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Multi-Modal Diffusion Model for Recommendation

ABSTRACT

The rise of online multi-modal sharing platforms like TikTok and
YouTube has enabled personalized recommender systems to incor-
porate multiple modalities (such as visual, textual, and acoustic)
into user representations. However, addressing the challenge of
data sparsity in these systems remains a key issue. To address this
limitation, recent research has introduced self-supervised learn-
ing techniques to enhance recommender systems. However, these
methods often rely on simplistic random augmentation or intu-
itive cross-view information, which can introduce irrelevant noise
and fail to accurately align the multi-modal context with user-
item interaction modeling. To fill this research gap, we propose
a novel multi-modal graph diffusion model for recommendation
called DiffMM. Our framework integrates a modality-aware graph
diffusion model with a cross-modal contrastive learning paradigm
to improve modality-aware user representation learning. This inte-
gration facilitates better alignment between multi-modal feature
information and collaborative relation modeling. Our approach
leverages diffusion models’ generative capabilities to automatically
generate a user-item graph that is aware of different modalities,
facilitating the incorporation of useful multi-modal knowledge in
modeling user-item interactions. We conduct extensive experiments
on three public datasets, consistently demonstrating the superiority
of our DiffMM over various competitive baselines. For more imple-
mentation details, you can access the source codes of our model at
the link: https://anonymous.4open.science/r/DiffMM-9FB0/.

CCS CONCEPTS

« Information systems — Recommender systems.
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Recommendation, Diffusion Model, Multi-Modal Learning

1 INTRODUCTION

Multimedia recommendation systems are essential in e-commerce
and content-sharing applications that involve a vast amount of web
multimedia content, including micro-videos, images, and music
[17]. These systems deal with multiple modalities of item content,
such as visual, acoustic, and textual features of items [22], which
can capture users’ preferences at a fine-grained modality level.
Several research lines have emerged to integrate multi-modal
content into multimedia recommendation. For instance, VBPR ex-
tends the matrix decomposition framework to handle item modality

Unpublished working draft. Not for distribution.

features [7]. ACF [2] introduces a hierarchically structured atten-
tion network to identify component-level user preferences. More
recently, methods like MMGCN [31], GRCN [30], and LATTICE [37]
utilize Graph Neural Networks (GNNs) to incorporate modality
information into message passing for inferring user and item repre-
sentations [30, 31, 37]. However, most existing multimedia recom-
menders rely on sufficient high-quality labeled data (i.e., observed
user interactions) for supervised training [12, 32]. In real-life rec-
ommendation scenarios, interactions are sparse compared to the
entire interaction space, limiting supervised models to generate
accurate embeddings that represent complex user preferences.

Drawing inspiration from the recent success of self-supervised
learning (SSL) for data augmentation, one promising approach to
address the data sparsity limitation in recommendation is by gen-
erating supervisory signals from unlabeled data. However, some
recent studies, such as SGL [32], NCL [12], and HCCF [33], attempt
to incorporate SSL into collaborative filtering for modeling user-
item interactions without adapting the augmentation schemes to
the specific multimedia recommendation task. For example, SGL
uses stochastic noise perturbation to dropout nodes and edges for
graph augmentation, while NCL and HCCF focus on discovering
implicit semantic node correlations by exploring the global user-
item interactions. Unfortunately, these approaches overlook the
importance of considering the multi-modal characteristics of the
data during augmentation, which limits their representation per-
formance in capturing modality-aware user preferences.

To bridge this gap, recent research has proposed solutions that
integrate self-supervised learning techniques with multi-modal
features to enhance the effectiveness of multi-modal recommen-
dation tasks. For example, CLCRec [29] enriches item embeddings
with multi-modal features through contrastive learning based on
mutual information. Similarly, MMGCL [35] and SLMRec [21] in-
troduce random perturbations to modality features for contrastive
learning. However, these methods often rely on simplistic random
augmentation or intuitive cross-view graph alignment, which can
introduce irrelevant noisy information, including the augmented
self-supervisory signals derived from user misclick behaviors or
popularity bias. Therefore, there is a need for an adaptive modality-
aware augmentation paradigm for more accurate self-supervision,
which can effectively align the multi-modal contextual information
with the relevant collaborative signals for user preference learning.
This will ensure the robust modeling of modality-aware collabora-
tive relations in multimedia recommendation systems.

Contribution. Given the limitations and challenges of existing
solutions, we propose a new approach called Multi-Modal Graph
Diffusion Model for Recommendation (Diff MM). Inspired by recent
advancements in Diffusion Models (DMs) [5, 9] for image synthesis
tasks [20], our approach focuses on generating a modality-aware
user-item graph by leveraging the generative power of diffusion
models. This allows for the effective transfer of multi-modal knowl-
edge into the modeling of user-item interactions. Specifically, we
employ a step-by-step corruption process to progressively intro-
duce random noises to the initial user-item interaction graph. Then,
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through a reverse process, we iteratively recover the corrupted
graph, which has accumulated noises over T steps, to obtain the
original user-item graph structures. To further guide the reverse pro-
cess and generate a modality-aware user-item graph, we introduce
a simple yet effective modality-aware signal injection mechanism.
With the generated modality-aware user-item graph, we introduce
a modality-aware graph neural paradigm to perform multi-modal
graph aggregation. This enables us to effectively capture user pref-
erences related to different modalities. Additionally, we propose
a cross-modal contrastive learning framework that investigates
the consistency in user-item interaction patterns across different
modalities, further enhancing the capabilities of multi-modal con-
text learning for recommender systems.
In summary, this paper makes the following contributions:

e We present a novel multi-modal recommender system, named
DifftMM, that focuses on improving the alignment between multi-
modal contexts and the modeling of user-item interactions for
recommendation. Our approach leverages modality-adaptive self-
supervised learning combined with the generative power of dif-
fusion models to achieve effective augmentation.

