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Abstract

Thompson sampling and other Bayesian sequential decision-making algorithms
are among the most popular approaches to tackle explore/exploit trade-offs in (con-
textual) bandits. The choice of prior in these algorithms offers flexibility to encode
domain knowledge but can also lead to poor performance when misspecified. In
this paper, we demonstrate that performance degrades gracefully with misspecifica-
tion. We prove that the expected reward accrued by Thompson sampling (TS) with
a misspecified prior differs by at most Õ(H2ϵ) from TS with a well-specified prior,
where ϵ is the total-variation distance between priors and H is the learning horizon.
Our bound does not require the prior to have any parametric form. For priors with
bounded support, our bound is independent of the cardinality or structure of the
action space, and we show that it is tight up to universal constants in the worst case.
Building on our sensitivity analysis, we establish generic PAC guarantees for algo-
rithms in the recently studied Bayesian meta-learning setting and derive corollaries
for various families of priors. Our results generalize along two axes: (1) they apply
to a broader family of Bayesian decision-making algorithms, including a Monte-
Carlo implementation of the knowledge gradient algorithm (KG), and (2) they
apply to Bayesian POMDPs, the most general Bayesian decision-making setting,
encompassing contextual bandits as a special case. Through numerical simula-
tions, we illustrate how prior misspecification and the deployment of one-step
look-ahead (as in KG) can impact the convergence of meta-learning in multi-armed
and contextual bandits with structured and correlated priors.

1 Introduction

Bayesian decision-making algorithms are widely popular, due to both strong empirical performance
and the flexibility afforded by incorporating inductive biases and domain knowledge through pri-
ors. However, in practical applications, any chosen prior is at best an approximation of the true
environment in which the algorithm is deployed. This raises a critical question:

How sensitive are Bayesian decision-making algorithms to prior misspecification?

For decision-making problems with a very large horizon, it suffices that the misspecified prior places
a vanishingly small probability mass on the ground truth environment; this condition is referred to
informally as a “grain of truth.” This is because, in the large-horizon limit, Bayesian algorithms (like
many non-Bayesian methods) should converge to the optimal policy.
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But in many practical settings, decision-making takes place on shorter time scales. Consider a news
recommendation website that, when presented with a new user, sequentially offers a selection of
currently trending articles. Such a system may only have a few opportunities to make recommen-
dations before the user decides to navigate away, leaving little time to correct for misspecified or
underspecified prior knowledge. Such examples are described more broadly by the meta-learning
paradigm, where a single learning agent must complete multiple disparate-though-related tasks.

In meta-learning problems, and in short-horizon problems more broadly, the “grain of truth” argument
paints a rather uninformative picture. Consequently, recent work has begun to explore sensitivity
bounds in applications with shorter horizons [LL16, KKZ+21]. However, these recent works focus
on particular classes of priors and/or reward models, as well as on the Thompson sampling algorithm
specifically. Notably, this leaves open questions about the extent to which prior sensitivity is deter-
mined by properties of the Bayesian decision-making algorithm, the reward model, and the prior itself.

1.1 Our Contributions

Motivated by meta-learning problems with short task horizons, we establish general, distribution-
independent, and worst-case optimal bounds on the sensitivity of Bayesian algorithms to prior
misspecification. We focus on the Bayesian bandit setting, where a mean-vector “environment” µ is
drawn from a distribution P , and rewards for each action are drawn in accordance with µ. We study
the performance of Bayesian algorithms which operate according to a misspecified prior P ′.

Sensitivity of Thompson Sampling and Related Bayesian Bandit Algorithms. As a concrete
example, we consider the expected reward obtained by Thompson sampling with misspecified prior
P ′ under environments drawn from true prior P .

When the mean rewards lie in the range [0, 1], as in the Bernoulli reward setting, we show that the
difference in expected reward between Thompson sampling with P ′ and with P is at most twice the
total variation distance between P and P ′ multiplied by the square of the horizon length. We prove a
lower bound demonstrating that, for worst-case priors, this result is tight up to constants. Moreover,
our upper bound holds for any two priors P and P ′ and suffers no dependence on the complexity of
the decision space.

We extend this result in two directions. First, we remove the boundedness requirement on the mean
reward range, showing that so long as certain tail probability conditions on the prior means are
satisfied, a similar result holds. Second, we generalize beyond Thompson sampling, bounding the
prior sensitivity of a broad class of Bayesian bandit algorithms, which we term n-Monte Carlo
algorithms. Our lower bounds extend to this class, verifying sharp dependence on the parameter n.

Sample Complexity of Bayesian Meta-Learning. We apply our prior sensitivity results to the
Bayesian bandit meta-learning setting, in which a meta-learner iteratively interacts on bandit instances
that are sampled from an unknown prior distribution. Motivated by our sensitivity analysis we describe
a generic algorithmic recipe for Bayesian meta-learning, in which the meta-learner explores for several
episodes to estimate the prior and then exploits by instantiating a Bayesian decision-maker with
the learned prior. We formally consider two instantiations of this setup: (1) the Beta-Bernoulli
setting where the rewards are Bernoulli and the prior is a product of Beta distributions and (2) the
Gaussian-Gaussian setting where the rewards are Gaussian and the prior is a Gaussian (with arbitrary
covariance structure) over the means. We note that the Gaussian-Gaussian setting was recently studied
in [KKZ+21] but only for the diagonal covariance setting.

Bayesian Decision-Making Beyond the Bandit Setting. A striking feature of our proof is that
it makes no explicit reference to the structure of bandit decision-making. As a consequence, our
results extend seamlessly to both contextual bandits and the most general Bayesian decision-making
problem: Bayesian POMDPs. While our sensitivity bounds hold almost verbatim in these settings,
we note that estimating the prior may be statistically much more challenging in these scenarios, so
there is no free lunch. To facilitate readability of the paper, we defer all further discussion and formal
results to Appendix E.

Experimental results. We complement our meta-learning theory with synthetic experiments in
multi-armed and contextual bandit settings. Our experiments show the benefits of (a) meta-learning
broadly, (b) estimating higher-order moments of the prior distribution, and (c) using less myopic

2



algorithms like the Knowledge Gradient [RPF12] over Thompson sampling when faced with
structured environments.

1.2 Related Work

Bayesian Decision-Making. Bayesian decision-making broadly refers to a class of algorithms that
use Bayesian methods to estimate various problem parameters, and then derive decision/allocation
rules from these estimates. The study of Bayesian decision-making began with the seminal work
of Thompson [Tho33], who introduced the Thompson sampling algorithm for adaptive experi-
ment design in clinical trials. Thompson sampling later gained popularity in the reinforcement
learning community as a means to solve multi-armed bandit and tabular reinforcement learning
problems [Str00, OVR17], and has been extended in many directions [AL17, AL18, GMM14]. Re-
cent years have seen the proliferation of other Bayesian decision-making and learning algorithms,
including Information Directed Sampling [RVR16], Top-Two Thompson Sampling [Rus16], and
Knowledge Gradient [RPF12].

Sensitivity Analysis and Frequentist Regret. The field of robust Bayesian analysis examines
the sensitivity of Bayesian inference to prior and model misspecification (c.f., [BMP+94]). These
approaches typically do not consider decision-making, so they do not account for multi-step adaptive
sampling inherent in our setting. More recent works study frequentist regret for Thompson sampling
[AG12, KKM12]. These guarantees can be interpreted as controlling the sensitivity to arbitrary
degrees of prior misspecification, but consequently, they do not provide a precise picture of how
misspecification affects performance. Moreover, frequentist guarantees for Thompson sampling
focus on relatively long learning horizons, so they are less relevant in the context of meta-learning
with many short-horizon tasks.

Short-Horizon Sensitivity. Most closely related to our paper are two previous works on sensitivity
of Thompson sampling to small amounts of misspecification in short-horizon settings. [LL16] study
the sensitivity of Thompson sampling for two-armed bandits when the prior has finite support. More
recently, [KKZ+21] study meta-learning with Thompson sampling and derive sensitivity bounds
for Thompson sampling in multi-armed bandits with Gaussian rewards and independent-across-arm
Gaussian priors. In contrast to both of these works, the bounds presented in this work apply to
arbitrary families of priors, more general decision-making problems, and to more general families
of decision-making algorithms. Further, as illustrated in Remark 2, our bounds are also tighter than
those achieved by [KKZ+21] when specialized to their precise setting. Finally, our lower bounds
demonstrate that the square-horizon factor incurred in [KKZ+21] is unavoidable for worst-case priors
(though perhaps not for their special case).

[BSLZ19] study sensitivity of general Bayesian algorithms in a dynamic pricing context. Their
approach requires “sufficiently random” reward noise and applies only to algorithms with a non-
adaptive initial exploration phase (unlike true Thompson Sampling); under these conditions, they
show that the trajectories under a well-specified and misspecified Bayesian decision maker can be
coupled so that the two algorithms maintain the same posteriors with good probability. In contrast,
our analysis applies only to Bayesian decision-making algorithms which have sufficient “internal
randomness” (e.g., Thompson sampling, and more generally, the n-Monte Carlo algorithms). Our
approach obviates assumptions about reward noise and initial exploration at the expense of slightly
restricting the class of algorithms to which our guarantees apply.

Meta-learning and Meta-RL. Meta-learning is a classical learning paradigm in which a learner
faces many distinct-but-related tasks [Thr96, Thr98, Bax98, Bax00, HYC01]. While the classical
work primarily considered supervised learning tasks, recent, predominantly empirical work has
focused on meta-reinforcement learning (Meta-RL), where each task is itself a decision-making
problem (c.f., [WKNT+17, DSC+16]). This includes some Bayesian approaches [HGH+20]. While
there have been some theoretical results on Meta-RL [ALB13, CLP20, YHLD21, HCJ+21], apart
from [KKZ+21] we are not aware of other theoretical treatments with a Bayesian flavor.

Learning under model misspecification. This work studies a specific notion of misspecification:
running Bayesian decision-making algorithms with inexact approximations of a true underlying prior.
Numerous other types of mispecification have been considered by the learning theory community more
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broadly, although typically in the absence of meta-learning and in frequentist settings. These include
models where rewards may be changing with time [GM11, BGZ14, CSLZ18, WL21] or adversarially
corrupted [LMPL18, GKT19, ZS21], or where a simple function class (e.g., linear models) is used
to approximate a more complex reward function [DKWY20, VRD19, LSW20, FGMZ20]. The
Bayesian analog of these models is that the likelihood is misspecified, which is quite different from
the prior misspecification considered here. Translating these notions of misspecification to Bayesian
decision-making and unifying these lines of work remains an exciting direction for future research.

2 Setting and Notation

Throughout, we use bold v to denote vectors and non-bold va to denote scalars. When the vector vh

has a subscript, vh,a denotes its coordinates.

Bayesian Bandit Learning under Misspecification. A Bayesian bandit learning instance is speci-
fied by (a) an abstract action space A, (b) a parametric family of priors Pθ indexed by parameters
θ ∈ Θ over mean vectors µ ∈ RA with coordinates µa, and (c) a function D : RA → ∆(RA)
mapping mean vectors µ to distributions over reward vectors r ∈ RA such that the expected reward
under D(µ) is µ, i.e., Er∼D(µ)[r] = µ.5 Note that this general setup allows the prior Pθ to encode
complex dependencies between the mean rewards µa of actions a ∈ A.

We consider an episodic bandit protocol with horizon H . First, µ ∼ Pθ is drawn from the prior.
Then, at each time step h = 1, 2, . . . ,H , the learner’s policy, specified by an algorithm alg, selects
an action ah ∈ A. Simultaneously, a reward vector rh is drawn independently from D(µ), and the
learner observes reward rh = rh,ah

. The choice of action ah may depend on the partial trajectory
τh−1 = (a1, r1, . . . , ah−1, rh−1). We let Pθ,alg denote the joint law over µ and the full trajectory τH ,
while expectations are denoted Eθ,alg. We abbreviate the full trajectory τ = τH . We denote the
cumulative reward

R(θ, alg) := Eθ,alg

[∑H
h=1 rh

]
= Eθ,alg

[∑H
h=1 µah

]
.

Bayesian Learning Algorithms. We study a class of algorithms alg(θ) also parameterized by
θ ∈ Θ. For concreteness, the reader may think of alg(θ) as corresponding to Thompson sampling,
where the learner internally computes posteriors using Pθ as its prior. More general classes of
Bayesian algorithms are defined in Section 3.1. We are interested in the consequences of misspecifi-
cation; that is, interacting with µ ∼ Pθ, but executing alg(θ′) for some other θ′ ̸= θ. Note that our
notation for the induced law on the trajectory is Pθ,alg(θ′).

Episodic Bayesian Meta-Learning. We apply the above framework to the problem of Bayesian
meta-learning. Let θ⋆ ∈ Θ be a ground-truth parameter. At each episode t = 1, 2, . . . , T , a mean
parameter µ(t) is drawn i.i.d. from Pθ⋆ . Simultaneously, the learner commits to a (potentially non-
Bayesian) exploration strategy explore(t) and collects the induced trajectory τ(t). At the end of
T episodes, the learner selects a parameter θ̂ ∈ Θ as a function of τ(1), . . . , τ(T ). The learner’s
performance is evaluated on the expected reward of the plug-in algorithm on θ̂: R(θ⋆, alg(θ̂)).

Further notation. Given two probability distributions P and Q over the same probability space
(Ω,F), we denote their total variation TV(P ∥ Q) := supE∈F |P [E ]−Q[E ]| and Kullback-Leibler
divergence KL(P ∥ Q). If P is a joint distribution of random variables (X,Y, Z, . . . ), P (X) denotes
the marginal of X under P , and P (Y |X) the conditional distribution (as a function of random
variable X). We define the diameter of a mean vector as diam(µ) := supa∈A µa− infa∈A µa, which
is a random variable when µ is drawn from Pθ. Throughout, log(·) denotes the natural logarithm.
Given a space X , we let ∆(X ) be the set of probability distributions on X ; see Appendix B.1 for
measure-theoretic considerations.

5In fact, our analysis extends to more general cases where the reward distribution is parameterized by more
than just the mean vectors, but we restrict ourselves to the current setting for ease of exposition.
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3 Prior Sensitivity in Bayesian Learning

This section states sensitivity bounds for various Bayesian bandit algorithms and families of priors,
starting with the concrete instance of Thompson sampling under priors with bounded-range means.
Our results extend almost verbatim to more general decision-making tasks such as contextual bandits;
see Appendix E for further details. Throughout, we use the fact that the posterior distribution of the
mean µ given trajectories τh does not depend on the choice of learning algorithm alg; hence, we
denote these posteriors Pθ[· | τh−1].6

Recall the classical Thompson sampling algorithm: at each step h, TS(θ) draws a mean µ̃h ∼
Pθ[· | τh−1] and selects the reward-maximizing action ah ∈ argmaxa µ̃h,a. We say that the prior Pθ

is B-bounded if Pθ[diam(µ) ≤ B] = 1. For Thompson sampling under B-bounded priors, we have
the following result:
Corollary 3.1. Let Pθ be B-bounded. Then, the suboptimality of misspecified Thompson sampling
TS(θ′) on instance θ is at most

|R(θ,TS(θ))−R(θ,TS(θ′))| ≤ 2H2 · TV(Pθ ∥ Pθ′) ·B.

Corollary 3.1 follows directly from Theorem 3.2, which we state in Section 3.2, and which generalizes
the statement of the corollary along two axes: to a more general family of Bayesian algorithms
that we call “n-Monte Carlo” and to less restrictive conditions on the behavior of diam(µ), such
as sub-Gaussian tails. Due to lack of space, we focus on the first such generalization; the second
direction is more technical in nature, and we leave its exposition to Appendix B.2.

3.1 n-Monte Carlo algorithms

Unfortunately, for arbitrary Bayesian bandit algorithms, the behavior under two different priors
cannot always be controlled in terms of the total variation distance of their priors. Indeed, consider
an algorithm that always pulls a particular arm a⋆ if the prior places any probability mass on a mean
for which a⋆ is best; clearly, this algorithm’s behavior is not robust to small changes in its prior
distribution. However, many important Bayesian bandit algorithms, such as Thompson sampling,
are not arbitrary functions of their priors; rather, they select actions based on their internal posterior
distribution in a relatively stable manner. We call such algorithms n-Monte Carlo algorithms.
Definition 3.1 (n-Monte Carlo algorithm). Given n > 0, we say that a family of algorithms alg(·)
parameterized by θ ∈ Θ is n-Monte Carlo if, for any θ, θ′, step h ≥ 1, and partial trajectory τh−1,

TV(Palg(θ)(ah | τh−1) ∥ Palg(θ′)(ah | τh−1)) ≤ n · TV(Pθ(µ | τh−1) ∥ Pθ′(µ | τh−1)).

