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Appendices
A SHIFTS DATASET GENERAL DATASHEET

Here we describe the motivation, uses, distribution as well as the maintenance and support plan for the
Shifts 2.0 Dataset in the datasheet for datasets format (Gebru et al., 2018). The details of the composition,
collection and pre-prossessing of each component dataset are provided in appendices C-D

Motivation The primary goal for the creation of the Shifts 2.0 Dataset was the evaluation of uncertainty
quantification models and robustness to distributional shift on industrial and medical tasks of large practical
and societal importance. These datasets span multiple modalities and feature real examples of distributional
shift. Making these datasets available allows models’ robust generalisation and uncertainty quality to be
assessed - something not possible with standard in-domain benchmarks. Furthermore, by construction a
dataset using real medical or industrial tasks, the any insights reached can be directly applied without the
need for adaptation. This is an important feature, as most novel ML methods fail at the stage of adaptation
and scaling to actual applications.

Distribution It is our intention that the Shifts 2.0 dataset be freely available for research purposes. All the
code will be makde available under an open-source Apache 2.0 licence.

The Shifts cargo vessel power estimation datasets is distributed under an open-source CC BY NC SA 4.0
license. The training and in-domain/shifted devevelopment sets, both with real and synthetic targets, will
be freely distributed via the Zenodo platform. The evaluation sets will not be released, but will be hosted
on permanent leaderboards on the Grand-Challenge platform. Should the leaderboards close for any reason,
the evaluation sets will be similarly released via Zenodo. The reason for keeping the evaluation sets private
is to ensure a truly clean ’out-of-domain generalisation scenario’ and avoid any possible, even unintentional,
data leakage.

The MS lesion segmentation dataset has a more complex structure. Part of the dataset (ISBI train set and
PubMRI) is shared under a permissive CC BY NC SA 4.0 license. These components will be hosted on
Zenodo. However, the MSSEG-1 component (Commowick et al., 2018) was only available via credential-
ized access via the Shanoir Platform under an OFSEP DUA. Getting this access took some time. However,
we have reached an agreement with OFSEP to allow us to host our copy of the MSSEG-1 data on Zenodo
under their DUA to facilitate faster and simpler credentialized access within a consistent, pre-processed
data format. Thus, the in-domain training, dev and eval as well as the shifted dev set will be available for
download from Zenodo. The data will be split into two archives - the MSSEG archive, which will require
credentialized access which will be fast to achieve, and the remaining data, which will be freely hosted under
a permissive CC BY NC SA 4.0 license. Researchers wishing to use the dataset will need to download both
archives and then follow the included instructions to combine the two archives into the canonical splits we
have defined.

Finally, the dataset sourced at Lausanne, which is used as the Shifted evaluation set, was collected in such a
way that sharing the dataset itself is not possible, even via credentialized access. Specifically, patients have
the right to withdraw their data from the dataset at any time - the only way to ensure this is for the data
collectors to maintain both ownership and control over the dataset. However, the data owners are happy to
freely allow researchers to evaluate their models on this data via dockers on a public leaderboard, which will
be hosted in Grand-Challenge.

Societal Consequences Research on uncertainty estimation and robustness aims to make AI safer and
more reliable, and therefore has limited negative societal consequences overall. As discussed in sections 3
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and 4, both tasks considered for Shifts 2.0 have high societal importance. High-quality automatic segmen-
tation of MS lesions can enable greater patient throughput, more regular checkups, and in the long term, a
more personalised treatment plan. Similarly, accurate and reliable cargo vessel power consumption estima-
tion can help optimize fuel usage, carry less surplus fuel and thereby decrease both the cost of marine cargo
transport as well as it’s climate impact.

Guidelines for Ethical Use Users of this dataset are encouraged to use it for the purpose of improving the
reliability and safety of large-scale applications of machine learning. Furthermore, we encourage users of
our dataset to develop compute and memory efficient methods for improving safety and reliability.

As part of this data features 3D MRI brain scans taken from MS patients, users of this dataset should not
attempt to establish or retrieve the identity of the patients. Furthermore, users should not link this data to
any other database in a way that could provide identifying information. Users similarly should not request
the pseudonymisation key that would link this data to an individual’s personal information. When sharing
secondary or derivative data (e.g. group statistical maps, learnt models, etc...), users should only do so if
they are on a group level, and information from individual participants cannot be deduced.

Responsibility The authors confirm that, to the best of our knowledge, the released dataset does not violate
any prior licenses or rights. However, if such a violation were to exist, we are responsible for resolving this
issue.

B ASSESSMENT METRICS

As discussed in Section 2, in this work we consider robustness and uncertainty estimation to be two equally
important factors in assessing the reliability of a model. We assume that as the degree of distributional shift
increases, so should a model’s errors; in other words, a model’s uncertainty estimates should be correlated
with the degree of its error. This informs our choice of assessment metrics, which must jointly assess
robustness and uncertainty estimation.

One standard approach to jointly assess robustness and uncertainty are error-retention curves Malinin (2019);
Lakshminarayanan et al. (2017), which plot a model’s mean error over a dataset, as measured using a metric
such as error-rate, MSE, or nDSC, with respect to the fraction of the dataset for which the model’s predictions
are used. These retention curves are traced by replacing a model’s predictions with ground-truth labels
obtained from an oracle in order of decreasing uncertainty, thereby decreasing error. Ideally, a model’s
uncertainty is correlated with its error, and therefore the most errorful predictions would be replaced first,
which would yield the greatest reduction in mean error as more predictions are replaced. This represents a
hybrid human-AI scenario, where a model can consult an oracle (human) for assistance in difficult situations
and obtain from the oracle a perfect prediction on those examples.

The area under the retention curve (R-AUC) is a metric for jointly assessing robustness to distributional shift
and the quality of the uncertainty estimates. R-AUC can be reduced either by improving the predictions
of the model, such that it has lower overall error at any given retention rate, or by providing estimates
of uncertainty which better correlate with error, such that the most incorrect predictions are rejected first.
It is important that the dataset in question contains both a subset “matched” to the training data, and a
distributionally shifted subset.

Schematic explanations of error-retention curves are given in Figure 3, which demonstrates how these curves
jointly assess robustness and uncertainty by measuring the area under such curves. Consider Figure 3a.
Here we can see that replacing a certain percentage of the models predictions with ground truth labels will
decrease the error rate. Specifically, e100 is the performance of the system using all the data while e75 is
the error of the system using the top 75% of the data with the rejected data set to the ground-truth. Now
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(a) Example (b) Robustness

(c) Uncertainty (d) Mixture

Figure 3: Schematic explanation of error retention curves.
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consider Figure 3b, where we demonstrate robustness. Here we plot retention curves for two systems, where
one system is broadly more robust than the other. Predictions are rejected in a random, uninformative
order, yielding a straight line. Here we can see that the more robust system (System B) will have a lower
area under the retention curve (R-AUC) than the less robust system A. Now consider Figure 3c, where
we demonstrate uncertainty quality. For the same system, two different uncertainty approaches are consider
where the uncertainty measure Y produces a better ranking which is more strongly correlated with the degree
of error than uncertainty measure X. As a result, the largest errors are rejected first. Thus, the area under the
retention curve constructed using the ranking defined by measure Y is smaller than under the retention curve
defined using measure X. Finally, let’s consider Figure 3d, where we show a joint assessment of robustness
and uncertainty. Here, despite having worse predictive robustness, system A has a better uncertainty ranking
measure, leading the a smaller R-AUC. Thus, this model is capable of achieving more operating points
where it has lower error than system A, and is therefore better in terms of joint assessment of robustness
and uncertainty. The converse scenario can also occur - we could have a more which is so robust, despite
uninformative uncertainty, that is achieves superior performance at all retention percentages than a less
robust model with informative uncertainty estimates.

