
Supplemental Materials

A Nomenclature

Table 2 summarizes the main symbols and notation used in this work.

C(A,B) Space of continuous functions from a space A to a space B.
L2 Hilbert space of square integrable functions.
X Domain for input functions, subset of Rdx .
Y Domain for output functions, subset of Rdy .
x Input function arguments.
y Output function arguments (queries).
u Input function in C(X ,Rdu).
s Output function in C(Y,Rds).
n Latent dimension for solution manifold

F ,G Operator mapping input functions u to output functions s.

Table 2: (Nomenclature) A summary of the main symbols and notation used in this work.

B Experimental Details

B.1 Data-set generation

For all experiments, we use Ntrain number of function pairs for training and Ntest for testing. m
and P number of points where the input and output functions are evaluated, respectively. See Table 4
for the values of these parameters for the different examples along with batch sizes and total training
iterations. We train and test with the same data-set on each example for both NOMAD and DeepONet.

We build collections of measurements for each of the N input/output function pairs, (ui, si) as
follows. The input function is measured at m locations xi

1, . . . , x
i
m to give the point-wise evaluations,

{ui(xi
1), . . . , u

i(xi
m)}. The output function is evaluated at P locations yi1, . . . , y

i
P , with these

locations potentially varying over the data-set, to give the point-wise evaluations {si(yi1), . . . , si(yiP)}.
Each data pair used in training is then given as ({ui(xi

j)}
m
j=1, {s

i(yi`)}
P
`=1).

B.2 Antiderivative

We approximate the antiderivative operator

G : u 7! s(x) :=

Z x

0
u(y) dy,

acting on a set of input functions
U :=

�
u(x) = 2⇡t cos(2⇡tx)

�� 0  t0  t  T

.

The set of output functions is given by G(U) = {sin(2⇡tx) | 0 < t0 < t < T}. We consider
x 2 X = [0, 1] and the initial condition s(0) = 0. For a given forcing term u the solution operator
returns the antiderivative s(x). Our goal is to learn the solution operator G : C(X ,R) ! C(Y,R).
In this case dx = dy = ds = du = 1.

To construct the data-sets we sample input functions u(x) by sampling t ⇠ U(0, 10) and evaluate
these functions on m = 500 equispaced sensor locations. We measure the corresponding output
functions on P = 500 equispaced locations. We construct Ntrain = 1, 000 input/output function
pairs for training and Ntest = 1, 000 pairs for testing the model.

14

B.3 Advection Equation

For demonstrating the benefits of our method, we choose a linear transport equation benchmark,
similar to [14],

@

@t
s(x, t) + c

@

@x
s(x, t) = 0, (20)

with initial condition

s0(x) = s(x, 0) =
1

p
0.0002⇡

exp
⇣
�

(x� µ)2

0.0002

⌘
, (21)

where µ is sampled from a uniform distribution µ ⇠ U(0.05, 1). Here we have x 2 X := [0, 2], and
y = (x, t) 2 Y := [0, 2]⇥ [0, 1]. Our goal is to learn the solution operator G : C(X ,R) ! C(Y,R).
The advection equation admits an analytic solution

s(x, t) = s0(x� ct, t), (22)
where the initial condition is propagated through the domain with speed c, as shown in Figure 4a.

We construct training and testing data-sets by sampling Ntrain = 1, 000 and Ntest = 1, 000 initial
conditions and evaluate the analytic solution on Nt = 100 temporal and Nx = 256 spatial locations.
We use a high spatio-temporal resolution for training the model to avoid missing the narrow travelling
peak in the pointwise measurements.

B.4 Shallow Water Equations

The shallow water equations are a hyperbolic system of equations that describe the flow below a
pressure surface, given as

@⇢

@t
+

@(⇢v1)

@x1
+

@(⇢v2)

@x2
= 0,

@(⇢v1)

@t
+

@

@x1
(⇢v21 +

1

2
g⇢2) +

@(⇢v1v2)

@x2
= 0, t 2 (0, 1], x 2 (0, 1)2

@(⇢v2)

@t
+

@(⇢v1v2)

@x1
+

@

@x2
(⇢v22 +

1

2
g⇢2) = 0,

(23)

where ⇢ is the total fluid column height, v1 the velocity in the x1-direction, v2 the velocity in the
x2-direction, and g the acceleration due to gravity.

We consider impenetrable reflective boundaries
v1 · nx1 + v2 · nx2 = 0,

where n̂ = nx1 î+ nx2 ĵ is the unit outward normal of the boundary.

Initial conditions are generated from a droplet of random width falling from a random height to a
random spatial location and zero initial velocities

⇢ = 1 + h exp
�
�((x1 � ⇠)2 + (x2 � ⇣)2)/w

�

v1 = v2 = 0,

where h corresponds to the altitude that the droplet falls from, w the width of the droplet, and ⇠ and ⇣
the coordinates that the droplet falls in time t = 0s. Instead of choosing the solution for v1, v2 at
time t0 = 0s as the input function, we use the solution at dt = 0.002s so the input velocities are not
always zero. The components of the input functions are then

⇢ = 1 + h exp
�
�((x1 � ⇠)2 + (x2 � ⇣)2)/w

�
,

v1 = v1(dt, y1, y2),

v2 = v2(dt, y1, y2).