e In our framework, we employ a step-by-step corruption and
reverse process, guided by a modality-aware signal injection
mechanism, to transfer valuable multi-modal knowledge into the
modeling of user-item interactions. Additionally, the user/item
representations in our DiffMM are augmented by self-supervised
signals from the cross-modal contrastive learning, which are
guided by modality-related consistency, further enhancing the
learning of modality-aware user preference.

o Extensive experiments conducted on multiple benchmark datasets
validate the effectiveness of our proposed Diff MM framework,
showecasing significant performance improvements compared to
various competitive baselines. Moreover, our approach success-
fully tackles the challenges posed by data scarcity and random
augmentations, which can negatively impact the modality-aware
collaborative relation learning for recommendation.

2 METHODOLOGY

2.1 Preliminaries

Collaborative Graph with Multi-Modal Features. Building on
the success of Graph Neural Network (GNN)-based collaborative
filtering techniques, our model, DifftMM, effectively employs graph-
structured data to power a comprehensive multi-modal recom-
mender system. We conceptualize the user-item interaction within
graph G = (u,i)|lu € U,i € I, where U and I denote the collec-
tions of users and items, respectively. An edge (u, i) indicates a user
u has interacted with an item i. To enrich the user-item interac-
tion graph G with diverse modalities, including textual, visual, and
acoustic features, we introduce modality-specific feature vectors
f’i = fil, . flm .. .,fl.lMl for each item i. Each vector flm € Rm
contains the modality m features for item i, belonging to the set of
modalities M, and dy, signifies the dimensionality of these features.

Task Formulation. Our objective is to develop a multi-modal rec-
ommender system that captures user-item relationships effectively
while considering the multi-modal features of items. We aim to learn
afunction f that predicts the likelihood of a user u adopting an item

i. This prediction is based on the input of a multi-modal interaction
graph M = (G, {Fili € T}), formulated as g,; = f(QM).

2.2 Multi-Modal Graph Diffusion Model

Motivated by the success of diffusion models in preserving essen-
tial data patterns within their generated outputs [9], our Diff MM
framework proposes a novel approach for multi-modal recommen-
dation systems. Specifically, we introduce a multi-modal graph
diffusion module to generate user-item interaction graphs that
incorporate modality information, thereby enhancing the mod-
eling of user preferences. Our framework focuses on addressing
the negative impact of irrelevant or noisy modality features in
multi-modal recommender systems. To achieve this, we unify the
user-item collaborative signals with the multi-modality informa-
tion using a modality-aware denoising diffusion probabilistic model.
Specifically, we corrupt interactions in the original user-item graph
progressively and employ iterative learning to restore the orig-
inal interactions through a probabilistic diffusion process. This
iterative denoising training effectively incorporates the modality
information into the user-item interaction graph generation while
mitigating the negative effects of noisy modality features.
Moreover, to achieve modality-aware graph generation, we have
developed a novel modality-aware signal injection mechanism that
guides the process of interaction restoration. This mechanism plays
a crucial role in effectively incorporating the multi-modality infor-
mation into the user-item interaction graph generation. By leverag-
ing the power of diffusion models and our modality-aware signal
injection mechanism, our Diff MM framework provides a robust
and effective solution for enhancing multi-modal recommenders.

2.2.1 Probabilistic Diffusion Paradigm with Interactions.
Our graph diffusion paradigm over the user-item interactions pose
two crucial processes. The first process, known as the Forward
Process, involves corrupting the original user-item graph by incre-
mentally introducing Gaussian noise. This step-by-step corruption
gradually distorts the interactions between users and items, simu-
lating the negative impact of noisy modality features. The second
process, referred to as the Reverse Process, focuses on learning and
denoising the corrupted graph connection structures. It aims to
restore the original interactions between users and items by gradu-
ally refining the corrupted graph.

e Forward Graph Diffusion Process. We consider a user u with in-
teractions over an item set 7, denoted as a,, = [ag, a}p cee ale_l]
where al, = 1 or 0 indicates whether user u interacts with item i or
not. We initialize the diffusion process with ey = a,,. The forward
process constructs or;.1 in a Markov chain by incrementally intro-
ducing Gaussian noise over T steps, indexed by t. Specifically, the
transition from a;_1 to a; is parameterized as follows:

5

q(atlar-1) = N(ap; 1 = prag-1, Bil), (1)
The diffusion process consists of ¢ diffusion steps, denoted as t €
{1,---, T}. Gaussian distribution is denoted as N, and the scale of

Gaussian noise added at each step ¢ is controlled by §; € (0,1).
As T — oo, ar converges to a standard Gaussian distribution.
Using the reparameterization trick and the additivity property of
independent Gaussian noises, we can directly obtain «; from .
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Figure 1: Overall framework of the proposed Diff MM.

Formally, this can be expressed as follows:

q(atlag) = N (e \Treo, (1= 70)1), (2)

To regulate the amount of added noise in @;.T, we introduce two
parameters: y; = 1 — f; and j; = Hi,zl vi. We reparameterize
a; = \jrap + \1—yre, where € ~ N(0,I). We employ a linear
noise scheduler for 1 — y; to control the amount of noise in a.7:

t—1
1-yr=s- Ymin+ﬁ()’max_)/min) ,t€{l,~'~,T}, (3)

s € [0, 1] controls the noise scale, and ynin and ymax (both in the
range (0, 1)) are the upper and lower bounds of the added noise.

e Reverse Graph Diffusion Process. DiffMM aims to eliminate
the introduced noise from a; and restore a;—1 during the reverse
step. This process enables the multi-modal diffusion to effectively
capture subtle variations in the intricate generation process. Com-
mencing from a7, the denoising transition step gradually restores
user-item interactions. The reverse process unfolds as follows:

po(ar—1lar) = N(ar—1; po(as, t), Zg(ay, 1)), 4

po(as, t) and Xg(ay, t) represent the mean and covariance values
of the predicted Gaussian distribution, respectively. These values
are generated by neural networks parameterized by 6.

