
A Related work493

Sequential probability assignment is a classic topic in information theory with extensive literature, see494

the survey by Merhav and Feder [1998] and the references within. In particular, the idea of probability495

assignments that are Bayesian mixtures over the reference class of distributions [Krichevsky and496

Trofimov, 1981] is of central importance—such mixture probability assignments arise as the optimal497

solution to several operational information theoretic and statistical problems [Kamath et al., 2015].498

It is also known that the Bayesian mixture approach often outperforms the “plug-in” approach of499

estimating a predictor from the reference class and then playing it [Merhav and Feder, 1998]. A500

similar Bayesian mixture probability assignment in the contextual probability assignment problem501

was used by Bhatt and Kim [2021], where the covering over the VC function class was obtained502

in a data-dependent manner. This idea of using a mixture over an empirical covering along with a503

so-called “add-β” probability assignment was then used by Bilodeau et al. [2021]. Combining this504

with the key idea of discretizing the class of functions as per the Hellinger divergence induced metric,505

they obtained matching rates for several interesting classes in the realizable case (i.e. yt
∣∣xt generated506

according to a fixed unknown distribution in the reference class); see also Yang and Barron [1999]507

for more intuition behind usage of Hellinger coverings for stochastic data. Recent work of Wu et al.508

[2022a,b] has also employed an empirical covering with an add-β probability assignment for both509

stochastic and adversarial adversaries.510

A complementary approach, more common in the online learning literature is to study fundamental511

limits of sequential decision making problems non-constructively (i.e. providing bounds on the512

minmax regret without providing a probability assignment that achieves said regret). This sequen-513

tial complexities based approach of Rakhlin et al. [2015b,a] has been employed for the log-loss514

by Rakhlin and Sridharan [2015] and Bilodeau et al. [2020]; however the latter suggests that sequential515

complexities might not fully capture the log-loss problem.516

Smoothed analysis, initiated by Spielman and Teng [2004] for the study of efficiency of algorithms517

such as the simplex method, has recently shown to be effective in circumventing both statistical518

and computatonal lower bounds in online learning for classification and regression Haghtalab et al.519

[2021], Rakhlin et al. [2011], Block et al. [2022], Haghtalab et al. [2020], Block and Simchowitz520

[2022]. This line of work establishes that smoothed analysis is a viable line of attack to construct521

statistically and computationally efficient algorithms for sequential decision making problems.522

Due to the fundamental nature of the problem, the notion of computational efficiency for sequential523

probability assignment and the closely related problem of portfolio selection has been considered in524

the literature. Kalai and Vempala [2002] presents an efficient implementation of Cover’s universal525

portfolio algorithm using techniques from Markov chain Monte Carlo. Recently, there has been a526

flurry of interest in using follow the regularized leader (FTRL) type techniques to achieve low regret527

and low complexity simultaneously [Luo et al., 2018, Zimmert et al., 2022, Jézéquel et al., 2022], see528

also Van Erven et al. [2020] and the references within. However, none of these methods consider the529

contextual version of the problem and are considerably different from the oracle-efficient approach.530

On the other hand, work studying portfolio selection with contexts [Cover and Ordentlich, 1996,531

Cross and Barron, 2003, Györfi et al., 2006, Bhatt et al., 2023] does not take oracle-efficiency into532

account.533

Concurrent Work: Wu et al. [2023] also study the problem of sequential probability assignment534

(and general mixable losses) and for VC classes achieve the optimal regret of O(d log(T/σ)). In535

addition to the smooth adversaries, they also studied general models capturing the setting where the536

base measures are not known. They work primarily in the information theoretical setting and do not537

present any results regarding efficient algorithms.538

B Deferred Proof from Section 3539

In order to obtain an upper bound onRT (F , σ) in terms ofRkT
T (F) for some k, we will consider (2)540

and proceed inductively. The main idea is to note that since Di is σ-smoothed, conditioned on the541

history thus far, we can invoke the coupling lemma given in Theorem 2.1.542

For the sake of illustration, first consider the simple case of T = 1. Let X1, Z1 . . . Zk denote the543

coupling alluded to in Theorem 2.1. Recall that X1 ∼ D1 and Z1:k ∼ µk. Defining the event544
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E1 := {X1 ∈ Z1:k}, we have545

R1(F ,D) = EX1∼D1
inf
a1

sup
y1

R1(F , X1, y1, a1)

= EX1,Z1:k

[
inf
a1

sup
y1

R1(F , X1, y1, a1)

]

= EX1,Z1:k

[
1{E1} inf

a1

sup
y1

R1(F , X1, y1, a1)

]

+ EX1,Z1:k

[
1{EC

1 } inf
a1

sup
y1

R1(F , X1, y1, a1)

]

≤ EX1,Z1:k

[
1{E1} inf

a1

sup
y1

R1(F , X1, y1, a1)

