| = poly(cf]m )-
H2(l) | (Level balance)
)
ry’ 7. 1
b € [702] forall j. ' € [1,1],
’I"j/ Z]’ 02
where Cy = pOly(cQU )-

“tilt

The following lemma follows directly from the inductive hypothesis.
Lemma G.2. Let Assumptionsandhold and let Z; j = [, 7(2)qi(x — x1,)dx. Then

Wi 5 Zi k c [Ctilt Cy

— , } forall k,k' € [1,M]andi € [1,1].
Cr - crn

Wy gt Ly ot
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The following two lemmas make clear how the inductive hypothesis is used to bound the weight
component of modes at varying levels. Lemma shows that in the context of Algorithm (3| re-
weighting the level weight r( ) at the initial level yields weights which still satisfies the inductive
hypothesis H2(/) but with a dlfferent constant. By placing more mass on the first level, the level
re-weighting allows for a good portion of our target distribution to be aligned with our initialization.
Therefore, in this section, the level weights {rgl) }_, will be replaced with {fgl) }_, in the following
section. This will allow us to consider the practical scaling where the initial level is up-weighted.
Note that this pushes the work of the inductive hypothesis H2(1) onto the following lemma.

Lemma G.3. Let H2(1) hold and let 7\ = 1- Cori? and 7" = vV forall j = 2,..., 1. Then

A(l)

3 S FUP <l Cs

forallk,j € [L,1].

Proof. The conclusion is clear for j, k # 1, which remain unscaled, by the inductive hypothesis
A(z> z
1
<

Cy = 7;](cl Z. = 02

P 7, 1
It suffices to show A{l)? [ ez [ - C3|; then the same bound follows for the reciprocal. By H2(()

7 Z1 ]
applied to rﬁ-l),

0} D) € : ) -Cy| C 2,l~C'2 ,
f« Z 1'027’1 Z1 _Z-CQ 02 lCQ ZCQ

as needed.

Note that H1(1) says that components at the same level are approximately balanced, while H2(!) says
that different levels as a whole are approximately balanced. Putting these together, we obtain that
components at different levels are also approximately balanced.

Lemma G.4 (Balancing between all components at all levels). Given Assumptions|1.1|and Assump-
tions|G.1} we have

P w1 Zik 1
— [C,C} foralli,i' € [1,1) and k, k' € [1, M],

NG
TE/)wi’,k’ Z’L’,k/

where
1202

Ctilt

C:

Proof. We start by using the tilting assumption and Lemma|[G.3]

(1 1 50
L< Tz()Zi < Crit "i Z Wi Z

02 = 02, = 305wz
- (l)wszsz Wisi Zi.g

e | J w;, kZ’L k
A1) wyr 7Z7/ j
’ri/ w1/7k/Z71/7k/ Z] w;r k’Z Ny
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By inductive assumption H1(J),
L f(l)wz kZi kM . Cl

Ctilt ’ >

~(1
( )wlr k:’Zi’,k’M L

IN

( )
Cl Wi, kZz k
Ctilt ’[’(,l)u)i/ k"Zi/,k’

( )
Ctilt Wi kL k

.02 — A :
CQ Cl Tz(/)wi’,k/Zi’,k/

=

Since the above lower bound holds for all i,¢" € [1,!] and k, k" € [1, M] the reciprocal holds as an
upper bound. O

Proof Overview: In the context of Algorithm [3}

1. We show that | H1(/ + 1) | by showing the following,

NZ“*““ =t 2 By | 21 = 1) | T pi = )|

p(xj,ij) p(x, 1) (B) p(x,1)

where in the (B) and (C) steps we show that the two terms are within a constant factor.

T4k oo yAm
Krgi=n| = 2%
Ey| et r =1y = 2

A) (C)

(a) In Lemma|G.5] we prove (A) using Chebyshev’s inequality.

(b) In Lemmal|G.6] we prove (B) by utilizing the work in Section[F] which shows conver-
gence of the Markov process to the “good” part of the stationary distribution.

(¢) In Lemma we show (C) by using the tilting coefficient c;;;; to compare 7 5, and
iy k-

2. We obtain an estimate for the partition function of p;i1(z) =
( > a;m;(x)) (34 wit1,k@+1(z — 1)) by again showing that

me z;) Ii; = 1} =~ By {pm( z) 1 I{i = l}] [pm( )I{ _l}} Zl+1

z]v j (A) p(l‘,l) p( )

(a) In Lemma|G.5] we prove (A) as an application of Chebyshev’s inequality.
(b) In Lemmal|G.8]| we prove (B’) in a similar fashion to Lemma [G.6|for (B).

3. We then show | H2(I + 1) | by level rebalance.

We split the work of this section into three subsections. The first, Subsection @ finds bounds
between the ratios of the expectations terms from the proof overview. These bounds contain several
constants which depend on the spectral gap and the mixing time of the projected chain. In Subsection
[G.2] we give an upper bound on the spectral and analyze the mixing time of the projected chain.
Lastly, Subsection combines the results from the previous two subsections to show that running
Algorithm [3|mains the level balance in the inductive hypothesis.

(B’)

G.1 BOUNDING THE APPROXIMATIONS

2
Lemma G.5 (A: Chebyshev). Given i.i.d. samples x; ~ wfor 1 < i < N with Er [f ]2 < R, then

Ex (7]

with probability > 1 — 9,

+ Zi\;1 f(xz)

1l—e< & <l+4e

_Tm_

R

where € = 73
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Proof. This is a simple application of Chebyshev’s inequality,

N>y f (i) _ E.lf"] _ R
]P)<NJEw[f] =P sz““ 1| > e Egf] gmgﬁ.
Letting € = 4/ % yields the desired result. O

In the following Lemma (G.6|we are able to show that E;, [Tl“ LI{i = l}} =E, {?&12’; I{i= l}} .

This is a consequence of our results in Sectionthat show p! converges to the good part of p(x).
Lemma G.6 (B). Given Assumptions[I.I|and Assumptions[3.1]

EﬁT |:7TL;(1ka(T) I{Z l}:|
<

1
1 2 vo(x,i
Ctilt<2|yo(“)|| (1 +x° (Wl+1,k I 7Tl,k) ) 'A) < =y ;((x i)) ;
po(x,i) 1190 ]Ep|:7rl;1$kz)m {’L l}:| ’ Les
1
X (vole.d)llp(2.0))-Crr (po(.0)) \ 2
where A = < a0 (@D T
Proof. Upper bound. Note that for any EETCf < ‘ |l . Applying
this here and then using contraction gives
EA Ti+1, k I
o i =0) R ()
p(x,7) || — | P(2,9) || oo

E [”‘*;’“f)“ {i= z}}

Lower bound. For the lower bound, we first compare the denominator to just the integral of the kth
component, i.e. Z 1, using the tilting assumption. Noting that p(x,7)] {z =1} = rp(x) and
denoting P, T( ) = pr(z,l). Also note that in order to apply the lemmas in Section [ l we define

mo(z,1) = whm g (x)[{i =1} + Z] L wip;(x)I{j = i}. Then we obtain the lower bound

Em[“l;(lw SO I {i = l}} Joy () e @ gy prLT(x)de

P (@) rip(z) 5

E, |:m+1 (@) I{i = l}] Jow!pi(x) ﬂfﬂ;l’g(;ﬁ)dm Jowhpi(x )721;1(:)(? dx

p(w,1)

@

replacing 7, are constants, so canceling terms yields

_ Jopur(e) ot de

fQ Wk (x)
Next we apply the definition of 7,41, and 7(z) = ), armi(z)

fQ pur(@) [W(I)gi;;((j)mk)] dx fQ pr(x) {akﬂk(?izi?xl)(xxk)} dx
>

Jom(@) - qur(z — zp)da Jom(@) - quyr(z — zp)da

by tilting, Assumption[I.1(2)

- ok T (1) Qa1 (@) | g
Joprr(2) { wipi(@) } v . k(@) - it (@ — 1) [ Ziga
= Ctilt pz,T(x) dx

Jo ki - i (@ — ) da whpy(z)

