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1 SUPPLEMENTARY MATERIALS
We introduce the guidance of code implementation in Sec. 1.1, and
our codes are available in the zip file. In Tab. 1, we provide the com-
plete results of AD-oriented OWOD benchmark using BDD100K. In
Sec. 1.2, we conduct more discussions on the proposed U-ARecall
and compare it with mAP. In Sec. 1.3, we visualize the results of
coarse and fine vocabulary generation. Finally, we introduce the
prospects and further works in Sec. 1.4.

1.1 Guidance of Code Implementation
We provide our codes in the zip file of the supplemental materials.
The “auto-gd” folder contains the classic object detection methods
(see “od_configs”), fine-tuning methods (see “finetune” folder in
configs/auto_driving_grounding_dino), and our method (see con-
figs/auto_driving_grounding_dino). In the “owod” folder, it includes
the classic OWOD methods, i.e., UnSniffer, VOS, OW-DETR, and
PROB. The “tools” folder consists of some data conversion codes,
some visualization codes, and some evaluation codes. In summary,
we provide the implementation codes of our method and the pro-
posed AD-oriented OWOD benchmark, including the codes for all
compared methods and the evaluation protocol (more details see
the README.md).

1.2 More Discussions on ARecall
To evaluate the performance of detecting unknown objects, we
propose a novel evaluation metric called U-ARecall, aiming to am-
plify the penalties associated with false positives. In this section,
we detail the reasons for not employing AP (average precision) to
evaluate the performance of detecting unknown objects. Gener-
ally speaking, AP is a default criterion to evaluate the detection
accuracy. As shown in Fig. 1 (a), AP equals the area under precision-
recall (PR) curve, representing a trade-off between precision and
recall. However, due to the inclusion of precision, AP requires that
there are almost no missing annotations, otherwise the accuracy of
the assessment will be significantly compromised. Therefore, AP
demands strict annotations with almost no missing object. This re-
quirement is not suitable for open world object detection (OWOD),
as unknown objects encompass diverse classes, increasing the like-
lihood of missing labels. While, as shown in Fig. 1 (b), we redisplay
the calculation of ARecall as the area of recall and numerical ratio
curve. Unlike AP, ARecall does not involve precision, it is not as
strict as AP on annotations. However, ARecall can still evaluate
accuracy by penaltying false positives within predictions.

1.3 More Visualization
We compare the experimental results of coarse and fine vocabulary
generation in Tab. 4 of this paper. In this section, we offer additional
visualizations for these two generation methods, as shown in Fig. 2.
It is evident that the fine vocabulary generation yields more false

AP = (5 *1 + 0.6 * 4 + 0.4 * 2) / 11 
      = 74.5%

ARecall = (0.8 + 0.6 + 0.4) / 3 
              = 60%

(a) AP

AP = (5 *1 + 0.6 * 4 + 0.4 * 2) / 11 
      = 74.5%

ARecall = (0.8 + 0.6 + 0.4) / 3 
              = 60%

(a) AP (b) ARecall

Figure 1: Examples of calculation process for (a) AP and (b)
the proposed ARecall. For simplicity, we sample three values
of 𝑁 in ARecall for demonstration.

Table 1: Complete performance comparison using BDD100K
for the AD-oriented OWOD benchmark. U-R denotes U-
Recall. FR and R-OVMmean FasterRCNN and Raw OVM.

Method U-R10 U-R20 U-R30 U-ARecall K-mAP UK-Mean

FR[9] 0. 0. 0. 0. 53.3 26.6
D-DETR[11] 0. 0. 0. 0. 51.8 25.9

OW-DETR[3] 4.0 5.9 7.8 5.9 47.4 26.6
PROB[12] 4.0 10.1 15.4 9.8 48.4 29.1
VOS[2] 11.8 20.6 25.5 19.2 48.5 33.8
UnSniffer[7] 11.3 21.3 27.3 20.0 55.3 37.6

R-OVM[8] 55.2 71.5 78.8 68.5 42.2 55.3

FFT 34.5 40.4 43.6 39.5 60.3 49.9
LP 34.6 41.5 45.1 40.4 60.7 50.5
LP-FT[6] 30.0 37.0 39.9 35.6 60.6 48.1
Adapter[4] 37.0 44.7 48.8 43.5 60.1 51.8
LoRA[5] 44.9 61.5 68.8 58.4 56.4 57.4

Ours 54.9 71.3 78.8 68.3 60.5 64.4

positives, including some irrelevant objects (traffic signal and rum-
ble strip) and misidentified objects (car). Especially, some cars are
misidentified as various types of vehicle (hybrid vehicle and electric
vehicle), which significantly undermines the performance of un-
known object detection. These results suggest that finer unknown
object classes do not necessarily lead to better performance.

1.4 Prospects and Furture Works
Prospects. We adapt OWOD to the auto-driving (AD) scenario and
name this task as AD-oriented OWOD, which is more practical than
classic OWOD. We further discuss the prospects of AD-oriented
OWOD in the research of AD. In AD, occupancy prediction (OP) [10]
has recently been proposed to address unknown objects by con-
structing a 3D voxel space and requiring voxel-level labels. OP is a
3D space-centric task, which requires multiple cameras (typically 6)
or additional radar sensors. On the other hand, AD-oriented OWOD
is a 2D semantic-centric task, which needs only one image from a
camera and shows great potential for applization to edge-side de-
vices. For instance, rencently, Yolo-World [1] has been proposed to
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marry open-vocabulary models (OVMs) with YOLO, empowering
OVMs real-time capabilities. Therefore, the computational cost of
AD-oriented OWO is much lighter than that of OP. Besides, the
labeling cost of AD-oriented OWOD is also much cheaper than that
of OP. Nevertheless, the predicted 3D space of OP is more reliable
than 2D bounding boxes of AD-oriented OWOD, as it provides
additional deepth information. In summary, we believe that AD-
oriented OWOD and OP tasks are complementary, with the former
being 2D semantic-centric and the latter being 3D space-centric.
Together, their use can further enhance driving safety.

Furture Works. In this work, we concretize the semantics of
“threatening objects” by a general vocabulary bag. However, these
semantics remain fixed and unlearnable. Therefore, it is worthwhile
to explore the possibility of learning generic representations of
threatening objects with limited annotations in future research.
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Figure 2: Visualization comparison of coarse and fine vocabulary generation for a vocabulary bag.
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