]
+ P(Ec

1) (3)

≤ EZ1:k

[
max

X1∈Z1:k

inf
a1

sup
y1

R1(F , X1, y1, a1)

]
+ (1− σ)k (4)

= RkT
T (F) + (1− σ)k, (5)

where (3) uses that infa1 supy1
R1(F , X1, y1, a1) ≤ 1 4, (4) follows by the coupling lemma and (5)546

follows from the definition of transductive learning regret. The next step is to generalize this to547

arbitrary T . The key aspect that makes this possible is that for all t ≤ T , we have Dt ∈ ∆σ (µ),548

even conditioned on the past, allowing us to apply the coupling lemma. Furthermore, we need that549

RT ≤ T for arbitrary sequences which is indeed guaranteed for reasonable losses such as the log-loss550

as noted above.551

We now move to general case. We will prove this inductively. Assume that we have used the coupling552

lemma till time t− 1 and replaced the samples from the smooth distributions with samples from the553

uniform. That is assume the induction hypothesis, for time t as554

RT ≤ E
{Z1:k}∼µ

max
X1∈Zk

1

inf
a1

sup
y1

. . . sup
Dt

E
Xt∼Dt

inf
at

sup
yt

. . .

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T ) + T (t− 1)(1− σ)k

Using the coupling lemma, we have that there exists a coupling Πt such that Xt, Zt,1 . . . Zt,k ∼ Πt555

and an event Et =
{
Xt ∈

{
Zt,1 . . . Zt,k

}}
that occurs with probability 1 − (1− σ)

k. Using556

Zt :=
{
Zt,1 . . . Zt,k

}
we have557

E
Z1∼µk

max
X1∈Z1

inf
a1

sup
y1

. . . sup
Dt

E
Xt∼Dt

inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

≤ E
Z1∼µk

max
X1∈Z1

inf
a1

sup
y1

. . . sup
Dt

E
Xt,Zt∼Πt

inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

≤ E
Z1∼µk

max
X1∈Z1

inf
a1

sup
y1

. . . sup
Dt

E
Xt,Zt∼Πt

1[Et]

(
inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

)
+ E

Z1∼µk
max
X1∈Z1

inf
a1

sup
y1

. . . sup
Dt

E
Xt,Zt∼Πt

1[Ec
t ]

(
inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

)
≤ E

Z1∼µk
max
X1∈Z1

inf
a1

sup
y1

. . . sup
Dt

E
Xt,Zt∼Πt

1[Et]

(
inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

)
+ T (1− σ)

k

4This holds for the log-loss by using the trivial strategy of using a uniform probability assignment at each
step.
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≤ E
Z1∼µk

max
X1∈Z1

inf
a1

sup
y1

. . . sup
Dt

E
Zt∼Πt

max
Xt∈Zt

(
inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

)
+ T (1− σ)

k

= E
Z1∼µk

max
X1∈Z1

inf
a1

sup
y1

. . . E
Zt∼µk

max
Xt∈Zt

(
inf
at

sup
yt

. . . sup
DT

E
XT∼DT

inf
aT

sup
yT

R(F , X1:T , y1:T , a1:T )

)
+ T (1− σ)

k

Combining with the induction hypothesis, gives us the induction hypothesis for the next t as required.558

The desired result follows by upper bounding the average with the supremum over all subsets of size559

kT .560

C Proof of Theorem 3.2561

First, recall the notion of the global sequential covering for a class Wu et al. [2022b].562

Definition C.1 (Global Sequential Covering Wu et al. [2022b]). For any class F , we say that563

F ′
α ⊂ X ∗ → [0, 1] is a global sequential α-covering of F at scale T if for any sequence x1:T and564

h ∈ F , there is a h′ ∈ F ′ such that for all i,565 ∣∣h(xi)− h′(x1:i)
∣∣ ≤ α.

Theorem C.1 (Wu et al. [2022b]). If F ′
α is a global sequential α-covering of F at scale T , then566

RT (F) ≤ inf
α>0

{
2αT + log

∣∣F ′
α

∣∣} .

To finish the proof note that a ϵ-cover in the sense of Definition 3.1 gives a global sequential cover in567

the sense of Definition C.1.568

D VC Classes569

In this section, we construct a probability assignment for the case when F ⊂ {X → [0, 1]} is a570

VC class. To motivate this probability assignment, consider the no-context case, which is a classic571

problem in information theory, where the (asymptotically) optimal probability assignment is known572

to be the Krichevsky and Trofimov [1981] (KT) probability assignment which is a Bayesian mixture573

of the form574

qKT(y1:T ) =

∫ 1

0

pθ(y1:T )w(θ)dθ

for a particular prior w(θ). This can be written sequentially as qKT(1|y1:t−1) =
∑t−1

i=1 yi+1/2

t−1+1 leading575

to it sometimes being called the add-1/2 probability assignment; by choosing w(θ) to be Beta(β, β)576

prior one can achieve a corresponding add-β probability assignment. We extend the mixture idea to577

the contextual case. In particular, for functions f1, . . . , fm ∈ F , one can choose a mixture probability578

assignment as 5579

t∏
i=1

q(yi|x1:i, y1:i−1) =: q(y1:t∥x1:t) =
1

m

m∑
j=1

t∏
i=1

(
pfj (yi|xi) + β

1 + 2β

)
.