We set the random variables h, w, ⇠, and ⇣ to be distributed according to the uniform distributions
h = U(1.5, 2.5),

w = U(0.002, 0.008),

⇠ = U(0.4, 0.6),

⇣ = U(0.4, 0.6).

15

In this example, x 2 X := (0, 1)2 and y = (x, t) 2 (0, 1)2⇥(0, 1]. For a given set of input functions,
the solution operator G of 23 maps the fluid column height and velocity fields at time dt to the fluid
column height and velocity fields at later times. Therefore, our goal is to learn a solution operator
G : C(X ,R3) ! C(Y,R3).

We create a training and a testing data-set by sampling Ntrain = 1, 000 and Ntest = 1, 000
input/output function samples by sampling initial conditions on a 32⇥ 32 grid, solving the equation
using a Lax-Friedrichs scheme [34] and considering five snapshots t = [0.11, 0.16, 0.21, 0.26, 0.31]s.
We randomly choose P = 128 measurements from the available spatio-temporal data of the output
functions per data pair for training.

C Comparison Metrics

Throughout this work, we employ the relative L2 error as a metric to assess the test accuracy of each
model, namely

Test error metric =
||si(y)� ŝi(y)||22

||si(y)||22
,

where ŝ(y) the model predicted solution, s(y) the ground truth solution and i the realization index.
The relative L2 error is computed across all examples in the testing data-set, and different statistics of
this error vector are calculated: the mean and standard deviation. For the Shallow Water Equations
where we train on a lower resolution of the output domain, we compute the testing error using a full
resolution grid.

D Architecture Choices and Hyper-parameter Settings

We first present details on the architecture and hyperparameters used to train NOMAD and the
DeepONet for the antiderivative and parametric advection experiments.

In the DeepONet, the approximation map A : Rm
! Rn is known as the branch network b, and the

neural network whose outputs are the basis {⌧1, . . . , ⌧n} is known as the trunk network, ⌧ . We use
an MLP for both b and ⌧ and present the architecture details in Table 3. The DeepONet used for the
antiderivative and parametric advection experiments is the plain DeepONet version originally put
forth in [30], without considering the improvements in [32]. The reason for choosing the simplest
architecture possible is because we are interest in examining solely the effect of the decoder without
any additional moving parts. The NOMAD architecture for these two experiments is the same as the
DeepONet. The activation function for all MLPs is the GeLU activation [19].

Table 3: Architecture choices for different examples.
Example b depth b width ⌧ depth ⌧ width

Antiderivative 5 100 5 100
Parametric Advection 5 100 5 100

Next, we present all architecture choices and training details used in the free-surface wave experiment
for the NOMAD, DeepONet, FNO, and LOCA methods.

For both NOMAD and DeepONet, we set the batch size of input and output pairs equal to 100. We
consider an initial learning rate of lr = 0.001, and an exponential decay with decay-rate of 0.99 every
100 training iterations unless otherwise stated.

For the results presented in Table 1, we consider 5 hidden layers and 100 neurons for the branch
and the trunk for NOMAD. For the LOCA architecture, we consider one hidden layer deep MLPs
with 1024 hidden neurons, GeLU [19] activation functions, number of harmonic features H = 2,
batch size 100, dimensionality of the encoder l = 100. We train for 80000 iteration with learning
rate lr = 0.001 and an exponential decay with decay-rate of 0.95 every 100 training iterations. We
consider J = 1 log-2 scatteting scales, L = 3 angles for the wavelet transform and mo = 2 maximum
order of scattering coefficients to compute and a Monte Carlo integration. We consider the same
values for m and P as in Table 4. For the FNO architecture, we consider 8 modes and a width of

16

Table 4: Training details for the experiments in this work. We present the number of training and
testing data pairs Ntrain and Ntest, respectively, the number of sensor locations where the input
functions are evaluated m, the number of query points where the output functions are evaluated P ,
the batch size, and total training iterations.

Example Ntrain Ntest m P Batch # Train iterations

Antiderivative 1000 1000 500 500 100 20000
Parametric Advection 1000 1000 256 25600 100 20000
Free Surface Waves 1000 1000 1024 128 100 100000

25 for the FNO layers, as well as 4 FNO layers. We train for 400 epochs using a batch size that is
equal to 100, a learning rate lr = 0.001, which we then reduce by 0.5 every 100 epochs and a weight
decay of 0.0001. We consider the same m, P values as in Table 4. For the DeepONet architecture,
we consider the branch b and the trank ⌧ as MLPs with 11 hidden layers each consisting of 100
neurons and train for 80000 iterations. Moreover we include the harmonic feature expansion for the
DeepONet inputs proposed in [31].

17