DI T i1,k Tk D T ol P
= CtiltEﬂ'l’k { li = Ctilt * Eﬂl_’k- T |
T W Tk Tk

> Cilt
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where we write it in this way so we can use the closeness of ;11 j to 7 3, and the convergence of
3 (vo(@,9)lp(e.8)) -Cp1 (po(a.i))

ozo(u.)(l))2 T

1
2
Py, to the good part 7; , of p on the ith level. Let A = > . We first

A Tk A Tk
pl,Tpl/ prl,TZTdJS
Tl+1,k
]Eﬂ'l,,k . -1

Tk Tk

plT/prlledl'
< (%) 1)
’ Tk
by Cauchy-Schwarz,
) P ﬁlTM 3
<X (7?1+1,k | Wl,k) ( || m k)
fgplT x
by Lemma[F3,
1
<xX* (771+1,k H Wl,k) . o =
JovoPT(x,1) pl(m)da:

Multiplying by [, pi,7 7 dz, we have that

1

Tk DLToh Lk :

Eri s : > [ 1, = d$ - Tk || me ) A
Tk Tk o T wihp

It remains to lower-bound this first term, which is the fraction of mass that is considered to “be-
long” to the kth component after running for time 7", compared to the fraction for the stationary
distribution. This is lower-bounded by Lemma [F4,

1
TI+1,k pl T 1 2
Er, . . BT > , — A= Tk || e ) A
’ T,k Tk 2 vo(w,i)

po(x,1)

oo

Lemma G.7. (C) Given assumptions[I.1|then
By | 325 140 = )

By | 325 100 = 1)

1
Co.

1<

<

Proof. By assumptions[I.1]

]E 41, IcI
p{p(m li= }} pr x)qi1(x — zp)dx L 1
*

B [Sgrti-n] B [Rri-o]

and we also have,

Ti41, k] —l
p |:P(17 i) {Z }:| . fQ Zk Oékpk(l‘)q1+1(~73 - a:k)dm

# appr(®) g1 (r — xp)dx
S +
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p(,1) p(x,1)

ceptually and proof-wise this is the same as Lemma[G.6] The only difference is that now we are
showing the closeness in the importance estimate holds for the entire next level p;1(x) with the
learned weights w41 .

Lemma G.8. (B’) Given Assumptions[I_I|and Assumptions[3.1| Then

Py () _
1 , 1 E; {;{; 3 I{i= l}}
Ctilt * (2||| - <1 +X <7Tl+1,k H 7Tl,k:) ) 'AC&) < <

vo(x,7) T
E [1’%1))1{2 l}}

In the following Lemmawe show that Ej, [pl“(w I{i = l}} =< E [p’“ 2 (i = l}] Con-

vo(x,i)
p(z,19)

)

Lo

po (1)

(NI

wtee i, (2 lotelten) o oten)

Proof. We show that by normalizing p,

| Piga(z)
Epr [ e } >ila ppT(flg)p z, z)p’a S)I{z I}dx

AP Ey| Brgi - 1)

p;(g;.;) - > o p}’)&?@x i) I{i = l}dz
Ey| Bt = 1|
_ ’ ﬁT(va)
p(x, 1) Loo
By contraction,
< VO(xv.i)
p(@,1) ||

Denote p; 7 (x) = pr(z,!). Then we obtain the lower bound

B0t =0] e [Bg] B [Brmpmiatn]

= - > -
E Py (®) 7rs 1} fﬂpl"t'l(x)dx prH‘l(x)dm
P | p(x,i)

by tilting assumptions[I.1]

Es, » |:Zk wiy1 komr(T)-q (m—rk)}

olpy (@) Yok Wi ko () - q(x — o)

Zl+1 0
> Critt =Ep » [

fQ Sk Wi ek (2) - @z — zp)de whpy ()

Let pio(x) = ﬁ >k Wi ki (2) - qi (2 — x1), where Zp10 = Y, Witk 2141,k

P10 DL o
= Ctilt 'Em,o { - o } :
Pbio Di,0
1
0242 . N).c g 2
Let Ac, = ( (vt szcl:(riz ;i):r i {ro(ed) ) then we can show
p 1 3
Pi+1,0 lT
E;vz,o [ = ’ = Pl :| = vo (x,7) n (1 + X2 (Fl""l’k H Wl,k) > ’ ACI'
D1,0 Pi,o 2|| PR [|oo
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Consider the following

nrtis | Janrtisds
E [pz+1,0 ) ] _ 1‘
'PL,0

P10 P10

<E

— —Pi,0

Pio Pr.o g
(Pl+10 > <plT /fﬂpl=T I x1>'

P10

By Cauchy-Shwarz,

3 pZTL“) 2
<x? :
=X (lerl,Ole,O) (f Pt ondx leo) .
Q

Since pio(z) = >, Z“” ufZ]’Z" 7k (2) the ratio r in the context of Lemma is given by

w41 kZ1+1,k
25wt Z1414
wy kZl k

r= . Using the inductive hypothesis (H1) this can be upper bounded by r» < C?%.
S5 w520,

Therefore by Lemma [F3 and Lemmal[l-4]
H 2(vo(z,i x,1)) - C 2,9))\ ?
S01X2<7Tl+1,k || Wz,k> .<X (vo(z,9)|[p(2, 1)) - Cp1(po(z, ))>

agwh - T
Together this yields,
D TW
E,, [pl+1,o . Pz]
"L Pro D10
3 2 ; ; ) 2
. , X° (vo(z,9)||p(z,4)) - Cpr(po(z,i)
> / LT pi O dx — C1x* (Wz+1,k | Wl,k) : ( ( l) ( )
Q w'pL aowy - T
1 1
(P (woillp@) Crr(po(ei) | 2 —((w@dlip.h)-Cri(po(z.i) \ 2
Let A, = a0 (WD)2 T and A = ag(w§)?-T
then by Lemma [F4,

1
2
—A =y <7Tl+1,k I Wz,k> -Ac,

)-acn

= om]
™0 oo

1
> — 1+ X gk || ik
2( 2|
™0 oo

Lemma G.9. Let Assumptions[I.I|hold. Then

Bprcen ()T = 1)) _
Borten (BTG =07

C’
1
. 1 2
with Cg = cynt <2Hu0<z DYy ( <7rz+1 k|| k) ) -A) and
po(z,3) 11>

z vo(z,i)
Epr (o) [(Z525 N21{i =1}] _ o) || e C2
2
E

T — 2 1
() [%l)) ii=1n]’ Ch pw

1
2
; 1 2
with Cpr = ¢yt - <2||u0(z,i)|| - (1 + X <7Tl+1,k || 7Tl,k> ) -A01>.
po (z,i) 11
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Proof. For any function f,

B | )11 =] = 5 [ Bt o1 =

pT(l‘J) l: . . :l I/()(ZE,?:) |: . . :|
< - E r, ) I[{i=1}| < - E x, i) [{i =1}].
_\ T Elrwari=n) < |22 B @ ani=1
By Lemma|G.6]
T41,k (. 2 9 Tit1,5(2)
Epp [— K 1{i =1}]* > C% -E, IHi=1
el (=01 2 O B [ = 0]
Therefore,
Ti41,k vo(®,1) T, \2 (s
Epr o) [ (Giit) 100 = B _ 56 . EolGEs) =1
Tig1k g - 2 Tld1k T+ 2
By o [3 1H0 = 1] b Ep 5w i =1}]

Further simplification yields

2
a2 i l ‘E'Ljrl,k _
E [( *I(; llf) I{Z:l}] B wipl(x)(rlpl(gﬂ)) - i/ (7rl+1,k/Zl+1,l~c)2d$
Q

L) ripi(z)

Since p;(z) = Z% >k T(@)wy pq(x — 1), by LemmaEand Corollary
5 2
1 (min/Zigaw)

1 —
dv = — (*(Fira e/ Zivn [ ) = 1)

wh Jo pi(z)
1 W, /Z ’ _ — _ _
< o kazklglklk (X2 (Figrk/ Zigr ke | Tipe/ Zok) — 1)
MC _ _
< 11 <X2 (Tisre/ Zisr e || Tin ) Ziw) — 1>.
CtiltwW
Similarly, by Lemma [G.8]
Pry1(x) 2 2 Pl+1( )
E;. | — H{i=1}|">Cs -E, =1
%
where Cpr = ¢yt - (M - (1 + X2 <7Tl+1,k H 7Tz,k> ) 'Acl)
po (x,1) 119
Therefore,
vo(x,1)
Ep o) [(52550) " THi = 1}] B e PR A e D)1 = 2