In words, n-Monte Carlo algorithms are those Bayesian algorithms for which small changes in the
posterior distribution result in small changes (up to a multiplicative factor of n) in the distribution
over actions. Note that on the left-hand side, we do not need to specify the true θ⋆, because each
algorithm’s choice of an action can only depend on τh−1. The nomenclature arises because any
algorithm that selects actions based exclusively on n samples from its posterior Pθ(µ | τh−1) is
n-Monte Carlo. However, the definition is more general and in Appendix C we describe various
algorithms that satisfy the n-Monte Carlo property, summarizing key insights here:

• We show that TS(θ) is 1-Monte Carlo.
• We introduce a generalization of Thompson sampling, which we call k-shot Thompson sampling

(k-TS(θ)), that samples k means µ̃1, . . . , µ̃k i.i.d. from the posterior Pθ[· | τh−1], and selects the
action ah ∈ argmaxa max{µ̃1,a, . . . , µ̃k,a}. We show that k-TS(θ) is k-Monte Carlo.

• We introduce a Monte Carlo approximation of the knowledge gradient algorithm [RPF12], which
we call two-step Receding Horizon Control (2-RHC(θ)). This algorithm is non-myopic in that it
chooses an action that maximizes the expected value at the subsequent time (according to its own
posterior updates). We show that when A is finite, 2-RHC(θ) is n-Monte Carlo for some n that
is polynomial in |A| and the number of Monte Carlo samples it draws from its posterior.

6Note that whenever τh lies in the support of Pθ , the posterior Pθ[µ | τh−1] is well-defined and unique,
even if τh−1 was generated by interacting with mean µ ∼ Pθ′ for some θ′ ̸= θ. When τh−1 does not lie in
the support of Pθ , we allow Pθ[µ | τh−1] to be any distribution over µ (for concreteness, one may default to
Pθ[µ]). Note, however, that although Pθ[µ | τh−1] may not be uniquely defined, Pθ,alg[τh−1 | µ] is always
uniquely defined and independent of θ.
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3.2 General Sensitivity Upper and Lower Bounds

We are now ready to state a general prior sensitivity bound for n-Monte Carlo algorithms. For
simplicity, we state our bounds for B-bounded priors, that is, Pθ[diam(µ) ≤ B] = 1, and under a
natural sub-Gaussian tail condition stated formally in Appendix B.2 (Theorem B.2).
Theorem 3.2. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N, and let
θ, θ′ ∈ Θ. Setting ε = TV(Pθ ∥ Pθ′), we have the following guarantees.

(a) If Pθ is B-bounded, then |R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε ·B.
(b) If Pθ is coordinate-wise σ2-sub-Gaussian, then

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε

(
diam(Eθ[µ]) + σ

(
8 + 5

√
log
(

|A|2
min{1,2nHϵ}

)))
.

Next, we complement our upper bound with a lower bound that matches Theorem 3.2(a) for n-shot
Thompson sampling (an n-Monte Carlo algorithm) up to a multiplicative constant:
Theorem 3.3 (Lower Bound, Informal). For any parameter n ∈ N, horizon H ≫ 1, number of arms
N = |A| ≫ H , and separation ϵ≪ 1/nH , there exist two priors Pθ and Pθ′ over bounded means
µ ∈ [0, 1]N such that TV(Pθ ∥ Pθ′) = ϵ and

R(θ, n-TS(θ)) ≥ R(θ, n-TS(θ′)) + (1− o(1)) · nH
2ϵ

2
,

where the o(1) decays to zero as 1/H , H/N , ϵnH → 0.

See Theorem D.1 for a precise, quantitative statement and Appendix D for a full proof.

Remark 1 (Comparison to Õ(
√
H) regret guarantees). At first glance, Theorem 3.3 appears incon-

sistent with known upper bounds for Thompson sampling which show that regret relative to the best
action in hindsight scales sublinearly as Õ(

√
|A|H) in the horizon H . Notice however that our lower

bound requires the number of actions |A| to scale at least linearly in H , so the bound applies in
a regime where regret upper bounds are in fact vacuous. Instead, the purpose of our lower bound
is to quantify the influence of the misspecified prior for fixed horizons, but where the magnitude
TV(Pθ ∥ Pθ′) of the misspecification may be arbitrarily small.

Proof ideas. One of the key ingredients in the proof of Theorem 3.2, and a result which may be of
independent interest, is the following bound on the total variation of the trajectory of an algorithm
run with the true prior and the same algorithm run with an incorrect prior.
Proposition 3.4. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N. Then,

TV(PH ∥ P ′
H) ≤ 2nH · TV(Pθ ∥ Pθ′),

where PH = Pθ,alg(θ)(µ, τH) and P ′
H = Pθ,alg(θ′)(µ, τH).

A full proof is given in Appendix B.6 and relies on a careful coupling argument between the two
trajectories detailed therein. As a concrete warmup, we illustrate this coupling for a Gaussian bandit
instance in Appendix B.5. The factor of H arises from a telescoping argument (Lemma B.9) based
on the performance-difference lemma [Kak03].

For B-bounded priors, Proposition 3.4 directly translates into the sensitivity bound in Theorem 3.2(a),
where the difference in rewards can be bounded as BH times the probability that the trajectory
of alg(θ) differs from the trajectory of alg(θ′). Addressing more general tail conditions like sub-
Gaussianity requires more care; see Appendix B for details.

4 Meta-learning

In this section, we apply the above prior sensitivity guarantees to episodic Bayesian meta-learning
and obtain sample-efficiency guarantees for canonical Bayesian bandit setups.

Suppose an episodic Bayesian meta-learner uses an exploration strategy explore(t) in T episodes and
computes an estimate θ̂ = θ̂(τ(1), . . . , τ(T )) of the ground-truth parameter θ⋆. Suppose further that,
for any ε, δ ∈ (0, 1), with probability at least 1− δ over the realizations of the episodes and internal
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randomization of the meta-learner, the estimate θ̂ satisfies TV(Pθ⋆ ∥ Pθ̂) ≤ ε. Then, Theorem 3.2
implies that, for any n-Monte Carlo algorithm alg(·), the relative performance of alg(θ̂) compared to
alg(θ⋆) is (essentially) bounded as Õ(nH2ε) over horizon H .

Our task of designing meta-learners is thus reduced to that of designing estimators (and exploration
strategies) for θ⋆ that enjoy convergence guarantees in TV distance. This is quite a general recipe
that can produce concrete meta-learning algorithms in many Bayesian bandit settings. We explain
how to do so in two setups: (1) Pθ⋆ is a product of Beta distributions, and the rewards are Bernoulli;
(2) Pθ⋆ is a multivariate Gaussian and the rewards are Gaussian.

4.1 Beta Priors and Bernoulli Rewards

We first consider the situation where the prior distribution is a product of Beta distributions Pθ⋆ =⊗
a∈A Beta(α⋆

a, β
⋆
a) and the reward distribution is a product of Bernoulli distributions D(µ) =⊗

a∈A Bern(µa). Recall that Beta(α, β) for α > 0 and β > 0 is a continuous probability distribution
supported on (0, 1), and hence our parameter space Θ is the (strictly) positive orthant in R2|A|.

Our approach is to directly estimate the parameters θ⋆ = (α⋆,β⋆) from the observed rewards in
the T episodes. Since the family of Beta distributions is an exponential family [Bro86] (with (α, β)
being the natural parameters), we can appeal to general statistical theory to bound the total variation
distance between two such distributions in terms of their parameter distance.

Suppose we adopt the exploration strategy where arm 1 is selected in the first n rounds in each of the
first T/|A| episodes, arm 2 in the next T/|A| episodes, and so on. (We assume the horizon H and
n satisfy H ≥ n ≥ 2.) We focus on the estimation of (α⋆

1, β
⋆
1), as the exact same approach works

for all of the arms. Let Xt denote the cumulative reward collected in the first n rounds of episode t.
Then, the random variables X1, . . . , XT/|A| are i.i.d. draws from a Beta-Binomial distribution with
parameters (α⋆

1, β
⋆
1 , n), where n denotes the number of trials of the binomial component. The first

and second moments of Xt are

m⋆
1 = E[Xt] =

nα⋆
1

α⋆
1 + β⋆

1

and m⋆
2 = E[X2

t ] =
nα⋆

1(n(1 + α⋆
1) + β⋆

1)

(α⋆
1 + β⋆

1)(1 + α⋆
1 + β⋆

1)
.

These moments uniquely determine α⋆
1 and β⋆

1 as long as n ≥ 2. Therefore, we can estimate (α⋆
1, β

⋆
1)

using plug-in estimates of the first two moments (m⋆
1,m

⋆
2) via the method of moments [TGG94].

Using this approach, we obtain the following sample complexity guarantee for estimating the prior
distribution:

Theorem 4.1. The exploration strategy and estimator described above enjoy the following guarantee.
If Pθ⋆ =

⊗
a∈A Beta(α⋆

a, β
⋆
a) and D(µ) =

⊗
a∈A Bern(µa), then there is a constant C depending

only on (α⋆,β⋆) such that, for any ε, δ ∈ (0, 1), if H ≥ 2 and

T ≥ C · |A|2 log(|A|/δ)
ε2

,

then P[TV(Pθ⋆ ∥ Pθ̂) ≤ ε] ≥ 1− δ.

The proof of the theorem is given in Appendix F.1.

4.2 Gaussian Priors and Gaussian Rewards

We now consider the situation where the prior distribution is a multivariate Gaussian Pθ⋆ =
N (ν⋆,Ψ⋆) in RA, and the reward distribution is a spherical Gaussian distribution D(µ) =
N (µ, σ2I). Note that such a prior distribution is able to capture correlations between the arms’
mean rewards in an episode, which cannot be captured by the product-form priors in the previous
subsection (nor in previous work [KKZ+21]).

We again directly estimate the parameters θ⋆ = (ν⋆,Ψ⋆) using a simple exploration strategy and the
method of moments. In each episode (which we assume to have H ≥ 2), we select independent and
uniformly random actions in the first two rounds. Let at and bt denote the actions taken in episode t,
and let rt and st denote the corresponding observed rewards. Our estimates for ν⋆ and Ψ⋆ based on
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Figure 1: Learning curves for Gaussian MAB and linear CB experiments. We run 100 replicates per
algorithm and visualize two standard errors with error bands. For meta-learners we tune the number
of exploration rounds and display the performance of the best configuration at each point, which we
call the upper envelope.

the information collected in T episodes are7

ν̂ :=
|A|
T

T∑
t=1

rteat
and Ψ̂ :=

|A|2

T

T∑
t=1

rtst
(
eat

eT

bt + ebte
T

at

)
− ν̂ν̂T.

For these estimators, we have the following theorem.
Theorem 4.2. The exploration strategy and estimator described above enjoy the following guarantee.
If Pθ⋆ = N (ν⋆,Ψ⋆) andD(µ) = N (µ, σ2I), then there is a constant C depending only on (ν⋆,Ψ⋆)
and σ2 such that, for any ε, δ ∈ (0, 1), if H ≥ 2 and

T ≥ C · (|A|4 + |A|3 log(1/δ))
ε2

,

then P[TV(Pθ⋆ ∥ Pθ̂) ≤ ε] ≥ 1− δ.

The proof of the theorem and the precise dependence on ν⋆, Ψ⋆, and σ2 are given in Appendix F.2.
The quartic dependence on |A| is due to estimating Ψ⋆; it improves to |A|2 if Ψ⋆ is known.
Remark 2 (Comparison to [KKZ+21]). [KKZ+21] study the case where Pθ⋆ = N (ν⋆, σ

2
0I), which

is a product-form prior over means µ with known σ2
0 . For ϵ̃ = |A| · ∥ν⋆ − ν̂∥∞/σ0, they show that8

|R(θ,TS(θ))−R(θ,TS(θ̂))| ≤ O
(
∥ν⋆∥∞ + σ0

√
log(H/ϵ̃)

)
·H2ϵ̃.

On the other hand, Theorem 3.2 applied to the 1-Monte Carlo Thompson Sampling algorithm
(and bounding diam(ν⋆) ≤ ∥ν⋆∥∞) yields the same inequality, but with ϵ̃ replaced by ϵ =
TV(N (ν⋆, σ

2
0I) ∥ N (ν̂, σ2

0I)) ≤ ∥ν⋆ − ν̂∥2/σ0. Note that ϵ̃ is always larger than ϵ by a fac-
tor of at least

√
|A|; thus, our result is strictly sharper.

5 Experiments

We demonstrate the generality of our results in three distinct meta-learning experimental settings.
First, we study a simple multi-armed bandit scenario with Gaussian prior and Gaussian rewards,
where we demonstrate how meta-learning higher-order moments of the prior can significantly improve
performance. Next, we consider a Gaussian linear contextual bandits scenario, to demonstrate the
generality of Bayesian meta-learning. Finally, we study a more interesting multi-armed bandit
problem with discrete priors, where, in addition to the value of meta-learning, we see that look-ahead
algorithms can substantially outperform Thompson sampling. Additional experimental details are
presented in Appendix A.

Gaussian MAB. Our first scenario is a multi-armed bandit problem with Gaussian prior and
Gaussian reward. The instance has |A| = 6 arms and each episode has horizon H = 10. The prior
is N (ν⋆,Ψ⋆) where ν⋆ = [0.5, 0, 0, 0.1, 0, 0] and Ψ⋆ has block structure so that arms 1, 2, 3 are

7This estimator can be generalized to explore for more of the episode and use more of the observed rewards.
8The following optimizes Lemma 5 of [KKZ+21] over its free parameter δ > 0 for ϵ̃ small.
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Figure 2: Synthetic experiments with discrete MAB for |A| = 20 and H = 10. Left: visualization
of the instance showing the reward for each of the arms in each of the 16 possible tasks along
with the prior distribution over tasks (probabilities rounded, actual values are 9/40 and 1/120).
Top right: learning curves for 6 algorithms (100 replicates, error bands at 2 standard errors, we
tune the number of exploration rounds and plot upper envelopes for meta-learners). Bottom right:
empirical distribution of the first arm pulled in each episode by each algorithm. Note that the color
scale is non-linear.

highly correlated, and analogously for arms 4, 5, 6. The rewards are Gaussian with variance 1, which
is known to all learners.

We run four algorithms. Two are non-meta-learning Thompson sampling algorithms: OracleTS,
which uses the correct prior, and MisTS, which uses the misspecified prior N (0, I). We also run
MetaTS:no-cov which only attempts to meta-learn the prior mean µ0 and assumes that the prior co-
variance matrix is the identity (this algorithm is essentially the one studied in [KKZ+21]). Finally, our
algorithm is MetaTS:full which meta-learns both the prior mean and covariance. Both meta-learners
are run in an explore-then-commit fashion where the first T0 episodes are used for exploration.9

In Figure 1, we plot the cumulative average per-episode reward for each algorithm, where for the meta-
learners we sweep over many choices of T0 and display the pointwise best (i.e., the upper envelope).
The experiment clearly shows the value of meta-learning as both MetaTS:no-cov and MetaTS:full
quickly outperform misspecified TS. Additionally, we also see the importance of learning the covari-
ance matrix, even though it can require many samples. Indeed, the final performance of MetaTS:full
with T0 = 5K, ignoring the regret incurred due to exploration, is competitive with OracleTS, while
MetaTS:no-cov asymptotes to a much lower performance (see Figure 3 in Appendix A).

Gaussian linear contextual bandits. Our second experiment concerns Gaussian linear contextual
bandits. Here we run OracleTS, MisTS, and MetaTS:full, on a synthetic linear contextual bandit
problem where there are |A| = 6 actions each with a d = 6 dimensional action feature (generated
stochastically at each time step), and with horizon H = 20. The prior is over the linear parameter
µ that determines the reward for action-feature xa ∈ Rd as r(a) ∼ N (⟨µ,xa⟩, 1). We set the prior
as N (1,Ψ⋆) where Ψ⋆ is a scaled-down version of the block diagonal matrix used in the previous
experiment. In the right panel of Figure 1 we again see that by meta-learning the prior, we quickly
outperform the misspecified approach and asymptotically achieve the oracle performance. This
demonstrates that Bayesian meta-learning is quite broadly applicable and highlights the importance
of our general theoretical development.

Discrete bandits. Finally, we study a synthetic MAB setting with |A| = 20 arms and a prior sup-
ported on a finite set of 16 reward distributions (tasks), under each of which rewards are deterministic.
The instance is visualized in the left panel of Figure 2. It is constructed so that each task has a unique
optimal arm and there are four arms that can quickly identify which task the agent is in (arms A1, A6,

9For MetaTS:no-cov, we follow [KKZ+21] and only use the first step of each exploration episode for
exploration, switching to TS with the current prior estimate for the rest of the episode. On the other hand,
MetaTS:full explores for all time steps in the first T0 episodes.
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A11, A16), so that it can infer the optimal arm. Additionally, the prior is concentrated on the first
four tasks, so that pulling the first identifying arm almost always reveals the current task.

We evaluate 6 algorithms: Oracle, Misspecified, and Meta-learning each with TS and Monte-Carlo
Knowledge Gradient (an instantiation of the 2-RHC(θ) algorithm detailed in Appendix C) as the
base learners, and we visualize the results in the top right panel of Figure 2. Perhaps more revealing
is the bottom right panel of Figure 2, where we visualize the empirical distribution over the first arm
pull in each episode for each algorithm. We see that OracleTS typically plays uniformly over arms
A2–A5 in the first round as these are highly likely to be the optimal arm under the prior, while MisTS
plays uniformly over the 16 plausibly optimal arms. MetaTS quickly learns to play uniformly over
arms A2–A5 and is asymptotically competitive with OracleTS.