This is the approach employed presently with a carefully chosen f1, . . . , fm. We remark that for580

VC classes this mixture approach may be extended to any mixable [Cesa-Bianchi and Lugosi, 2006,581

Chapter 3] loss.582

5Note that once a mixture q(y1:t∥x1:t) has been defined for arbitrary x1:t, y1:t , the probability assign-
ment at time t (or equivalently, the predicted probability with which the upcoming bit is 1) can be defined
as q(1|x1:t, y1:t−1) =

q(y1:t−11∥x1:t)

q(y1:t−1∥x1:t−1)
; in particular, this prediction depends only on the observed history

x1:t, y1:t−1 and not the future yt.
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First consider VC classes more carefully: i.e. each f ∈ FVC is characterized by three things: a set583

A ⊆ X , where A ∈ A ⊂ 2X with the VC dimension of the collection A being d < ∞; as well as584

two numbers θ0, θ1 ∈ [0, 1]. Then, we have585

fA,θ0,θ1(x) = θ01{x ∈ A}+ θ11{x ∈ AC}.
The following equivalent representation of this hypothesis class is more convenient to use. We586

consider each f to be characterized by a tuple f = (g, θ0, θ1) where587

1. θ0, θ1 ∈ [0, 1]588

2. g ∈ G ⊂ {X → {0, 1}}.589

In other words, g belongs to a class G of binary functions—this is simply the class of functions590

{x 7→ 1{x /∈ A}
∣∣A ∈ A} in the original notation; so that clearly VCdim(G) = d. Then, we have591

pf (·|x) = pg,θ0,θ1(·|x) = Bernoulli(θ0) if g(x) = 0; and pg,θ0,θ1(·|x) = Bernoulli(θ1) otherwise.592

Recalling the definition of regret against a particular f = (g, θ0, θ1) for a sequential probability593

assignment strategy Q = {q(·|x1:t, y1:t−1)}Tt=1594

RT (f, x1:T , y1:T ,Q) =

T∑
t=1

log
1

q(yt|x1:t, y1:t−1)
−

T∑
t=1

log
1

pf (yt|xt)
(6)

= log
pf (y1:T |x1:T )

q(y1:T ∥x1:T )

where q(y1:T ∥x1:T ) :=
∏T

t=1 q(yt|x1:t, y1:t−1).595

In the smoothed analysis case, we have Xt ∼ Dt where Dt for all t is σ-smoothed. Recall that in this596

case, we are concerned with the regret597

RT (F , σ,Q) = max
D:σ-smoothed

EX1:T

[
max
y1:T

sup
f∈F

pf (y1:T |X1:T )

q(y1:T ∥X1:T )

]

= max
D:σ-smoothed

EX1:T

[
max
y1:T

sup
g∈G

max
θ0,θ1

pg,θ0,θ1(y1:T |X1:T )

q(y1:T ∥X1:T )

]
.

D.1 Proposed probability assignment598

Let µ be the dominating measure for the σ-smoothed distribution of X1:T . Let g1, . . . , gmϵ
∈ G599

be an ϵ-cover of the function class G under the metric δµ(g1, g2) = PrX∼µ(g1(X) ̸= g2(X)). The600

following lemma bounds mϵ.601

Lemma D.1 (Covering number of VC classes under the metric δ, Vershynin [2018]).

mϵ ≤
(
1

ϵ

)cd

for an absolute constant c.602

Following the idea of using a mixture probability assignment, we take a uniform mixture over603

g1, . . . , gmϵ
and θ0, θ1 so that604

q(y1:t∥x1:t) =
1

mϵ

mϵ∑
i=1

∫ 1

0

∫ 1

0

pgi,θ0,θ1(y1:t|x1:t)dθ0dθ1

and consequently the sequential probability assignment (or equivalently, the probability assigned to605

1) is606

q(1|x1:t, y1:t−1) =
q(y1:t−11∥x1:t)

q(y1:t−1∥x1:t−1)
.

