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A APPENDIX
A.1 Time Complexity Analysis
In our analysis of the time complexity of our proposed Di�MM,
we consider its three key components. Firstly, the multi-modal
graph aggregation module involves a time complexity of $ ((! +

2|M|) ⇥ |G| ⇥ 3 +
Õ

M
< |G

<
| ⇥ 3). Here, ! represents the number

of graph neural layers, |G| is the number of edges in the user-item
interaction graph, |G<

| corresponds to the number of edges in the
modality-aware user-item graph of modality<, M signi�es the set
of modalities <, and 3 stands for the embedding dimensionality.
Secondly, the cross-modal contrastive learning module exhibits
a time complexity of $ (! ⇥ ⌫ ⇥ (I + J) ⇥ 3). Here, ⌫ denotes
the number of users/items included in a single batch, while I and
J represent the number of items and users, respectively. Thirdly,
the multi-modal graph di�usion module entails a time complexity
of $ (⌫ ⇥ ((I + 3C ) ⇥ 338 5 5 ) + I ⇥ 338 5 5 + 2I ⇥ 3)) for training,
which can be further simpli�ed to $ (⌫ ⇥ I ⇥ 338 5 5 ). Additionally,
during inference, the multi-modal graph di�usion module requires
$ (C ⇥ ⌫ ⇥ I ⇥ 338 5 5 ) time, where C denotes the inference time
step. It is worth noting that in practical implementation within
recommendation systems, the time complexity of the di�usion
model is considered acceptable. It is similar to that of the contrastive
learning module, ensuring a comparable level of e�ciency to other
self-supervised recommendation methods.

A.2 Details of Baselines
This section gives a brief introduction of the compared baseline
methods in this work, including 15 baselines from 5 research lines.
Conventional Collaborative Filtering Method. MF-BPR [19]:
This method is a classic factorization-based collaborative recom-
mender, with the incorporation of the pairwise BPR loss function.
GNN-based Collaborative Filtering Methods.
• NGCF [24]: It uses a multi-layer graph convolutional network to

propagate information through the user-item interaction graph
and learns the latent representations of users and items.

• LightGCN [8]: This work simpli�es message passing for graph
neural network-based recommendation by eliminating redundant
transformations and non-linear activation functions.

Generative Di�usion Recommendation Method. Di�Rec [23]:
This work proposes a novel generative recommender model, which
reduces the noise scales and inference steps to corrupt users’ inter-
actions in the forward process for personalized recommendations.
Self-supervised Recommendation Solutions.
• SGL [32]: This model improves the graph collaborative �ltering

with the incorporated contrastive learning signals using di�erent
data augmentation operators, e.g., randomly node/edge dropout
and random walk, to construct contrastive representation views.

• NCL [12]: In this approach, positive contrastive pairs are gener-
ated by identifying semantic and structural neighboring nodes
using EM-based clustering to create contrastive views.

• HCCF [33]: A new self-supervised recommendation framework
is proposed in this work, which is able to capture both local and
global collaborative relations using a hypergraph neural network
enhanced by cross-view contrastive learning architecture.

Multi-Modal Recommendation Systems.
• VBPR [7]: This is a representative work to incorporate multi-

media features into the matrix decomposition framework.

• LightGCN-M: This method is established by utilizing the SOTA
GNN-based CF model, LightGCN, as the foundation and incorpo-
rating multi-modal item features into the message passing.

• Di�Rec-M: It is adapted by employing the generative di�usion
recommendation method, Di�Rec, as the foundation and incor-
porating multi-modal item features into the di�usion process.

• MMGCN [31]: This work utilizes GNNs to propagate the modality-
speci�c embeddings and capture the user preferences related to
di�erent modalities for the micro-video recommendation.

• GRCN [30]: This multimedia recommender system is a structure-
re�ned GCN, capable of producing re�ned interactions to identify
false-positive feedback and eliminate noise by pruning edges.

• LATTICE [37]: This work aims to uncover latent item-item
relations via the generated item homogeneous graph, which are
established based on similarities of item modal features.

• CLCRec [29]: This work tackles the item cold-start problem by
enriching item embeddings with multi-modal features through
mutual information-based contrastive learning.