The interesting property of this instance is that playing the identifying arms is crucial for optimal
behavior. However, since TS is myopic and these arms never produce large rewards, TS will never
play them. Thus, to achieve optimal behavior, we must use a less myopic base learner like Knowledge
Gradient. As can be seen, both OracleKG and MisKG first play the identifying arms, where the oracle
almost always pulls the first one while MisKG plays them uniformly. The performance of OracleKG
is much better than all TS configurations. Finally, the meta-learning configuration of Knowledge
Gradient quickly learns to pull the first identifying arm and competes with OracleKG.

6 Discussion

In our simulations, we demonstrated the superiority of more expressive prior families (e.g., modeling
means and covariances) and non-myopic base algorithms (e.g., Knowledge Gradient) over less
expressive priors (e.g., product measures) and greedy base learners (e.g., Thompson sampling).
Notably, the generality and flexibility of our theoretical contributions ensure robustness to prior
misspecification even for these richer priors and sophisticated base learners.

Still, theory and experiments alike point to a tradeoff: despite the potential for improved performance,
richer prior families are harder to learn, and some base learners (e.g., n-Monte Carlo algorithms
for large n) can be more sensitive to incorrect priors. It is an exciting direction for future work to
investigate the joint problems of model selection (over priors) and algorithm selection (over base
learners) in order to optimally navigate these tradeoffs. Perhaps model and algorithm selection
can be coupled so that certain base learners exhibit improved performance, or greater robustness,
over certain classes of priors. We would like to further understand how these tradeoffs interface
with computational burdens of using certain priors and base learners, and whether our sensitivity
analysis extends to computationally efficient approximations of sampling-based decision-making
algorithms (e.g., via Laplace approximations, MCMC, Gibbs Sampling, and Variational Methods;
the long-horizon performance of Thompson sampling under approximate inference has already been
studied [PAYD19]). Finally, we hold hope that a more instance-dependent analysis may improve our
sensitivity bounds for certain families of priors, which may in turn inform more clever exploration
strategies that circumvent worst-case tradeoffs.
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Figure 3: Test performance in Gaussian MAB and Gaussian linear CB experiments.

A Additional Experimental Details

In this section, we provide additional experimental details for each setting. As a prelude, the total
amount of compute is very minimal and primarily inflated by the large number of replicates used in
each experiment. On a standard CPU cluster the experiments can easily be completed in 2-4 hours,
even with running 100 replicates for each algorithm/configuration.

A.1 Multi-armed bandit experiments

As described, the left panel of Figure 1 is based on a |A| = 6 arm bandit problem with horizon
H = 10 and prior N (ν⋆,Ψ⋆), where

ν⋆ = [0.5, 0, 0, 0.1, 0, 0], and Ψ⋆ =


1 0.9 0.9 0 0 0
0.9 1 0.9 0 0 0
0.9 0.9 1 0 0 0
0 0 0 1 0.9 0.9
0 0 0 0.9 1 0.9
0 0 0 0.9 0.9 1

 .

The rewards are Gaussian, with variance 1.0.

The four algorithms we run are:

• OracleTS: The standard implementation of Gaussian Thompson sampling, with the correct prior
(ν⋆,Ψ⋆).

• MisTS: The standard implementation of Gaussian Thompson sampling, with the incorrect prior
(0, I).

• MetaTS:full: A meta-learning implementation of Gaussian Thompson sampling with an
“explore-then-commit” strategy. This algorithm has a hyperparameter T0 which determines
the number of exploration rounds. In the first T0 rounds, the algorithm simply selects all actions
uniformly at random. Then at the end of the T0 exploration rounds, it forms an estimate (ν̂, Ψ̂)
as follows:

ν̂ =
|A|
T0

T0∑
i=1

µ̂i =
|A|
T0

T0∑
i=1

(
1

H

H∑
h=1

∑
a∈A

1{ai,h = a}eari,h

)
,

Ψ̂ =
1

T0

T0∑
i=1

(
µ̂iµ̂

⊤
i − diag(µ̂iµ̂

⊤
i ) + diag

(
|A|
H

H∑
h=1

∑
a

1{ai,h = a}ear2i,h

)
− I

)
− ν̂ν̂⊤.

Here ai,h is the action played at the hth time step of the ith episode and ri,h is the corresponding
reward. It is not difficult to verify that both of these are unbiased estimators for ν⋆ and Ψ⋆

respectively. We additionally project Ψ̂ onto the positive semidefinite cone. After the T0 explo-
ration rounds, MetaTS:full forms the above estimators and runs standard Gaussian Thompson
sampling with the estimates (ν̂, Ψ̂).

• MetaTS:no-cov: A meta-learning implementation of Gaussian Thompson sampling with an
“explore-then-commit” strategy, which does not estimate the prior covariance. As above, it has
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a hyperparameter T0 determining the number of exploration rounds. In the first T0 rounds, the
algorithm chooses just the first action uniformly at random and then chooses the remaining actions
by instantiating Gaussian Thompson sampling with the current estimate of the prior mean and the
incorrect prior covariance I. The prior mean at round t is estimated as

ν̂t =
|A|
t− 1

t−1∑
i=1

∑
a∈A

1{ai,1 = a}eari,1,

which is analogous to the estimate above. After T0 rounds, we set ν̂ = ν̂T0 and we run standard
Gaussian Thompson sampling with prior (ν̂, I) for the remaining rounds.

Experimental Protocol and Results. In the left panel of Figure 1 we run each algorithm (with
each hyperparameter configuration) for 100 replicates with different random seeds. For both MetaTS
variants, we choose T0 from the set {200, 400, 600, . . . , 5000}. In the figure, we record the average
(across replicates) performance at each episode number with error bands corresponding to±2 standard
errors.

For the algorithms with a hyperparameter, we plot the performance of the pointwise best hyperpa-
rameter configuration. That is, we optimize hyperparameters (based on average-across-replicates
performance) for each episode number n individually.

In the left panel of Figure 3 we visualize the “test performance” of the various algorithms, which
corresponds to the average per-episode performance for the last 5, 000 episodes. Here the box
plots visualize the 100 different replicates. For both MetaTS variants, we use T0 = 5, 000 as the
hyperparameter. Note that since the total number of episodes is 10, 000, both algorithms do not
update their prior estimate for the episodes during which we record performance.

A.2 Linear contextual bandit experiments

The experimental protocol is similar to the one above. Here we consider a Gaussian linear contextual
bandit setup with |A| = 6 actions and d = 6 dimensional action features and horizon H = 20. The
prior is N (ν⋆,Ψ⋆) where

ν⋆ = 1, and Ψ⋆ = 0.1×


1 0.9 0.9 0 0 0
0.9 1 0.9 0 0 0
0.9 0.9 1 0 0 0
0 0 0 1 0.9 0.9
0 0 0 0.9 1 0.9
0 0 0 0.9 0.9 1

 .

In each round the action features are generated by sampling each entry from a standard normal
distribution and then normalizing so that the feature vector has ℓ2 norm equal to 1. For action feature
xa the reward is given by r(a) ∼ N (⟨µ,xa⟩, 1).
We run three algorithms here. The first two OracleTS and MisTS are standard implementations of
Gaussian linear Thompson sampling with well-specified and mis-specified priors respectively. Here
MisTS is initialized with prior N (0, I). The final algorithm, MetaTS:full is implemented in the
explore-then-commit fashion described above. The only difference is the estimator for the prior. Here
in each episode of the exploration stage, we choose actions uniformly at random and use ordinary
least squares to estimate the parameter µ of the episode. The prior mean is simply estimated using
the average of these OLS solutions. The prior covariance is estimated as

Ψ̂ =

(
1

T0

T0∑
i=1

µ̂iµ̂
⊤
i − Σ−1

i

)
− ν̂ν̂⊤,

where Σi =
∑H

h=1 xh,ah
x⊤
h,ah

is the second moment matrix of the action features chosen in the
episode. As above, this is an unbiased estimator of the prior covariance.

Experimental Protocol and Results. We follow the same protocol as above, running each al-
gorithm for 100 replicates and, for MetaTS:full, we plot the pointwise best performance across
hyperparameter configurations. Here we tune T0 ∈ {100, 200, . . . , 1000}. In the right panel of Fig-
ure 3 we plot the test performance of each algorithm, measured as the average performance in the
final 1, 000 episodes. We use T0 = 1000 for MetaTS:full.
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A.3 Discrete bandits

The final experiment is with the discrete MAB instance visualized in Figure 2. As the instance is
visualized in the left panel, we only describe the algorithms and the experimental protocol. As the
reward distributions are singular, posteriors collapse frequently in this experiment. Once this happens,
all algorithms simply play the best arm from then on.

Thompson sampling as a base learner is standard. We maintain a posterior distribution over tasks,
sample an instance/task from this distribution, and play the best arm for that task. Posterior updates
are straightforward due to the singular nature of the reward distributions.

For Knowledge Gradient, we implement a one-step look-ahead variant, which is exactly as described
in Algorithm 3, with k1 = k2 = 10 and α = 1. We also implement a random tie breaking scheme
where we choose randomly among actions with the maximum Va.

We implement the meta-learners in a straightforward explore-then-commit manner. In each explo-
ration round, we choose actions uniformly at random. If the posterior collapses, then we increment a
counter associated with the current task. If the posterior does not collapse during the episode then we
do not increment any counter. After T0 exploration rounds we estimate the posterior by the empirical
fraction of times we observed each task.

As above, we run 100 replicates of each algorithm. Misspecified variants are initialized with the
uniform prior over tasks. For the meta-learners we tune T0 ∈ {25, 50, . . . , 200}. We plot the point-
wise best (across hyperparameters) mean performance across replicates, with bands corresponding to
±2 standard errors. Note that there is very little variance here since we run many replicates and the
problem has little noise.

In the bottom panel of Figure 2 we plot the empirical distribution of the first action chose by each
algorithm, where we compute this distribution using all 400 episodes and all 100 replicates of each
algorithm. For both meta-learners we use T0 = 100 here.

B Proof of Sensitivity Bounds

In this appendix, we give the proofs of Theorem 3.2 and Proposition 3.4. The results in this appendix
are much more general than those stated in Section 3 and require us to introduce some new concepts.
The following roadmap may be useful in navigating the rest of this appendix.

• Appendix B.1 provides some key properties of total variation distance that are used in the rest of
Appendix B, as well as in Appendix C.

• Appendix B.2 provides the statements of the main results of this section. In particular, we
define our notion of upper tail expectation, we introduce our tail conditions, and we provide the
statements of our generalizations of Theorem 3.2 (Theorem B.1 and Theorem B.2).

• Appendix B.3 and Appendix B.4 provide key properties of our upper tail expectation and bound
the upper tail expectation under our tail conditions.

• Appendix B.5 provides an analysis of a Gaussian bandit instance.
• Appendix B.6 and Appendix B.7 together give the proof of Proposition 3.4.
• Appendix B.8 finishes the proof of Theorem B.1.

B.1 Key Properties of the Total Variation Distance

Technical disclaimer. In what follows, we will need that our probability space (Ω,F ) allows for
the equivalence between total variation distance and couplings. One way that this can be guaranteed is
if (a) our space Ω is Polish, i.e., that Ω is metrizable by a metric that makes it complete and separable
and (b) our σ-algebra F is the Borel algebra B(Ω), i.e., the σ-algebra generated by open sets in
Ω [Lin02]. Furthermore, we assume all random variables X : (Ω,F )→ X take values in a Polish
space X . We endow X with the Borel σ-algebra B(X ), and assume that X is measurable from
(Ω,F )→ (X ,B(X )); that is, X−1(E) ∈ F for all E ∈ B(X ). We let ∆(X ) denote the set of all
Borel-measurable distributions on X .
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Randomized Algorithms. Throughout, we often refer to randomized algorithms. Formally, a
family of randomized bandit algorithms alg(θ) is a specified by a distribution Dseed (independent
of θ), a domain Ξ over random seeds ξ, and step-wise mappings f1, . . . , fH from trajectories, the
random seed, and parameters θ to distributions over actions:

fh(τh−1, ξ | θ) : {h-trajectories} × Ξ×Θ→ ∆(A).

Each alg(θ) operates as follows:

• ξ is drawn from Dseed at the start of the episode before interaction.
• At each step h, ah is chosen as ah ∼ fh(τh, ξ | θ), independently of the past

Remark 3 (Sources of Randomness). Note that we allow for two sources of randomness: the draw
of ah from the distribution fh(τh−1, ξ | θ), and the initial random seed ξ at the start of the episode.
For many natural algorithms - such as those Appendix C - we do not need ξ, and can just represent
the randomness via actions selected independently for trajectory-dependent distributions. However,
in some case, it may be desirable for there to be a random seed ξ encoding randomness shared across
stages. Moreover, the assumption that Dseed does not depend on θ is very mild, and can be satisfied
by all families alg(·) which can be run on a single random number generator independent of θ.

Total Variation and its Key Properties. Recall the definition of the total variation distance.
Definition B.1. Let P, P ′ be two probability measures on a space (Ω,F ). Then TV(P ∥ P ′) =
supE |P (E)− P ′(E)| is the maximal difference in probabilities of measurable events E ∈ F .

In our proofs, we make use of the following elementary properties of the total variation distance.
Lemma B.1 (Total Variation Properties). Let P, P ′, P ′′ be any three probability measures of the
same probability space (Ω,F ).

(a) Coupling Form: Let Q be a coupling of P and P ′, i.e. a joint distribution over (X,Y ) such that
its marginal distribution over X is P and its marginal distribution over Y is P ′. Then for any
such coupling Q, we have

TV(P ∥ P ′) ≤ Q(X ̸= Y ).

Moreover, there exists a maximal coupling Q such that

TV(P ∥ P ′) = Q(X ̸= Y ).

(b) Variational Forms: TV(P ∥ P ′) = supE P (E) − P ′(E) (that is, without the absolute value).
Moreover, if E,E′ denote the associated expectations, and letting V quantify [0, 1]-bounded
random variables on (Ω,F ),

TV(P ∥ P ′) = sup{E[V ]− E′[V ] s.t. V : (Ω,F )→ [0, 1]}

(c) Symmetry: TV(P ∥ P ′) = TV(P ′ ∥ P ).
(d) Triangle Inequality:

TV(P ∥ P ′′) ≤ TV(P ∥ P ′) + TV(P ′ ∥ P ′′).

(e) Data Processing: Let (X,Y ) be random variables on (Ω,F ). Then

TV(P (X) ∥ P ′(X)) ≤ TV(P (X,Y ) ∥ P ′(X,Y )).

(f) Tensorization: Let (X1, . . . , Xn) be n random variables on (Ω,F ) which are independent under
both P and P ′. Then,

TV(P (X1, . . . , Xn) ∥ P ′(X1, . . . , Xn)) ≤
n∑

i=1

TV(P (Xi) ∥ P ′(Xi)).

Proof. The coupling and variational forms can be found in [Lin02, Chapter 1]. Symmetry follows
immediately from the definition.

To see the triangle inequality, note that for any measurable E ⊂ Ω, we have

|P (E)− P ′′(E)| ≤ |P (E)− P ′(E)|+ |P ′(E)− P ′′(E)| ≤ TV(P ∥ P ′) + TV(P ′ ∥ P ′′).
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As the above holds for any such E , we can conclude

TV(P ∥ P ′′) ≤ TV(P ∥ P ′) + TV(P ′ ∥ P ′′).

For the data processing inequality, say (X,Y ) follow distribution P and (X ′, Y ′) follow P ′, and let
Q be the maximal coupling of P (X,Y ) and P ′(X,Y ). Then

TV(P (X) ∥ P ′(X)) ≤ Q(X ̸= X ′) ≤ Q((X,Y ) ̸= (X ′, Y ′)) = TV(P (X,Y ) ∥ P ′(X,Y )).

To prove the tensorization inequality, say (X1, . . . , Xn) follow P and (X ′
1, . . . , X

′
n) follow P ′.

For each i, let Qi be the maximal coupling of P (Xi) and P ′(X ′
i), and let Q denote the product

distribution of the Qi’s. Note that Q is a valid coupling of P and P ′, which are each product
distributions. Then we have

TV(P ∥ P ′) ≤ Q(X ̸= X ′) ≤
n∑

i=1

Qi(Xi ̸= X ′
i) =

n∑
i=1

TV(P (Xi) ∥ P ′(X ′
i)).

Lemma B.2 (Total Variation with Shared Marginal). Let P and P ′ be joint distributions over random
variables (X,Y ) such that the marginals P (X) and P ′(X) coincide. Then,

TV(P (X,Y ) ∥ P ′(X,Y )) = EX∼P TV(P (Y | X) ∥ P ′(Y | X)).