One can observe that q(0|x1:t, y1:t−1), q(1|x1:t, y1:t−1) > 0 and q(0|x1:t, y1:t−1) +607

q(1|x1:t, y1:t−1) = 1 so that q is a legitimate probability assignment. Let the strategy induced608

by this uniform mixture be called QVC.609
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D.2 Analysis of QVC for smoothed adversaries610

We note from (6) that for the QVC as defined in the last section, we have611

RT ((g
∗, θ∗0 , θ

∗
1), x1:T , y1:T ,Q

VC) = logmϵ + log
pg∗,θ∗

0 ,θ
∗
1
(y1:T |x1:T )∑mϵ

i=1

∫ 1

0

∫ 1

0
pgi,θ0,θ1(y1:T |x1:T )dθ0dθ1

≤ logmϵ + log
pg∗,θ∗

0 ,θ
∗
1
(y1:T |x1:T )∫ 1

0

∫ 1

0
pgi∗ ,θ0,θ1(y1:T |x1:T )dθ0dθ1

(7)

where gi∗ ∈ {g1, . . . , gmϵ
} is the function i∗ ∈ [m] that minimizes the Hamming distance between612

the binary strings (gi∗(x1), . . . , gi∗(xT )) and (g∗(x1), . . . , g
∗(xT )).613

We now take a closer look at the second term of (7). Firstly, note that for any (g, θ0, θ1) we have614

pg,θ0,θ1(y1:T |x1:T ) =615

T∏
t=1

pg,θ0,θ1(yt|xt) =

T∏
t=1

θyt

g(xt)
(1− θg(xt))

1−yt =
∏

t:g(xt)=0

θyt

0 (1− θ0)
1−yt

∏
t:g(xt)=1

θyt

1 (1− θ1)
1−yt

= θ
k0(g;x1:T ,y1:T )
0 (1− θ0)

n0(g;x1:T )−k0(g;x1:T ,y1:T )

θ
k1(g;x1:T ,y1:T )
1 (1− θ1)

n1(g;x1:T )−k1(g;x1:T ,y1:T ),

where for j ∈ {0, 1}616

kj(g;x1:T , y1:T ) = |{t : yt = 1, g(xt) = j}|
n0(g;x1:T ) = |{t : g(xt) = j}|.

Next, we note that for any g ∈ G617 ∫ 1

0

∫ 1

0

pg,θ0,θ1(y1:T |x1:T )dθ0dθ1

=

(∫ 1

0

θ
k0(g;x1:T ,y1:T )
0 (1− θ0)

n0(g;x1:T )−k0(g;x1:T ,y1:T )dθ0

)
·(∫ 1

0

θ
k1(g;x1:T ,y1:T )
1 (1− θ1)

n1(g;x1:T )−k0(g;x1:T ,y1:T )dθ1

)

=
1(

n0(g;x1:T )
k0(g;x1:T ,y1:T )

)
(n0(g;x1:T ) + 1)

1(
n1(g;x1:T )

k1(g;x1:T ,y1:T )

)
(n1(g;x1:T ) + 1)

(8)

≥ 1

n2
(

n0(g;x1:T )
k0(g;x1:T ,y1:T )

)(
n1(g;x1:T )

k1(g;x1:T ,y1:T )

)
where (8) follows from properties of the Laplace probability assignment (or that of the Beta/Gamma618

functions), captured by Lemma D.2.619

Lemma D.2. For k ≤ n ∈ N,620 ∫ 1

0

tk(1− t)n−kdt =
Γ(k + 1)Γ(n− k + 1)

Γ(n+ 2)
=

1

(n+ 1)
(
n
k

)
where Γ(·) represents the Gamma function.621

Putting this back into (7) (and rearranging), we have622

RT ((g
∗, θ∗0 , θ

∗
1), x1:T , y1:T ,Q

VC)− logmϵ − 2 log n

≤
∑

j∈{0,1}

log

((
nj(gi∗ ;x1:T )

kj(gi∗ ;x1:T , y1:T )

)
(θ∗j )

kj(g
∗;x1:T ,y1:T )(1− θ∗j )

nj(g
∗;x1:T )−kj(g

∗;x1:T ,y1:T )

)

=
∑

j∈{0,1}

log

((
nj(gi∗ ;x1:T )

kj(gi∗ ;x1:T , y1:T )

)(
nj(g

∗;x1:T )

kj(g∗;x1:T , y1:T )

)−1

·
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(
nj(g

∗;x1:T )

kj(g∗;x1:T , y1:T )

)
(θ∗j )

kj(g
∗;x1:T ,y1:T )(1− θ∗j )

nj(g
∗;x1:T )−kj(g

∗;x1:T ,y1:T )

)

≤
∑

j∈{0,1}

log

((
nj(gi∗ ;x1:T )

kj(gi∗ ;x1:T , y1:T )

)(
nj(g

∗;x1:T )

kj(g∗;x1:T , y1:T )

)−1
)

(9)

where (9) follows since for any natural numbers k ≤ n and θ ∈ [0, 1] we have
(
n
k

)
θk(1− θ)n−k ≤ 1.623

Now, note that624

log

(
n
k

)(
n′

k′

) = log
n!

n′!
+ log

k′!

k!
+ log

(n′ − k′)!