2.2.2 Modality-aware Optimization for Graph Diffusion.

o Graph Diffusion Training. The target for training diffusion
models is to guide the reverse graph diffusion process. To achieve
this, the Evidence Lower Bound (ELBO) of the negative log-likelihood
of the observed user-item interactions «y should be optimized,
which is shown below:

T
Leivo = By(ay) [~logpe ()] < ZEq[Lt],t €f{o,---, T}, (5
=0
For Ly, it has three different cases:
—log pg(aolar), t=0
L = {Dkr(q(erlao)|lp(er), t=T
Dgr(q(ar-1lar, ao)llpo(@r-1lar), te{1,2,---,T-1}

(6)
Here, L is the negactive reconstruction error over ar; L11is a con-
stant without trainable parameters that can be disregarded during
optimization; £; (t € {1,2,---, T— 1}) regularizes pg(at;—1|a;) to
align with the tractable ground-truth transition step q( ;1| a:, o).
® Denoising Model Training,. In order to achieve the optimization
of graph diffusion, we need to design a neural network to conduct
denoising during the reverse process. As illustrated in Eq. 6, the

target of L; is forcing pg (a;—1| ;) to approximate the tractable dis-
tribution q(a;—1|ea, ap) via KL divergence. Through Bayes rules,
q(as—1|ay, ap) can be rewritten as the following closed form:

q(ar—1|ay, ap) < N(ar—1; (e, ap, t)’gz(t)l) @)
(e ao,t) = VYe(1=7i-1) @+ Vie-1(1—ye) o
S 1-7t 1-7; ’ ®
< Lm0 =F)
L=7: '

Here, fi( ey, a0, t) and o (t)I denote the mean and covariance of
q(ar—1|ay, ap), respectively. Additionally, we ignore the learning
of Yp(as, t) in pg(as—1]at) to keep training stability and simplify
the calculation [9], and we directly set g (e, t) = 62(t)I. There-
after, £L; is as follows:

L [lpo (e, 1) ~ (e, ao, D3], ©)

= 202(1)
which forces pg(a;, t) to be close to fi( e, ag, t). Following Eq. 8,
we can similarly factorize pg(ay, t) via

Vre(1=7e-1) Vre-1(l—ye)
ar + -

. ap(ay,t), (10
1- Yt 1- Yt

where &y (ay, t) is the predicted o based on a; and t. Furthermore,
by substituting Eq. 8 and Eq. 10 into Eq. 9, we have the following
equation:

I,l@(at, t) =

1 v _
L=y T - 15 leetann -l ()
where &g (ay, t) is the predicted ap based on a; and time step t.
Here, we use neural networks to implement &g (a;, t). Specifically,
we instantiate ¢&(-) by a Multi-Layer Perceptron (MLP) that takes
a; and the step embeddding of ¢ as inputs to predict ay. For the
aforementioned L, it can be calculate as follows:

Lo = ||ég(ar, 1) - aoll3, (12)

where we estimate the Gaussian log-likelihood log p(ap|a1) by
unweighted —||&g (a1, 1) — apl |§ In the practical implementation,
we uniformly sample time step ¢ from {1,2,-- -, T} to reduce the
computational cost:

Letbo = Ereas(1,1Eq(ap) [l @g(ar. 1) — aoll3]. (13)

e Modality-aware Signal Injection. The objective of our multi-
modal graph diffusion is to enhance recommenders with modality-
aware user-item graphs. To this end, we design the Modal-aware
Signal Injection (MSI) mechanism, guiding the diffusion module to
generate multiple user-item graphs with corresponding modalities.
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Specifically, we aggregate aligned item modal feature e, (which
we will introduce in detail in Sec 2.3.1) with predicted modality-
aware user-item interaction probabilities &y. Meanwhile, we aggre-
gate item id-embedding e’ with the observed user-item interaction
a as well. Finally, we calculate the MSE loss between above two
aggregated embeddings, and optimize it together with £,,. For-
mally, the MSE loss L7 . for modality m is shown below:

Ly = ll6o - e — e - €lI5. (14)
This loss enriches our diffusion module with modality information.

2.2.3 Inference of Multi-Modal Graph Diffusion Model. We
design a simple inference strategy to align with diffusion training
for user-item interaction prediction, which is different from other
DMs that draw random Gaussian noises for reverse generation.
Specifically, it firstly corrupts o by g — a1 — -+ — ay for
T steps in the forward process, and then sets &1 = a to execute
reverse denoising & — &1.; — -+ — & for T steps. The reverse
denoising ignores the variance and utilize &;—1 = pg(é&;,t) for
deterministic inference.

Finally, we use & to rebuild the structure of user-item graph.
Specifically, for user u, we have 4, = &y = [ég, ﬁ,ll, e ,éLIl_I],
We select out top k ai, (i € [0,|7| —1],i € & and |&| = k) and
add k interactions between user u and items i € 7. The resultant
user-item graph for modality m is denoted as A™.

2.3 Cross-Modal Contrastive Augmentation

In multi-modal recommendation scenarios, there exists a certain
degree of consistency in user interaction patterns across different
item modalities (e.g., visual, textual and acoustic). For instance, in
the case of a short video, its visual and acoustic features may jointly
captivate users to view it. Consequently, the visual-specific and
acoustic-specific preferences of users may intertwine in a complex
manner. To capture and leverage this modality-related consistency
to improve the performance of recommendation systems, we have
devised two modality-aware contrastive learning paradigms based
on different anchors. One paradigm utilizes different modality views
as anchors, while the other employs the main view as the anchor.