Proof. We first show that TV(P (X,Y ) ∥ P ′(X,Y )) ≥ EX∼P TV(P (Y | X) ∥ P ′(Y | X)). To
see this let (Bx)x∈Ω be any set of measurable events indexed by Ω. Letting V (X,Y ) = 1[Y ∈ BX ],
the variational form of total variation distance (Lemma B.1) implies that

E(X,Y )∼P [V (X,Y )]− E(X,Y )∼P ′ [V (X,Y )] ≤ TV(P (X,Y ) ∥ P ′(X,Y )).

On the other hand, because P (X) = P ′(X), we have

E(X,Y )∼P [V (X,Y )]− E(X,Y )∼P ′ [V (X,Y )] = EX∼P [P (Y ∈ BX)− P ′(Y ∈ BX)] .

Since the choice of (Bx)x∈Ω was arbitrary, we can conclude that

TV(P (X,Y ) ∥ P ′(X,Y )) ≥ EX∼P TV(P (Y | X) ∥ P ′(Y | X)).

Now to prove TV(P (X,Y ) ∥ P ′(X,Y )) ≤ EX∼P TV(P (Y | X) ∥ P ′(Y | X)), we construct a
coupling Q((X,Y ), (X ′, Y ′)) of P (X,Y ) and P ′(X,Y ) as follows. First draw X ∼ P (X) and
set X ′ = X . Then let (Y, Y ′) be drawn from the maximal coupling of P (Y | X) and P ′(Y |
X) (guaranteed by Lemma B.1). By construction, this satisfies that Q(X,Y ) = P (X,Y ) and
Q(X ′, Y ′) = P ′(X,Y ). By the coupling inequality (Lemma B.1), we have

TV(P (X,Y ) ∥ P ′(X,Y )) ≤ Q((X,Y ) ̸= (X ′, Y ′)) = EX∼P [TV(P (Y | X) ∥ P ′(Y | X))] .

Lemma B.3 (Total Variation with Shared Conditional). Let P and P ′ be joint distributions over
random variables (X,Y ) such that the conditionals P (Y | X) and P ′(Y | X) coincide. Then,

TV(P (X,Y ) ∥ P (X,Y )) = TV(P (X) ∥ P ′(X)).

Proof. By the data processing property of total variation (Lemma B.1), we know

TV(P (X,Y ) ∥ P (X,Y )) ≥ TV(P (X) ∥ P ′(X)).

To prove the lemma, we need to show that the opposite inequality also holds. To do so, let QX be the
maximal coupling of P (X) and P ′(X), and let Q denote the distribution over ((X,Y ), (X ′, Y ′))
induced by first drawing (X,X ′) from QX and then drawing Y, Y ′ as follows:

• If X = X ′, draw Y ∼ P (Y | X) and set Y ′ = Y .
• Otherwise, draw Y and Y ′ independently from P (Y | X) and P ′(Y ′ | X ′), respectively

It is clear that Q(X,Y ) = P (X,Y ). To show that Q is a valid coupling, it remains to check
that Q(X ′, Y ′) = P ′(X,Y ). Since Q′(X) = P ′(X) by construction, it suffices to check that
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Q(Y | X ′ = x′) = P ′(Y | X = x′) for all x′ in the (almost-sure) support of P (X ′). This follows
since

Q(Y | X ′ = x′, X) =

{
P (Y | X = x′) if X = x′

P ′(Y | X = x′) if X ̸= x′ = P ′(Y | X = x′)

where we use P (Y | X) = P ′(Y | X). Hence, marginalizing over X , Q(Y | X ′) = P ′(Y | X =
x′), as needed. Lastly, observe that our construction of Q ensures Y = Y ′ whenever X = X ′.
Therefore, we conclude

TV(P (X,Y ) ∥ P ′(X,Y )) ≤ Q((X,Y ) ̸= (X ′, Y ′)) = QX(X ̸= X ′) = TV(P (X) ∥ P (X ′)).

Lemma B.4 (Coupled Transport Form). Let P and P ′ be joint distributions over random variables
(X,Y ) with coinciding marginals P (X) = P (X ′) in the first variable. Then there exists a distri-
bution Q(X,Y, Y ′) whose marginals satisfy Q(X,Y ) = P (X,Y ) and Q(X,Y ′) = P ′(X,Y ), and
for which we have

TV(P (X,Y ) ∥ P ′(X,Y )) = Q[Y ̸= Y ′].

Proof. We construct Q(X,Y, Y ′) as follows. First draw X ∼ P (X). Then let (Y, Y ′) be drawn from
the maximal coupling of P (Y | X) and P ′(Y | X) (guaranteed by Lemma B.1). By construction,
this satisfies that Q(X,Y ) = P (X,Y ) and Q(X,Y ′) = P ′(X,Y ). Moreover, one can see that

Q[Y ̸= Y ′] = EX∼P TV(P (Y | X) ∥ P ′(Y | X)) = TV(P (X,Y ) ∥ P ′(X,Y )),

where the first equality follows from the use of the maximal coupling of conditional distributions and
the second equality is Lemma B.2.

B.2 General Sensitivity Bounds: Generalizing Theorem 3.2

In general, we address priors over means which are unbounded. We use the following functional to
control expectation over their upper tails:
Definition B.2 (Upper Tail Expectation). Let X be a nonnegative random variable on a probability
space (Ω,F ) with law P and finite expectation E[X] < ∞. We define its tail expectation, as a
function of probabilities p ∈ (0, 1], as

ΨX(p) :=
1

p
sup
Y

E[XY ]

s.t. Y : (Ω,F )→ [0, 1] and E[Y ] ≤ p.

For p > 1, we extend ΨX(p) = E[X]. Overloading notation, we let Ψθ(p) denote the upper tail
function over diam(µ) when drawn from Pθ:

Ψθ(p) := Ψdiam(µ)(p) where µ ∼ Pθ.

By taking conditional expectations, one can equivalently verify that ΨX(p) := 1
p supf E[Xf(X)] is

the supremal expected correlation between X and f(X), over functions f : [0, 1] → R satisfying
E[f(X)] = p. Intuitively, Ψθ(p) considers large how conditional expectation of 1

p E[Xf(X)] can
be made by concentrating all the mass of f on the upper tail of X . We establish key properties,
estimates, and a closed form for Ψθ(p) in terms of quantiles of X in Appendix B.3.

Given this definition, our general sensitivity bound takes the following form:
Theorem B.1. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N, and let
θ, θ′ ∈ Θ. Setting ε = TV(Pθ ∥ Pθ′), we have that

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε ·Ψθ(2nHϵ),

where Ψθ(·) is the tail expectation defined in Definition B.2.

We specialize upper bounds on the upper tail expectation for priors satsifying the following tail
conditions:

21



Definition B.3 (Tail Conditions). We set µ̄θ := Eθ[µ]. We say that Pθ is

(a) B-bounded if Pθ[diam(µ) ≤ B] = 1.
(b) Coordinate-wise σ2-sub-Gaussian if for all a ∈ A,

Pθ(|µa − µ̄a| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
.

(c) Coordinate-wise (σ2, ν)-sub-Gamma if for all a ∈ A,

Pθ(|µa − µ̄a| ≥ t) ≤ 2max

{
exp

(
− t2

2σ2

)
, exp

(
− t

2ν

)}
.

For priors satisfying the above tail conditions, Theorem B.1 specializes as follows:

Theorem B.2. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N, and let
θ, θ′ ∈ Θ. Setting ε = TV(Pθ ∥ Pθ′), we have the following guarantees.

(a) If Pθ is B-bounded, then |R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2εB.
(b) If Pθ is coordinate-wise σ2-sub-Gaussian and ϵ, then

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε

(
diam(Eθ[µ]) + σ

(
8 + 5

√
log
(

|A|2
min{1,2nHϵ}

)))

(c) If Pθ is coordinate-wise (σ2, ν)-sub-Gamma, then

|R(θ, alg(θ))−R(θ, alg(θ′))|

≤ 2nH2ε

(
diam(Eθ[µ]) + σ

(
8 + 5

√
log
(

|A|2
min{1,2nHϵ}

))
+ ν

(
11 + 7 log

(
|A|2

min{1,2nHϵ}

)))
.

The proof of Theorem B.2 is a direct consequence of Theorem B.1 and the estimates from Lemma B.6
given in Appendix B.4. Note that Theorem 3.2 comprises of the first two statements of Theorem B.2.

B.3 Quantiles, CDFs and Tail Expectations

Recall classical definitions of quantile and CDF:

Definition B.4 (Quantile and CDF). Given a real-valued random variable X with law P , we define
its cumulative distribution function, or CDF, by FX(t) := P [X ≤ t], and the quantile function
qX(p) := inf{t : 1− FX(t) ≤ p}.

With these definitions in place, we expose the essential properties of ΨX(p):

Lemma B.5 (Properties of the Upper Tail expectation). Then upper tail expectation satisfies the
following properties:

(a) Monotonicity: p 7→ ΨX(p) is non-increasing in p, and p 7→ p ·ΨX(p) is non-decreasing.
(b) Dominance Preservation: Let X ′ stochastically dominate X , that is, FX(t) ≥ FX′(t) for all t.

Then, ΨX(p) ≤ ΨX′(p) for all p.
(c) Translation: ΨX(p) ≤ c+Ψmax{X−c, 0}(p) for any constant c > 0.
(d) Closed Form: We have that

ΨX(p) =
1

p
E[Xgp(X)], where

gp(u) := I{u > qX(p)}+ (p− P[X > qX(p)]) I{u = qX(p)}.

In particular, if FX(·) is continuous, then

ΨX(p) =
1

p
E[XI{X ≥ qX(p)}] = E[X | X ≥ qX(p)]
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(e) Useful Estimate: For any α > 0 and p ∈ (0, 1]

ΨX(p) ≤ p− P[X > qp(X)]

p
+

∞∑
i=0

α−iqX(α−i−1p)

In particular, if FX(·) is continuous, then

ΨX(p) ≤
∞∑
i=0

α−iqX(α−i−1p).

Proof. (a) We can rewrite

ΨX(p) := sup
Y

E[XY ]

s.t. Y : (Ω,F )→ [0, 1
p ] and E[Y ] ≤ 1.

(B.1)

Hence, the constraint on Y becomes strictly less restrictive as p decreases, meaning that ΨX(p) is
non-increasing. Similarly, p ·ΨX(p) is the supremum over E[XY ] with Y ∈ [0, 1] and E[Y ] ≤ p,
so the constraint becomes more restrictive as p decays, and thus p 7→ pΨX(p) is non-decreasing.

(b) Stochastic domination implies that one can construct a joint distribution (X,X ′) such that
X ′ ≥ X almost surely (see for example the coupling at the beginning of Section 2.3.1 in
[SWDN09]). This implies that, for any Y ≥ 0 jointly distributed with X via (X,Y ), we can
create a joint distribution (X ′, Y ) such that E[XY ] ≤ E[X ′Y ]. The bound follows.

(c) For any random variable Y ∈ [0, 1] with EY = p, we have 1
p E[XY ] = c+ 1

p E[(X − c)Y ] ≤
c+ 1

p E[max{X − c, 0}Y ] ≤ c+Ψmax{X−c,0}(p).

(d) It is clear from the definition that E[gp(X)] = p and 0 ≤ gp(·) ≤ 1. Hence, E[Xgp(X)] ≤
ΨX(p). To prove the converse, first observe that for any random variable Y , we have

E[XY ] = E[X E[Y | X]].

Since X is non-negative, it suffices to restrict our attention to random variables of the form
Y = f(X) where f : R→ [0, 1] and E[f(X)] = p. We will show that for any such function f , if
we do not have f(X) = gp(X) almost surely, then we must have E[Xf(X)] < E[Xgp(X)]. To
see this, it suffices to show that (i) conditioned on the event X > qX(p), we must have f(X) = 1
almost surely, and (ii) if P[X = qX(p)] > 0, then conditioned on the event X = qX(p), we must
have f(X) = p− P[X = qX(p)] almost surely. As the arguments are symmetrical, we will only
provide the proof of (i).
Suppose that (i) does not hold. Then there exist sets S+ ⊂ (qX(p),∞) and S− ⊂ [0, qX(p)] such
that P (S+), P (S−) > 0, E[f(X) | X ∈ S+] < 1, and E[f(X) | S−] > 0. Define the function
h : R→ [0, 1] satisfying

h(x) =


α+ + (1− α+)f(x) if x ∈ S+

(1− α−)f(x) if x ∈ S−
f(x) otherwise.

where α+ = P (S−)E[f(X) | X ∈ S−] and α− = P (S+)E[1 − f(X) | X ∈ S+]. By
assumption, we have α−, α+ ∈ [0, 1], so that h(x) ∈ [0, 1]. Further, we can calculate

E[h(X)] = E[f(X)1[X ̸∈ S+ ∪ S−]] + E[(α+ + (1− α+)f(X))1[X ∈ S+]]

+ E[(1− α−)f(X)1[X ∈ S−]]

= E[f(X)] + α+P (S+)E[1− f(X) | X ∈ S+] + α−P (S−)E[f(X) | X ∈ S−]

= E[f(X)] = p.
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On the other hand, we can see that

E[Xh(X)]− E[Xf(X)]

= E[f(X)X1[X ̸∈ S+ ∪ S−]] + E[(α+ + (1− α+)f(X))X1[X ∈ S+]]

+ E[(1− α−)f(X)X1[X ∈ S−]]− E[Xf(X)]

= α+P (S+)E[(1− f(X))X | X ∈ S+]− α−P (S−)E[f(X)X | X ∈ S−]

= P (S+)P (S−)E[1− f(X) | X ∈ S+]E[f(X) | X ∈ S−]

·
(
E
[

(1− f(X))X

E[1− f(X) | X ∈ S+]
| X ∈ S+

]
− E

[
f(X)X

E[f(X) | X ∈ S−]
| X ∈ S−

])
> 0.

where the last inequality comes from the fact that

E
[

(1− f(X))X

E[1− f(X) | X ∈ S+]
| X ∈ S+

]
is a convex combination of elements from S+ and

E
[

f(X)X

E[f(X) | X ∈ S−]
| X ∈ S−

]
is a convex combination of elements from S−, and every element in S− is strictly smaller than
every element of S+.

(e) For ϵ > 0, define the sequence of integers ti = ti(ϵ) = 2iϵ+ qp(α
iX). Note that limi→∞ P[X ≤

ti] = 1 for each ϵ. Hence,

Ψp(X) =
1

p
E[Xgp,X(X)]

≤ 1

p
E[Xgp(X)I{X ≤ t0}] +

1

p

∞∑
i=0

E[Xgp(X) · I{ti < X < tt+i}]

≤ 2ϵ+
1

p
qX(p)E[I{X ≤ t0}gp(X)] +

1

p

∞∑
i=0

qp(α
−(i+1)X)P[X > ti]

Since ti > qX(α−ip), we have that P[X > ti] ≤ α−ip. Thus, taking ϵ→ 0,

Ψp(X) ≤ 1

p
qX(p) lim

ϵ→0
E[I{X ≤ t0(ϵ)}gp(X)] +

∞∑
i=0

qX(α−(i+1)X)α−ip.

Finally, we observe that E[I{X ≤ t0(ϵ)}gp(X)] ≤ P[qX(p) < X < qX(p) + ϵ] + E[I{X ≤
qX(p)}gp(X)}. By continuity of probability measures, the first term tends to 0 as ϵ → 0. The
second term is precisely p− P[X > qX(p)]. The first bound follows. Note that for continuous
CDFs, we necessarily have that P[X > qp(X)] = p, yielding the specialization to continuous
CDFs.

B.4 Upper Tail Expectations under Tail Conditions

Each of the conditions in Definition B.3 yields a transparent upper bound on Ψθ(p):
Lemma B.6. Let µ̄θ = Eθ[µ]. Then, for p ∈ [0, 1].

(a) If Pθ is B-bounded, then Ψθ(p) ≤ B for all p.
(b) If Pθ is coordinate-wise σ2-sub-Gaussian and A is finite, then

Ψθ(p) ≤ diam(µ̄θ) + σ(8 + 5
√

log 2|A|
p )

(c) If Pθ is coordinate-wise (σ2, ν)-sub-Gamma and A is finite, then

Ψθ(p) ≤ diam(µ̄θ) + σ(8 + 5
√
log 2|A|

p ) + ν(11 + 7 log 2|A|
p ).

By Definition B.2, the above extend to p ≥ 1 by replacing p← min{1, p}.
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The bounds in parts (b) and (c) may be extended to infinite A via covering arguments.

Proof of Lemma B.6. We prove each part in sequence

(a) Suppose Ψθ is B-bounded. Then, for any random variable Y ∈ [0, 1] with E[Y ] = p, we have
1
p E[diam(µ)Y ] ≤ 1

pB E[Y ] = B. Hence, Ψθ(p) ≤ B.

(b) Define the random variable X = max{0,diam(µ) − diam(Eθ[µ])}. By Lemma B.5 part (c),
we have

Ψθ(p) ≤ diam(Eθ[µ]) + ΨX(p).