(a) MS Segmentation (b) Power Estimation

Figure 4: Example error retention curves for the two tasks of the Shifts 2.0 Dataset.

In addition to area under an error-retention curve, we also consider an F1-retention curve, which is broadly
similar, but uses the notion of ‘acceptable’ error to assess whether uncertainty estimates can be used to
detect ‘un-acceptable errors’. The metric is less susceptible to errors at the level of noise, but it is not always
possible to define what is an ’acceptable error’. Thus, this metric is only used to assess the power estimation
tasks, but not the segmentation task. For a detailed descriptions of the F1-retention curve, please see Malinin
et al. (2021).

The area under the error-retention curve and F1-retention curve is a summary statistic which describes pos-
sible operating points. We can specify a particular operating point, such as 95% retention, and evaluate the
error or F1 at that point for comparison. This is also an important figure, as all models work at a particular
operating point which satisfies task-specific desiderata.
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C LESION SEGMENTATION

The current appendix provides further details on the Medical data collected as well as more complete set of
baseline results.

C.1 DATASET DESCRIPTION

Canonical Dataset Construction Here, we detail additional experiments using a UNET model that were
run in order to select the canonical partitioning of the data. For both Tables 4 and 5, ensembles of size
5 were used. First, in Table 4, models are trained on data from each location and evaluated on all other
location to identify the greatest shifts. Three different approaches to choosing the classification threshold
were examined - in-domain on the corresponding dev set of the location, on the train and dev sets of the
different location (not used for training), and finally on the actual test-set of each location. These different
threshold tuning strategies allow us to examine the range of expected and upper bound performance on each
location.

Thresholding Train Rennes Bordeaux Lyon Ljubljana Best Lausanne

In-domain Dev

Rennes 50.51 72.95 54.81 35.78 47.05 40.63
Bordeaux 49.46 68.18 55.12 34.70 50.13 46.71
Lyon 58.73 69.75 66.68 42.51 54.84 52.00
Ljubljana 66.18 70.29 65.98 57.03 63.45 62.12
Best 59.03 71.28 63.93 46.95 63.27 55.74

Out-domain Train + Dev

Rennes 57.70 67.91 59.38 47.37 56.26 -
Bordeaux 50.90 71.80 56.96 34.70 50.13 -
Lyon 65.23 71.65 69.00 52.44 55.18 -
Ljubljana 66.91 70.00 66.67 59.03 60.85 -
Best 60.54 71.07 64.17 48.09 61.97 -

Out-domain Test

Rennes 65.11 73.13 60.19 47.40 57.71 54.26
Bordeaux 50.90 71.87 56.96 34.70 50.13 46.71
Lyon 65.79 72.50 69.01 52.44 57.29 60.13
Ljubljana 68.37 70.25 66.73 59.85 64.17 66.30
Best 61.19 71.35 64.17 48.58 64.43 58.34

Table 4: Cross-performance results using nDSC (↑) (%) for selected splits. Ensembles of 5 models are
always used. Threshold is searched in increments of 0.01. The following threshold were used respectively
for the in-domain dev threshold tuning: [0.8, 0.1, 0.47, 0.66, 0.50]. Here, R-AUC is calculated over all
voxels in each image.

We performed N-fold cross-validation in Table 5 to determine which location should be considered as the
shifted set as training on single locations may lead to unreliable conclusions due to the small size of the
training sets. Train 5 systems (each one an ensemble) using all training data apart from one site at a time.
Hyperparameters are tuned using all the dev sets apart from the site excluded. We evaluate this system
on all the data (train + dev + test) from the excluded site (out) and in-domain test sets too. From the
results, Ljubjana is an appropriate choice for the shifted development set as it faces the greatest degradation
compared to in-domain performance.

Data distributions Here, a more detailed characterisation of the datasets (Trn, Devin, Evlin, Devout and
Evlout) described in Section 3 is given. Distributions of total lesion volumes and number of lesions across
patients are shown in Figure 5. General characteristics of the datasets are given in Table 6. It can be seen that
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nDSC (%) (↑) R-AUC (%) (↓)
Excluded
Location

Model In Out Lausanne In Out Lausanne

Rennes Single 66.43±0.50 70.86±0.42 64.50±0.83 3.10±0.21 2.81±0.55 6.54±0.96

Ensemble 68.01 72.48 66.46 2.02 1.69 4.14

Bordeaux Single 65.66±0.74 72.14±1.10 63.21±1.26 3.09±0.19 2.48±0.36 6.61±0.58

Ensemble 66.33 72.73 63.25 1.87 1.33 4.05

Lyon Single 63.51±0.18 69.27±0.69 61.85±1.69 3.68±0.76 2.33±0.62 6.69±1.54

Ensemble 65.21 70.69 64.46 2.54 1.81 4.70

Single 67.59±0.63 49.33±1.52 55.70±1.04 2.77±0.98 7.84±2.21 9.87±1.40Ljubljana Ensemble 68.89 50.85 57.53 1.76 4.66 7.40

Best Single 65.87±1.62 57.37±0.79 61.78±2.21 2.65±0.48 3.05±0.69 5.70±1.22

Ensemble 66.68 58.38 61.93 1.54 1.69 3.15

Table 5: N-fold cross-validation with nDSC (↑) (%) as the performance metric. The threshold is selected
based on the (in-domain) development set. The following thresholds are used: [0.25, 0.55, 0.25, 0.35, 0.55].
Entropy is used as the uncertainty measure for single models and reverse mutual information for ensembles.

the difference in datasets comes not only from the location of the medical center or the scanner type, but also
from the the sizes of lesions. Out-of-domain datasets have more subjects with smaller lesions. Per patient
lesion counts, however, do not vary significantly across the datasets. Additionally, it was mentioned in the
main paper that the component datasets of our benchmark are based on ISBICarass et al. (2017b;a), MSSEG-
1 Commowick et al. (2018) and PubMRI Lesjak et al. (2017). Table 7 offers additional meta-information on
these source datasets with regard to age and gender ratio of the patient scans from each of these datasets.

Figure 5: Loglog plot of white matter lesions characteristics in terms of per patient total lesion volume (TLV)
and number of lesions for different datasets.

21



Under review as a conference paper at ICLR 2023

Parameters Trn Devin Evlin Devout Evlout

Total lesion count 1628 435 1738 3544 3826

MS stages RR, PP, SP∗ RR, SP, PR, CIS RR

Average across scans
TLV, mL

18.58±18.75 15.49±12.42 10.03±10.28 17.10±15.56 3.34±4.13

Table 6: Additional characteristics of the datasets, such as total amount of lesions in a dataset, MS stages
and average across scans total lesion volume (TLV) in milliliters. MS stages abbreviations: RR - relapsing
remitting, PP - primary progressive, SP - secondary progressive, CIS - clinically isolated syndrome.
∗Information about MS stages in MSSEG-1 was not found.

ISBI MSSEG-1 PubMRI

Age (years) 40.4±9.3 45.3±10.3 39 (median)
Gender ratio (M:F) 0.21 0.40 0.23
Inter-rater agreement (DSC) 0.63 0.71 0.78

Table 7: Age and gender meta-information for source datasets. Additionally, inter-rater agreement is re-
ported as DSC.

Format The data will be shared as a series of compressed .nii files, all the data within will be pre-processed,
interpolated to the 1mm iso-voxel space and skull-stripped for additional anonymisation. We will share both
the T1 weighted and FLAIR modalities.

C.2 PERFORMANCE METRICS

We now detail performance metrics used to assess lesion segmentation models.