2.3.1 Modality-aware Contrastive View. In this section, we
introduce how to generate modality-specific user/item embeddings
for our cross-modal contrastive learning. We adopt the GNN-based
representation learning method, specifically by performing infor-
mation aggregation over the modality-aware user-item graph A™
constructed by our modality-aware generation module. Firstly, we
obtain dimensionality-aligned item modal feature e, € R? with
given raw feature vector f™m € Rdm as follows:

ein = Norm(Trans(f™)),m € M, (15)

where Norm(-) denotes the normalization function, Trans(-) de-
notes the MLP-based mapping from Rém to RY. Subsequently, we
conduct information aggregation with user embeddings E* € RU*d
and item modal features Ef, € R! Xd to acquire the aggregated
modality-aware embeddings z™ € R4 as follows:

7y = A B, 2t = ALEy, A= A INPINTL - (16)

where A™ € RUXT denotes the normalized adjacency of the gener-
ated modality-aware graph A™. And NV;J", N[" denotes the neigh-
borhood set of user u and item i in the modality-aware graph,
respectively. To explore the high-order collaborative effects with
the awareness of multi-modal information, we further conduct
iterative message passing on the original interaction graph A by:

Zh =A-Z", 7y =17", (17)
where ZT" and Z[} | denotes the embeddings for the I-th and the
(I + 1)-th layer, respectively. A is the normalized adjacent matrix
of A, similar to A™ of A™. In our multi-layer GNNs, the layer-
specific embeddings are aggregated through sum-pooling to yield
the output: Z™ = Zleo Z;”, where L is the number of graph layers.

2.3.2 Modality-aware Contrastive Augmentation. With the
modality-aware contrastive views, we adopt two different con-
trasting methods. One of them utilizes different modality views as
anchors, while the other employs the main view as the anchor.

e Modality view as the anchor. Based on the correlation of
user behavior patterns across different modalities, we treat embed-
dings from different modalities as views (i.e., (Z™, Z™2)|\m1, ms €
M, my # my) and utilize the InfoNCE loss to maximize the mutual
information between two modal views. Moreover, we use embed-
dings from different users as negative pairs (i.e., (u, v)ju,v € U,u #
v). Formally, the first contrastive learning loss is defined as follows:

ulser — Z Z Z ~log exp(s(zzr:llszzr:lz)/f)

-mi -m >
mie M mse Muell Zveﬂexp(s(zulszv 2)/7)

(18)

where s(-) denotes the similarity function, and 7 is the temperature
coefficient. This contrastive loss function maxizes the agreement
of positive pairs and minimizes that of negative pairs.

e Main view as the anchor. Our second contrastive learning
method is to leverage user behavior patterns across different modal-
ities to guide and improve the learning of the target recommen-
dation task. To achieve this, we use the embedding H (which we
will report in Sec. 2.4) from the main task as the anchor and maxi-
mize its mutual information with various modality views using the
InfoNCE loss. Formally, the second contrastive loss is as follows:

user _ _ eXP(S(Bu, ZZz)/‘f)
o Z Z logZue(L{ eXP(S(l_lu, Zum)/'[)’ (19)

meMueU

We calculate the contrastive learning loss for the item side as
L%em in a similar way. By combining these two loss terms, we
obtain the overall objective function for the cross-modal contrastive
learning, which is denoted by L = LI7¢" + Lzem.

2.4 Multi-Modal Graph Aggregation

To generate our final user(item) representations hy, h; € R? for
making predictions, we first aggregate all modality-aware embed-
dings f™ and corresponding modality-aware user-item graph A™.
Then we conduct message passing on the original user-item inter-
action graph A to explore the high-order collaborative signals.
Specifically, we first obtain aligned item modal feature e, from

f™ via Eq. 15. Then we conduct graph aggregation on both A and
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A™ to obtain modal representation 2™ for every modality:
2y = A B+ Ay (A - B) + A, - B
' = A - E;n + A (A - Ei) +A™ . E

*,1

(20)

With all single modal representations 2 (m € M), we aggregate
representations of each modality by summing. Since each modality
may have different degrees of influence on the aggregated multi-
modal representation, we use the learnable parameterized vectors
Km to control the weight of modality m’s representation in the
aggregated multi-modal representation hy, (h;):

hy= ) kmzy, hi= > kil (1)

meM meM

Furthermore, we conduct message passing on A via graph neural
network to explore the high-order collaborative signals as follows:

Hy = A-H, Hy=H,orH, (22)

where H; and Hy,; denote the embeddings for the I-th and the [ + 1-
th layer, respectively. Here, H is of size R’ *d or of size RUX4, Finally,
the layer-specific embeddings are aggregated through sum-pooling
operation to yield the final embeddings H:

L
H= Z H; + @oNorm(Hp), (23)
=0
where w is the hyperparameter that controls the weight of normal-
ized Hy, which is used to alleviate the problem of over-smoothing.
With the final embeddings, Diff MM makes predictions on the unob-
served interaction between user u and item i through ¢, ; = BE -h.