(n− k)!

≤ log
(n′ + |n− n′|)!

n′!
+ log

(k + |k − k′|)!
k!

+ log
((n− k) + |n− n′|+ |k − k′|)!

(n− k)!

If |k−k′|, |n−n′| ≤ δ, and max{n, n′} ≤ N then by for example [Bhatt and Kim, 2021, Proposition625

6] we have that626

log

(
n
k

)(
n′

k′

) ≤ 2δ log(n′ + 2δ) + 2δ log(k + 2δ) + 4δ log((n− k) + 4δ)

≤ 16δ logN. (10)

We now wish to use this bound in (9). For this, we will recall the definitions of n0(g;x1:T ) and627

k0(g;x1:T , y1:T ) for a particular function g and observe that for two functions g, g′ we have that628

both |n0(g;x1:T ) − n0(g
′;x1:T )|, |k0(g;x1:T , y1:T ) − k0(g

′;x1:T , y1:T )| ≤ dH(g(x1:T ), g
′(x1:T ))629

where dH(·, ·) denotes the Hamming distance and g(x1:T ) := (g(x1), . . . , g(xT )) ∈ {0, 1}T . Thus,630

by using (10) in (9) with δ = dH(g∗(x1:T ), gi∗(x1:T )), N = T , we get631

RT ((g
∗, θ∗0 , θ

∗
1), x1:T , y1:T ,Q

VC) ≤ logmϵ + 2 log T + 32dH(g∗(x1:T ), gi∗(x1:T )) log T. (11)

Note that (11) has effectively removed any dependence on y, θ∗0 , θ
∗
1 . We then have for some absolute632

constant C, (recalling the definition of i∗ and F from earlier)633

RT (F , σ,QVC) ≤ C logmϵ + C log T max
D:σ-smoothed

E

[
sup
g∗∈G

min
i∈[mϵ]

dH(g∗(X1:T ), gi(X1:T ))

]
.

(12)

Finally, we can control the last term in (12) by the following result, which follows from the coupling634

lemma and variance sensitive upper bounds on suprema over VC classes.635

Lemma D.3 (Lemma 3.3 of Haghtalab et al. [2021]).

E

[
sup
g∗∈G

min
i∈[m]

dH(g∗(X1:T ), gi(X1:T ))

]
≤

√
ϵ

σ
T log Td log

(
1

ϵ

)
+ T log T

ϵ

σ

Plugging the above into (12) and taking ϵ = σ
T 2 gives us636

RT (F , σ,QVC) ≤ O

(
d log

(
T

σ

))
.

E Proof of Lemma 4.2637

Proof. Note that this proof holds for general loss functions. LetRT denote the regret.638

RT ≤ E

 T∑
i=1

ℓ(ht, st)− inf
h∈F

T∑
i=1

ℓ(h, st)


= E

 T∑
i=1

ℓ(ht, st)−
T∑

t=1

ℓ(ht+1, st) +

T∑
t=1

ℓ(ht+1, st)− inf
h∈F

T∑
i=1

ℓ(h, st)


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= E

 T∑
i=1

ℓ(ht, st)−
T∑

t=1

ℓ(ht+1, st)

+ E

 T∑
t=1

ℓ(ht+1, st)− inf
h∈F

T∑
i=1

ℓ(h, st)


Let us focus on the second term.639

E

 T∑
t=1

ℓ(ht+1, st)− inf
h∈F

T∑
i=1

ℓ(h, st)


≤ E

 T∑
t=1

ℓ(ht+1, st)− inf
h∈Fα

T∑
i=1

ℓ(h, st) + inf
h∈Fα

T∑
i=1

ℓ(h, st)− inf
h∈F

T∑
i=1

ℓ(h, st)


≤ 2αT + E

 T∑
t=1

ℓ(ht+1, st)− inf
h∈Fα

T∑
i=1

ℓ(h, st)

 (13)

≤ 2αT + E

 N∑
t=1

ℓ(ht, s̃t)− ℓ (h∗, s̃t)

 (14)

≤ 2αT + E

 sup
h∈Fα

N∑
t=1

ℓ(h, s̃t)− ℓ (h∗, s̃t)


where h∗ = infh∈Fα

∑T
i=1 ℓ(h, st) . (13) follows by comparing the optimal of the truncated class640

with the whole class, see [Cesa-Bianchi and Lugosi, 2006, Lemma 9.5]. (14) follows from the641

Be-the-leader lemma Cesa-Bianchi and Lugosi [2006].642

F Proof of Lemma 4.3643

Denote by R(t) = (N (t), {s̃i}i∈N(t)) the fresh randomness generated at the beginning of time t,644

which is independent of {sτ}τ<t generated by the adversary. Let Qt be the distribution of the645

learner’s action ht ∈ H in Algorithm 1, Formally,646

rt(x) =

N(t+1)∑
i=1

ỹ
(t+1)
i · 1(x̃ (t+1)

i = x) +

t∑
τ=1

yτ · 1(xτ = x).