C.2.1 NORMALIZED DICE SIMILARITY COEFFICIENT (NDSC)

Typically, the Dice Similarity Coefficient (DSC) is used as the performance metric between the ground-truth
Y and its corresponding prediction Ŷ :

DSC =
2|Y ∩ Ŷ |
|Y |+ |Ŷ |

=
2TP

FP + 2TP + FN
= 2

precision ∗ recall
precision + recall

The reported score is usually the DSC averaged across all patient scans. However, DSC is biased to yield
greater values for patients that have a greater lesion load i.e. a greater probability of the event occurring,
where the event here is described as identifying a voxel as a lesion. To de-correlated DSC with lesion-load
and obtain an unbiased metric of permormance, we consider a normalised DSC (nDSC). The following steps
explain and justify how and why we calculate the proposed nDSC:

1. The probability of a successful event (identifying a lesion) influences the DSC score as the precision
at 100% recall varies across the patients (the precision at 100% recall is simply the percentage of
lesion voxels for the patient - i.e. the lesion load).

2. The DSC score is calculated as a geometric ratio of the precision, Prτ , and recall, Reτ values at
a selected threshold, τ (ML models typically have a probabilistic prediction for each voxel which
must be compared against a threshold to classify as either a positive class or a negative class).
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3. Here, the recall is held fixed and the precision for each patient is adjusted (Prτ → Prτ ) by a different
amount such that the cross-patient performance can be fairly evaluated.

4. The new value of the precision is determined by the scaling applied to the FP (false positives) which
is scaled by a factor, kp that is different for each patient, p.

5. kp for each patient is determined by using the 100% recall rate point as this point is not influenced
by model performance.

6. Hence, kp for patient p is the factor the FP at 100% recall must be scaled by in order to ensure the
precision achieved is a chosen reference value, r. Derivation of deducing kp is given. The subscript
100% denotes operating at 100% recall.

Pr100% =
TP100%

TP100% + FP100%
, r = Pr100% =

TP100%

TP100% + kpFP100%
, kp =

(1− r)TP100%

rFP100%

7. Here, r is selected as 0.1% because this is approximately the average precision across the patients
at 100% recall (i.e. the average fraction of lesion voxels).

8. The recall is not influenced by scaling the FP by kp.
9. The precision is directly affected as the new precision at our selected operating point (threshold to

form the segmentation mask), τ∗, is given by:

Prτ∗ =
TPτ∗

TPτ∗ + kpFPτ∗

Recall, kp is given in step 6.

10. Thus, nDSC is calculated as the geometric mean of Prτ∗ and Reτ∗ for each patient.

The averaged nDSC is used as the predictive performance metric.

(a) DSC (b) nDSC

Figure 6: Empirical relationship of each metric with lesion load on Evlin using UNET ensemble.

We empirically demonstrate that the nDSC metric is less dependent on the lesion load compared to DSC
via Figure 6 and table8. Recall, lesion load is defined as the fraction of voxels that are lesion voxels for a
given subject. Figure 6 plots the performance in terms of both DSC and nDSC against the lesion load for
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each subject for Evlin. It is clear that DSC is dependent on the lesion load while nDSC decorrelates this
relationship by flat line average. Table 8 presents the transition table between DSC and nDSC as well as
providing the Spearman’s rank correlation coefficients between either DSC or nDSC with the lesion load.
Notably, the nDSC metric is less correlated with the lesion load than DSC for each of the splits.

Split Performance Correlation
DSC nDSC DSC nDSC

dev-in 71.71 68.54 0.63 -0.09
dev-out 49.85 49.33 0.57 0.46
eval-in 63.16 67.59 0.44 -0.10
eval-out 48.48 55.79 0.40 0.18

Table 8: Performance and Pearson’s rank correlation coefficients between metric and the lesion load for the
canonical white matter lesion segmentation splits using the baseline UNET model ensemble.

C.2.2 LESION-SCALE F1 SCORE

For MS lesion segmentation task it is important to assess not only the overall voxel-level segmentation
quality, but also the lesion detection quality. Therefore, in addition to the nDSC we calculate the lesion-
scale F1 score.

A general formula for computation of the F1-score:

F1 =
TP

TP + 0.5(FP + FN)
(1)

can be adapted for the assessment of lesions detection quality given a proper definition of true positive, false
positive and false negative lesions.

We use the intersection over union (IoU) between lesions on a ground truth map and connected components
on a corresponding prediction map to derive these definitions. In particular, the following condition were
used:

TP: If the maximum IoU between a connected component on the prediction map with lesions on the
ground truth is greater than 0.5.

FP: If the maximum IoU between a connected component on the prediction map with lesions on the
ground truth is less than 0.5.

FN: If the maximum IoU between a lesion on the ground truth map with connected components on the
prediction map is less than 0.5.

C.3 ADDITIONAL RESULTS

For completeness, Monte Carlo dropout Gal & Ghahramani (2016) based ensembles are considered here too
using the UNET architecture. The baseline single models considered here have no dropout (as this gives best
performance on Dev-in) and the deep ensembles are built using these single models. The deep ensemble is
formed by averaging the output probabilities from 5 distinct single models. A separate set of 5 models are
trained with 50% dropout in each model in order to be able to perform Monte Carlo Dropout (MCDP) as an
additional comparison. The single models here have dropout usually turned off at inference time. For MCDP,
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a single model is taken and dropout is turned on at inference time with an ensemble formed from 5 separate
runs of the model (as the dropout introduces stochasticity). The process is repeated for each of the single
models with dropout to get averaged results. As each single model yields a per-voxel probabilistic prediction,
ensemble-based uncertainty measuresMalinin (2019); Malinin & Gales (2021) are available for uncertainty
quantification. Our ensembled models (Deep Ensemble and MCDP) use reverse mutual information Malinin
& Gales (2021) as the choice of uncertainty measure. Single models use the entropy of the discrete binary
probability distribution at each voxel to capture the uncertainties. All results reported for single models are
the mean of the individual model performances with one standard deviation indicated.

Tables 9 and 10 present the performance ability of various baseline models. Table 9 focuses on the ability of
the models to identify the exact delineations of lesions through nDSC (voxel-scale) while Table 10 compares
the lesion detection ability of the models with F1 (lesion-scale). Comparing the in-domain performance
against the out-of-domain performance, it is clear that the shift in the location naturally leads to severe
degradation in performance at both the voxel-scale and the lesion-scale with drops exceeding 10% nDSC
and F1. Comparing the deep ensembles against the single models, it is clear that ensembling such models
boosts performance by about 1% nDSC and 1% F1 for each of the test sets. In particular, the transformer
based architecture, UNETR, is able to outperform the fully convolutional architecture, UNET, for both the
single and ensembled performance in terms of delineation and lesion detection of about 2% nDSC and 5%
F1 respectively across the various splits. Introducing dropout in the models at training time costs the single
model in performance at both voxel and lesion-scales with greater degradation observed in the in-domain
splits. Consequently, the detrimental effect of dropout at training time seriously harms the performance of
the MCDP systems that keep the dropout on at training time.

Arch DP Model nDSC (%) (↑)
Devin Devout Evlin Evlout

UNET
0.0 Single 68.54±0.68 49.33±1.52 67.59±0.63 55.79±1.04

Deep Ensemble 69.70 50.85 68.89 57.53

0.5 Single 59.73±1.17 48.35±1.73 63.93±0.45 54.43±1.41

MCDP 60.65±0.91 44.70±1.35 61.78±0.90 50.06±1.67

UNETR 0.0 Single 71.21±0.96 51.60±1.66 69.27±0.94 56.76±2.63

Deep Ensemble 72.51 53.46 71.41 59.49

Table 9: Lesion segmentation: Performance at voxel-level with nDSC with 1 standard deviation quoted for
single results.