2.5 Multi-Task Model Training

Our DiffMM’s training primarily consists of two parts: the training
for the recommendation task and the training for the multi-modal
graph diffusion module. The joint training of diffusion module
includes two loss components: ELBO loss and MSI loss, which we
optimize together. Therefore, the loss for the optimization of the
diffusion module of modality m is shown as below:

Ly = Lepo + 20 L (29)

m
where A is a hyperparameter to control the strength of MSI. For
the recommendation task, we introduce the Bayesian personalized
ranking (BPR) loss with the aforementioned contrastive loss £;.
The employed BPR loss Ly, is shown below:

Lypr= Y, —logo(fui—ju)), (25)
(u,i,j) €O

where O = {(u, 1, j)|(u,1) € O%, (u, j) € O~} is the training data,
and O~ = U x I /O" is the unobserved interactions. Given above
definitions, the integrative optimization loss for joint training of
the recommendation task is as follows:

Lrec = -cbpr + /11£cl + /12”6”53 (26)

where O represents the learnable model parameters; A; and A, are
hyperparameters to control the strengths of contrastive learning
and Ly regularization, respectively. We also conduct time complex-
ity analysis of our DiffMM, which is reported in Appendix A.1..

ACM MM, 2024, Melbourne, Australia

Table 1: Statistics of the experimental datasets with multi-
modal item Visual(V), Acoustic(A), and Textual(T) contents.

Dataset TikTok Amazon-Baby Amazon-Sports
Modality \% A T \'% T \'% T
Embed Dim 128 128 768 4096 1024 4096 1024
User 9319 19445 35598
Item 6710 7050 18357
Interactions 59541 139110 256308
Sparsity 99.904% 99.899% 99.961%

3 EVALUATION

In this section, we present experimental results to validate the
effectiveness of our proposed model, referred to as Diff MM. To
achieve this, we address the following research questions:

e RQ1: How does our proposed model perform in comparison to
various state-of-the-art recommender systems?

e RQ2: What are the contribution of our key components towards
its overall performance across diverse datasets?

e RQ3: To what extent does DiffMM address the issue of sparsity
commonly encountered in recommendation systems?

e RQ4: How do different hyperparameters influence the results?

e RQ5: How effective is the improvement in performance by in-
corporating diffusion-enhanced augmentation over interactions?

e RQ6: How does the user-item relational learning in Diff MM
enhance the interpretability of the recommendations generated?

3.1 Experimental Settings

3.1.1 Evaluation Dataset. We conducted experiments using three
publicly available multi-modal recommendation datasets: Tiktok,
Amazon-Baby, and Amazon-Sports. The TikTok data captures
user interactions with short videos and encompasses visual, acous-
tic, and textual features. To encode the textual embeddings, we
utilized Sentence-Bert [18]. For the Amazon datasets, specifically
Amazon-Baby and Amazon-Sports, we carefully selected bench-
mark datasets that represent distinct item categories [16]. Similar
to TikTok, we employed Sentence-Bert to generate textual feature
embeddings. The details of three datasets are shown in Table 1.

3.1.2 Evaluation Protocols. To evaluate the accuracy of our top-
K recommendation results, we utilize three commonly used metrics:
Recall@K, Precision@K , and Normalized Discounted Cumulative
Gain (NDCG)@K. Following the methodology employed in previous
studies [28, 30], we adopt the all-rank evaluation protocol, where
for each test user, the positive items in the test set and all the
non-interacted items were tested and ranked together.

3.1.3 Compared Baselines. We compare DifftMM with a variety
of baselines, including a conventional CF method (MF-BPR [19]),
popular GNN-based CF models (NGCF [24], LightGCN [8]), the gen-
erative diffusion recommendation method (DiffRec [23]), recently
proposed SS-based recommendation solutions (SGL [32], NCL [12],
HCCEF [33]), and the SOTA multi-modal recommender systems
(VBPR [7], LightGCN-M, DiffRec-M, MMGCN [31], GRCN [30], LAT-
TICE [37], CLCREc [29], MMGCL [35], SLMRec [21], LightGT [27],
and BM3 [38]). Details of baselines are presented in Appendix A.2.

3.1.4 Hyperparameter Settings. We elaborate on the hyperpa-

rameter settings and implementation details of our DiffMM frame-
work and all the baseline methods in Appendix A.3.
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Table 2: Performance comparison on TikTok, Amazon datasets in terms of Recall @20, Precision @20, and NDCG @ 20.

Dataset Metric MF-BPR |NGCF |LightGCN | DiffRec| SGL | NCL |HCCF|VBPR|LGCN-M |DiffRec-M | MMGCN | GRCN | LATTICE | CLCRec| MMGCL | SLMRec | LightGT | BM3 | DiffMM | p-val.
Recall@20 0.0346 |0.0604 | 0.0653 0.0708 {0.0603|0.0658| 0.0662 | 0.0380 | 0.0679 0.0750 0.0730 | 0.0804 | 0.0843 0.0621 0.0799 | 0.0845 | 0.0907 [0.0957| 0.1129 |2.9¢~

TikTok NDCG@20 | 0.0130 |0.0238| 0.0282 0.0317 {0.0238{0.0269| 0.0267 | 0.0134| 0.0273 0.0381 0.0307 | 0.0350 | 0.0367 0.0264 | 0.0326 | 0.0353 | 0.0359 |0.0404| 0.0456 |7.7¢7
Precision@20| 0.0017 |0.0030 | 0.0033 0.0035 |0.0030{0.0034|0.0029 | 0.0018 | 0.0034 0.0038 0.0036 | 0.0036 | 0.0042 0.0032 | 0.0037 | 0.0042 | 0.0045 |0.0048| 0.0056 |2.5¢7

Recall@20 0.0440 |0.0591| 0.0698 0.0717 {0.0678{0.0703| 0.0705 | 0.0486 | 0.0726 0.0740 0.0640 | 0.0754 | 0.0829 0.0610 | 0.0758 | 0.0765 | 0.0763 |0.0839| 0.0975 |3.1e™