Let Pt be the distribution of rt. The reason why we introduce this notion is that ht in Algorithm 1647

only depends on the vector rt−1.648

The main step in the proof is to introduce an independent sample from the distribution Dt in order to649

decouple the dependence of the distribution Qt+1 on the test point st.650

E
st∼Dt

E
ht∼Qt

[ℓ(ht, st)]− E
st∼Dt

E
ht+1∼Qt+1

[ℓ(ht+1, st)]

= E
st∼Dt

E
ht∼Qt

[ℓ(ht, st)]− E
st,s′t∼Dt

E
ht+1∼Qt+1

[ℓ(ht+1, s
′
t)]

+ E
st,s′t∼Dt

E
ht+1∼Qt+1

[ℓ(ht+1, s
′
t)]− E

st∼Dt

E
ht+1∼Qt+1

[ℓ(ht+1, st)] (15)

= E
s′t∼Dt

E
ht∼Qt

[ℓ(ht, s
′
t)]− E

s′t∼Dt

E
ht+1∼Est∼Dt [Qt+1]

[ℓ(ht+1, s
′
t)] (16)

+ E
st,s′t∼Dt

E
ht+1∼Qt+1

[ℓ(ht+1, s
′
t)]− E

st∼Dt

E
ht+1∼Qt+1

[ℓ(ht+1, st)]

where we get (15) by adding and subtracting the middle term corresponding to evaluating the loss651

on an independent sample s′t and (16) by observing that st and s′t are equally distributed. Since the652

second term is the same in the required equation, we can focus on the first term.653

E
ht∼Qt

[
E

s′t∼Dt

[ℓ(ht, s
′
t)]

]
− E

ht+1∼Q̃t+1

[
E

s′t∼Dt

[ℓ(ht+1, s
′
t)]

]
. (17)

19



Here we use the notation Q̃t+1 = Est∼Dt [Qt+1] for the mixture distribution. In order to bound this,654

we look a variational interpretation of the χ2 distance between two distributions P and Q.655

Lemma F.1 (Hammersley–Chapman–Robbins bound). For any pair of measures P and Q and any656

measurable function h : X → R, we have657 ∣∣EX∼P [h(X)]− EX∼Q[h(X)]
∣∣ ≤√χ2 (P,Q) ·VarX∼Q

(
h (X)

)
≤
√

1

2
χ2 (P,Q) · EX,X′∼Q

(
h (X)− h (X ′)

)2
.

Applying this to (17), we get658

E
ht∼Qt

[
E

s′t∼Dt

[ℓ(ht, s
′
t)]

]
− E

ht+1∼Q̃t+1

[
E

s′t∼Dt

[ℓ(ht+1, s
′
t)]

]

≤
√

1

2
χ2( E

st∼Dt

[Qt+1],Qt) · Eht,h′
t∼Qt

(
Est∼Dt

[
ℓ(ht, st)− ℓ(h′

t, st)
])2

.

as required. As noted before, for the particular use in our analysis a simpler version of the lemma659

similar to Haghtalab et al. [2022] suffices but we include the general version since we believe such a660

version is useful in providing improved regret bounds for the problem.661

G Upper Bounding χ2 Distance: Proof of Lemma 4.4662

In this section, we will focus on bounding the χ2 distance between the distribution of actions at time663

steps. The reasoning in this section closely follows Haghtalab et al. [2022]. We reproduce it here for664

completeness.665

We assume that X is discrete. Define

n0(x) =

N∑
i=1

1(x̃i = x, ỹi = 0) and n1(x) =

N∑
i=1

1(x̃i = x, ỹi = 1).

As each x̃i is uniformly distributed on X and ỹi ∼ U({0, 1}), by the subsampling property of666

the Poisson distribution, the 2|X | random variables {n0(x), n1(x)}x∈X are i.i.d. distributed as667

Poi(n/2|X |).668

Since the historic data is only a translation, it suffices to consider the distributions at time t = 0 and669

t = 1. Let n1
0(x) = n0(x) + 1(x1 = x, y1 = 0) with n1

1 definied similarly. Let P and Q be the670

probability distributions of {n0(x), n1(x)}x∈X and {n1
0(x), n

1
1(x)}x∈X , respectively. Note that the671

output of the oracle depends only on this vector and thus by the data processing inequality it suffices672

to bound χ2(P,Q).673

Note that the distribution P is a product Poisson distribution:674

P ({n0(x), n1(x)}) =
∏
x∈X

∏
y∈{0,1}

P(Poi(n/2|X |) = ny(x)).