Epren (251G =0}]" ~ O Vﬁ?{@ ny’

Further simplification yields

2
- 2N l ﬁH:l(I) d
B, [(Gra) =1 wiM(w)(”’”(z)) t fﬂ pl;;(w) _ i/ pen(@)?
E, [l g =) )\ e 0\ Wo mlz)
LT =01 (@ ie@aw) @2 (o p;f,z;))dw
Since p;(z) = Z% Yo m(@)w g (x — x1), by LemmaEand Corollary
] ( )2 > U’l+1,kth1,k 1
L P41 W Witk Zipi Lo 7 - 7 ) —
o ) dx < wirZis 0 OC(Frar e/ Zigr e || T/ Zig) — 1)
Zk’ wl,,k/Zl,k,’
C? (2 - _ s
< 5= (CTman/Ziak | e/ Zik) = 1).
CringW
O
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G.2 MIXING TIME BOUNDS

Lemma G.10. GivenAssumptions let wo(w,i) = 22:1 f;l) S wik %I{i =
j}. In the setting of Theorem we let Ty be the projected chain so that 7 ((z7 j)) x f‘gl)wm Z;

Then
CMr-1?

Cpr(mo(,7)) = O( Y

)
max; o ;/<; 0 ((i/vj))

min <7‘To((i,j)),7_r0 (G-1.9)

where r = > and C' = max;; C;j. When applying the inductive hypothe-

SiS
C’ngC’M A

Cp[(ﬂ'o(l‘,i)) = O( ot - b\

).
Proof. First we note that by theorem [E.T]we have that

Cpr(mo(z,i)) < max {C(l + (6M +12)0), %, 12}\0}

We are free to choose the constants v and A and C'is the maximum of the local Poincaré constants.
Therefore it is left to bound C, the Poincaré constant of the projected chain.

We show this using the canonical path method, Lemma [J.7. Given the projected chain of the ST
process there are two types of distinct edges. First consider the edge e = ((1, ), (1, %)), we have
that

lle) =

1 — —
7o (i) P((1,), (1, k) e;r;y“(””)”‘)(yﬂw.

Given the definiton of P((1, j), (1, %)) and our lower bounds in Lemma@ and Assumptions
o1 _ -
L S (@) o(y)hesyl
min (WO((Lj)),WO((l,k))) e€la y

Moreover, the longest path in our projected chain is from z = (I, k) toy = (I, 7) and is of length
2] — 1 therefore

<

(21— 1)0(1) S o))
min (ﬂo((l,j)),wo((l, k))). e€Ty

l

S Ro((0.1) 3 Aol 1)

i=1 i'=1

|
=
=}
N
Rl
S)
—
?
.
;“
S
—~
-
>~
N~—
S—
N~

Now consider the second type of edge e = ((i,j), (i — 1,)), we have that
1

l(e) = 7o ((i,4)) P((i,5), (i — 1, 7)) eerzw o (@) o (Y) Yz -y -

Given the definiton of P((1, ), (1, %)) and our lower bounds in Lemma@ and Assumptions

o) S o) o) .
min (ﬁo((i,j))ﬁo((i — 1,j))> e€ly

<
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Moreover, the longest path in our projected chain is from z = (I, k) to y = (I, j) and is of length
2l — 1 therefore

@-1oW S wol@)mo(y)
min( 0((4,7)), o ((i — 1 ]))) €T,y

maX;<q’<i 7T0( )
o((

min(ﬂ'( ). 1_13)>

In the case of induction, by letting 7o ((¢, j)) o fgl)wa jZ; ; and applying Lemmawe have that

<

121 — 1)O(1).

max;<ir < To((i', 7)) < 1C3C,

win (7o (6. ) 70~ 1.9))

O
. , N 2
Lemma G.11. Given assumptlonsandA (VO(x’Z)lfo(alL)z;_c;,Pl(po(x’l))> then
0
choosing
T = Q(poly(l, M, Cy,Cs,C 11 i))
Y ,Ctilt ANy or
yields A < 6.
Proof. We have that,
2 . . % Vo(x,i) l/()(ﬁﬂ,’ll)
vo(x,1 z,1 < oo =1 < NS
et )? < |22 L
By Assumptions[3.1]
VO(xai)
<U.
1 <
B - ) - o 0 .
yLemmaW1thp0(x,z) =7 w (@) {i = 1 +32,2 75 pjo(x)I{j = i} we have that,
C2Cy,CM - 12
C z,1)) = O(L—="————).
pr(po(,i)) = O( Ctilt'Y')\

For fo(z,i) = # wgde(@)I{i = 1} + XS0 VB0@){j = i} and p(z,i) =

Zé 1 fﬁl)pj( )I{j = i} with o defined so that p(x,i) = agpo(z,i) + (1 — ap)p1(z, ) we have
that

Zé:l fQ po(z,i)dx

Qo =
22:1 Jo pl@,i)dx
) Zio + ) D Zioda
- S A0 Zida
w2z + i Z,de
Z Ctilt i A(l)
Z’L 1 1 Zd.fl)

= Ctilt-
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Lastly, for po(z,4) = r”l(l)wl,kﬁl,k(:c)l{z I+ Zi 11 A]l)pjo( )I{j = i} making use of Lemma
and Lemmal[G.3]we have that

1 ’Iﬁl(l)wl’k fQ ﬁl’k(l‘)dl‘

Yo = T L) —M ~
> im1 7"5 ) > k1 Wik fsz ik (z)dz

NO)
7wy kL1 k

NG
> et TE ) Zl]cwzl Wik Zik
1

;Wi kL,
Zz IZk 1 T<3>wk .

wl k’Zl k!

Ctilt

> .
T 1-Ml-C3C,
Putting all of the bounds together we have that

Ao <X2 (vo(w3)lp(x, 1)) - Cp1(po(a, i)))

aog(w§)?-T

N

) O(%) 12 M2 .02
B ( e T )
Therefore choosing
6 073713
T_Q<l M 00166’2 )
or -7 A Gy
with an appropriate constant yields A < §p. O

G.3 PROOF OF INDUCTION STEP

In this subsection it is shown how estimating weights by Algorithm 3| maintains modal and level bal-
ance. Its important to note that Algorithm 3] has three separate Monte Carlo estimates, it’ll be shown
how each one is used to maintain level balance. First, Algorithm [3|estimates the modal weights at
the next temperature level, the analysis of this component corresponds to Theorem|[G.13] Then, after
estimating the modal weights, the level weight is estimated, which corresponds to Theorem [G.15]
Lastly, the algorithm is re-ran and samples are collected to re-adjust level weights, this corresponds
to the analysis in Theorem [G.17]

We show in the following lemma that the constant R from Lemma [G.3]is bounded.

Lemma G.12. Let Assumptions and Assumptions hold. Then for f = 72(’; (g) and f =

Piya1(x)

p(z,l) 2
IEPT [f ] < R
Es. [f]°

with R = poly(l, M, Cy, Cy, =, U).

Proof. By Lemma|G.9]

= vo (1)
Brriao ()1 =0) _ |563],. i,

<X2 M1/ Zier | T/ Zik) — 1>

) .A) and

E TLETLG = l}] o C% cringw!

P (2,1) [p(x %)

Wlth CB = Ct;lt (M — (]_ + X2 <7Tl+1,k‘ || 71—[7]@)

[N

po (x,1)
E. [(Pi+1 w) I{i }] vo(z,1) )
P (i) [( p(x, ) t= p(z,i) Cl 9, _ ~ _
< O T/ Zisa e || 7/ Zig) — 1)
Epr (i) [p;lsa,(i)) i =1}] ’ Ch G
3
with Cr = cipy - <M <1+X2(7Tl+1,k I 7Tz,k> > ‘AQ)_
po (@,i) 10
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As made explicit in Lemma L with T = Q(poly(l, M, Cy, Cy, C, o ”, 1, % (%)) the Cz and
Cp: terms can be lower bounded by H”Ogiig\\ Moreover, using that H”O(I 1)) [lo < ||;g(§z I oo
poCe,0) |00

yields the final upper bound.