Amazon-Baby | NDCG@20 | 0.0200 |0.0261| 0.0319 0.0334 {0.0296{0.03110.0308 | 0.0213 | 0.0329 0.0332 0.0284 | 0.0336 | 0.0368 0.0284 | 0.0331 0.0325 | 0.0325 |0.0361| 0.0411 |1.3¢™°
Precision@20| 0.0024 |0.0032| 0.0037 0.0038 {0.0036|0.0038| 0.0037 | 0.0026 | 0.0038 0.0039 0.0032 | 0.0040 | 0.0044 0.0032 | 0.0041 0.0043 | 0.0040 |0.0044| 0.0051 |4.9¢™%

Recall@20 0.0430 |0.0695| 0.0782 0.0823 {0.0779{0.0765| 0.0779 | 0.0582| 0.0705 0.0800 0.0638 | 0.0833 | 0.0915 0.0651 0.0875 0.0829 | 0.0854 |0.0975] 0.1017 [6.3¢~°

Amazon-Sports| NDCG@20 | 0.0202 |0.0318| 0.0369 0.0407 {0.0361{0.0349|0.0361 | 0.0265| 0.0324 0.0381 0.0279 | 0.0377 | 0.0424 0.0301 0.0409 | 0.0376 | 0.0382 |0.0442| 0.0458 |1.8¢7°
Precision@20| 0.0023 |0.0037 | 0.0042 0.0044 |0.0041{0.0040| 0.0041 | 0.0031| 0.0035 0.0043 0.0034 | 0.0044 | 0.0048 0.0035 | 0.0046 | 0.0043 | 0.0045 |0.0051| 0.0054 |4.3¢~°

3.2 Performance Comparison (RQ1)

Table 2 presents the evaluation results of the performance com-
parison. In the table, we highlight the performance of our Difft MM
method in bold and the best-performing baseline is underlined for
easy identification. The results yield several key observations:

e Performance Superiority of Our DiffMM. Our method consis-
tently outperforms all baselines on various datasets, showcasing
its superior performance. This advantage can be attributed to the
effective utilization of multi-modal information through cross-
modal contrastive learning with modality-aware diffusion-based
augmentation, as well as the incorporation of multi-modal graph
aggregation components. The significance of incorporating multi-
modal context in recommendation systems is further highlighted
by the fact that recently proposed multi-modal recommenders
outperform graph-based collaborative filtering models.

o Effectiveness of Cross-Modal Data Augmentation. Previ-
ous attempts, such as SGL, NCL, and HCCF, to enhance user-
item interaction modeling through a contrastive approach only
achieved marginal performance gains compared to NGCF and
LightGCN. We hypothesize that this limited improvement is due
to the neglect of multi-modal contextual information when gen-
erating self-supervision signals. In contrast, our DiffMM method
leverages multi-modal information, such as modality-aware con-
trastive view and modality-aware contrastive augmentation, de-
rived from the modality-aware user-item graph generated by
our multi-modal graph diffusion model. This enables DifftMM to
extract modality-aware self-supervised signals that complement
the supervised task of multi-modal recommendation.

o Effectiveness of Multi-Modal Graph Diffusion. While some
multi-modal approaches, like MMGCL and SLMRec, utilize modal
information to enhance contrastive learning for performing data
augmentation, they still have limitations. For example, directly
masking modality features in MMGCL may lead to the loss of im-
portant information. Additionally, SLMRec generates augmented
views based on pre-defined hierarchical correlations among dif-
ferent modalities, which may compromise the effectiveness of
self-supervised signals across various multi-modal recommen-
dation datasets. On the other hand, Diff MM stands out by using
the multi-modal graph diffusion model to construct a modality-
aware user-item graph and employing cross-modal contrastive
learning for effective multi-modal augmentation.

3.3 Model Ablation Test (RQ2)

To validate the effectiveness of our methods, we conducted exper-
iments where we individually removed three key components of
DiffMM: cross-modal contrastive learning (w/o CL), multi-modal
graph diffusion model (w/o DM), and modality-aware signal injec-
tion (w/o MSI). For the variant where multi-modal graph diffusion

Table 3: Ablation study on key components of DiffMM.

Dataset TikTok Amazon-Baby | Amazon-Sports
Variants | Recall NDCG | Recall NDCG | Recall NDCG
w/o CL | 0.1026  0.0420 | 0.0929 0.0388 | 0.0942 0.0418
w/oDM | 0.1075 0.0433 | 0.0935 0.0402 | 0.0980  0.0440
w/o MSI | 0.1086  0.0426 | 0.0970  0.0408 | 0.0996  0.0445
DiffMM | 0.1129 0.0456 | 0.0975 0.0411 | 0.1017 0.0458

model was removed, we used another generative model VGAE to

replace the designed diffusion model. Table 3 shows the results.

e The w/o CL variant shows a noticeable decline in performance
across all cases. This confirms the effectiveness of incorporating
supplementary self-supervised signals through multi-modal fea-
tures, which align user preferences across different item modali-
ties and improve model training with additional supervisions.

e In the w/o DM variant, where the multi-modal graph diffusion
model is replaced by the VGAE [10], the results demonstrates
a significant improvement in performance. This validates the
superiority of diffusion models compared to other generative
models (i.e., VGAE). Our multi-modal graph diffusion paradigm
is designed to generate the modality-aware user-item graph. The
introduction of this graph unleashes powerful collaborative ef-
fects from various modalities, enhancing both multi-modal graph
aggregation and cross-modal contrastive learning.

e The w/o MSI variant also shows a decline in performance across
all cases, highlighting the crucial role of MSI in assisting the
diffusion module to create the modality-aware user-item graph.