As for the distribution Q, it could be obtained from P in the following way: the smooth adversary675

draws x⋆ ∼ D, independent of {n0(x), n1(x)}x∈X ∼ P , for some σ-smooth distribution D ∈676

∆σ(X ). He then chooses a label y⋆ = y(x⋆) ∈ {0, 1} as a function of x⋆, and sets677

n1
y(x⋆)(x

⋆) = ny(x⋆)(x
⋆) + 1, and n1

y(x) = ny(x), ∀(x, y) ̸= (x⋆, y(x⋆)).

Consequently, given a σ-smooth distribution D and a labeling function y : X → {0, 1} used by the678

adversary, the distribution Q is a mixture distribution Q = Ex⋆∼DX [Qx⋆ ], with679

Qx⋆({n1
0(x), n

1
1(x)}) = P(Poi(n/2|X |) = ny(x⋆)(x

⋆)− 1)×
∏

(x,y) ̸=(x⋆,y(x⋆))

P(Poi(n/2|X |) = ny(x)).

We will use the Ingster method to control the χ2 between the mixture distribution Q and the base680

distribution P .681
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Lemma G.1 (Ingster’s χ2 method). For a mixture distribution Eθ∼π[Qθ] and a generic distribution682

P , the following identity holds:683

χ2

(
E

θ∼π
[Qθ], P

)
= E

θ,θ′∼π

[
E

x∼P

(
Qθ(x)Qθ′(x)

P (x)2

)]
− 1,

where θ′ is an independent copy of θ.684

Let x⋆
1, x

⋆
2 be an arbitrary pair of instance. Using the closed-form expressions of distributions P and685

Qx⋆ , it holds that686

Qx⋆
1
Qx⋆

2

P 2
=

2|X |ny(x⋆
1)
(x⋆

1)

n
·
2|X |ny(x⋆

2)
(x⋆

2)

n
.

Using the fact that {n0(x), n1(x)}x∈X are i.i.d. distributed as Poi(n/2|X |) under P , we have687

E
{n0(x),n1(x)}∼P

(
Qx⋆

1
({n1

0(x), n
1
1(x)})Qx⋆

2
({n1

0(x), n
1
1(x)})

P ({n0(x), n1(x)})2

)
= 1 +

2|X |
n
· 1(x⋆

1 = x⋆
2).

We will use the fact that the probability of collision between two independent draws x⋆
1, x

⋆
2 ∼ D is688

small. That is using the Lemma G.1, we have689 √
χ2(Q,P )

2
=

√
χ2(Ex⋆∼D[Qx⋆ ], P )

2
=

√
|X |
n
· E
x⋆
1 ,x

⋆
2∼D

[1(x⋆
1 = x⋆

2)]

=

√
|X |
n

∑
x∈X
D(x)2≤

√
|X |
n

∑
x∈X
D(x) · 1

σ|X |
=

1√
σn

,

where the last inequality follows from the definition of a σ-smooth distribution.690

H Upper Bounding Generalization Error: Proof of Lemma 4.5691

The proof of the theorem is similar to the [Haghtalab et al., 2022, Section 4.2.2]. In our setting, we692

need to deal with general losses. We shall need the following property of smooth distributions which693

is a slightly strengthened version of the coupling lemma in Theorem 2.1 shown in Haghtalab et al.694

[2022].695

Lemma H.1. Let X1, · · · , Xm ∼ Q and P be another distribution with a bounded likelihood ratio:696

dP/dQ ≤ 1/σ. Then using external randomness R, there exists an index I = I(X1, · · · , Xm, R) ∈697

[m] and a success event E = E(X1, · · · , Xm, R) such that Pr[Ec] ≤ (1− σ)m, and698

(XI | E,X\I) ∼ P.

Fix any realization of the Poissonized sample size N ∼ Poi(n). Choose m in Lemma H.1. Since for699

any σ-smooth Dt, it holds that700

Dt(s)

U(X × {0, 1})(s)
=
Dt(x)

U(X )(x)
· Dt(y | x)
U({0, 1})(y)

≤ 2

σ
,

the premise of Lemma H.1 holds with parameter σ/2 for P = Dt, Q = U(X ×{0, 1}). Consequently,701

dividing the self-generated samples s̃1, · · · , s̃N into N/m groups each of size m, and running the702

procedure in Lemma H.1, we arrive at N/m independent events E1, · · · , EN/m, each with probability703

at least 1 − (1 − σ/2)m ≥ 1 − T−2. Moreover, conditioned on each Ej , we can pick an element704

uj ∈ {s̃(j−1)m+1, · · · , s̃jm} such that705

(uj | Ej , {s̃(j−1)m+1, · · · , s̃jm}\{uj}) ∼ Dt.