NG
Since w! = %
Dk r 2k
R Y T A0 e DY o N R & o T O 4 <9.0.02
W il 0 z, vz, ’
Using ”0((3: l)) . < U and x*(Ti41,6/ Zisa ke || T/ Zii) = O(1) by Assumptionsthen

combining the bounds yields

vo(x,1)
p(x,1) oo MC, by - _ - 21M01022U3
Z Z 1)< —F=.0(1
%) P (X (Tisre/ Zisrw || Tow/ Zik) < a- (1)
o) o2 2AC2C2U3
p(z,i B _ _ _
o2 2 lwz (i1 k) Zigr o || Fonf Zig) — 1) < 723‘ 2. 0(1).
B’ tilt tilt

Theorem G.13. |HI(l + 1) | There is C; = poly (CUl ) and R = poly(l, M, Cy,Cs, ﬁ,U)
such that the following holds: Suppose that HI(1) holds with Cy. Then Algorithm 3] running the
continuous process for time T time and obtaining N samples, with

1 1 1
T=0Q ly(l, M, C U, —
(po y( Ctilt Y ’Y 5T))
R
N=9(5),

returns weights such that with probability 1 — 8, HI(l + 1) holds with the same Cy. The key choice
in Algorithm[3)is the weighting

1
Wik = Z 41, k(fy) {’L l}
N ji=1 p xj,zj) ]

Proof. We have with probability 1 — § that lettingcy = 1 — 4/ 6, CB = Ctilt <M — (1 +

) po (@,1)
2
X2(7Tl+1,kH7Tl7k> )'A>»CA:1+ . Cp =

— . 7 - . | Firk - Ti+1,k -
FEN Bl —ny AR, Sy, <y B RI0=0] B[Repri=g)

vo(x,i)

p(x,7)

1
1 =
oo and cc Ctitt’

P(wj,5) _ P(w),15)
Zig1,k = = 7 A
7 S . I

€ [cacp,CaCpCc|

by applying Lemma|G.5] Lemma|G.6|and Lemma|[G.7]to the three terms respectively.

Choosing N = Q(%) reduces \/]\% to a constant. Lemma |G.12| provides a bound for R. Let

A = (X o@dlip@)-Cri(po@)

ao(wg)?-T

yields that we can take

1
2
) then by taking the ratio of the two Monte Carlo estimates
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1

Lo Ctilt

vo(w,i)

w(x,1)

T )
Ctizt<2”u$|w - (1 +x? (Wzﬂ,k H 7T1,k> ) 'A>
70

The rest follows from Assumptions [3.1]and Lemma[G.TT| which yield

X2 (7‘(‘1.,.1,/C H 7Tl7k> = O(l) and A = 0(5),

C:max{CACB 1 } <

s
CACB, CC

respectively. This yields
1

Lo Ctilt

ctilt(m ~ (1 + 0(1)) : 5)

By choosing T so that 4 is negligible

vo(x,i)
7 (x,1)

<

2140) ||wo(z,d)|?
2, (1=208)| m(2,4) || poe
Which by Assumptions [G.1]
4 U
C < 5—U? = poly(—).
Crilt Ctilt

O

In order to simplify the proof of H2(1+1) we offload some of the work to the following lemma (G.T4).
This Lemma combines the bounds from the previous lemmas, Lemma [G.5]and Lemma|[G.8] to find

D
an upper and lower bound on (l) Z%_ Then the theorem that follows, Theorem |G.15}| details the
™14+
)
run time 7" and number of samples N required to guarantee # € [C%, C5]. Tts important to
T {141+1
note that Theorem only guarantees the exist of one k € [1,] that maintains level balance.
Lemma G.14. Given Assumptions and  Assumptions Let Ag, =
1
C2 .42 P 4))-C i 2 . .
( 252 (noa nuﬂz(a;;Z)T pi(mo(e z))> and choose 79, o -  with N = Q(£)
“olwo DI =j p(t LJ) I{i;=l}

then with probability 1 — §

1 7O .

Ctilt 1 2 ? Zy vo(, 1)
2(1—5)<,,“ (1+X <7Tl+1,k | Wl,k) ) Ac ) —p—— < (140)-|| 5
120 2| 22|, )70z p(,1) || 1o

forall k € [1,1].
Proof. By Lemma|G.3] with R as in Lemma[G.12] and Lemma|[G.8]we have that
N T o N T E I =1
LN J’;g;f )I{zj =1 _ Ly ]Z;&l?(“)f{zj =1} pf{ oy i }}
Zia / z E;, [”;E(s)l{z }} E, {P];g(f 1{1—1}}
T CICIT0)
p(x,1) Loo
Similarly, we have that
N 1 N . E, | P L)I
%Zl ]I‘:)ZCLJL])I{Z]—Z}_ sz ]ZI&J”)I{Z] l} pt|:p(wz) {Z }:l
lin 2 B [ BpSri=t| B |BSri-)]
1
1 9 2
> crin(1 = 0) | ——— — ( 1+ X migr || Tk “Ac, | = L.
22

Pol‘l
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Lastly, given that l“ = ZZ17+<1”Z we consider
i=1"1 K
1N m+1(r]) 0!
RRE ORI O T o N
Zl+1/Z LN 7121(4;1(11J)>1{Z.j:l} I+1
A(l)Zk

T <Uforallk € [1,]].

101+1(JC
~ Xil; sy =1

I+1

By the pigeonhole principle there exists k& € [1,] such that

L_ 0 7,
7 1

Brr1(j) Z1+1
NZL J p(‘; 1J I{ 7_l}

Lemma|G.3]yields for all k € [1,]

L w7,

< .
1202 — L Z,
2 Pry1(@g) . I+1
N ZL =j ;)l{tl 1]) I{ij=i}

O

Theorem G.15. There is C = 1°C3 - O(Y —) and R = poly(l, M, C1, Ca, —,U) such that the
following holds: Suppose that H1(l) holds wzth C1 and H2(1) holds with Cs. By running Algorithm
the continuous time process for time I" and obtaining N samples with

~ 1 111
T = Q(poly(l, M,C,Cy,Cqy —, —, —, —
(p y( b Citt A Y 5T))
R
N=Q(=).
(&)
Then there exists k € [1,1] s.t. with probability 1 — §
(D)
l < (Tl’;fi < C.
c 721+1Zl+1

The choice in AlgorithmB)is the weighting
N0 1

"HLT TGN @)
N Zz‘:j Z;Sl(-;lj,z'j) I{Zj - l}

Proof. By Lemma this reduces to finding the maximum between the upper bounds on

1
1
) 2
weg(1=9) <2||’0<‘ Dl (1 e <m+l’k I m’k> ) ' ACI)
po(z,i
and
Vo(.%‘,i>
(1+49)- . .
p(x,z) Loe
The first term can be bounded as follows
1
%
-9 (s - (140 (el me) )20,
po (x,i e
l2022

< .
< 1 :
cire(1 — 5)<2yoiz,;;”m - (1 +x? (7Tl+1,k I 7Tz,k> > 'Aq)

po(x,i
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Where A¢, is A with an additional C% term in the numerator. However, as shown in Lemma
the time is already polynomial in C; therefore the run time remains unchanged. This puts us in the
same settings as Theorem@b_lz} Taking the bound in Theorem [G.13]as greedy upper bound we get
the same constant C' = O( with an additional [ - C'5 scaling factor.