• MMGCL [35]: This work integrates graph contrastive learning
through the application of modality edge dropout and masking.

• SLMRec [21]: This method introduces data augmentation for
multi-modal content, which consists of two components: noise
perturbation over features and multi-modal pattern uncovering.

• LightGT [27]: It proposes a new Transformer-based model for
multimedia recommendation, with a modal-speci�c embedding
and a layer-wise position encoder for features distillation.

• BM3 [38]: This work introduces an SSL framework for multi-
modal recommendation that eliminates the need for randomly
sampled negative samples in modeling user-item interactions.

A.3 Implementation Details
For fair comparison, we present the hyperparameter settings for
implementing the proposed Di�MM framework and the baseline
methods. Speci�cally, our Di�MM is implemented with PyTorch, us-
ing Adam optimizer and Xavier initializer with default parameters.
Training batch size is set as 1024. The dimensionality of embedding
vectors is set as 64. The learning rate is set as 14 � 3. The number
of GCN layers is set as 1. The decay of L2 regularization term (i.e.,
_2) is searched in the set {14 � 1, 14 � 2, 14 � 3, 14 � 4, 14 � 5, 14 � 6}.
The loss weight _0 is searched in {1, 0.5, 0.1, 0.01, 0.001} and the
loss weight _1 is searched in {1, 0.1, 0.01}. The hyperparameter l
is searched in {0.10, 0.25, 0.50, 0.75, 1.00}. The temperature coe�-
cient g is searched in {0.1, 0.5, 1.0}. For the baseline methods, we
apply the same Adam optimization algorithm, Xavier parameter
initializer, and batch size of 1024 as our Di�MM. The hidden dimen-
sionality for all baselines is also set as 64. Hyperparameters that
are shared by baseline methods and our Di�MM, are tuned in the
same range as above. Such hyperparameters include the number
of GCN layers, the weight for weight-decay regularizer. For self-
supervised methods (e.g., SGL, NCL, and HCCF), the temperature
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Table 5: Modality-aware CL with di�erent variants.

Dataset TikTok Amazon-Baby Amazon-Sports
Variants Recall NDCG Recall NDCG Recall NDCG

Modality-aware Contrastive Learning Paradigms
Modality View 0.1064 0.0444 0.0975 0.0411 0.1017 0.0458

Main View 0.1129 0.0456 0.0903 0.0390 0.0994 0.0445
Aligning Methods for Raw Feature Embeddings

Parametric Matrix 0.1065 0.04268 0.0975 0.0411 0.1012 0.0453
Linear 0.1129 0.0456 0.0963 0.0405 0.1017 0.0458

g for constrastive learning is searched in {0.1, 0.5, 1.0}, which is
the same as our Di�MM. For baseline methods that employs ran-
dom message dropout (e.g., SGL), the dropout rate is tuned from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

A.4 Model Analysis for Modality-aware
Contrastive Learning

(iv) Impact of modality-aware CL with di�erent anchors. In
our approach, we have introduced two modality-aware contrastive

learning paradigms that utilize di�erent anchor choices. The results,
presented in Table5, showcase the impact of these paradigms on the
model performance across various datasets. In this context, the term
"Modality View" refers to using the modality view as the anchor,
while "Main View" indicates using the main view as the anchor.
The superior performance is highlighted in bold. Based on the
evaluation results, employing the modality view as the anchor leads
to improved performance on the Amazon-Baby and Amazon-Sports
datasets, while the opposite is observed for the TikTok dataset.
(v) Impact of multi-modal alignment methods. We introduce
the transformation function )A0=B (·) to align diverse raw modal
feature embeddings f̂< . We propose two alignment methods: "Para-
metric Matrix" using a weight matrix , 2 R3<⇥3 , and "Linear"
using a linear conversion process. Evaluation results in Table 5 show
that the alignment methods have minimal impact on Amazon-Baby
and Amazon-Sports datasets. However, on the TikTok dataset, the
"Linear" method outperforms the "Parametric Matrix" approach
due to lower dimensionality. This dimension discrepancy can lead
to over�tting issues when using the "Parametric Matrix" method.