For notational simplicity we denote the set of unpicked samples {s̃(j−1)m+1, · · · , s̃jm}\{uj} by vj .706

As a result, thanks to the mutual independence of different groups and st ∼ Dt conditioned on s1:t−1707

(note that we draw fresh randomness at every round), for E ≜ ∩j∈[N/m]Ej we have708

(u1, · · · , uN/m, st) | (E, s1:t−1, v1, · · · , vN/m)
iid∼ Dt.
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Let us denote ht+1 = Ot+1(s̃1, · · · , s̃N , s1:t−1, st) the output of the algorithm at time t when709

s̃1, · · · , s̃N denotes the hallucinated data points and s1:t−1, st denotes the observed data points. We710

will use the fact that Ot+1 is a permutation invariant function. Consequently, for each j ∈ [N/m] we711

have712

E
st∼Dt,R(t+1)

[ℓ(ht+1, st) | E]

= E
st∼Dt,s̃1,··· ,s̃N

[
ℓ(Ot+1(s̃1, · · · , s̃N , s1:t−1, st), st) | E

]
= E

v,s1:t−1|E

(
E

st,u1,··· ,uN/m

[
ℓ(Ot+1(s1:t−1, v, u1, · · · , uN/m, st), st) | E, s1:t−1, v

])

= E
v,s1:t−1|E

(
E

st,u1,··· ,uN/m

[
ℓ(Ot+1(s1:t−1, v, u1, · · · , uj−1, st, uj+1, · · · , uN/m, uj), uj) | E, s1:t−1, v

])
(18)

= E
v,s1:t−1|E

(
E

st,u1,··· ,uN/m

[ℓ(Ot+1(s1:t−1, v, u1, · · · , uN/m, st), uj) | E, s1:t−1, v]

)
(19)

= E
st∼Dt,R(t+1)

[ℓ(ht+1, uj) | E],

where (18) follows from the conditional iid (and thus exchangeable) property of (u1, · · · , uN/m, st)713

after the conditioning, and (19) is due to the invariance of the Ot+1 after any permutation of the714

inputs. On the other hand, if s′t, u
′
1, · · · , u′

N/m are independent copies of st ∼ Dt, by independence715

it is clear that716

E
st,s′t∼Dt,R(t+1)

[ℓ(ht+1, s
′
t) | E] = E

st,s′t∼Dt,R(t+1)
[ℓ(ht+1, u

′
j) | E], ∀j ∈ [N/m].

Consequently, using the shorthand u0 = st, u
′
0 = s′t, we have717

E
st,s′t∼Dt,R(t+1)

[ℓ(ht+1, s
′
t)− ℓ(ht+1, st) | E]

=
1

N/m+ 1
E

st,s′t∼Dt,R(t+1)

N/m∑
j=0

(ℓ(ht+1, u
′
j)− ℓ(ht+1, uj))

∣∣∣∣ E


≤ 1

N/m+ 1
E

u0,··· ,uN/m,u′
0,··· ,u′

N/m
∼Dt

 sup
h∈Fα

N/m∑
j=0

(ℓ(h, u′
j)− ℓ(h, uj))


≤ 2α

N/m+ 1
E

u0,··· ,uN/m∼Dt

E
ϵ1...ϵN/m

 sup
h∈Fα

N/m∑
j=0

ϵjh(uj)


≤ 1

α
Rad

(
Fα, N/m

)
.

The last inequality uses the fact that the algorithm always outputs a function in Fα. Further, we have718

used the Ledoux-Talagrand contraction inequality.719

Theorem H.2 (Ledoux-Talagrand Contraction). Let g : R → R be a L-Lipschitz function. For a720

function class F , denote by g ◦ F the compositions of function in F with g. Then, for all n,721

Rad (g ◦ F , n) ≤ L · Rad (F , n) .

Last inequality follows from the fact that the derivative of the log loss is bounded by 1/α when722

truncated at level α. Note that the union bound gives723

Pr[Ec] ≤
N/m∑
j=1

Pr[Ec
j ] ≤

N (1− σ)
m

m
.

Thus,the law of total expectation gives724

E
st,s′t∼Dt,R(t+1)

[ℓ(ht+1, s
′
t)− ℓ(ht+1, st)]
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≤ E
st,s′t∼Dt,R(t+1)

[ℓ(ht+1, s
′
t)− ℓ(ht+1, st) | E] + Pr[Ec] log(1/α)

≤ 1

α
Rad

(
Fα, N/m

)
+

N (1− σ)
m
log
(
1/α

)
m

.

The last equation follows from the fact that the output of the algorithm has loss always bounded by725

log
(
1/α

)
.726

We get the desired result by taking the expectation of N ∼ Poi(n), and using Pr[N > n/2] ≥727

1− e−n/8 in the above inequality completes the proof.728

I Bound on the Perturbation Term729

Lemma I.1 (Perturbation).

E

 N∑
i=1

L(ĥ, s̃t)− L(h∗, s̃t)

 ≤ n logα

Proof. Note from the truncation step in Algorithm 1, we have that L(ĥ, s̃t) ≤ log (α). We get the730

desired bound by taking expectations.731
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