O

()
Theorem |G.15|shows that there exists k € [1,!] such that we have good level balance for 5’; ZZ’“ .
i1 it

NOPS
However, in order to guarantee that the projected chain mixes well we require that the ratio = ”Zk
J
be within a constant for all j,k € [1,] + 1]. In order to prevent the constant from becoming expo-

nentially bad with respect to the number of levels, after estimating the level weight rl( ), we re-run

the chain and keep count of the number of samples at each level and adjust accordingly. The follow-
ing Lemma [G.T6|shows that the level approximation acquired by sampling is close to the true level
weights. This Lemma is then used to prove the bound for H2(1+1) in Theorem|G.15]

Lemma G.16. Let Assumptions[I.1)and Assumptions[3.1|hold. Then

<

T T A ”0((“"”’?))
_volz,?) . p(x,i -
2‘ pgood(zvi) Loo Ep(w,i) |:I{l1 = Z}:| L

aT

with A = (Xz (”U(xvi)HP(ﬂcﬂi)) -Cpr (p(x,z‘)) ) 3

Proof. An upperbound is given by,

B .0 [I{ll - i}} i Jo B p(a, i) I{h = i}
By | 100 = )] By | 11 = 1|
Atz oo i Jo I{ly = itp(z, i)dx

pi(x,i)
By P

e (2, 9)
_’ p(2,4) |1
By contraction,
vo(x,1)
p(x,i) L

To find a lower bound first note that
Bpr 10 =3)] o (08700252 ¢ (57 00) = ) 5205 ) 0 = iy
Ep(a,i) {I{ll = Z}] Ep(ei) [I{h = Z}}

since aPgood(,1) + (1 — a)ppad(z, i) = p(z, i)
Z Jo " (z,i p”;‘(’if)l {ly =i}dx

S T
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let pgooa(2, ¢) be the good part of distribution on the extended state space. Then consider,

good (T,%)
)R /Z
’Z/ ( Dgood (T, 1) - 1>I{l1 = }Pgood (T, 1)dx
g
p oud(ﬁ? Z)
)y / z | |
Pgood (T 1) - 1‘1{11 = 1}Pgood (T, 1)dx
goo
pT -\ Pgood (T,1) .
2 p ($,Z)W H (x Z) &
pgood x,i) Pgood\T,
Z fgp X, Z o(2,0) dx
Z/ - Iy =i}dx >
goo (CE k3 { 1 =
Z pr p o i o) )d

Nl

(e

by =1 -
Dgood (T,1) Z pr x, i pg;(z;(j)z)d

e

Combining the two lower bounds we have that,

1

. . pT (x, z)ip”of(f 2 )2
]EﬁT(:c,i) [I{ll = Z}:l aZ (Epgood(m>i) |:I{l1 = 7’}:| - X2 (Z S DT (w,1) Fgoo;(“" D4 || pQOOd(xv i)
Z iJQ (x,1)

Ep(.) {I{ll = i}] Ep(e,i) {f{ll = i}}

By Lemma[F.2 and using assumptions[T.1| we get,

Dgood (T,1)

pT 1

a pt(x, 1) e, 1
Z T T ¢ 00 7‘ .
N 2’ _vo(@,i) (ct e (Z oy BT (2, 1) pqaod(m Pgooa(@,0) 1. || Pgood (T Z)) )

Pgood(fﬂ) L p(l 7/)

1
Lastly by LemmaEwith A= <X2 (vo(@.i)llp(.0))-Cri (p(ai)) > i ,

T
QACtilt
! — aA
vo (z,1)
Pgood (T,1) oo

O

Theorem G.17. | H2(l + 1) | There is Cy = poly < ) and R = poly(l, M, C1,Cy, — = ,U) such
that the following holds: Suppose that H1(1) and H2( 1) holds with Cs. Then Algorlthm E] running
the continuous process for time T time and obtaining N samples, with

~ 1 11 1
T=0Q 1 l,M,C,C,C,invfafvi
(poy( b2 Citt. A Y 5T))
R
N:Q(E),

returns weights such that with probability 1 — 0, H2(l + 1) holds with the same Cs. The key choice
of weights here are

it /N 21{@7 =i}.
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(1

Proof. Applying the definition of r, ) the quotient can be rewritten as

(t D~ N .

Jorl P @de _ JoriVh (e &SN i = 1)
- ~ ’ N X

Jort b @dz JorPp(e)de &S0 i =}

Ep(a,i) [I{ll = i}] LN iy =1}

B "1 N ._
Ep(a,i) {I{lz = z}] N 2jor Hig =1}

E 1, | I{i=l2}
& Xl =y " ( ‘)|:

EﬁT(z’i) |:I{'Ll2}:| ]Ep(m,i) |:I{7'12}:|

_ E 1, 4 | I{i=l1}
x XN =) ? “‘”{

BT (a,) [I{i_ll}} Ep(a,i) [I{i—h}}

o7 (o | =t}

1 N .=
d ~ 2y LU =h) forall 1 <

Therefore it is sufficient to upper and lower boun
Eor o | T{i=h} | Epe [I{i=l1}

l; < I which we get directly from Lemma|G.5| with R as in Lemma|G.12} and Lemma This

yields

vo(x,7)
p(x,i)

1
«

1+0

C=1735

- A

Ctilt
2“ uo(m,i)‘
Pgood (®:%)

Loo
where « is the weight of the good component of joint distribution p(x,7) = apgeod(z,i) + (1 —
a)Ppad(x, ). First we note that by Theorem we have

A(l)

1 Z

C’ — . l) VA . = C/
g 2L

where C' = [2-C%- O( -
[1,!]. Together, this 1mphes that =~ < Lz < Cy fori,j € [1,1+ 1] w1th Cy = l2 Ccs - O(Ctm)
Now, replacing C5 with Cs in the context of Lemmaand then applied to Lemmamylelds
01020M12> o (U01030M~l4>

). By the inductive hypothesis, we know that & < i < Cqfori,je

CPI(pgood(xvi)) =0 <

Critt YA oy A
Applying this to Lemma|[G.TT]still yields a polynomial mixing time to bound A. Therefore choosing
appropriately 7' = Q(poly(l, M, Cy, Cy, -, 1, 1)) we have that A < §. Since % ‘ <
tilt p(T,? oo
pifo(ﬁﬁi) L. Weget
9 )
CS VO(J:’Z). 0(1)
Ctilt - & pgood(xvl) Lo
By Assumptions[3.1]
1
C<——0U?.
Ctilt = &
Lastly, as shown in Lemma[G.T1] v > cy;5¢; therefore
U2
c<o ( ) .
Chit
O
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H PROOF OF MAIN THEOREM

Proof. We will conclude the main theorem by applying Lemma[F3/to
L

M
m(x, i) Z (rm(m) . Zwl,kql(aﬁ — xk)> I{i=1},
k=1

=1

with L being the target level so that g7, (x — ) = 1. Rewrite m(x, 7) as

m(z,i) = whn(x)I{i = L}—|—Zwﬂ' VI {i=1}.

To get an € bound on TV-distance we note that by Cauchy-Schwarz,

TV (pr(a). 7(x)) < 2 (pr(@) || (2))F = ( / (ﬁ“x’”/ 7{&?(%’”“ - 1)2(@@)%_

Lemma|F.3 with 7f = 7% = 7(z) yields

or(2, L)/ [ pr(z, L)d 2 3 A
(/ (pmc )/ Jobr(x, L)dx _1) W(ﬁ)ﬁ) SRS )
Q m(z) fQ %dz
where
1
Ao X2 (vo(z,i)||7(z,1)) - Cpr(mo(w, i) 2
o aowl - T
It remains to show that (H.1) is < e. We first bound [, %dw. By LemmaE, with 7y = T,
D L 1 A
/pT(xL’ )dx > - -
o w 2 || 20 (wg)2
Uy o)
By Assumptions 3.1}
9 ) ) vo(x, 1) vo(x, 1)
< (|22 g —1< || =< <U.
X (l/o(il,',’é)H’/T(iL’,’L)) = w(m,i) Lo = Wo(.l?,i) oo =
Then by Lemma|[G.10]
Cpi(mola.)) = poly (v, o, €001, L 1Y
PI\To(T, = poy 1, L2, O e A

Next we bound « and wl by using Assumption 2),

Zf 1 Z(L)Zzo S Crilt ZZL 1 AEL)Z’i
251 z(L)Z ; ZiL:1fz(L)Zi

I3 TEL)U/LJC fQ 77FL7k(I‘)d.T

“o L (L) M -
Dt 7”5 ) D k=1 Wik fQ ik (7)dx

(L
B T(L )wL,kZL,k

- ~(L
S A SN w1 Zi
1

; ik i,
Zz 1Zk 1A<i>wk .