Arch DP Model F1 (%) (↑)
Devin Devout Evlin Evlout

UNET
0.0 Single 25.02±2.51 8.17±0.73 25.46±1.51 14.79±0.71

Deep Ensemble 28.07 9.04 27.74 16.74

0.5 Single 14.42±0.43 6.75±0.70 18.66±0.51 11.85±0.47

MCDP 12.61±0.89 4.59±0.78 17.31±0.95 10.70±0.58

UNETR 0.0 Single 33.60±1.36 15.03±1.16 33.85±0.43 17.19±1.22

Deep Ensemble 35.22 15.80 35.61 18.90

Table 10: Lesion segmentation: Performance at lesion-level with F1 with 1 standard deviation quoted for
single results.
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C.4 UNCERTAINTY ESTIMATION

Table 11 explores the joint robustness and uncertainty quantification performance using the R-AUC metric.
Here, the deep ensemble of the UNETR outperforms all other systems, achieving R-AUC scores as low
as 0.63 on Evlin and 2.88 on Evlout. It is interesting to note that despite performing worse at voxel-scale
identification of lesions, the MCDP system does better than its equivalent single system when jointly as-
sessing uncertainty and robustness. Therefore, it is clear that the quality of the uncertainty measures in the
ensembled-based models (including both the deep ensemble and MCDP) allows the development of richer
uncertainty quantification measures compared to single models. Figure 7 presents the corresponding reten-
tion curves (averaged across all the patients with one example model chosen for the single systems) using
the deep ensembled UNET on the Evlin, Devout and Evlout splits. All systems substantially outperform a
randomized ordering as a large volume of the input brain image is non white-matter tissue, for which the
system is correctly certain that there are no white matter lesion voxels present in those regions. Particularly,
the retention curve for the Evlin appears to be very close to ideal which demonstrates the high quality of its
voxel-scale uncertainties at identifying regions where the model is not confident in its prediction.

Arch DP Model R-AUC (%) (↓)
Devin Devout Evlin Evlout

UNET
0.0 Single 2.51±0.59 7.84±2.21 2.77±0.98 9.87±1.40

Deep Ensemble 1.17 4.66 1.76 7.40

0.5 Single 2.62±0.56 8.76±1.08 2.66±0.56 9.71±1.53

MCDP 1.92±0.26 6.77±0.79 2.52±0.41 7.89±1.04

UNETR 0.0 Single 1.89±0.84 6.17±1.99 1.95±0.70 6.47±2.08

Deep Ensemble 0.34 1.52 0.63 2.88

Table 11: Lesion segmentation: Joint robustness and uncertainty assessment (using reverse mutual informa-
tion for ensembled models and entropy for single models) at voxel-level with R-AUC. 1 standard deviation
is quoted for single results.

Figure 8 gives an idea about the spatial distribution of uncertainty. In particular, it can be seen that higher
uncertainty regions are located around predicted lesions, therefore should be related to the quality of delin-
eation. False negative lesions, however, can also have higher uncertainties in comparison to the background.
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Figure 7: nDSC retention curves using the ensembled UNET on various canonincal splits.

C.5 SUB-POPULATION ANALYSIS

In this section we provide a sub-population analysis of the data. We examine the gender, age and lesion load
distributions across the different splits, and how each of these properties interacts with model performance.
As figure 9 shows, in all the datasets, there are roughly four times as many female patients as male patients.
This overall is indicative of the higher incidence of MS in women than in men. Female patients, on average,
are 2-6 years older than male patients in all datasets, except evalout, where the female patients are on average
younger. Patients in the shifted datasets are on average younger. Patients from Lausanne (evalout) have a far
lower lesion load, as they are in an earlier stage of MS. There are no clear gender and age related correlations
with lesion load.

TRN DEV’in + EVL’in DEVout EVLout

M F M F M F M F

mean 43.12 45.13 41.14 47.59 33.0 39.21 37.55 33.96
median 40.5 44.0 36.0 47.0 31.0 39.0 35.0 35.0
max 54.0 66.0 59.0 61.0 43.0 60.0 62.0 48.0
min 35.0 24.0 33.0 29.0 25.0 26.0 20.0 21.0

Table 12: Age Breakdown by Gender across datasets. Trn, Devin and Evalin statistics do not feature data
from ISBI (Best), as per-patient metadata is not available.

We have provided a performance break-down by gender for each datasets, as well as performance breakdown
by age and lesion load, for both UNet and UNEtr models in figures 10 and 11, respectively. The results show
that there are no clear gender-based differences in model performance. Similarly, there is no clear correlation
between model performance and age. There is a minor correlation (0.46-0.47) between model performance
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Figure 8: Examples on one subject of a FLAIR image with a ground truth (FLAIR + GT) and predicted
(FLAIR + PRED) WML maps overlays and an uncertainty map (UNCS MAP). For each of the 3D maps
single horizontal, sagittal and coronal slices are displayed. Predictions were obtained using an ensemble
of 5 UNET models. Uncertainty map was computed as reversed mutual information from the probabilistic
voxel-wise predictions of models in ensemble. Color bar corresponds to the uncertainty map, where outlying
values above 0.121 are displayed in white. All images were displayed using ITK-SNAP software Yushkevich
et al. (2006).
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Figure 9: Sub-Population Statistics. Trn, Devin and Evalin statistics do not feature data from ISBI (Best),
as per-patient metadata is not available.

TRN DEV’in + EVL’in DEVout EVLout

M F M F M F M F

mean 0.134 0.197 0.154 0.099 0.187 0.192 0.031 0.024
median 0.109 0.047 0.154 0.070 0.151 0.161 0.021 0.013
max 0.330 0.670 0.290 0.392 0.452 0.589 0.138 0.200
min 0.010 0.003 0.007 0.001 0.014 0.004 0.002 0.001

Table 13: Lesion Load by Gender across datasets. Trn, Devin and Evalin statistics do not feature data from
ISBI (Best), as per-patient metadata is not available.

and lesion load on datasets featuring low lesion load. This is, however, expected, as it shows the intrinsic
difficulty of the task. Very small, hard-to-detect lesions are harder to segment accurately. Tables 14 and 15
show the mean, median, minimum, and maximum per-patient nDSC for male and female patients across all
datasets. The results on in-domain data show that the performance on male and female patients is similar.
Out of domain, performance on female patients is a little lower on average. However, it is important to
highlight that these results and statistics are collected based on a small sample size and are therefore noisy.
Furthermore, there are 4 times as few male patients than female patients, so statistics on male patients are
noisier. Thus, we would be hesitant to make any strong statements regarding sub-population performance
bias on our models.

TRN DEV’in + EVL’in DEVout EVLout

M F M F M F M F

mean 73.92 75.85 68.51 70.72 56.59 46.35 58.98 55.45
median 75.85 75.89 69.79 73.84 54.36 47.05 62.37 58.76
max 83.89 93.57 76.55 92.21 74.44 68.5 76.22 87.21
min 61.55 64.64 57.91 49.11 41.24 0.0 19.26 0.0

Table 14: UNet Performance (% nDSC) by gender across Datasets
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Figure 10: Sub-Population Statistics.

Figure 11: Sub-Population Statistics.
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TRN DEV’in + EVL’in DEVout EVLout

M F M F M F M F

mean 78.21 81.55 68.51 70.72 63.92 50.16 60.89 58.67
median 77.14 82.02 69.79 73.84 66.45 55.97 63.88 62.72
max 87.75 94.39 76.55 92.21 79.95 79.93 85.44 85.08
min 67.81 68.2 57.91 49.11 49.03 0.0 24.66 0.0

Table 15: UNetR Performance (% nDSC) by gender across Datasets

D SHIP POWER CONSUMPTION

D.1 DATASET DESCRIPTION

Collection Process Data is collected from a real vessel as it experiences various weather, loading and
operational conditions. The sampling frequency is 1 min, and achieved by either interfacing directly with
the vessels sensors or through already existing onboard signal aggregation systems like the Electronic Chart
Display and Information System (ECDIS) or the vessels Alarm Monitoring System (AMS). The interfacing
in either case is performed by dedicated IoT edge devices that gather all relevant data and transmit them via
satellite link.