Further, observe that

X = max{0,diam(µ)− diam(Eθ[µ])} ≤ 2max
a∈A
|µa − Eθ[µa]|. (B.2)

By a union bound over all a ∈ A, the sub-Gaussian tail implies

FX(t) = Pθ[X ≤ t] ≤ FX′(t), where FX′(t) := 1−

{
1 t ≤ 0

min
{
1, 2|A|e−

t2

8σ2

}
t > 0,

where above e−
t2

8σ2 = e−
(t/2)2

2σ2 accounts for the factor of 2 in Equation (B.2), and minimum with
1 accounts for boundedness of probabilities.
Note that FX′(t) is continuous and is a valid CDF of a random variable, say X ′, which stochasti-
cally dominates X (that is, FX(t) ≤ FX′(t) for all t). Hence, Lemma B.5 part (b) implies that
ΨX(p) ≤ ΨX′(p). Moreover, we can compute that the quantile function of X ′ is

qX′(p) = 2

√
2σ2 log

2|A|
p

.

Hence, by continuity of X ′, Lemma B.5 part (e) implies

ΨX′(p) ≤ 2

∞∑
i=0

e−iqX′(e−i−1p)

≤ 2

∞∑
i=0

e−i

√
2σ2 log

2|A|
ei+1p

≤ 2

(
1− 1

e

)−1
√
2σ2 log

2|A|
p

+ 2
√
2σ2

∞∑
i=0

√
(i+ 1)︸ ︷︷ ︸
≤i+1

e−i

≤ 2

(
1− 1

e

)−1
√
2σ2 log

2|A|
p

+ 2
√
2σ2

(
1− 1

e

)−2

≤ σ

(
8 + 5

√
log

2|A|
p

)
.

(c) The proof is analogous, except now we use the bound

qX′(p) ≤ 2

√
2σ2 log

2|A|
p

+ 4ν log
2|A|
p

.

After some computation, this yields

ΨX′(p) ≤ 2(1− 1

e
)−1

√
2σ2 log

2|A|
p

+ 2
√
2σ2

(
1− 1

e

)−2

+ 4

(
1− 1

e

)−1

ν log
2|A|
p

+ 4ν

(
1− 1

e

)−2

≤ σ(8 + 5
√
log 2|A|

p ) + ν(11 + 7 log 2|A|
p ).
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B.5 A warmup to Proposition 3.4

To illustrate the concepts involved in the proof, we will directly analyze Thompson sampling in the
case of Gaussian priors and Gaussian rewards. Specifically, we will assume that the prior distributions
are of the formN (θ, I|A|) and the reward distributions are of the formN (µ, σ2), where σ2 is known,
in which case we can show the (slightly tighter) bound of

TV(Pθ,TS(θ)(µ, τH) ∥ Pθ,TS(θ′)(µ, τH)) ≤ H ·
∑
a∈A

TV(N (θa, 1) ∥ N (θ′a, 1)). (B.3)

We construct a coupling of Pθ,TS(θ)(µ, τH) and Pθ,TS(θ′)(µ, τH) inductively, using the notation that
µ, τH marginally is distributed according to Pθ,TS(θ)(µ, τH) and µ′, τ′H is marginally distributed
according to Pθ,TS(θ′)(µ, τH). The construction is as follows.

• First, draw µ ∼ Pθ and set µ′ = µ.
• For h = 1, 2, . . . ,H:

– If τh−1 = τ′h−1:

* Let µ̂h, µ̂
′
h be drawn from the maximal coupling of the posteriors Pθ(µ | τh) and Pθ′(µ |

τ′h).

* Play actions ah = argmaxa µ̂h,a and a′h = argmaxa µ̂
′
h,a.

* Draw rh ∼ N (µah
, σ2). If ah = a′h, set r′h = rh. Otherwise, draw r′h ∼ N (µa′

h
, σ2).

– Otherwise: run TS(θ) and TS(θ′) independently.

It is not too hard to see that this produces a valid coupling as the marginals are respected throughout
the construction. Letting Q denote the joint measure of this coupling, we have
TV(Pθ,TS(θ)(µ, τH) ∥ Pθ,TS(θ′)(µ, τH)) ≤ Q((µ, τH) ̸= (µ′, τ′H))

≤ Q(µ ̸= µ′) +Q(τH ̸= τ′H | µ = µ′)

≤ Q(µ ̸= µ′) +

H∑
h=1

Q((ah, rh) ̸= (a′h, r
′
h) | µ = µ′, τh−1 = τ′h−1)

≤
H∑

h=1

Q(µ̂h ̸= µ̂′
h | µ = µ′, τh−1 = τ′h−1).

Here, the first inequality follows from Lemma B.1 and the last inequality comes from the particular
construction of the coupling Q. We now turn to bounding this last quantity. We will require two
lemmas. The first of these gives the form of the posterior distributions in this setting.
Lemma B.7 ([Mur12]). Let θ ∈ R. Consider the generative model where µ ∼ N (θ, 1) and
x1, . . . , xn ∼ N (µ, σ2). Then the posterior distribution of µ given x1, . . . , xn is N (θn, σ

2
n) where

θn = θ · σ2

σ2 + n
+ x̄n ·

n

σ2 + n

σ2
n =

σ2

σ2 + n

and x̄n is the empirical mean of x1, . . . , xn.

Lemma B.7 implies that for any fixed trajectory τh, the posterior Pθ(µ | τh) is N (θh,Σh)

θh,a = θ · σ2

σ2 + nh,a
+ r̄h,a ·

nh,a

σ2 + nh,a

and Σh is a diagonal matrix satisfying

Σh,a,a =
σ2

σ2 + nh,a
.

Here we have used the convention that nh,a is the number of times that arm a has been pulled at time
h and r̄h,a is the mean of the observed rewards for arm a at time h.

The next lemma quantifies the total variation distance between two Gaussians that share the same
covariance matrix.
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Lemma B.8. Let θ, θ′ ∈ Rd and let Σ ∈ Rd×d be symmetric positive definite. The total variation
distance between normal distributions N (θ,Σ) and N (θ′,Σ) is exactly 2Φ

(
∥Σ−1/2(θ−θ′)∥

2

)
− 1,

where Φ(·) is the c.d.f. for the standard normal distribution.

Proof. Let νθ andνθ′ denote the measures of N (θ,Σ) and N (θ′,Σ), respectively. Similarly, let
qθ and qθ′ denote their respective densities. It is not too hard to see that when the measures
admit densities the variational form of total variation distance in Lemma B.1 is attained at the set
E = {x ∈ Rd : qθ(x) ≥ qθ′(x)}, i.e. we have

TV(νθ ∥ νθ′) = νθ(E)− νθ′(E).
By expanding the densities qθ and qθ′ , we have

E =

{
x ∈ Rd : x⊤Σ−1(θ − θ′) ≥ 1

2

(
θ⊤Σ−1θ − θ′⊤Σ−1θ′

)}
.

Observe that for X ∼ N (θ,Σ), we have X⊤Σ−1(θ − θ′) is distributed as N (θ⊤Σ−1(θ − θ′), σ2),
where σ2 = (θ − θ′)⊤Σ−1(θ − θ′). Thus, we can calculate

νθ(E) = PZ∼N (θ⊤Σ−1(θ−θ′),σ2)

(
Z ≥ 1

2

(
θ⊤Σ−1θ − θ′⊤Σ−1θ′

))
= 1− Φ

(
− 1

2θ
⊤Σ−1 − 1

2θ
′⊤Σ−1θ′ + θ⊤Σ−1θ′

σ

)
= 1− Φ

(
−σ

2

)
= Φ

(σ
2

)
.

Similar calculations show that
νθ′(E) = 1− Φ

(σ
2

)
.

Putting it all together gives us the lemma statement.

These two lemmas together show that, regardless of the trajectories, the total variation distance of the
posterior distributions Pθ(µ | τh) and Pθ′(µ | τh) is contracting:

TV(Pθ(µ | τh) ∥ Pθ′(µ | τh)) = TV(N (θh,Σh) ∥ N (θ′h,Σh))

= 2Φ

(
∥Σ−1/2

h (θh − θ′h)∥
2

)
− 1

= 2Φ

1

2

(∑
a∈A

σ2 + nh,a

σ2
(θ · σ2

σ2 + nh,a
− θ′ · σ2

σ2 + nh,a
)2

)1/2
− 1

≤ 2Φ

(
∥θ − θ′∥

2

)
− 1

= TV(N (θ, IA) ∥ N (θ′h, IA))

where the inequality uses the fact that nh,a is non-negative. Putting it all together, we have

TV(Pθ,TS(θ)(µ, τH) ∥ Pθ,TS(θ′)(µ, τH)) ≤
H∑

h=1

Q(µ̂h ̸= µ̂′
h | µ = µ′, τh−1 = τ′h−1)

≤
H∑

h=1

TV(Pθ(µ | τh) ∥ Pθ′(µ | τh))

≤
H∑

h=1

TV(N (θ, IA) ∥ N (θ′h, IA))

= H · TV(N (θ, IA) ∥ N (θ′h, IA))

where the second inequality makes use of Lemma B.1.
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B.6 Proof of Proposition 3.4

To prove Proposition 3.4, we first decompose the total variation across steps h via an analogue of the
performance difference lemma.

Lemma B.9. For any two algorithms alg, alg′, it holds that

TV(Pθ,alg(µ, τH) ∥ Pθ,alg′(µ, τH)) ≤
H∑

h=1

E
τh−1∼Pθ,alg

[
TV(Palg(ah | τh−1) ∥ Palg′(ah | τh−1))

]
,

where on the right hand side, we consider the total variation distance between the conditional
distribution of ah under alg, alg′ given τh−1 and take expectation over τh−1 under Pθ,alg.

Proof Sketch. Using the variational characterization of total variation, we represent the total variation
between the two measures as the supremum of differences in rewards under two Markov reward
process induced by Pθ,alg(µ, τH) and Pθ,alg′(µ, τH). The decomposition then follows from a careful
application of the performance difference lemma. See Appendix B.7 for the full proof.

In the second stage of the proof, we apply the following rather general lemma.

Lemma B.10 (Fundamental De-conditioning Lemma). Let Q and Q′ be two measures on a pair of
random variables (X,Y ) such that the conditionals of X given Y coincide: Q(X | Y ) = Q′(X | Y )
almost surely. Then,

EX∼Q TV(Q(Y | X) ∥ Q′(Y | X)) ≤ 2TV(Q(Y ) ∥ Q′(Y )).

Proof of Lemma B.10. We first review the essential properties of total variation used in the proof; we
then turn to applying said properties to establish the lemma.

Properties of Total Variation. Let P and P ′ over jointly distributed random variables (X,Y ).
First, if the marginals under X coincide, then their total variation can be expressed as the expected
total variation between the conditions Y | X; that is,

if P (X) = P ′(X), then TV(P (X,Y ) ∥ P ′(X,Y )) = EX∼P TV(P (Y | X) ∥ P ′(Y | X)).
(B.4)

On the other hand, if their conditionals of Y | X coincide, then we have the following simplification:

if P (Y | X) = P ′(Y | X), then TV(P (X,Y ) ∥ P ′(X,Y )) = TV(P (X) ∥ P ′(X)). (B.5)

Equation (B.4) is established in Lemma B.2, and Equation (B.5) in Lemma B.3. We shall also use that
the total variation satisfies the triangle inequality (TV(P ∥ P ′) ≤ TV(P ∥ P ′′) + TV(P ′ ∥ P ′′))
and the data-processing inequality (TV(P (X) ∥ P ′(X)) ≤ TV(P (X,Y ) ∥ P (X,Y ))), stated
formally and proven in Lemma B.1.

Main proof. We introduce an interpolating law Q→ such that Q→(X) = Q(X) and Q→(Y |
X) = Q′(Y | X). Then

EX∼Q TV(Q(Y | X) ∥ Q′(Y | X)) = EX∼Q TV(Q(Y | X) ∥ Q→(Y | X))

(i)
= TV(Q(X,Y ) ∥ Q→(X,Y ))

(ii)

≤ TV(Q→(X,Y ) ∥ Q′(X,Y ))︸ ︷︷ ︸
(a)

+TV(Q(X,Y ) ∥ Q′(X,Y ))︸ ︷︷ ︸
(b)

,

where equality (i) uses (B.4) given the fact that Q(X) = Q→(X), and where (ii) applies the triangle
inequality. This leaves us with two terms, (a) and (b). First we upper bound term (a) by term (b):

TV(Q→(X,Y ) ∥ Q′(X,Y )) = TV(Q→(X) ∥ Q′(X))

= TV(Q(X) ∥ Q′(X)) ≤ TV(Q(X,Y ) ∥ Q′(X,Y )) =: (b).
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Above, the first equality uses Q→(Y | X) = Q′(Y | X) to invoke (B.5), the second the fact that
Q→(X) = Q(X), and the final equality applies the data-processing inequality described above.
Hence,

EX∼Q TV(Q(Y | X) ∥ Q′(Y | X)) ≤ 2TV(Q(X,Y ) ∥ Q′(X,Y )).

Finally, since Q(X | Y ) = Q′(X | Y ), Equation (B.5) entails that TV(Q(X,Y ) ∥ Q′(X,Y )) =
TV(Q(Y ) ∥ Q′(Y )).

Using our shorthand PH = Pθ,alg(θ)(µ, τH) and P ′
H = Pθ,alg(θ′)(µ, τH), we can finish the proof of

Proposition 3.4 as follows:

TV(PH ∥ P ′
H)

(i)

≤
H∑

h=1

E
τh−1∼Pθ,alg(θ)

[
TV(Palg(θ)(ah | τh−1) ∥ Palg(θ′)(ah | τh−1))

]
(ii)

≤ n

H∑
h=1

E
τh−1∼Pθ,alg(θ)

[TV(Pθ(µ | τh−1) ∥ Pθ′(µ | τh−1))]

(iii)
= n

H∑
h=1

E
τh−1∼Pθ,alg(θ)

[
TV(Pθ,alg(θ)(µ | τh−1) ∥ Pθ′,alg(θ)(µ | τh−1))

]
(iv)

≤ 2n

H∑
h=1

TV(Pθ(µ) ∥ Pθ′(µ)) = 2nH · TV(Pθ(µ) ∥ Pθ′(µ)).

Here, (i) follows from Lemma B.9, (ii) is the definition of n-Monte Carlo, (iii) follows from the
observation that the conditional distribution of µ given τh−1 does not depend on the algorithm
that helped generate τh−1, and (iv) follows from Lemma B.10, where we have used the fact that
Pθ,alg(θ)(τh−1 | µ) = Pθ′,alg(θ)(τh−1 | µ), i.e. the conditional distribution of the trajectories does
not depend on the prior when conditioning on the true mean µ.

B.7 Proof of Lemma B.9

In the interest of generalizing our results to POMDPs (Appendix E), we will prove Lemma B.9 by
establishing a nearly identical lemma which makes explicit the exact properties of the trajectors τh
needed for Lemma B.9 to hold:

Lemma B.11. Let P, P ′ be two laws over abstract random variables µ, τ1, . . . , τH and a1, . . . , aH
such that the following properties hold:

1. τh−1 is a deterministic function of τh.
2. The conditional distributions of τh given ah, τh−1 and µ are the same: P ′(τh | ah, τh−1,µ) =

P (τh | ah, τh−1,µ)

3. Under both P and P ′, ah is independent of µ given τh−1.

Then, the following inequality holds:

TV(P (µ, τH) ∥ P ′(µ, τH)) ≤
H∑

h=1

E
τh−1∼P

[TV(P (ah | τh−1) ∥ P ′(ah | τh−1))] .

Immediately, Lemma B.9 is obtained by taking P = Pθ,alg and P ′ = Pθ,alg′ :

1. Condition 1 is clear.
2. Condition 2 holds because the only part of τh not determined by (ah, τh−1,µ) is the reward rh,

and under both Pθ,alg and P ′
θ,alg, rh ∼ D(µ)

∣∣
ah

is drawn from the same conditional distribution.
3. For Condition 3, first suppose there is no random seed ξ. Then Condition 3 holds because the

distribution of ah ∼ fh(· | τh−1) is just a function of τh−1. If there is a random seed, then letting

29



P = Pθ,alg, we have
P (ah,µ | τh−1) = E [E [P (ah,µ | τh−1, ξ) | ξ] | τh−1]

= E [E [fh(ah | τh−1, ξ)P (µ | τh−1, ξ) | ξ] | τh−1]

= E [E [fh(ah | τh−1, ξ) | ξ]P (µ | τh−1) | τh−1]

= P (ah | τh−1)P (µ | τh−1)

where the second equality follows from the fact that ah ∼ fh(· | ξ, τh−1) and the third line
follows from the fact that µ is independent of ξ conditioned on τh−1. The same argument holds
symmetrically for P ′ = Pθ,alg′ . Thus, Condition 3 holds regardless of whether or not there is a
random seed.