W,k 21k

Qo = = Ct4lt

Ctilt

> et
—L?2-M- C%CQ’

where in the last step we use Lemma Therefore choosing T = Q(Ei2 .
poly(U,C1,Cs,C, M, L, 1, wA))ylelds ); < ﬁ,] Prl) gy >

and

A <
o g,

47



Under review as a conference paper at ICLR 2026

. Noting that Theorem |G.13|and Theorem |G.17|yield C; = poly(cf]m) and Cy = poly(cgu )

we have that T' = Q(e%poly(U,C',M , L, L 1)) is sufficient. Moreover, the number of

L i AN

samples required at each level to run Algorithm |3| to ensure failure probability at most % for
each level (and hence total failure probability at most J) is given in Theorem |G.13| and Theo-
rem|G.17|as N = ) (%). R = poly(l, M, Cq, Cs, Tl-zt’ U) is given in Lemma |G.12|and with
Cy = poly(%) and Cy = poly(cgt) this reduces to R = poly(L, M, ﬁ,U). Therefore,
N = Q(poly(L, M,U, -, %))

> critg ) O

O

I GENERAL SETTING

I.1 TEMPERING ON R¢

In this subsection, we place reasonable assumptions on the tempering function ¢; () in R and show
that Assumptions hold. More specifically, we determine lower bounds on the probability flow
between two modes of the projected chain. Lower bounding the probability flow between modes
will provide us with a lower bound on the spectral gap, in turn, enabling us to upper bound the
Poincaré constant C' of the projected chain from section|E. The following assumptions will be made
for this subsection.

Assumption L1. Let p;(x) = Z,iw:l apr(x) Z;Vil w; j¢i(x — xj).
1. The tempering function q; is defined as

2
- lzlls

gi(z) =e
2. We let the push forward measure qu, be defined as the translation

qf (@) =@ -z + a0

3. The function aypy(x) = e~ ) where fi,(x) is L-smooth.

The following Lemma will allow us to find a suitable lower bound on the probability flows between
modes by bounding the x2-divergence between mixture components.

Lemma L2. Let pg, go0a be the probability distribution defined as in (B.3). Let the distribution

2
—B; 2

pij = 28 ("E)Z(ﬁi) ~— satisfy a Poincaré inequality with constant Cj and ||z; — Ep, (z)|| < 6
for some constant 6 > 0. Lastly, let A = 8; — By and AS € |0, ﬁ] Then
1 2(dCrs + 6*)AB
X2 (pvjllpis) < exp & ) - L
/T - 201508 1—20.5A8
In particular, for A = O(m) this is O(1).
Proof. We have
lo—= ;|2 9
g3 (2)a3, (& = 23) | ayps (@)gs, (@ — e g T
R R e O ey AT
i'j ij Q e BiT5— Zirj

. 2

_(Zig 2 [ (pempile—ay s (@) Pl

= (==L e : g de —1
Zi;" Ja Zij

Further note that with 3 < 3; and e—Bllz=x;117/2 < 1 it follows that

Z, :/ajpj(x)efﬁiuzijW/zdxS/ajpj(x)efmfnxfmjn?ﬂdz:Zi,,j,
Q Q
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~Bille—w;1?
Zij ’

—Bi . —Bs a2
Zm)2/ BBl 2 QiP5 (@)e I zill* x—lg/ Allo—s, |2 @y ()e” Pillewsll
Q
=E,,

a;pj(z)e

Therefore, with p;; =

der —1

Zit j ij ij

e ABHocf:er?],
Applying Lemma [J.6]yields
1 2
B [eMBlle—ayl?) o L .
pzy[ } T—20,5A08 * €Xp 1*20L T-2C,5A8 Ep., [||37 xj||]

1 2
< T=205:89 ‘*"p(l_chsAﬁ ol =B 01+ 15 ) 1]

d
1
< E Vi 52
- 1= QC'LSAﬂ 1— QCLSAB .y () + )>
Lastly, applying the LSI inequality,
1 2(dCrs + 6%)AB
< ———————-exp .
Vv1—-2CLsApB 1-2CLsAB

O

Lemma L3. Let pg, good be the probability distribution defined as in (B.3). Forall1 < j < M let

a;pj(z) = e i®) for some L-smooth function f;(z) and let ||z; — zi|| < D for some constant
D > 0. Then

2, dlpi (D@ =) api(@)qi (e — ;) Bi+ L\ 522
X ( I ) < e’BI—3L _ 1.
Zij 21 B1—

In particular, for 31 = Q(L?>D?d), this is O(1).

Proof. Consider the following,

2 <aj’qu'pj’($)% (@ — ) Hajpj (x)q1(x — x])>

AV 2y

X

_ / <aj/qu/pj/ (x)q (x — xj/)/ajpj(x)ql(a: — ;) B 1>2ajpj(a:)q1(x - :vj)d
Q Zyjr 21 Zy;

2
/ aypj (@ —a; + zy)q(e — ) [agpi(@alr—z;) \ aypi@al-z))
Q 2y 21 21

AT Oézfp" T —x;i+xi)? [a—a ;|2
Z Q a;pj ()

15
We continue by finding an upper bound on

Zh / ajz-,pj/(x —xj +mj/)2€7ﬁiuw7;vju2 dp = Zy; / e 2f(@—zjtmy) *Bi”xﬁjl‘zd
Q a;5Pj Q

= 2
7, w 2 b0 e " ’
By letting a;p;(z) = e~ /i(*) for some L-smooth f;(x),
o2 () w2
< 521] — (@) /€(2fo'(mj/>—fo(xf))T<$—%)e%L”’”—%‘”2e‘ﬁ1%dm
15 € JI\n Q
Letting v = 2ij/(xj/) - ij (.Z’j),
—2f.(x;r
_ le e fg ( J) 2(3L B1)(xz— TJ+3L 3 1;) (x— TJ+3L 3 1))+3L A1 o7 1)d
72 e )¢ 1 1 ‘
15/ e Ji\ Q
. *2f7'/(17”)
_ Z21] e 3T eﬁll/szTv( 2w )%
le, e—Ji(z;) 61 — 3L
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We can bound v”'v = [[2V fjr(xj:) — V fi(2;)|[* < (2L[|xj — || + L||z; — «5|))* < 9L*D?

21 e 2ir(@) gp2p2 2m
< . e3(h1-3D) ( )
=72, e ki) 8, — 3L

vl

Now we can bound the following,

Zyj = / e_ﬁ"'%e_fj(z)dx
Q

le—a;112

< / o~ @) F (@) () 4l a—ay | - oD
Q

:e—fj(znewtmw:f(zjﬂvnuj)/ o~ Pt lle—my = V@ )IP g,
Q
L2p2 2

—fi(®) o328, -1y
¢ ‘ (51 —L)

z—x./ 012 _ -
Zl‘/ _/6761’4” 2'7,7“ e 1™ gy
jr =
Q

> / effj/ (a:j/)7ij/ (a:j/)T(wj/ 7w)7% | \azfa:j/ | \2
Q

4
2

IN

T B1+L
— o~ 1@ 3Ty Vi (@0) ij’(f”j')/e* . ||I*mj’+/311+Lij’(“"j’)”Qdm

Q
d Vf'/($_~/)TVf'/(1‘_~/)
= ( 2 )2e_fj’(w.7")e ST
b1+ L
Therefore we have that,
d L2p2
Zy; e Hi@y) gp2pe 2r 4 (BQj‘L)zeifj(mj)eﬂBl_L) e~y (@) orzp2 2r 4
2 e ¢ ( )? : T Ty ¢ )’
Zz., e il —-3L7 — Viplei)” Vi e=filE; —3L
Y o (ﬁ2:L)de‘2f.f’(%')62% A
1
T
27-[- d L2p2 L _ ij/(l'j/) ij/(l'j/) 912 D2 27-[-
= (ﬁ) 2 02(B1-L) (ﬁli—'_)de 2 3(B1+L) e2(B1—3L) (ﬁ)
1 — 2w 1 — 3
. V()T f ()
. V()T fa(x, _o i 3%
for L > 0, 81 —L > B1 —3L and since f”(QJ('gﬁLJ;"( NN 0, we have e 2B D) <1
and hence,
L L2p2
p1+ SEGT
B1— 3L
O

We will show that the base case of H1(1) and H2(1) hold under Assumptions u To do this we
will reuse our previous analysis from this section. In Lemma we were able to show that if
a;p;(z) = e fi®) with L-smooth f;(z) for all j, then

D2

d L2
2 o= fi(2)) o 25— D)

2
leg(ﬁliL)

and
)2 e tit@),

%y 2 (ﬁl +L

We first show that by choosing 31 large enough the partition functions Z;; can be well approx-
imated. With good enough approximates of Z;, we then show that we can estimate Z; up to a
constant factor.