3.4 Handling Sparse Interaction Data (RQ3)

In this section, we investigate the effectiveness of Diff MM in han-
dling sparse user-item interaction data. To evaluate its performance,
we conduct experiments on sub-datasets with varying levels of data
sparsity using the Amazon-Baby dataset. We compare the perfor-
mance of DifftMM against four competitive baselines. User groups
are formed based on the number of interactions in the training set
(e.g., the first group consists of users with 0-5 item interactions). Fig-
ure 2 shows the corresponding result. Remarkably, DiffMM consis-
tently outperforms the baselines with different degrees of sparsity,
showecasing its effectiveness in handling sparse data.
Furthermore, the results, particularly under the Recall metric,
reveal that our method exhibits a more substantial performance
improvement for sparser user groups. This finding clearly demon-
strates the enhanced capability of our DiffMM in handling data
sparsity. We attribute this advantage to our cross-modal contrastive
learning approach, which utilizes the modality-aware user-item
graph generated by DiffMM. By incorporating this paradigm, we
can leverage high-quality self-supervised signals that effectively
mitigate the negative effects of data sparsity. Moreover, the inclu-
sion of modality-aware signal injection through diffusion-based
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Figure 2: Performance w.r.t. user interaction numbers.
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Figure 3: Hyperparameter analysis on different datasets.

contrastive augmentors further enriches the learning process and
strengthens the robustness of our approach.

3.5 In-Depth Model Analysis (RQ4)

We investigate the sensitivity of hyperparameters in our DiffMM.
The results can be found in Figure 3, Table 4, and Appendix A.4.
(i) Effect of the key hyperparameter Ay in graph diffusion
model. The hyperparameter Ay plays a crucial role in determin-
ing the strength of Modality-Specific Injection (MSI) and provides
guidance to the Multi-Modal Graph Diffusion Model for generat-
ing the modality-aware user-item graph. The results presented in
Figure 3(a) demonstrate that optimal performance is achieved by
employing different values of A for specific datasets. These findings
underscore the importance of selecting an appropriate value for
Ao in facilitating DiffMM to construct a modality-aware user-item
graph, thereby enhancing the recommendation performance.

(ii) Impact of » in multi-modal graph aggregation. In our ap-
proach, we introduce the hyperparameter w and normalized embed-
dings Hy to address the over-smoothing issue, with w controlling
the weight of Norm(Hj) in the aggregation process. The evalu-
ation results in Fig. 3(b) reveal that a small w (e.g., 0.10) leads to
heavy reliance on high-order information aggregation, potentially
causing over-smoothing and degraded performance on the TikTok
dataset. Conversely, a large w (e.g., 1.00) disregards high-order infor-
mation, resulting in poor performance across datasets. By carefully
selecting an appropriate value for , a balance can be achieved in
aggregating high-order information and avoiding over-smoothing,
leading to the optimal performance in the recommenders.

(iii) Impact of 7 and 1; in cross-modal data augmentation. In
the context of cross-modal contrastive learning, the hyperparame-
ters 7 (temperature coefficient) and A (weight of InfoNCE loss) are

ACM MM, 2024, Melbourne, Australia

Table 4: Hyperparameter analysis of 7 and 1;.

Dataset TikTok Amazon-Baby | Amazon-Sports

T ‘ M Recall NDCG | Recall NDCG | Recall NDCG

1e0 0.0474  0.0198 | 0.0722  0.0309 | 0.0828  0.0364

0.1 | 1le—1| 0.0411 0.0186 | 0.0871 0.0372 | 0.0945 0.0421
le—2 | 0.0987 0.0417 | 0.0933 0.0393 | 0.1017 0.0458

1e0 0.0722  0.0313 | 0.0924 0.0399 | 0.0955 0.0425

05| le—1 | 0.0849 0.0373 | 0.0975 0.0411 | 0.0996  0.0441
le—2 | 0.1129 0.0456 | 0.0944 0.0393 | 0.0956 0.0427

1e0 0.0740  0.0323 | 0.0959 0.0400 | 0.0971  0.0431

1.0 | Ie—1 | 0.0983 0.0410 | 0.0956 0.0401 | 0.0961  0.0426
le—2 | 0.1064 0.0432 | 0.0940 0.0389 | 0.0943 0.0422

of vital importance. By examining the results presented in Table 4,
it becomes evident that employing different values of 7 and A; for
respective datasets leads to the best performance. This observa-
tion highlights the substantial influence of cross-modal contrastive
learning on the effectiveness of our Diff MM.

3.6 Effectiveness of Diffusion-enhanced Data
Augmentation Paradigm (RQ5)

To assess the effectiveness of our graph diffusion-enhanced data
augmentation on the recommendation performance, we conducted
a comprehensive analysis on the Amazon-Baby and Amazon-Sports
datasets. Specifically, we examined the influence of the fusion ra-
tio between the modality-aware user-item graph (generated by
DiffMM) and the randomly augmented (via edge dropping) user-
item interaction graph, which determined the construction of modal-
ity aware contrastive views for self-supervision augmentation.
Figure 4 presents the performance of our model across differ-
ent fusion ratios. A fusion ratio of 0 indicates the use of only the
modality-aware user-item graph in constructing contrastive views,
while a fusion ratio of 1 denotes the exclusive use of the random
augmentation method. The results clearly demonstrate that, for
both datasets, an increase in the fusion ratio leads to a decline in
model performance. This finding underscores the superiority of our
modality-aware graph diffusion model in enhancing cross-modal
contrastive learning by providing modality-aware contrastive views
instead of randomly augmented ones. This advantage can be at-
tributed to the effective modeling of latent interaction patterns
achieved by our graph diffusion-based generation method, as well
as the incorporation of modality information through our carefully
designed generative mechanism of incorporating multi-modal con-
text into the diffusion process over user-item interaction graphs.