Proof of Lemma B.11. For brevity, we define augmented trajectories containing the (unknown) mean
parameter τ̄h = (µ, τh) for h = 1, 2, . . . ,H . We further define E and E′ to be the expectations
under P and P ′, respectively. Fix any event E in the σ-algebra generated by τ̄H ; the total variation

TV(P (τ̄H) ∥ P ′(τ̄H)) = sup
E

P [τ̄H ∈ E ]− P ′[τ̄H ∈ E ]

can be expressed as the supremal difference over such events (Lemma B.1). We can then view this
difference as the difference in rewards between two time-inhomogeneous Markov reward processes,
with states τ̄h at step h (note that the Markov property is trivially satisfied because τh−1 is assumed
to be deterministic function of τh by assumption), with identical rewards: at step H the reward is
rH(τ̄H) = I{τ̄H ∈ E}, and steps h < H , the reward is zero. Let V ′

h(·) denote the value function of
step h under the P ′ reward process, the performance difference lemma [Kak03] then yields

P [τ̄H ∈ E ]− P ′[τ̄H ∈ E ] =
H∑

h=1

E
τ̄h−1∼P

[E[V ′
h(τ̄h) | τ̄h−1]− E′[V ′

h(τ̄h) | τ̄h−1]] . (B.6)

Since the total reward collected is at most 1 and no less than 0, V ′
h(·) ∈ [0, 1]. Hence, by the

variational characterization of total variation (Lemma B.1),
E[V ′

h(τ̄h) | τ̄h−1]− E′[V ′
h(τ̄h) | τ̄h−1] ≤ TV(P (τ̄h | τ̄h−1) ∥ P ′(τ̄h | τ̄h−1))

To conclude, it suffices to verify the inequality
TV(P (τ̄h | τ̄h−1) ∥ P ′(τ̄h | τ̄h−1)) ≤ TV(P (ah | τh−1) ∥ P ′(ah | τh−1)). (B.7)

To verify (B.7), let us fix a step h and realization of τ̄h−1, and set Q = P (· | τ̄h−1) and Q′ = P ′(· |
τ̄h−1). Further, applying the data-processing inequality (Lemma B.1) followed by Lemma B.3 with
X = ah and Y = τ̄h gives that TV(Q(Y ) ∥ Q′(Y )) ≤ TV(Q(X,Y ) ∥ Q′(X,Y )) = TV(Q(X) ∥
Q(X)). Undoing the notational subsitutions, we have shown

TV(P (τ̄h | τ̄h−1) ∥ P ′(τ̄h | τ̄h−1)) ≤ TV(P (ah | τ̄h−1) ∥ P ′(ah | τ̄h−1)).

Finally, we have
E

τ̄h−1∼P
TV(P (ah | τ̄h−1) ∥ P ′(ah | τ̄h−1)) = E

(µ,τh−1)∼P
TV(P (ah | µ, τh−1) ∥ P ′(ah | µ, τh−1))

= E
(µ,τh−1)∼P

TV(P (ah | τh−1) ∥ P ′(ah | τh−1))

= E
τh−1∼P

TV(P (ah | τh−1) ∥ P ′(ah | τh−1)),

where the first equality follows from the definition of τ̄h−1 = (µ, τh−1), the second equality follows
from the assumption that ah is independent of µ given τh−1, and the third equality follows from
marginalization.

Concluding, we have shown that

P [τ̄H ∈ E ]− P ′[τ̄H ∈ E ] ≤
H∑

h=1

E
τh−1∼P

TV(P (ah | τh−1) ∥ P (ah | τh−1)) (B.8)

By the definition of total variation, TV(P (τ̄H) ∥ P ′(τ̄H)) is the supremum of the left-hand side over
events E (Definition B.1), and we have defined τ̄H = (µ, τH). Thus,

TV(P (µ, τH) ∥ P ′(µ, τH)) ≤
H∑

h=1

E
τh−1∼P

TV(P (ah | τh−1) ∥ P ′(ah | τh−1)).

30



B.8 Proof of Theorem B.1

We now turn to the proof of Theorem B.1. Recall the statement of the theorem.

Theorem B.1. Let alg(·) be an n-Monte Carlo family of algorithms on horizon H ∈ N, and let
θ, θ′ ∈ Θ. Then, setting ε = TV(Pθ ∥ Pθ′),

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε ·Ψθ(2nHε).

Proposition 3.4 states that

TV(PH ∥ P ′
H) ≤ 2nH · TV(Pθ ∥ Pθ′),

where PH = Pθ,alg(θ)(µ, τH) and P ′
H = Pθ,alg(θ′)(µ, τH). Thus, Theorem B.1 is a direct conse-

quence of Proposition 3.4, monotonicty of p 7→ p ·Ψθ(p) (Lemma B.5) and the following lemma.
Lemma B.12. Given two algorithms alg and alg′ and ground truth parameter θ, let δ = TV(PH ∥
P ′
H), where again PH = Pθ,alg(µ, τH) and P ′

H = Pθ,alg′(µ, τH) denote the marginals over induced
trajectories and means. Then,

|R(θ, alg)−R(θ, alg′)| ≤ H · δ ·Ψθ(δ).

Proof. Recall that

R(θ, alg)−R(θ, alg′) = Eθ,alg

[
H∑

h=1

µah

]
− Eθ,alg′

[
H∑

h=1

µah

]
To bound this difference, we place all random variables on the same probability space. Adopt the
shorthand PH = Pθ,alg(µ, τH) and P ′

H = Pθ,alg′(µ, τH). Since PH(µ) = P ′
H(µ), Lemma B.4

ensures the existence of a coupling Q(µ, τH , τ′H) such that

Q(µ, τH) = PH , Q(µ, τ′H) = P ′
H , Q[τH ̸= τ′H ] = TV(PH ∥ P ′

H) = δ. (B.9)

Letting EQ denote expectations under this coupling, and a′h the actions within τ′H , we then have

R(θ, alg)−R(θ, alg′) = EQ

[
H∑

h=1

µah
− µa′

h

]

≤ EQ

[
H∑

h=1

diam(µ)I{ah ̸= a′h}

]
≤ HEQ[diam(µ)I{τH ̸= τ′H}].

Note that I{τH ̸= τ′H} ∈ [0, 1] and, by construction of the coupling Q, EQ[I{τH ̸= τ′H}] = δ.
Hence, by the definition of the tail expectation, EQ[diam(µ)I{τH ̸= τ′H}] ≤ δΨθ(δ). The bound
follows.
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C Specification of Monte Carlo Algorithms

In this appendix, we elaborate upon various examples of algorithms satisfying the n-Monte Carlo
property.

k-Shot Thompson Sampling. The first is a natural generalization of Thompson Sampling, where
one draws not one but k ∈ N mean vectors µ̃(i) from the posterior at each step h, and selects the action
for which one of the k draws attains the highest observed realization: ah ∈ argmaxa maxi µ̃

(i)
a . See

Algorithm 1.

Algorithm 1 k-Shot Thompson Sampling (k-TS(θ))
1: Input: Prior θ, sample size k ∈ N
2: for h = 1, . . . ,H do

// action selection at step h
3: Sample µ̃(1), . . . , µ̃(k) independently from the posterior Pθ[· | τh−1]

4: Select action ah ∈ argmaxa max{µ̃(1)
a , . . . , µ̃

(k)
a }.

We show that k-TS(θ) is k-Monte Carlo.
Lemma C.1. For every k ≥ 1, k-TS(·) is k-Monte Carlo. In particular, TS(·) is 1-Monte Carlo.

Generalized Posterior Sampling. Lemma C.1 follows from an analysis of a more general recipe for
n-Monte Carlo algorithms. Algorithm 2 describes describe a family of posterior sampling algorithms
(k, f1:H)-PosteriorSample(θ), parameterized by prior θ and determined by a sample size k ∈ N
and functions f1, . . . , fH : RA×n from RA×k to probability distribution ∆A over actions. At each
step h, k means µ̃(1), . . . , µ̃(k) are sampled from the posterior, and an action ah is drawn from the
probability distribution fh(· | µ̃(i), . . . , µ̃(k)) induced by evaluating fh on the sampled means.

Algorithm 2 (k, f1:H)-Posterior Sampling ((k, f1:H)-PosteriorSample(θ))

1: Input: Prior θ, sample size k ∈ N, functions f1, . . . , fH : RA×k → ∆A.
2: for h = 1, . . . ,H do

// action selection at step h
3: Sample µ̃(1), . . . , µ̃(k) independently from the posterior Pθ[· | τh−1]
4: Select action ah ∼ fh(· | µ̃(1), . . . , µ̃(k)).

Note that k-TS(θ) corresponds to the special case where fh = f is constant across h, and places a
dirac mass on the action for which maxi µ̃

(i)
a is largest (with a suitable tie-breaking rule). In particular,

TS(θ) is a special case of (k, f1:H)-PosteriorSample(θ) with k = 1. Other algorithms in the family
include the rule which selects the arm with largest sample average/sum ah ∈

∑
i µ̃

(i)
a , or a policy

which selects ah according to a softmax distribution on the sums
∑

i µ̃
(i)
a .

The following lemma shows that, regardless of the functions f1, . . . , fH ,
(k, f1:H)-PosteriorSample(θ) is k-Monte Carlo. Note that Lemma C.1 follows as a special
case.
Lemma C.2. For any k ∈ N and f1, . . . , fH : RA×k → ∆A, the family of Bayesian algorithms
given by (k, f1:H)-PosteriorSample(·) is k-Monte Carlo.

The proof of Lemma C.2 is quite intuitive, and is given in Appendix C.1.

Receding Horizon Control. Some Bayesian bandit algorithms do not exactly satisfy the conditions
of Lemma C.2 but are nonetheless n-Monte Carlo. As an example, we consider a sampling-based
implementation of two-stage receding horizon control, 2-RHC(θ), detailed Algorithm 3. 2-RHC(θ)
selects an action a which maximizes Va, which can be thought of as a discounted two-step value
function, balancing (a) selection of actions with large posterior means and (b) selection of actions
that are sufficiently informative such that the best action for “look-ahead” means sampled from the
next stage yield large reward. This balance is controlled by a discount parameter α ∈ [0, 1].
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Algorithm 3 Two-Step Receding Horizon Control (2-RHC(θ))
1: Input: Prior θ, discount parameter α ∈ [0, 1], sample sizes k1, k2 ∈ N.
2: for h = 1, . . . ,H do

// action selection at step h
3: for actions a ∈ A and i = 1, . . . , k1 do
4: Sample mean µ̃(a,i) ∼ Pθ[· | τh−1]
5: Sample reward vector r̃(a,i) ∼ D(µ̃(a,i))
6: for j = 1, 2, . . . , k2 do
7: Sample “look-ahead” means µ̂(a,i,j) ∼ Pθ[∈ · | τh−1 and {rh+1,a = r̃

(a,i)
a }]

8: Select action ah ∈ argmaxa Va,h, where

Va :=

k1∑
i=1

(1− α)µ̃(a,i)
a + α

max
a′

1

k2

k2∑
j=1

µ̂
(a,i,j)
a′

 . (C.1)

At the one extreme α = 0, 2-RHC(θ) has no look-ahead, and is a special case of (k, f1:H)-Posterior
Sampling with k = |A|k1. At the other extreme α = 1, 2-RHC(θ) disregards means sampled from
the posterior, and only evaluates actions a by how informative they are about the look-ahead means.
This latter case, α = 1, in fact gives a Monte Carlo approximation of the classical knowledge gradient
algorithm [RPF12]. The following lemma verifies the Monte Carlo property for all choices of α.

Lemma C.3. 2-RHC(·) with budgets k1, k2 and finite action set is n-Monte Carlo for n = |A| · k1 ·
(2k2 + 3), regardless of discount α ∈ [0, 1].

The proof of the above lemma is provided in Appendix C.2.

C.1 Proof of Lemma C.2.

Lemma B.1 guarantees the existence of a maximal coupling Q(µ,µ′) between P := Pθ(µ | τh−1)
and P ′ := Pθ′(µ | τh−1); that is, a joint law over (µ,µ′) with marginals µ ∼ P and µ′ ∼ P ′,
and for which P(µ,µ′)∼Q[µ ̸= µ′] = TV(P ∥ P ′). Using Q, we construct a coupling Q̄ of
Palg(θ)(ah | τh−1) and Palg(θ′)(ah | τh−1):

• Draw (µ1,µ
′
1), . . . , (µn,µ

′
n) i.i.d. from Q.

• If µ1 = µ′
1, . . . ,µn = µ′

n, then draw ah ∼ fh(· | µ1, . . . ,µn) and let a′h = ah.
• Otherwise, let ah ∼ fh(· | µ1, . . . ,µn) and a′h ∼ fh(· | µ′

1, . . . ,µ
′
n) independently.

It is easily verified that this defines a valid coupling of Palg(θ)(ah | τh−1) and Palg(θ′)(ah | τh−1).
Hence, Lemma B.1 ensures that

TV(Palg(θ′)(ah | τh−1) ∥ Palg(θ′)(ah | τh−1)) ≤ Q̄(ah ̸= a′h).

Continuing, we conclude

Q̄(ah ̸= a′h) ≤ P(∃i : µi ̸= µ′
i) ≤

n∑
i=1

Q(µi ̸= µ′
i) = n · TV(Pθ(µ | τh−1) ∥ Pθ′(µ | τh−1)).

Thus, alg(θ) is n-Monte Carlo.

C.2 Monte Carlo Property of 2-RHC (Lemma C.3)

Let us briefly recall the specified of 2-RHC (Algorithm 3); we include an explicit dependence on
horizon to avoid confusion. At each step h, we

• Sample means µ̃(a,i)
h ∼ Pθ[· | τh−1] for each a ∈ A and i ∈ [k1]

• For each such (a, i), we samplea reward vector r̃(a,i)h ∼ D(µ̃(a,i))
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• For each (a, i) and j ∈ [k2], we sample “look-ahead” means µ̂
(a,i,j)
h ∼ Pθ[∈ · |

τh−1 and {rh+1,a = r̃
(a,i)
a }]

• The action selected is a deterministic function of the vector (µ̃(a,i)
h , µ̂

(a,i,j)
h )a∈A,i∈[k1],j∈[k2].

Continuing, fix a step h ∈ N, and introduce the shorthand

Zh,a,i := (µ̃(a,i), (µ̂(a,i,j))j∈[k2]), and Zh = (Zh,a,i)a∈A,i∈[k1].

The 2-RHC decision rule is then a deterministic function of Zh, so it suffices to bound

TV(Palg(θ)(Zh | τh−1) ∥ Palg(θ′)(Zh | τh−1)).

Moreover, given τh−1, Zh,a,i are independent across a ∈ A and i ∈ [k1]. Thus, by the tensorization
property of total variation (Lemma B.1),

TV(Palg(θ)(Zh | τh−1) ∥ Palg(θ′)(Z | τh−1))

≤
∑
a∈A

∑
i∈[k1]

TV(Palg(θ)(Zh,a,i | τh−1) ∥ Palg(θ′)(Zh,a,i | τh−1)). (C.2)

We now decouple the summands above by appealing to the following property:
Claim 1. For the given h ∈ [H], fix a ∈ A and i ∈ [k1], and introduce the short hand

X0 = µ̃
(a,i)
h , Xj = µ̂

(a,i,j)
h , j ∈ [k1], and Y = r̃

(a,i)
h,a ,

where all random variables above are those simulated by 2-RHC at step h. Then,

(a) Under Palg(θ)(· | τh−1, Y ) (and similarly under θ′), (X0, X1, . . . , Xk2) are independent and
identically distributed.

(b) The distributions Palg(θ)(Y | τh−1, X0) and Palg(θ′)(Y | τh−1, X0) are identical.

Proof. Let us start with point (b). Recall that r̃(a,i)a denotes the action-a entry of r̃(a,i), which is
drawn from the distribution D(µ̃(a,i)), regardless of the parameter θ. Hence, given X0 = µ̃(a,i), the
distribution of Y is identical under alg(θ) and alg(θ′).

Let us turn to part (a). We focus on Pθ, as the argument for Pθ′ is identical. We notice that under a
given θ,

Pθ(µ̃
(a,i)
h | τh−1, r̃

(a,i)
h,a = r) = Pθ(µ | τh−1, rh,a = r);

in words, the posterior of the simulated mean µ̃(a,i) given simulated reward r̃
(a,i)
a is equal to the

posterior of the true mean given that the reward rh,a. This is because

(a) Pθ(µ̃
(a,i)
h | τh−1) = Pθ(µ | τh−1) (that is, µ̃(a,i) is drawn from the true posterior given τh−1)

(b) The condition distribution of r̃(a,i)a | µ̃(a,i), τh−1 is equal to the condition distribution of rh,a |
µ, τh−1. Note that conditioning on the trajectory is immaterial to the draw of these reward, and
both are given by the restriction of the reward distribution D to entry a ∈ A.

Moreover definition of the 2-RHC procedure,

Pθ(µ̂
(a,i,j) | τh−1, r̃

(a,i)
h,a = r) := Pθ(µ | τh−1, rh,a = r)

for all i ∈ [k2] as well. Hence, Pθ(Xi | Y ) are identically distributed.

To conclude part (a), we must verify independence. This holds since X1, . . . , Xk2
are i.i.d. draws

from Pθ(· | τh−1, (ah, rh) = (a, Y )), regardless of the realization of X0. Hence, X1, . . . , Xk2
are

conditionally independent of each other, and of X0, given Y, τh−1.