Lemma L4. Let Assumptionshold and assume that p(xy) > agpr(xr) > crep(Ty) (this is the
limit as 8 — 00 of the tilting assumption in Assumptions If B = Q(@) with appropriate
constants, then

crie(1 —€) -plzr) < Zig < (1 +€) - par).
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Proof. By our previous bounds on Z1; and Assumptions|1.1| we choose 31 such that

Br 4 L

l—ES(

2
Noting that (1;) =1+0 ( ) gives that it suffices for §; = (LT) In similar fashion, for the

upper bound, we choose (3; such that

A

1+612<ﬂ
=

g L
7) <=>612(

1+e)%+1.

A similar analysis to the lower bound yields that this is satisfied when 8; = Q(’;“—ld) We also impose

L?D?

22
Lbes ot o g D
- 2111(14—62)

+L,

for which it suffices that 3; = (m) By letting 1 + € = (1 +¢1)(1 + €2) and e; = €3, we
require that 3; = Q (M) -

€

Corollary L.5. | HI(1) | Taking w1 5, p(w y and choosing 81 = (L D* 4) yields

cie(l —€) _ wipZip < 1+e

I+e = wikZir ~ crar(l—€)’
ie.
where Cy = O(ci“ ).
Lemma L.6. Let po(z,i) = Zé 1 r](l)pjo( VI{i = j}, with pjo(z) = 22421 wj popTr(2) g5 (@ —
x). Here, f%l) = 027’5[) and r](l) = Tj(.l) for 3 = 2,... 1. Moreover, we define the normalized

po(x,i) = Z;Zl Wipjo(x)I{i = j} with pjo(x) = Z%Oﬁjo(x). Lastly, by choosing

1 Zcmﬂf J/’k)wlk(WL) exp(—(gﬁL;—ﬂl)M—kaQ)I{i: 1},

1k1

vo(x,1)

we have that
Vo((L', Z)
Po ('757 Z) 0o N c?ilt

Moreover, choosing 31 = Q(L?D?d),

1% (l‘, Z)
po(, i)

_ 1+6<L+51ﬁ+L2D2)2 o),
1

1
oz
00 Chilt

Proof. Let vy(z,i) = 71 > 51:1 W1 kG, (x)I{i = k} for some ¢ ,—to be defined later. Then we
1
can consider

M ~ ~
ZkZI wl,kql,k(x)
M
Dk Wi kTR (2) g5 (x — )

vo(z,1)
po(x,1)

7 Yty 1 xdr k(@) 1 Zy

Lo wo/ZmZk 1 W1 kTR (2)q; (x — o) . 7y wg

| o0

Bi1a By L+.+By Am

To bound ALt=FAu — Bar jt’s sufficfient to bound AZ for all k. Therefore, by using

Bi+---+Bnm Bi+---+Bum
that a7y (z) = e~ /*(®) where fi(z) is L-smooth and ¢;(z — 2},) is a Gaussian centered at x;, with
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variance f31, we consider

H W1 K1,k (x)
wi g (2)g;(z — x1)

’ oo

< W1 k1K ()

wrpnmion) (2 ) exp(~@ = 0TV Silan) = Slle — anll - ke - o)

ol

oo
W1,k

_ )

. L
(o) ewp (o~ 00" fulen) + gl =l + Pl ol

wy kg Ty (T ) (5;

1\7\&.

Now letting §1 = (%)
ik (53)

4

2
1
™

xp(—§ e — zxl[?),

[NI}s%

L o
e (2 = 209 )+ o = 1P + ke = sl = Gl - i)

=)

w1 kTR (Tk) (

]

vl

L+ —a V(@) ||° 0 Vilen) TV fr(zr)
exp| ——— — T+ —
5 2 L+3—« 2(L+ B —a)
w1 kakﬂk(ﬂﬂk)( 1)
Choose o = 31 + L + L?>D? > B, + L; then
d
2\ 2
1 (W;LD) ) , .
< LD V fu(xr) V fi(zr)" V fr(zr)
= T s 2LD?
w1 kT (Tk) <ﬂ1>
%
- L+B1+LD?
< w( - ) 2 |l — w3
- 3 2L D2
wy kakm(ﬂﬁk)<’81> o
Wy L+ ﬁl + LD? L?*D?
T koz;ﬂrk(a:k) L2D2
Lastly, by the assumption that apmr(xg) > crnm(xg) we have
a
W1 ke (L+51 +LD2)2 -0(1)
= wy e (Tk) B1
Therefore we have a bound given by
a
l@@J)’ o1 Zw g <L+51+L”ﬂ)2.ou)
po(z,9) || ~ 2y wh wipcrnm(xk) B1

Lastly by choosing w1 , = ¢y m(zk)ws g, the same estimate we use for the component measure
weights, we get

1 Zw (L 12D\ ¢
_A11°<+ﬂl+ ) L0(1),
Zl &) 51
This yields a bound of
Vo(l'ai)’ Zlol(L+6l+L2D2>g o
po(r,9) ||l o = Zy Wi B1 '
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Since, by definition of vy(x, i), 71 = cun Ziw:l wy k7 (z)) we get that

vo(z,1)
po(ﬂ?, Z)

‘ Sty wiZ 1(L+61+L2D2
s Ctilt ngzl wy k7 (zk) wp B

M .
> k=1 wkwféi)ﬂ(xk)l(L+ﬁl + L2D2

)g-ou)

) o)

Crite pey wi k7 (28) wp b1

By Lemma[[4]
d
l+el (L L?D?\ >
< +€1< + 51+ ) .0(1).

Crile Wy b1

)
Lastly, we have that w = 172(,1)"2 therefore

i=1"q “i0

1YL A0 Z4 _ 1 st iz, _ 1l Cgrll)Zl—f—ZZ ) />Zz 2
w iz, " aw Dz Crit 1 Cor? = e

O
Lemma L.7. Let Assumptions nand.hold Let max; [|Ey, ; , [z] — 2x]| < 6c with pjr =

—Byllz—=|?

e (Z)EZ,,,M = and define C} 4 = max; ; C\'"2). Then
2(7_El+1,k @) < 1 ox AmCZsf +42) '
Zisrk - Lk 1—2C;AB 1—2C34AB

In particular, if A = O( ) this is O(1).

__ 1
Cpsd+62

Proof. By Lernmait’s left to upper bound (Z:i ’; [l ; ) Let A = B — Bi+1, simplifica-

tion of the x? term yields,

72 _pg, Hz—zpll®
(7Tz+1k | 7le) Ly /eAﬁlla:me?W(f)e i du
Q

T _
Zivik ik Zlﬂ,k 21k
22
72— < lsince f11 < f3; therefore
I4+1,k
( ) —Billz— TkH
2ami(x)e z
<Z Jk/ AB||z—z]]2 YT d.
Zik Jo 2,4,k

—ﬁmx—zku?

Let py jx(z) = "“j”f(m)ezl — = then by LemmaEWith AB € [0, 55+-]
; ik Ls

21,k 1 AB )
=27, cexp ————E,, |2 - .
B ; Zik /1 —=2C5gAB exp(l — 203 4AB B4,k U|x $k|”

Lastly, by the triangle inequality and applying LSI with max; ||E,, , , [z] — 2| < d.

1 AB(Ctgd + 62
- exp B( LS + c) )
1-2C;AB 1-2C7AB
Finally, we prove Proposition [3.2]as corollary of the previous Lemmas. O

Proof. (Proposition 3. i Lemmawith choice of A = O(m) yields x? (7141 k||mk) =
O(1). Lemmauwuh choice of 31 = Q(L?D?d) yields x? (m1 g||71,;) = O(1). Lemma with
choice of A = O(c — e Yields x 2(ZuLk || TLk) — (O(1),

Zit1,6 ' 21k
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Corollary [L.3] guarantees level balance from definition 2.3] on level 1. Lastly, Lemma [[.6] with an
appropriate choice of vg(z, i) yields U = O(=—)

ilt

Since the warmest level is 3, = 0 and the coldest is 5, = Q(L?D?d) with choice of A3 =
O(m) this yields % = Q(L2D?d?Cps7?) levels. Therefore with respect to dimension-
ality we require 2(d?) levels.