Preprocessing, Cleaning and Labeling The available features are recorded by on-board sensors and the
global positioning system (GPS) is being used to complement the acquired data with weather data from
a global weather provider. The data is preprocessed to remove extreme outliers and stationary states, for
example when a vessel is at port, by applying feature filters. Furthermore, we create a second dataset, the
synthetic dataset, by combining the real samples with synthetic power labels generated by our synthetic
model (detailed below).

Partitioning into train, development, and evaluation sets We create a canonical partitioning of power
estimation dataset so that it contains both in-domain and shifted components. In order to define the distribu-
tional shifts, the data split along two dimensions: time and true wind speed, as shown in Figure 1, using the
wind speed intervals from Table 16.

The time dimension is intended to capture the non-stationary effects of fouling (no cleaning events occur
during the time period under study), whereas the wind speed dimension is intended to capture weather
effects (by acting as a proxy since wind is correlated with wind-waves) and to better expose the model’s
performance in bad or uncertain weather. Partitioning the datasets in more dimensions would have added
complexity without adding any practical benefits because the most important uncertainty factors (weather
and fouling) are already represented.

Given these shifts, three main subsets are created:

• Train set: It covers the time range of 39.4 months starting after a dry docking cleaning event and
includes data with true wind speed up to 19 kn.

• Development set: It consists of an in-domain partition dev_in and an out-of-domain partition
dev_out, with equal representatives. Dev_in is sampled from the same partitions as the train set
while dev_out includes more recent records (time period of 6.6 months) that correspond to wind
speeds in the range [19, 26) kn.

• Evaluation set: Evaluation set, like development set, have an in-domain eval_in and an out-of-
domain split eval_out with equal populations.Eval_in is sampled from the same subsets as the train
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set. Eval_out is the most shifted partition from the in-domain distribution, containing the most
recent records spanning an 18 months period and the most severe wind conditions seen in the
whole dataset, corresponding to wind speeds ranging between [19, 40] kn.

The number of records of the proposed partitions (rows) along with the respective populations in each 2D
segmentation (columns with prefix group) of the synthetic and real datasets are reported in Tables 17 and 18
respectively.

Wind interval Range (kn) Range in Beaufort

1 [0, 9) Up to 3
2 [9, 14) 3-4
3 [14, 19) 4-5
4 ≥ 19 ≥ 5

Table 16: Wind intervals considered for data partitioning. Beaufort ranges are defined approximately.

Data pct (%) total Group 1 Group 2 Group 3 Group 4

train 80.3 523190 231626 118698 172866 0
dev_in - 18108 8017 4108 5983 0
dev_out - 18108 0 0 0 18108
dev 5.6 36216 8017 4108 5983 18108
eval_in - 46021 20355 10448 15218 0
eval_out - 46021 0 0 0 46021
eval 14.1 92042 20355 10448 15218 46021

Table 17: Number of records in the canonical partitioning of the synthetic dataset. The color notation is the
same as in Figure 1 and indicates the data segments from which the partitions are sampled.

Data pct (%) total Group 1 Group 2 Group 3 Group 4

train 80.2 530706 236401 119084 175221 0
dev_in - 18368 8182 4122 6064 0
dev_out - 18368 0 0 0 18368
dev 5.6 36736 8182 4122 6064 18368
eval_in - 47227 21037 10597 15593 0
eval_out - 47227 0 0 0 47227
eval 14.3 94454 21037 10597 15593 47227

Table 18: Number of records in the canonical partitioning of the real dataset. The color notation is the same
as in Figure 1 and indicates the data segments from which the partitions are sampled.

Data analysis The violin plots of the features for the canonical partitions for the synthetic dataset (Figure
12) and the real dataset (Figure 13), demonstrate the comparability of the in-domain subsets and the distri-
butional changes that are seen in the out-of-domain partitions, particularly for the target and wind related
features.

Synthetic Data Generation For the synthetic dataset, real and sampled features are combined with power
labels predicted a synthetic, physics-based model. The synthetic model Tsompopoulou et al. (2022) is a
generative function (fsynthetic) which takes as input a time-series of features (i.e. signals), as recorded from
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Figure 12: Violin plots for the canonical partitions of the synthetic dataset after the noise injection (scaled
to have the same width for better visualization).

Figure 13: Violin plots for the canonical partitions of the real dataset (scaled to have the same width for
better visualization).
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a real vessel, and calculates the power consumed by the vessels hull. This function finds the propeller coop-
eration point after calculating all the components of resistance (bare hull, appendages, wind, waves, fouling
drag) for given speed, draft and trim. More specifically, for the generation of synthetic data, a non-linear
solver script was created to find the operating point of a given propeller and hull resistance for each desired
condition, as described by Bose Bose (2008). The propeller curves (KT, KQ) can either be user defined or
use the B-Series Van Lammeren et al. (1969). For the resistance part, the calculation of each component can
be described as follows: having the full hydrostatics table of the vessel for the whole range of drafts and
trims, along with a series of geometric characteristics (bulb shape and size, transom, appendages etc), calm
water resistance is calculated by employing the Holtrop method Holtrop & Mennen (1982) for slender ships
(i.e. containers, RoRo, gas carriers) and Modified Holtrop Nikolopoulos & Boulougouris (2019) is used
for bulkier ships like large Tankers and Bulk carriers. Following the ISO 15016 ISO (2015), the weather
added resistance is found by calculating the wind effect by using the regressions of Fujiwara Fujiwara et al.
(2006), while the wave effects are modelled according to STAwave1 and STAwave2 as also introduced by
Tsujimoto Tsujimoto et al. (2008). Hull interaction factors are calculated depending on ship type, using
empirical formulas, a summary of which can be found in Carlton Carlton (2018). Scale effect corrections,
cavitation criteria and corrections were also taken from Carlton Carlton (2018) and Bertram Bertram (2012)
. The effect of wake affecting energy saving devices can be modelled by adjusting the interaction factors.
Fine-tuning of the method to fit a specific vessel (when there is not enough hydrostatic data, or discrepancies
are observed), can be done by using sea trial data and/or detailed factors when available from a towing tank
report, or actual measurements of well known conditions. Last but not least, the effect of fouling is modelled
as the result of its manifestations (drag, propeller and interaction). The change in drag coefficient is mod-
elled after Townsin Townsin et al. (1981), the effect of fouling on the propeller performance is modelled as
in Seo Seo et al. (2016) (increase in torque coefficient), as also described in Carlton Carlton (2018) and the
change of interaction factors are modelled after Farkas Farkas et al. (2020). All the aforementioned models
produce the effect of fouling on each component over time, which is measured from each drydock / cleaning
event. While this allows for a sophisticated modelling of the interaction of features and power used, it still
nevertheless a model which is simpler than reality and has fewer factors of variation.

One of the key goals of this research is to look into the quality of uncertainty estimation both within and
outside of domain areas. Working with a synthetic dataset allows for the insertion of well-controlled noise
patterns, which should be reflected in the model’s heteroscedastic predictive uncertainty Malinin (2019).
To make the synthetic set realistic for this task, we apply two types of Gaussian noise with non-constant
variance (heteroscedasticity) to the synthetic target yi:

• heteroscedastic Gaussian noise correlated with power, εpower,i = N(0, a · yi). This type of noise
simulates the scenario of linear deterioration of the torque meter accuracy as power increases,

• heteroscedastic Gaussian noise correlated with true wind speed, εwind,i = N(0, b · wi). Synthetic
data is partitioned based on true wind speed, therefore adding the noise wind with variance lin-
early increasing with wind speed, simulates an increasing data uncertainty as we move from the
in-domain partitions to out-of-domain ones. The goal of this approach is to capture the empirical
observation that the most severe wind conditions encountered in the dataset are the most uncertain.