The next lemma lets us put the two properties in Claim 1 to use:
Lemma C.4. Let P and P ′ be two probability distributions over random variables
(Y,X0, X1, . . . , Xk) such that
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(a) X0:k | Y are independent and identically distributed under both P and P ′

(b) The conditionals P (Y | X0) = P ′(Y | X0) are the same.

Then, TV(P (X0:k) ∥ P ′(X0:k)) ≤ (2k + 3)TV(P (X0) ∥ P ′(X0)).

Before we prove Lemma C.4, we show how it implies Lemma C.3. Fix indices a ∈ A and i ∈ [k1].
Recall the random variables (X0:k2 , Y ) defined in Claim 1, and note that Za,i is precisely given by
X0:k2 ; that is,
TV(Palg(θ)(Za,i | τh−1) ∥ Palg(θ′)(Za,i | τh−1)) = TV(Palg(θ)(X0:k2 | τh−1) ∥ Palg(θ′)(X0:k2 | τh−1)).

Claim 1 further ensures that, under the history-conditioned laws P ← Pθ(· | τh−1) and P ′ ← Pθ(· |
τh−1), X0:k2 satisfy the conditions of Lemma C.4. This implies that

TV(Palg(θ)(X0:k2
| τh−1) ∥ Palg(θ′)(X0:k2

| τh−1))

≤ (2k2 + 3)TV(Palg(θ)(X0 | τh−1) ∥ Palg(θ′)(X0 | τh−1)).

Finally, by construction, X0 = µ̃(a,i) is drawn from Pθ(µ | τh−1). Hence, we conclude
TV(Palg(θ)(Za,i | τh−1) ∥ Palg(θ′)(Za,i | τh−1)) ≤ (2k2 + 3)TV(Pθ(µ | τh−1) ∥ Pθ′(µ | τh−1)).

And by Equation (C.2),
TV(Palg(θ)(Z | τh−1) ∥ Palg(θ′)(Z | τh−1)) ≤ |A|k1(2k2 + 3)TV(Pθ(µ | τh−1) ∥ Pθ′(µ | τh−1)),

yielding the n-Monte Carlo property for n = |A|k1(2k2 + 3).

Proof of Lemma C.4. Introduce the measure P̃ under which P̃ (Y ) = P (Y ) and P̃ (X0:k | Y ) =
P ′(X0:k | Y ). By the data processing and triangle inequalities
TV(P (X0:k) ∥ P ′(X0:k)) ≤ TV(P (X0:k, Y ) ∥ P ′(X0:k, Y ))

≤ TV(P (X0:k, Y ) ∥ P̃ (X0:k, Y )) + TV(P ′(X0:k, Y ) ∥ P̃ (X0:k, Y )).

Using Lemma B.3 and the fact that P̃ (X0:k | Y ) = P ′(X0:k | Y ), followed by the fact P̃ (Y ) = P (Y )
and the data-processing inequality again, we have

TV(P ′(X0:k, Y ) ∥ P̃ (X0:k, Y )) = TV(P ′(Y ) ∥ P̃ (Y ))

= TV(P ′(Y ) ∥ P (Y )) ≤ TV(P ′(X0, Y ) ∥ P (X0, Y )). (C.3)

On the other hand, using Lemma B.2 and the fact that P̃ (Y ) = P (Y ).

TV(P (X0:k, Y ) ∥ P̃ (X0:k, Y )) = EY∼P (Y ) TV(P (X0:k | Y ) ∥ P̃ (X0:k | Y )). (C.4)

Now, observe that P̃ (X0:k | Y ) = P ′(X0:k | Y ), and under both P and P ′, X0:k | Y are independent
and identically distributed. Hence, from the decoupling property (Lemma B.1), Equation (C.4) yields

TV(P (X0:k, Y ) ∥ P̃ (X0:k, Y )) =

k∑
i=0

EY∼P (Y ) TV(P (Xi | Y ) ∥ P̃ (Xi | Y ))

= (k + 1)EY∼P (Y ) TV(P (X0 | Y ) ∥ P̃ (X0 | Y )).

Reversing the decoupling property,

TV(P (X0:k, Y ) ∥ P̃ (X0:k, Y )) = (k + 1)TV(P (X0, Y ) ∥ P̃ (X0, Y )).

Now, we invoke the triangle inequality once more to get

TV(P (X0:k, Y ) ∥ P̃ (X0:k, Y ))

≤ (k + 1)TV(P (X0, Y ) ∥ P ′(X0, Y )) + (k + 1)TV(P̃ (X0, Y ) ∥ P ′(X0, Y )).

Invoking Equation (C.3), we have TV(P̃ (X0, Y ) ∥ P ′(X0, Y )) ≤ TV(P (X0, Y ) ∥ P ′(X0, Y )),
yielding a final bound of
TV(P (X0:k) ∥ P ′(X0:k)) ≤ TV(P (X0:k, Y ) ∥ P ′(X0:k, Y ))

≤ TV(P (X0:k, Y ) ∥ P̃ (X0:k, Y )) + TV(P ′(X0:k, Y ) ∥ P̃ (X0:k, Y ))

≤ (2k + 3)TV(P (X0, Y ) ∥ P ′(X0, Y ))

Finally, since P (Y | X0) and P ′(Y | X0) coincide, Lemma B.3 yields that
TV(P (X0, Y ) ∥ P ′(X0, Y )) = TV(P (X0) ∥ P ′(X0)).

The bound follows.
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D Lower Bounds

Theorem D.1. There is a universal constant c0 ≥ 1 such that the following holds. Fix any k ∈ N,
and a tolerance η ∈ (0, 1/4). Then for all horizons H ≥ c0

η and errors ϵ ≤ η
c0kH

, there are two
priors θ, θ′ over bandit instances with |A| = H⌈ c0η ⌉ arms such that (a) TV(Pθ ∥ Pθ′) = ϵ, (b)
µ ∈ [0, 1]A with probability one under both Pθ and Pθ′ , and (c) the difference in rewards collected
by k-TS(θ) and k-TS(θ′) is at least

R(θ, k-TS(θ))−R(θ, k-TS(θ′)) ≥
(
1

2
− η

)
kϵH2.

Note that, by rescaling, an
(
1
2 − η

)
kϵH2B bound holds against B -bounded priors for any B > 0.

The proof of Theorem D.1 is given in Appendix D.1. A proof sketch is given below. The construction
is somewhat involved, and relies on a carefully contrived prior and deterministic rewards.

In Appendix D.2, we also provide a simpler construction that provides a sharp converse to Propo-
sition 3.4 and removes the deterministic rewards condition of Theorem D.1 to allow for Bernoulli
rewards.

Proof Sketch of Theorem D.1. We construct a (rather contrived) prior θ over means µ with N + 1
arms; the rewards are deterministically equal to the prior mean. Under Pθ, a single arm ā ∈ [N ] is
chosen uniformly at random to have reward close to 1, and the rest have zero reward. The N + 1-st
arm has an ϵ probability of having reward exactly equal to 1, and thus an ϵ probability of being the
best. Otherwise, the N + 1-st arm has low reward, but the value of its reward encodes the location of
the optimal arm ā ∈ [N ].

At each stage h, we show that k-TS(θ) has approximately kϵ probability of selecting arm N + 1
under the hunch that it may be the best, only to find that it reveals the location of the best arm. After
this revelation, the algorithm knows the best arm with certainty, and thus collects reward close to
1 for the remainder of the episode. Hence, at each step h, there is a close to kϵ chance of accruing
reward close to H − h for the remaining steps. For small enough ϵ, we show this yields cumulative
reward at least about kϵ

(
H−1
2

)
≈ kϵH2/2.

We then construct an alternative prior θ′ which places zero probability that arm N +1 has the greatest
reward, but otherwise coincides with Pθ. Thus, TV(Pθ ∥ Pθ′) = ϵ, but k-TS(θ′) fails to sample
arm N + 1, and misses out on the additional information about which arm is optimal. Without this
information, k-TS(θ′) makes random guesses at the best arm ā ∈ [N ], and accumulates close to zero
reward (in expectation) provided N is sufficiently large. Naively, this argument would require N to
grow with 1/kϵ. By coupling the behavior of k-TS(θ) and k-TS(θ′), we only require N to scale
with 1/H .

D.1 Proof of Theorem D.1

By rescaling, we assume without loss of generality that B = 1. Fix a parameter δ < 2−5 to be chosen
later, and consider N + 1 arms. We assume that the rewards are noiseless; that is, rh,a = µa with
probability 1.

Let θ denote the prior where an arm ā ∈ [N ] and a binary random variable b̄ ∈ {0, 1} are drawn such
that

ā
unif∼ [N ], b̄ ∼ Bernoulli(ϵ), â ⊥ b.

Given (ā, b̄), the mean µ = µ(ā, b̄), where we define

µ(ā, b̄)
∣∣
a
=


1− δ a = ā

δ a ∈ [N ] \ {ā}
δ ā
2N a = N + 1 and b = 0

1 a = N + 1 and b = 1.

We make the following observations:
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• µN+1 uniquely determines the best arm. Indeed, if µN+1 ≤ δ/2, then the best arm is ā, which
can be recovered by setting ā = 2N

δ · µN+1. Otherwise, µN+1 = 1, and it is the best arm. Hence,
given any trajectory containing ah = N + 1, there is a unique best arm under the posterior.

• Given any trajectory τh which does not contain ah = N + 1, no information is communicated
about the Bernoulli variable b. Moreover, if τh also does not include ah = ā, then ā is uniform
on [N ] \ {a1, . . . , ah}.

Using these facts, we derive an implementation for k-TS(θ) in Algorithm 4.
Claim 2. The pseudocode given by Algorithm 4 is a valid implementation of k-TS(θ).

Proof. Consider any trajectory τh−1. If τh−1 contains any action ah′ = N + 1, h′ < h, then as
noted above, the best action is given by the selection in Line 4. Otherwise, τh−1 only contains actions
a ∈ [N ]. There are now two cases:

• Case 1. τh−1 contains a reward rh′ = 1 − δ. We continue to let h′ denote this time step. In
this case, ah′ must be the index ā, and ā is yields maximal reward over all actions a ∈ [N ],
and thus the posterior on rewards for arms a ∈ [N ] satisfies that µah′ = 1 − δ and µa = δ for
a ∈ [N ] \ {ah′}. On the other hand, because τh−1 only has actions a ∈ [N ], the posterior on b

is still Bernoulli with parameter ϵ. Hence, a draw µ̂ ∼ Pθ[· | τh−1] has distribution µ(ah′ , b̂),
where b̂ is uniform Bernoulli. If b̂ = 1, then maxa µ(ah′ , b̂)

∣∣
a
= 1 for a = N + 1; otherwise,

maxa µ(ah′ , b̂)
∣∣
a
= 1 − δ, attained by a = ah′ . Hence, the update rules in Lines 6 and 8 are

equivalent to k-TS(θ).
• Case 2. τh−1 contains no action rh′ = 1 − δ. Hence, it can be ruled out that the top action

is not among a1, . . . , ah−1, and thus (ā, b̄) ∼ Pθ[· | τh−1] are distributed independently as
ā

unif∼ [N ] \ {a1, . . . , ah−1} and b̄ ∼ Bernoulli(ϵ). Thus, the update rules in Lines 6 and 11
correctly execute k-TS(θ).

Algorithm 4 k-TS sampling under θ (lower bound construction)
1: for h = 1, . . . ,H do
2: Sample b̂h,1, . . . , b̂h,k ∼ Bernoulli(ϵ).
3: if there exists h′ < h with ah′ = N + 1 then
4: Select action // having played a = N + 1 in the past gives away the best arm

ah =

{
N + 1 rh′ = 1
2N
δ rh′ rh′ ̸= 1.

5: else if maxi∈[k] bh,i = 1 then
6: Select action ah = N+1 // argmaxa maxi µ(ā, bh,i)

∣∣
a
= N+1, for any reference action

ā ∈ [N ].
7: else if there exists h′ < h such that rh′ = 1− δ then
8: Select action ah = ah′ , where h′ has rh′ = 1− δ.
9: else

10: Sample âh,1, . . . , âh,k
unif∼ [N ] \ {a1, . . . , ah−1}

11: Select ah be any element of {âh,1, . . . , âh,k}.

Alternative Instance We now construct an alternative instance θ′ by agreeing with θ but always
setting b = 0:

µ = µ(ā, 0), ā
unif∼ [N ].

It is clear that TV(θ ∥ θ′) = ϵ, because the two differ only in the coin-flip of b. Under θ′,
a = N + 1 never has the largest reward and is therefore never sampled. Therefore, defining the event
Ē = {∃h ∈ [H] : ah = N + 1}, and its complement

Ēc := {ah ̸= N + 1 ∀h ∈ [H]},
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we see that

Eθ,k-TS(θ)

[
H∑

h=1

rh | Ēc
]
= R(θ, k-TS(θ′)).

That is, the conditional expected reward garnered by well-specified k-TS(θ) under the event that
ah ̸= N + 1 for all h is equal to the expected reward of misspecified k-TS(θ′).

Comparing the instances To compare the instances, write out Eh := {ah′ ̸= N + 1, ∀h′ <
h and ah = 1}. Then, Ē is the disjoint union of E1, . . . , EH , so that

R(θ, k-TS(θ)) =
H∑

h=1

Pθ,k-TS(θ)[Eh] · Eθ,k-TS(θ)

[
H∑

h=1

rh | Eh

]

+ Pθ,k-TS(θ)[Ēc] · Eθ,k-TS(θ)

[
H∑

h=1

rh | Ēc
]
.

As noted above, Eθ,k-TS(θ)[
∑H

h=1 rh | Ēc] = R(θ, k-TS(θ′)). If Eh occurs, then the best action
ah is identified, and reward at least 1 − δ is accrued on stages h′ > h. Introducing the shorthand
P [Eh] = Pθ,k-TS(θ)[Eh] and similarly for Ē , Ēc, we then find

R(θ, k-TS(θ)) ≥ (1− δ)

H∑
h=1

P [Eh](H − h) + P [Ēc]R(θ, k-TS(θ′)).

Therefore, subtracting R(θ, k-TS(θ′)) from both sides,

R(θ, k-TS(θ))−R(θ, k-TS(θ′)) ≥ (1− δ)

H∑
h=1

P [Eh](H − h)− P [Ē ]R(θ, k-TS(θ′)).

Let us continue simplifying the above two terms. First, since all draws bh,i are i.i.d. Bernoulli with
parameter ϵ ≤ 1/kH , we have

P [Eh] = P [ah′ ̸= N + 1, ∀h′ < h] · P [ah = N + 1 | ah′ ̸= N + 1, ∀h′ < h]

= P [max
i

bh′,i = 0, ∀h′ < h] · P [max
i

bh,i = 1]

≥

(
1−

h−1∑
h′=1

k∑
i=1

P [bh′,i = 1]

)
· P [max

i
bh,i = 1]

= (1− k(h− 1)ϵ)(1− (1− ϵ)k)

≥ (1− k(h− 1)ϵ)(1− e−kϵ)

≥ (1− k(h− 1)ϵ)(kϵ− (kϵ)2

2
)

≥ (1− kHϵ)(1− kϵ)(kϵ)

≥ (1− kHϵ)2(kϵ).

Thus,

(1− δ)

H∑
h=1

P [Eh](H − h) ≥ (1− kHϵ)2(1− δ) · kϵ
H∑

h=1

(H − h) = (1− kHϵ)2(1− δ)kϵ

(
H − 1

2

)
.

(D.1)

On the other hand, by a union bound, we have P [Ē ] ≤ kHϵ. Moreover, we have

R(θ, k-TS(θ′)) ≤ HPθ,k-TS(θ′)[∃h : ah = ā] +Hδ,
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since under k-TS(θ′), if ah ̸= ā for all h, then k-TS(θ′) always selects actions a ∈ [N ] \ ā, all of
which return reward δ. On the other hand,

Pθ,k-TS(θ′)[∃h : ah = ā] =

H∑
h=1

Pθ,k-TS(θ′)[ah = ā | a1:h−1 ̸= ā]Pθ,k-TS(θ′)[a1:h−1 ̸= ā]

≤
H∑

h=1

Pθ,k-TS(θ′)[ah = ā | a1:h−1 ̸= ā]

=

H∑
h=1

1

N − (h− 1)
≤ H

N −H
.

Therefore,

R(θ, k-TS(θ′)) ≤ H2

N −H
+Hδ, P [Ē ]R(θ, k-TS(θ′)) ≤ kH2ϵ

(
H

N −H
+ δ

)
.

Hence, combining with Equation (D.1), we conclude

R(θ, k-TS(θ))−R(θ, k-TS(θ′)) ≥ (1− δ)

H∑
h=1

P [Eh](H − h)− P [Ē ]R(θ, k-TS(θ′)).

≥ kϵH2

(
(1− kHϵ)2(1− δ)

(H − 1)(H − 2)

2H2
− H

N −H
− δ

)
.

By tuning the above bound, we can see that there is a universal constant c0 such that, for any
η ∈ (0, 1/4), taking ϵ−1 ≥ η

c0kH
, H ≥ c0

η and N + 1 = H⌈ c0η ⌉ and δ = η
E ensures that

R(θ, k-TS(θ))−R(θ, k-TS(θ′)) ≥
(
1

2
− η

)
kϵH2.