3.7 Model Interpretability Study (RQ6)

To assess the generation capability of Diff MM, equipped with the
modality signal injection mechanism (MSI), we conducted a detailed
case study. Figure 5 showcases a randomly sampled sub-graph de-
rived from the Amazon-Baby dataset using image modality features.
The right portion of the figure displays a heat map representing
item-wise similarity based on the corresponding modality features.

The results reveal a strong correlation between the constructed
graph structures and the modality feature-based similarity. For
instance, in the generated graph, items 1131 and 337 are both neigh-
bors of user 1171, and they exhibit a high similarity score of 0.85
in the heat map. This similarity score ranks as the highest for item
1131 and the second-highest for item 337. Similarly, items 1334 and
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Figure 4: Performance w.r.t. fusion ratio to integrate diffusion-
enhanced augmentation and random augmentation.

2108, with a high similarity score of 0.97, are connected to the same
user 1108 in the generated graph, indicating their modality-aware
similarity. Notably, these item pairs do not possess a direct con-
nection in the original user-item interaction graph. Instead, their
linkages are established through the influence of the modal features.

This case study clearly demonstrates the effectiveness of DifftMM
in generating modality-specific graphs, thereby enhancing cross-
modal contrastive learning through high-quality data augmenta-
tions. This advantage stems from two key design elements of our
model. Firstly, our diffusion-based graph generation method accu-
rately captures latent user-item interactive patterns by undergoing
step-wise forward and reverse denoising training. Secondly, our
mechanism successfully incorporates modality-specific informa-
tion into the diffusion process, ensuring that the generated graphs
reflect the unique characteristics of each modality.

4 RELATED WORK

4.1 SSL-Augmented Recommender Systems
Self-supervised learning (SSL) has emerged as a highly effective so-
lution for addressing the data sparsity challenge in recommenders [12].
By enhancing the original supervision signals through the incorpo-
ration of auxiliary learning tasks, SSL has proven to significantly
improve the performance of recommendation models. In the do-
main of graph augmentation with contrastive learning, researchers
have made notable contributions. Innovative approaches proposed
by SGL [32], NCL [12], and HCCF [33] involve generating SSL sig-
nals by contrasting positive node pairs using various augmentation
techniques. These techniques encompass strategies such as random
node/edge dropping and semantic neighbor identification, which
effectively enrich the learning process and lead to promising results.

Moreover, recent advancements in SSL-based sequence augmen-
tation have been made by CL4SRec [34] and ICL [4]. CL4SRec
introduces innovative techniques such as cropping, masking, and
reordering to augment item sequences. In the context of social rec-
ommendation and relational learning augmentation, MHCN [36]
proposes an SSL task that captures high-order connectivity by max-
imizing mutual information. Additionally, CCDR [34] addresses the
data sparsity and popularity bias issues in the matching module
by incorporating both intra-domain and inter-domain contrastive
learning using a diversified preference network.

4.2 Multi-Modal Recommendation Methods

The pursuit of improving recommender systems through the in-
corporation of multi-modal context has garnered significant atten-
tion [1, 13]. Early studies, such as VBPR [7], expanded on matrix
factorization techniques by integrating id-corresponding embed-
dings and multi-modal feature embeddings of items. More recently,
attention mechanisms have been employed in ACF [2] and VECF [3]

-m S
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040 039
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11311 337 12150 1048 112771

-0.0

: Item ID

Modality—Aware User—Item Graph

Modal Feature Similarity Heatmap

Figure 5: Case study on the generated modality-aware user-
item graph, using visual modality from Amazon-Baby data.

to capture intricate user preferences using multi-modal content.
These approaches enable a more comprehensive understanding of
user preferences by considering different modalities. Furthermore,
graph neural networks like MMGCN [31] and GRCN [30] have
demonstrated their effectiveness in capturing complex, high-order
dependencies among users and items in multi-modal recommen-
dation scenarios. By leveraging the inherent structure of the data,
these models can better capture the relationships and interactions
among different modalities. In this work, we propose a novel ap-
proach for multi-modal recommender systems by leveraging modal
features effectively by incorporating diffusion models within the
SSL paradigm. By integrating the strengths of diffusion models and
SSL, our approach aims to enhance the recommendation perfor-
mance with the effectively modeling of multi-modal context.

4.3 Generative Model for Recommendation

Recommendation systems have greatly benefited from the advance-
ments in generative models, specifically Generative Adversarial Net-
works (GANS)[6, 26] and Variational Autoencoders (VAEs)[11, 15].
GAN-based approaches, like MMSSL [26], leverage modality-aware
graph generation to enhance multi-modal recommendations. On
the other hand, VAE-based methods, such as MacridVAE [15], fo-
cus on uncovering and separating the intricate latent factors that
influence user decision-making, spanning from high-level concepts
to specific preferences. Recently, diffusion models have emerged
as an alternative to GANs and VAEs, offering improved stability
and representation in recommenders [14, 23, 25]. Some approaches,
like those explored in DiffRec [23], model the diffusion process by
capturing the distribution of interaction probabilities, while oth-
ers, such as DiffuASR [14], concentrate on the diffusion process
at the embedding level. Notably, CDDRec [25] introduces a novel
conditional denoising diffusion model that generates high-quality
representations of sequences/items, avoiding the issue of collapse.

5 CONCLUSION

We introduce DiffMM, a new multi-modal recommendation model
that enriches the probabilistic diffusion paradigm by incorporating
modality awareness. Our approach utilizes a multi-modal graph
diffusion model to reconstruct a comprehensive user-item graph,
while harnessing the advantages of a cross-modal data augmen-
tation module that provides valuable self-supervision signals. To
assess the effectiveness of DifftMM, we conducted extensive experi-
ments, comparing it to several competitive baselines. The results
unequivocally establish the superiority of our approach in terms of
recommendation performance, firmly establishing its efficacy.
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