Here, i = 1, · · · ,M stands for the i-th record, w is the true wind speed, a = 0.025 (at power 40 MW the
standard deviation of heteroscedastic power noise is 1MW) and b = 25 (at wind speed 40 kn the standard
deviation of heteroscedastic wind noise is 1MW). The synthetic power with noise is defined as:

y′i = yi + εpower,i + εwind,i

Furthermore, to emulate the effect of signal intrinsic noise coming from the data gathering process, we add
Gaussian white noise N(0,σ) to the training features (sensor noise, weather hindcast errors, transmission
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Feature σ

draft_aft_telegram 0.15 m
draft_fore_telegram 0.15 m

stw 0.25 kn
diff_speed_overground 0.25 kn/3min
awind_speed_provider 0.5 kn

rcurrent_vcomp 0.05 kn
rcurrent_ucomp 0.05 kn

comb_wind_swell_wave_height 0.1 m

Table 19: Standard deviation of the added Gaussian noise per input feature.

errors to name a few sources of inherent data variability). The standard deviation per feature (Table 19) is
determined using the average expected noise magnitude of these signals. The effect of the injected noise
on the data variance is illustrated in Figure 14 via the correlation plots of the noisy data with the respective
original signal per feature.

Figure 14: Correlation plots illustrating the effect of injected noise per feature.

Generalization set In order to further evaluate the generalization capability of models under research in
out-of-domain regions, we introduce for the first time, the notion of a generalization set as an augmented
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synthetic dataset (about 2.5 million records) by applying independently uniform sampling on input features
from a predefined range of values shown in Table 20. The idea of sampling from the convex hull of the full
range of possible conditions (operational and weather) is a necessary condition to assure that the measure
of performance is robust. For each sample point, power labels are generated by the synthetic model which
by design can cover the complete feature space. The idea is depicted in Figures 1a and 1b. Independently
uniform sampling of features enables the creation of new records with feature vectors not regularly or even
not physically possible to be met. For instance, in regular vessel operation, there is a low probability for
a vessel to have high speed in extreme weather conditions. Beyond navigational preferences, confounding
features such as apparent winds and waves is another source of spurious correlations in the dataset that could
lead to a biased model.

In cases where the downstream task is implemented by a combinatorial optimization algorithm (e.g weather
routing) while the model produces the cost function, it is critical that the model is unbiased across the
board, even under unlikely conditions. Because the optimization algorithm actively searches the space of
all feasible states, it may select a poorly modeled one as optimal and drive the entire solution in an entirely
wrong direction.

Having a biased dataset apart from training unreliable models also prevents from detecting such model as
performance metrics also affected from the same biases. As the test set is practically following the same (bi-
ased) distribution with the rest of the dataset, a model could show good performance while in reality would
fail to generalize or even worse to properly disentagle all the causal factors received as input. Uniform sam-
pling assures that all possible conditions are equally represented practically eliminating spurious correlation
between input features. Also allows for measuring performance consistently even with the classic metrics
(e.g mse, mae etc.) by providing an unbiased estimate of the performance of a model across the board.

The generalization set has two important characteristics making it suitable for model evaluation:

1. There are no correlations between the input features (both causal and spurious correlations).

2. The generalization set is suitable for evaluating model performance both in and out of domain,
covering a wide range of operational conditions.

Feature Range

speed over ground [5, 23] kn
draft aft [8, 15] m

draft fore [8, 15] m
true wind speed [0, 40] kn

relative wind angle [0, 360] degrees
current speed [0, 2] kn

relative current angle [0, 360] degrees
waves [0, 6] m

Table 20: Range of values of the input features used to create the generalization set by uniform sampling.

Format The data will be shared as several comma-separate value (CSV) files.
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D.2 DESCRIPTION OF FEATURES AND TARGETS

Feature name Units Description Source

draft_aft_telegram m Draft at stern as reported by crew
in daily reports Telegrams

draft_fore_telegram m Draft at bow as reported by crew
in daily reports Telegrams

stw kn
Speed through water (i.e. relative
to any currents) of the vessel as
measured by speed log

Onboard sensor

diff_speed_overground kn/3min Acceleration of the vessel relative
to ground GPS

awind_vcomp_provider kn
Apparent wind speed component
relative to the vessel along its di-
rection of motion

Weather provider

awind_ucomp_provider kn
Apparent wind speed component
relative to vessel perpendicular to
its direction

Weather provider

rcurrent_vcomp kn
Component of currents relative to
the vessel along its direction of
motion

Weather provider

rcurrent_ucomp kn
Component of currents relative to
vessel perpendicular to its direc-
tion

Weather provider

comb_wind_swell_wave_height m Combined wave height due to
wind and sea swell Weather provider

timeSinceDryDock minutes Time since the last dry dock
cleaning of the vessel Calculated

time_id −
Run number representing time. It
may be used as an index of the
records

Calculated

Table 21: Description of the input features.

Feature name Units Description Source

power kW Propeller shaft power as measured by torquemeter Onboard sensor
power_synth kW Synthetic power generated by the synthetic model Estimated

Table 22: Description of the targets.

D.3 TRAINING DETAILS

To evaluate the proposed dataset partitioning through the prism of uncertainty, we use the following methods
in the form of an ensemble, that are able to capture both epistemic and aleatoric uncertainty:

• Deep ensemble of 10 variational inference neural networks (Deep Ensemble VI)
• Deep ensemble of 10 Monte-Carlo (MC) dropout (Gal & Ghahramani, 2016) neural networks (Deep

Ensemble MC dropout)
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• Ensemble of 10 deep neural networks (Ensemble DNN)

• A proprietary domain-constrained model is also introduced in the form of an ensemble of 10 dense
neural-symbolic networks Tsamoura et al. (2021) incorporating specific domain knowledge priors
derived from the physics of the problem (Ensemble Symbolic). Domain specific knowledge is
encoded via known relationships between input and output features, for example the cubic relation-
ship between speed and power. Such physics priors are integrated with the rest of the network in
a neural-symbolic fashion and as a result the model is still trained end-to-end like a normal deep
regression model.

Each model outputs two parameters, the predicted mean and the predicted standard deviation of the con-
ditional Normal distribution of the target (power) given the input. The variance of the predicted means
across the members of the ensemble corresponds to the epistemic uncertainty and the mean of the predicted
variances across the members is the measure of aleatoric uncertainty of the ensemble Malinin et al. (2021)).

For all the methods except for the proprietary model (i.e Ensemble Symbolic) we use the same architecture: 2
hidden layers with 50 and 20 nodes and softplus activation function. The output layer has 2 nodes and a linear
activation function. To satisfy the constraint of positive standard deviation the second output is fed through
a softplus function and a constant 10−6 is added for numerical stability as proposed by Lakshminarayanan
et al. (2017). For the VI method we use Bayesian inference layers with Gaussian priors. They implement the
Flipout estimator Wen et al. (2018) which performs a Monte Carlo approximation of the distribution. During
inference for both the Deep Ensemble VI and Deep Ensemble MC dropout we sample 10 times each member
of the ensemble (100 samples in total) to estimate the epistemic uncertainty. For the Ensemble DNN and
Ensemble Symbolic model we use only the members of the ensemble to estimate the epistemic uncertainty.