O

1.2 MIXTURE OF GAUSSIANS

In Section [[.T] we showed that given exponential tempering functions, Assumptions [3.1] hold. This
shows that the theory work in Section holds in a general setting. It is left to show that for a
family of target functions, Assumptions% hold. In this subsection we will show that for a mixture
of Gaussians with different variances, Assumptions @hold, which, in conjunction with Sectionm
gives a broad setting for Theorem [3.3]to be applied. For simplicity we consider the case of spherical
Gaussians.

Proposition L.8. Assume the setting of Section[I1|outlined in Assumptions[[ 1] Additionally, assume

. 5 _ _ 2
that the mixture components of the target measure y_, cmp(z) = >, g (%) 2 e~ lle=nel” e

make the following technical assumptions that quantify distance between modes let A; = Lo and
d2y

dz.-

— o 2 2 d Aj 2 2 Ay
dir, = || — wi || then we require dj,). < d7,, Wlog(ﬁ) < djy, — djgy, and 3= < 3

Then Assumptions[I. T hold with constants
Co = mkln A
1

(8) _
) = ——.
ming ax + 5

Proof. We will show that each of the three parts of Assumptions[I.1hold.

1. Holds by definition.

2. At the target level 3, = 0 the inequality [, oy (z)dx > co >, Jo ovjm;(x)da is equiva-
lent to a, > ¢g = c¢g = miny ay. To show this for any 5; we want to find the maximum
co that satisfies

Jo armi(@)q(z — xy)da
Zj fQ ajmi()q(r — 2 )dr —

We show this by finding an upper bound on the quotient

Joaimi(@)a(z —ap)de  « [y emaalle=millP=Bulle—anl g

(
Jo anmi(z)q(x — xp)dx o (2
(

fQ e—arllz—prlP=Billz—zk||? g
d B +ﬂ 2 2
i) exp(lset el — o2 = o)

4 n 2 2\
) b exp(lestitBrnl® g 0] 2 — )

Rewriting the exponential terms exp(% — a; ||pal|* — ﬁl||xi||2) =
—a;Bi

exp(aﬁgl i — xin) yields,

[—3 a
:aj(Ha'i)QeXp( L T BT ||u'—xk||2>'
ap \ 14 2 ar + 3 aj + 6"’

J
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To simplify the above expression let A; = " flﬂ and d;;, = ||u; — zk||. The above is at
most Z—; iff '
d A
71 g(A ) + Apdiy — Ajd3 < 0. (L.1)
Consider 3 cases.

Case 1 (equal variance): Assume aj, = a;. In this case Ay, = A; and (L.I) is satisfied when
dry, < djp.

Case 2: a;, < a; which is equivalent to Ay, < A;. In this case,

d A; d A;

which is at most O when

d A
- < 2 2 .
2max{Ag, A;} 10g< k) e = i

Case 3: a; < aj, which is equivalent to A; < Ay. In this case,

d A
3 10g<A ) + Apd?, — Ajd?}g < Apdiy, — Ajd?;w
which is at most 0 when )
A _ i
Aj T djy,

In all three cases we have that

1+f3;)2 ( a;fh 2) o
—5 | exp — T —allT) < =2
wli i =l = 2y =) < 2

Since this holds for all j, k£ we have that

apmi(z)q(z — zx)dx 1
fQ ( ( > oy = Q-

E Joojmi(x)q(x — xx)dr — Zj @
Therefore since this must hold for all £ we have that ¢;;;; = ming, o,.

3. LetV; = — log ;. We have V2V (z) = (a;+2)1I. Since V; () is a-strongly convex with
a=a;+ g then o;7; (z)ePillz==xll” satisfies an Poincaré inequality (and log-Sobolev

1

inequality) with C”) L.
aj+3

J APPENDIX

Lemma J.1. ((Levin et al.| 2017, Lemma 13.6)) For a reversible transition matrix P with stationary
distribution 7, the associated Dirichlet form is

s =3 X (1@ 0) w@)P),

z,yeN

Lemma J.2. (HCR inequality |Lehmann (1983)) Let P,(Q be measures with P < Q) and f a
measurable function. Then

(Ew) _ Ep(f)) < Varr(N)X(@QIIP).
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Lemma J.3. ((Lee & Santana-Gijzen, |2024, Lemma 20)) If the Markov semigroup P; is reversible
with stationary distribution m, then

2
ﬁ Var,r(Ptf) Z O

Hence,

, — 4 Var, (P f) = —

(P f, L P, f) is strictly decreasing
Proof. We compute

d (d
=2 (dt Varﬂ(Ptf)>
= Sopy 2R

=2((ZLPf, LPf)+ <Ptfaf2ptf>)
Since .Z is self-adjoint,

=4(ZLPf, LPf)
= 4| ZLPif|72(x) > 0.

O
Lemma J4. Let P = Zk 1 kak and Q= Zk L Wi, Qy be distributions where wy,, w), > 0 and
Py, Qy are distributions. Suppose =7 < r for all k. Then

x2(P||Q) < wpx® (Pl Q).
k
Proof. Consider

) [ (P@) - Q)”
C(PIQ) = /Q Ve —ow)

Q@
- (g wnPe(r) = Sy wiQu(@)”
Q > Wi, Qk ()
Cauchy-Schwarz

yields (> wie Pr () — kak (x)

Vw}.Qr() \/ka—k)
>k W Qi (2); therefore

/ Z kak kak(a:))Q

d
0 kak< ) )

wy, Py, (7)? B wiw), Py (z (x)
/szka x)d 2/QZ wk}Q d +/QZ kak
’LUkPk )2
/Q - kak dm

)
/Zkak dx+/2w§€@k(a:
Q7
w?
R

=2

(kak(x) kak(w))
Zk w}, Qr(x)

IN

.’E 2
Qk(ﬂf) do—1

X2 (Pel|Qx) < Tzwkx (Pel|Q)-

Lemma J.5. |Ge et al. (2018c) Let p, q be probability distribution functions. Then

/ min{p(x), ¢(x)}dx > 1 — +/x2(q||p).
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Proof. We have that

(fr-mintr q}dl’>2 < [lemmbpal g o)),

Therefore
/Qmin{p, gtdz > 1 —+/x2(ql|p)-
O

Lemma J.6. (Bakry et al. (2014); |Bobkov & Tetali (20006)) Suppose that u satisfies a log-Sobolev
inequality with constant Cpg. Let f be a 1-Lipschitz function. Then
1. (Sub-exponential concentration) For any t € R,

2
Crgst

Euetf < etBuf+=%

This holds in both the continuous|Bakry et al. (2014)) and discrete |Bobkov & Tetali (2006))
setting.

2. (Sub-gaussian concentration) For any t € |0, %w),

tf2? 1 t
Eez < —— - (E,f)?).
ne == VI=Cpst eXp<2(1 *CLSt)( w) >

Lemma J.7 (Method of Canonical Paths (Corollary 13.21,Levin et al.|(2017)). Let P be a reversible
and irreducible transition matrix with stationary distribution . Define Q(x,y) = w(z)P(z,y) and
suppose Iy, is a choice of E-path for each x and y, and let
1
B = Igleagm Z (@) (y) Lyl

z,y,e€lyy

The the spectral gap satisfies v > B™1.

K LLM USAGE

LLMs used for light editing and coding aid.

57



	Introduction
	Sampling with different kinds of advice
	Problem Statement & Assumptions

	Algorithms
	Ingredients: Simulated tempering and teleportation
	Weight Estimation & Level Balance
	Main Algorithm

	Main Result
	Proof Overview
	Experiments
	Conclusion and Further Work
	Organization of Paper
	Background
	Notation
	Motivating Examples

	Algorithm Details
	Continuous Time Process
	Leap-Point Process
	Simulated Tempering Teleport Process

	Markov Process Decomposition
	Local convergence for a Markov process
	Estimating Partition Functions
	Bounding the approximations
	Mixing time bounds
	Proof of induction step

	Proof of Main Theorem
	General Setting
	Tempering on Rd
	Mixture of Gaussians

	Appendix
	LLM Usage