Furthermore, we consider the single model version of the DNN and Symbolic methods. Both versions
they only capture aleatoric uncertainty. For the VI and MC dropout methods we also consider a simpler
version of them by using a single seed model that is sampled 10 times during inference to capture the
epistemic uncertainty.They referred as VI Ensemble (instead of Deep Ensemble) and MC dropout Ensemble
respectively.

For optimization, we use the negative log likelihood loss function and the Adam optimizer with a learning
rate of 10−4. The number of epochs is defined by early stopping, monitoring the mean absolute error (MAE)
of the dev_in set. The models are implemented in Tensorflow 2.

D.4 ADDITIONAL RESULTS

Synthetic dataset The performance metrics for the canonical partitions of the synthetic dataset and gen-
eralization set are presented in Tables 23 and 24. A single model metric mean ± σ is computed across the
individual metric scores of all members.

For the dev and eval sets, Ensemble DNN has the best predictive performance (Table 23). Model ranking
changes remarkably when considering the generalization set, with the Ensemble Symbolic having the best
performance scores, showing percentage difference 18.5% in terms of RMSE from the second best model
that is the Ensemble DNN. Taking into account that the performance scores on the generalization set cover
the whole feature space and are unbiased by construction of the set (i.e uniform sampling eliminates oper-
ational preferences and/or spurious correlations among features), the Ensemble Symbolic is expected to be
the best candidate model deployed on unseen data, in terms of robustness. Another important observation
is that the percentage differences of the scores between the models are significantly higher at the generaliza-
tion set. This demonstrates that the generalization set can be an useful tool for model research and selection
because it amplifies potentially insignificant variations in model performance when tested in a conventional
dataset split.
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Regarding the metrics that jointly assess robustness and predictive uncertainty (Table 24) it is observed that
Ensemble DNN has the best scores in the generalization set. Ensemble DNN is not the best model in terms of
robustness (Table 23) and the fact that it takes the first place based on the retention metrics is an indication of
considerable improvement of the quality of the uncertainty estimations (i.e better calibration of the predictive
uncertainty with the error) in comparison to the Ensemble Symbolic. Same as before it is found that for the
generalization set, the model ranking is well defined as there is a clear distinction of the scores across the
models. This is not the case though for dev and eval sets, at which the top-2 models (Ensemble DNN and
Ensemble VI) appear to have similar performance.

Dataset Method Model RMSE (kW) MAE (kW) MAPE (%)

Dev

In Out Full Gen In Out Full Gen In Out Full Gen

MC dropout Deep ensemble 1082 1064 1073 1498 825 834 830 1000 6.16 7.63 6.91 23.00
VI Deep ensemble 1081 1068 1075 1446 823 838 830 975 6.38 7.70 7.04 23.19
DNN Ensemble 1088 1062 1075 1427 827 832 830 953 6.24 7.49 6.87 21.21
Symbolic Ensemble 1132 1126 1129 1204 851 864 858 873 7.32 8.94 8.13 27.33
MC dropout Ensemble 1091±3 1074±4 1082±3 1526±84 832±2 842±3 837±3 1023±35 6.35±0.20 7.69±0.09 7.03±0.13 24.54±1.04

VI Ensemble 1085±4 1074±6 1079±4 1458±38 825±3 842±5 833±2 985±22 6.42±0.18 7.75±0.07 7.08±0.12 23.72±1.26

DNN Single 1096±7 1081±10 1089±8 1487±52 834±5 846±6 840±6 1008±29 6.34±0.26 7.67±0.10 7.01±0.15 23.66±1.62

Symbolic Single 1134±2 1129±5 1132±3 1213±27 853±1 866±4 860±2 879±19 7.33±0.05 8.96±0.06 8.15±0.05 27.54±1.73

Eval

MC dropout Deep ensemble 1069 1111 1090 1498 814 859 837 1000 6.26 6.95 6.59 23.00
VI Deep ensemble 1069 1104 1086 1446 813 854 834 975 6.24 6.92 6.58 23.19
DNN Ensemble 1076 1099 1087 1427 818 851 834 953 6.13 6.91 6.52 21.21
Symbolic Ensemble 1117 1133 1125 1204 841 866 854 873 7.25 7.29 7.27 27.33
MC dropout Ensemble 1078±4 1122±6 1100±5 1526±84 822±3 868±5 845±4 1023±35 6.34±0.08 7.05±0.08 6.70±0.07 24.54±1.04

VI Ensemble 1072±3 1109±6 1090±4 1458±38 815±2 858±4 837±3 985±22 6.28±0.13 6.96±0.06 6.62±0.09 23.72±1.26

DNN Single 1084±6 1116±18 1100±12 1487±52 825±5 864±14 844±10 1008±29 6.24±0.13 7.04±0.17 6.64±0.14 23.66±1.62

Symbolic Single 1120±2 1137±5 1128±3 1213±27 843±1 869±4 856±2 879±19 7.26±0.04 7.30±0.03 7.28±0.03 27.54±1.73

Table 23: Predictive performance for the canonical partitions of the synthetic dataset and the generalization
set. One standard deviation is quoted for the single seed results.

Dataset Method Model R-AUC ∗105 F1-AUC F1@95%

Dev

In Out Full Gen In Out Full Gen In Out Full Gen

MC dropout Deep ensemble 4.17 4.66 4.40 4.97 0.479 0.427 0.454 0.477 0.576 0.545 0.561 0.576
VI Deep ensemble 4.03 4.54 4.26 4.32 0.491 0.433 0.465 0.506 0.579 0.544 0.563 0.582
DNN Ensemble 4.08 4.50 4.26 4.20 0.492 0.433 0.465 0.509 0.581 0.549 0.565 0.595
Symbolic Ensemble 4.90 5.49 5.17 4.41 0.475 0.423 0.452 0.494 0.571 0.539 0.555 0.596
MC dropout Ensemble 4.23±0.05 4.70±0.04 4.45±0.04 5.39±0.45 0.485±0.002 0.428±0.002 0.459±0.001 0.481±0.013 0.573±0.002 0.541±0.003 0.557±0.003 0.560±0.012

VI Ensemble 4.05±0.02 4.58±0.04 4.29±0.02 4.53±0.31 0.490±0.001 0.432±0.001 0.464±0.002 0.499±0.011 0.578±0.001 0.544±0.002 0.562±0.001 0.578±0.012

DNN Single 4.16±0.06 4.68±0.08 4.41±0.07 5.27±0.63 0.488±0.003 0.430±0.002 0.461±0.003 0.471±0.019 0.576±0.003 0.544±0.002 0.560±0.003 0.568±0.012

Symbolic Single 4.92±0.03 5.52±0.06 5.20±0.04 4.55±0.26 0.475±0.001 0.423±0.001 0.452±0.001 0.490±0.003 0.570±0.001 0.538±0.001 0.554±0.001 0.594±0.006

Eval

MC dropout Deep ensemble 4.11 4.80 4.47 4.97 0.487 0.432 0.459 0.477 0.587 0.548 0.568 0.576
VI Deep ensemble 3.97 4.59 4.29 4.32 0.497 0.441 0.470 0.506 0.589 0.549 0.570 0.582
DNN Ensemble 4.02 4.60 4.32 4.20 0.497 0.439 0.469 0.509 0.588 0.549 0.569 0.595
Symbolic Ensemble 4.82 5.42 5.09 4.41 0.484 0.426 0.458 0.494 0.579 0.548 0.564 0.596
MC dropout Ensemble 4.17±0.05 4.87±0.06 4.54±0.06 5.39±0.45 0.491±0.001 0.435±0.001 0.463±0.001 0.481±0.013 0.582±0.002 0.542±0.003 0.561±0.003 0.560±0.012

VI Ensemble 4.00±0.02 4.64±0.06 4.33±0.04 4.53±0.31 0.496±0.002 0.440±0.002 0.470±0.002 0.499±0.011 0.588±0.002 0.546±0.002 0.568±0.002 0.578±0.012

DNN Single 4.09±0.05 4.84±0.19 4.49±0.14 5.27±0.63 0.493±0.004 0.433±0.005 0.464±0.005 0.471±0.019 0.584±0.004 0.543±0.007 0.564±0.005 0.568±0.012

Symbolic Single 4.84±0.02 5.46±0.05 5.13±0.03 4.55±0.26 0.483±0.001 0.425±0.001 0.457±0.0 0.490±0.003 0.579±0.0 0.547±0.002 0.563±0.001 0.594±0.006

Table 24: Retention performance for the canonical partitions of the synthetic dataset and the generalization
set. One standard deviation is quoted for the single seed results.

Real dataset Due to a lack of knowledge of the actual data generation process, it is not possible to generate
an analogous test set to the generalization set, which is only relevant in the ’synthetic world.’ As a result,
model evaluation is limited to canonical partitions. Furthermore, we compare the results for the two datasets,
namely synthetic and real ones, and we provide an interpretation of the observed behaviors.

The performance scores are shown in the Tables 25 and 26. Deep Ensemble VI has the best performance
across all metrics. This is not the case for the synthetic dataset at which Ensemble DNN has the best scores
overall. This outcome is of no surprise, as both methods (along with Deep Ensemble MC dropout) are
similar therefore deviations on their ranking are to be expected when working with different datasets.
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Development Evaluation Generalization

Figure 15: Retention curves for the synthetic development, evaluation and generalization sets. VI and MC
dropout refer to the deep ensemble technique while DNN and Symbolic correspond to the ensemble setting.

For the Ensemble Symbolic, it is worth noting that it has the lowest predictive performance in the dev and
eval sets, which is consistent with the results in the synthetic data. Furthermore, when compared with the
corresponding synthetic partitions, it is discovered to have a larger performance drop compared to the best
model. This outcome is attributed to the limited expressivity of the Ensemble Symbolic, resulting in a more
pronounced performance degradation in the real data. On the other hand, the synthetic generalization set re-
vealed that the Ensemble Symbolic is the best candidate in terms of robustness across all possible operational
conditions. Such domain constrained models have the advantage of unbiased performance across all possible
conditions (operational or weather) making them good candidates for active performance optimization tasks
(such as vessel-specific weather routing).
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Dataset Method Model RMSE (kW) MAE (kW) MAPE (%)

Dev

In Out Full In Out Full In Out Full

MC dropout Deep ensemble 1269 1501 1389 855 1067 961 5.42 7.39 6.40
VI Deep ensemble 1264 1514 1395 848 1074 961 5.29 7.44 6.37
DNN Ensemble 1285 1484 1388 868 1066 967 5.43 7.49 6.46
Symbolic Ensemble 1405 1630 1522 971 1181 1076 6.41 8.98 7.69
MC dropout Ensemble 1291±21 1540±56 1422±30 874±17 1098±39 986±17 5.63±0.22 7.80±0.29 6.72±0.14

VI Ensemble 1276±12 1537±41 1413±24 858±9 1093±26 975±14 5.39±0.07 7.65±0.19 6.53±0.11

DNN Single 1318±51 1547±63 1438±44 893±41 1113±46 1003±30 5.74±0.32 8.03±0.42 6.88±0.27

Symbolic Single 1416±8 1654±53 1540±25 980±11 1199±54 1089±23 6.46±0.10 9.09±0.38 7.77±0.18

Eval

MC dropout Deep ensemble 1248 1925 1622 850 1389 1119 5.54 8.29 6.91
VI Deep ensemble 1243 1895 1602 842 1356 1098 5.38 8.09 6.73
DNN Ensemble 1264 1928 1630 863 1414 1138 5.48 8.75 7.12
Symbolic Ensemble 1393 2341 1926 964 1744 1354 6.37 10.66 8.52
MC dropout Ensemble 1271±18 1954±47 1649±26 868±16 1416±39 1142±20 5.72±0.20 8.54±0.33 7.13±0.20

VI Ensemble 1255±11 1916±32 1620±20 852±9 1377±39 1114±22 5.46±0.06 8.26±0.33 6.86±0.18

DNN Single 1296±47 1985±111 1677±61 887±39 1462±91 1175±47 5.74±0.28 9.15±0.62 7.44±0.38

Symbolic Single 1403±8 2366±304 1948±179 973±10 1770±253 1371±123 6.42±0.10 10.84±1.42 8.63±0.70

Table 25: Predictive performance for the canonical partitions of the real dataset. One standard deviation is
quoted for the single seed results.

Dataset Method Model R-AUC ∗105 F1-AUC F1@95%

Dev

In Out Full In Out Full In Out Full

MC dropout Deep ensemble 4.52 7.21 6.05 0.510 0.469 0.486 0.618 0.536 0.577
VI Deep ensemble 4.29 7.22 5.81 0.521 0.460 0.493 0.625 0.541 0.584
DNN Ensemble 4.71 6.80 5.84 0.514 0.441 0.477 0.616 0.521 0.570
Symbolic Ensemble 6.55 10.80 8.48 0.453 0.362 0.419 0.557 0.472 0.511
MC dropout Ensemble 4.75±0.32 8.58±0.99 6.84±0.48 0.510±0.009 0.450±0.014 0.477±0.006 0.610±0.009 0.525±0.012 0.568±0.005

VI Ensemble 4.40±0.17 7.85±0.52 6.18±0.24 0.518±0.007 0.448±0.012 0.484±0.004 0.620±0.005 0.535±0.009 0.579±0.003

DNN Single 5.00±0.57 7.84±0.62 6.61±0.51 0.505±0.016 0.416±0.020 0.459±0.012 0.605±0.020 0.503±0.019 0.555±0.012

Symbolic Single 6.99±0.22 11.33±1.14 8.99±0.53 0.449±0.006 0.355±0.019 0.412±0.009 0.552±0.010 0.465±0.019 0.509±0.009

Eval

MC dropout Deep ensemble 4.34 13.59 9.28 0.513 0.394 0.451 0.621 0.459 0.544
VI Deep ensemble 4.15 14.07 9.13 0.525 0.398 0.467 0.627 0.477 0.557
DNN Ensemble 4.50 14.00 9.52 0.517 0.387 0.451 0.616 0.428 0.528
Symbolic Ensemble 6.39 22.56 13.56 0.455 0.267 0.383 0.558 0.320 0.447
MC dropout Ensemble 4.57±0.27 14.46±1.28 10.00±0.59 0.511±0.010 0.383±0.022 0.441±0.013 0.610±0.010 0.441±0.026 0.530±0.015

VI Ensemble 4.26±0.16 14.58±1.02 9.57±0.56 0.521±0.007 0.383±0.017 0.455±0.008 0.621±0.006 0.467±0.027 0.549±0.014

DNN Single 4.78±0.52 15.68±2.16 10.97±1.21 0.506±0.017 0.364±0.020 0.425±0.024 0.603±0.021 0.416±0.033 0.515±0.023

Symbolic Single 6.81±0.23 27.85±7.33 17.51±4.27 0.449±0.006 0.254±0.037 0.360±0.027 0.553±0.009 0.322±0.068 0.447±0.028

Table 26: Retention performance for the canonical partitions of the real dataset. One standard deviation is
quoted for the single seed results.
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Development Evaluation

Figure 16: Retention curves for the real development, evaluation sets. VI and MC dropout refer to the deep
ensemble technique while DNN and Symbolic correspond to the ensemble setting.
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