D.2 A simple converse to Proposition 3.4

Proposition D.2 (Lower Bound). Let H, k ≥ 1 be given. Then there exists a pair of priors, θ and θ′

such that

TV(Pθ,k-TS(θ)(µ, τH) ∥ Pθ,k-TS(θ′)(µ, τH)) ≥ kH

2
TV(Pθ ∥ Pθ′).

In particular, since Thompson sampling is k-TS for k = 1, we have

TV(Pθ,TS(θ)(µ, τH) ∥ Pθ,TS(θ′)(µ, τH)) ≥ H

2
TV(Pθ ∥ Pθ′).

Moreover, the rewards are Bernoulli.

Proof. Recall the k-TS(θ) selection rule at time h:

1. Sample means µ(1), . . . ,µ(k) from the posterior Pθ[· | τh−1].
2. Select action

ah ∈ argmax
a∈A

max{µ(1)
a , . . . , µ(k)

a }.

Now we will show the lower bound for the following two prior distributions.

• Pθ places all its probability mass on the mean vector (1/2, 0).
• Pθ′ places 1− ϵ of its probability mass on the mean vector (1/2, 0) and ϵ of its probability mass

on the mean vector (1/2, 1).

Clearly we have TV(Pθ, Pθ′) = ϵ. Moreover, we have the following three observations.
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(a) k-TS(θ) will always pull arm 1. Thus, to give a lower bound on the total variation distance
between the behavior of k-TS(θ) and k-TS(θ′), it suffices to lower bound the probability that
k-TS(θ′) pulls arm 2 in the course of H interactions.

(b) The posterior distribution under θ′ remains unchanged when arm 1 is pulled. Thus, the probability
that k-TS(θ′) never pulls arm 2 in the course of H interactions is the H-fold product of the
probability that k-TS(θ′) does not pull arm 2 in one round of interaction.

(c) The probability that k-TS(θ′) does not pull arm 2 in one round of interaction is exactly the
probability that k i.i.d. draws from θ′ does not yield an instance of (1/2, 1), i.e. (1− ϵ)k.

Combining (a), (b), and (c), and assuming ϵ ≤ 1
2Hk ,

TV(Pθ,k-TS(θ)(µ, τH) ∥ Pθ,k-TS(θ′)(µ, τH)) ≥ 1− (1− ϵ)Hk

≥ 1− e−ϵHk

≥ ϵHk − (ϵHk)2

≥ 1

2
ϵHk.

In the above we have used the inequalities 1 + x ≤ ex for all x ∈ R and e−x ≤ 1 − x + x2 for
x ∈ [0, 1], and the assumption that ϵ ≤ 1

2Hk .

E General Bayesian Decision-Making

E.1 POMDP Formalism and Special Cases

We begin by presenting a general formalism for Bayesian POMDPs and listing some illustrative
examples. For a more thorough introduction to Bayesian reinforcement learning, we direct the reader
to [GMPT15].

Bayesian POMDP In a Bayesian POMDP, the priors {Pθ : θ ∈ Θ} are distributions over POMDP
environments ϕ ∈ Φ with (possibly unobserved) states sh ∈ S, observations yh ∈ Y , actions
ah ∈ A, and rewards rh ∈ R. Common to all POMDP environments are (possibly time-varying)
transition functions

Ph : Φ×A× S × Y → ∆(S × Y × R)

which induce distributions

Ph(sh+1, yh+1, rh | ah, sh, yh,ϕ).

There is also an initial distribution P0 : Φ→ ∆(S × Y) giving an initial distribution of (s1, y1) ∼
P0(· | ϕ). The relevant definition of trajectories revealed to the learner are:

τh := (a1, y1, r1, . . . , ah, yh, rh, yh+1) (E.1)

POMDP Algorithms A randomized POMDP algorithm is formally identical to a bandit one. A
family of randomized POMDP algorithms alg(θ) is a specified by a distribution Dseed (independent
of θ), a domain Ξ over random seeds ξ, and step-wise mappings f1, . . . , fH from trajectories, the
random seed, and parameters θ to distributions over actions:

fh(τh−1, ξ | θ) : {h-trajectories} × Ξ×Θ→ ∆(A).

Each alg(θ) operates as follows:

• ξ is drawn from Dseed at the start of the episode before interaction.
• At each step h, ah is chosen independently according to ah ∼ fh(τh−1, ξ | θ).

Note again the two sources of randomness: the draw of ah and the initial random seed ξ; see Remark 3
for details. In short: the types of algorithms we allow for not only include those that are implemented
only with the randomness in the choice of ah but also those that use initial random seeds ξ to induce
correlations across steps h.
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Interaction Protocol

• ξ is drawn from Dseed(·) at the start of the episode before interaction.
• Then, an environment ϕ is drawn from Pθ (independent of ξ)
• An initial state and observation are drawn as (s1, y1) ∼ P0(s, y | ϕ), and τ0 = (y1) is revealed

to the learner.
• Subsequently, for all h ∈ {1, 2, . . . ,H},

1. The learner selects action ah with independent randomness via ah ∼ fh−1(τh−1, ξ | θ).
2. The environment draws a state, observation, and reward

(sh+1, yh+1, rh) ∼ Ph(s, y, r | ah, sh, yh,ϕ)
3. The agent observes reward rh and observation yh+1. The triple (rh, ah, yh+1) is then ap-

pended to τh−1 to form τh.

As in the bandit case, the reward accrued by alg is

R(θ, alg) := Eθ,alg

[
H∑

h=1

rh

]
,

where Eθ,alg denotes expectations under ϕ ∼ Pθ, the transitions Ph(· | ·,ϕ), and the choice of
actions ah as above.

E.2 Special Cases of Bayesian POMDPs

The Bayesian POMDP set up encompasses a number of special cases:

Mean-Parametrized Bayesian Bandits: The Bayesian-Bandit setting considered in the main body
can be viewed as a POMDP with no state, no observation, and where the instance ϕ is summarized
by the mean parameter µ. The only randomness after µ is selected is the generation of rewards, that
is rh ∼ P(r | ah,µ), which is equivalent to the distribution D(µ) described in the main text. For
example, P(r | ah = a,µ) = N (µa, σ

2) for some fixed σ2 > 0.

Note that the distribution over mean vectors µ may arise to form means with, for example, linear
structure (e.g.[AL17]). For example, consider an instance where each action a corrsponds to a vector
va, and each µ to a vector wµ drawn from a prior, say, N (0,Σθ), for which

µa = ⟨va,wµ⟩.

General-Reward Bayesian Bandits: More generally, we could consider Bayesian instances where
the prior Pθ over models ϕ governs not only the reward means µ but can encode general conditional
distributions of rewards. For example, we may have priors over mean-variance vector pairs ϕ =
(µ,σ) ∈ R2|A|, and conditional rewards P(r | ah = a,ϕ) = N (µa, σ

2
a).

Mean-Parametrized and General Contextual Bandits: Bayesian POMDPs also capture the
contextual bandits formalism. Here, contexts xh ∈ X , are directly revealed to the learner and
correspond to both states and observations (i.e. xh := yh = sh ), and are drawn i.i.d. from a
law Pcontext(x ∈ · | ϕ). Then, the distribution of rewards is selected depending on the context
Preward(rh | xh, a,ϕ). In other words, the transition distribution P(xh+1, rh | sh, a,ϕ) is the
product distribution of Pcontext(x | ϕ) and Preward(rh | xh, a,ϕ). Note that the next context xh+1

is independent of all other randomness given the instance ϕ, so the dynamics are trivial.

For example, we might have that contexts are vectors x ∈ Rd (bolded to denote that they are vectors),
actions are identified with vectors va ∈ Rn, ϕ = (Σϕ,Lϕ) ∈ Rd×d × Rn×d, and that contexts and
rewards are drawn

xh
i.i.d.∼ N (0,Σϕ), P(rh | sh, ah = a) = N

(
v⊤
a Lϕxh, I

)
.

The above is an example of Bayesian linear contextual bandits.

The special case of contextual bandits studied in the main text are where the model is parameterized
by the mean (ϕ = µ) and the distribution over contexts does not depend on the model: formally,
contexts are drawn xh ∼ Dx which does not depend on the realized model ϕ, and where (as in
reward-parametrized bandits) rewards are drawn as rh ∼ D(µ, xh) for some D : RA ×X → ∆(R).
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Bayesian MDPs One final case is that of the Bayesian MDP, where the agent observes the state:
sh = yh. Bayesian MDPs, and in particular, Bayesian Tabular MDPs have recieved extensive study
[OVR17]. More general results were studied in [GMM14].

Bayesian Control Problems In addition, many online control settings – notably, the online Linear
Quadratic Regulator – satisfy the Markov property, and hence are examples of Bayesian MDPs when
formulated in the Bayesian setting [AYS15, AL18]. Bayesian control Kalman Filtering and Linear
Quadratic Gaussian control may also be formulated as a PODMP.

E.3 Formal Guarantees

We now state the formal guarantees for the Bayesian POMDP setting, which straightforwardly
specialize to the bandit decision-making setting described in the main text.

Monte Carlo Property Mirroring the bandit case, we let Pθ(ϕ | τh) denote the conditional distri-
bution of the POMDP environment ϕ given the trajector τh (using the generalization of trajectories
stated in Equation (E.1)), and Palg(ah | τh) the conditional distribution of actions ah under algorithm
alg given the trajectory.

Definition E.1 (Generalized n-Monte Carlo). We say that a family of Bayesian POMDP algorithms
{alg(θ) : θ ∈ Θ} satisfy the generalized n-Monte Carlo property if, for all possible trajectories τh,

TV(Palg(θ)(ah | τh−1) ∥ Palg(θ′)(ah | τh−1)) ≤ TV(Pθ(ϕ | τh−1) ∥ Pθ′(ϕ | τh−1)).

Tail Expectations Second, we require the relevant notion of tail expectation. We propose a slightly
different definition than the one given for Bayesian bandits, due to the fact that different algorithms
may visit different states under the same POMDP environment. We now introduce the average
conditional reward (ACR):

r̄H,θ,alg :=
1

H

H∑
h=1

E[rh | ah, sh, yh,ϕ], where (a1:H , s1:H , y1:H) ∼ Pθ,alg. (E.2)

Above, we use E[rh | ah, sh, yh,ϕ] to denote expectation over the law P(rh | ah, sh, yh,ϕ), and
note that the conditional does not depend on θ or the specification of alg. In the special case of
bandits, notice that Equation (E.2) simplies to

r̄H,θ,alg :=
1

H

H∑
h=1

µah
.

Definition E.2 (POMDP Tail expectation). Given an algorithm alg(·) parametrized by θ ∈ Θ, we
define

Ψ̄θ(p) = Ψ|r̄H,θ,alg(θ)|(p), Ψ̄θ/θ′(p) = Ψ|r̄H,θ,alg(θ′)|(p),

where ΨX(p) is the tail expectation of a nonnegative random variable X as in Definition B.2.

Unlike the bandit tail expectations Ψθ in Definition B.2 which depend only on the mean parameter µ,
the tail expectations above depend on both the ACR under θ, as in Ψ̄θ, and the ACR under θ, alg(θ′)
as in Ψ̄θ/θ′ . In particular, both terms depend on the family of algorithms alg(·). This is important
in POMDP environments with unbounded state spaces (e.g. linear control), where sensitivity can
be quite poor if the misspecified policy alg(θ′) visits much lower-reward states under θ than the
well-specified alg(θ). Nevertheless, for bandits, Ψ̄θ and Ψθ are qualitatively similar because

|r̄H,θ,alg(θ)| ≤ sup
a
|µa|,

and similarly for r̄H,θ,alg(θ′).

Strongly B-Bounded distributions. To interpret the tail conditions, we consider the special case
of strongly B bounded distributions.
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Definition E.3. We say that Pθ is strongly B-bounded if, with probability 1, Eθ[rh | ah, τh−1,ϕ] ∈
[−B

2 ,
B
2 ] conditioned on any action ah, trajectory τh−1 and ϕ.

In the special case of bandits, strong B-boundedness implies that µa ∈ [−B
2 ,

B
2 ] with probability one,

and is therefore slightly stronger than B-boundedness, which states that diam(µ) ≤ B. Observe that
if Pθ is strongly B-bounded (Definition E.3), then

|r̄H,θ,alg(θ)| ≤
B

2
, and | − r̄H,θ,alg(θ′)| ≤

B

2
.

Therefore Ψ̄θ(p) + Ψ̄θ/θ′(p) ≤ B.

We are now ready to state our general theorem, consisting of (a) a total variation bound, (b) a
reward bound for strongly B-bounded rewards, and (c) a reward bound for general tail expectations:

Theorem E.1. Let alg(·) satisfy the n-Monte Carlo property on horizon H , and consider two priors
θ, θ′ ∈ Θ with ε = TV(Pθ ∥ Pθ′)

(a) Let PH = Pθ,alg(θ)(ϕ, τH , s1:H+1) and P ′
H = Pθ,alg(θ′)(ϕ, τH , s1:H+1) denote the joint law of

the environment ϕ, trajectory τH , and sequence of states s1:H under prior Pθ,alg(θ) and Pθ,alg(θ′),
respectively. Then,

TV(PH ∥ P ′
H) ≤ 2Hε.

(b) If Pθ is strongly B-bounded, then |R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nBH2ε.
(c) For general tail expectations, the following bound holds:

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ 2nH2ε ·
(
Ψ̄θ(2Hε) + Ψ̄θ/θ′(2Hε)

)
.

Note that part (a) of the above theorem generalizes Proposition 3.4, part (b) generalizes Theo-
rem 3.2(a).

Proof of Theorem E.1. We begin by establishing part (a), from which parts (b) and (c) follow.

Part a. Let us start by developing an analogoue of Lemma B.9. To do so, we invoke Lemma B.11,
replacing µ with the POMDP environment denoted by ϕ, and with PH = Pθ,alg(θ) and P ′

H =
Pθ,alg(θ′), and with augmented trajectories τ̃h−1 = (τh−1, s1:h) To invoke the latter lemma, we need
to check three conditions.

1. Condition 1: τ̃h−1 is a deterministic function of τ̃h. This is definitionally true, even in the
PODMP setting.

2. Condition 2: The conditional distributions of τh given ah, τh−1 and ϕ are the same: P ′
H(τh |

ah, τ̃h−1,ϕ) = PH(τ̃h | ah, τh−1,ϕ). This follows because P (τh | ah, τ̃h−1,ϕ) =
P(sh+1, yh+1, rh | ah, sh, yh,ϕ) for P ∈ {PH , P ′

H}, were P is the transition function.
3. Condition 3: Under both PH and P ′

H , ah is independent of ϕ given τ̃h−1. Following the same
logic as in Lemma B.9 and letting P = PH , we have

P (ah,ϕ | τh−1) = E [E [P (ah,ϕ | τ̃h−1, ξ) | ξ] | τ̃h−1]

= E [E [fh(ah | τh−1, ξ)P (ϕ | τ̃h−1, ξ) | ξ] | τ̃h−1]

= E [E [fh(ah | τh−1, ξ) | ξ]P (ϕ | τ̃h−1) | τ̃h−1]

= P (ah | τ̃h−1)P (ϕ | τ̃h−1)

where the second equality follows from the fact that ah ∼ fh(· | ξ, τh−1) and the third line
follows from the fact that ϕ is independent of ξ conditioned on τh−1. The same argument holds
symmetrically for P ′ = P ′

H .
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As a consequence of these three conditions, it holds that for PH = Pθ,alg(θ)(µ, τH , s1:H+1) and
P ′
H = Pθ,alg(θ′)(µ, τH , s1:H+1),

TV(PH ∥ P ′
H) ≤

H∑
h=1

Eτ̃h−1∼PH
TV(PH(ah | τ̃h−1) ∥ P ′

H(ah | τ̃h−1))

=

H∑
h=1

Eτh−1∼PH
TV(PH(ah | τh−1) ∥ P ′

H(ah | τh−1)).

where we use the fact that PH(ah | τ̃h−1) = PH(ah | τh−1), and similarly under P ′
H . Next, using

the n-Monte Carlo Property, and that PH(ah | τh−1) = Palg(θ)(ah | τh−1) (and similarly for P ′
H

and Palg(θ′)),

TV(PH ∥ P ′
H) ≤ n

H∑
h=1

TV(Pθ(ϕ | τh−1) ∥ Pθ′(ϕ | τh−1)).

By invoking the de-conditioning lemma, Lemma B.10, with Q = Pθ,alg(θ), Q′ = Pθ′,alg(θ′), X =
τh−1 and Y = ϕ, we have that

TV(PH ∥ P ′
H) ≤ n

H∑
h=1

2TV(Q(Y ) ∥ Q′(Y )) = 2HnTV(Pθ ∥ Pθ′).

This establishes part (a).

Parts b and c. Part (b) is a consequence of part (c) and the fact that, for strongly B-bounded Pθ,
Ψ̄θ(·) + Ψ̄θ/θ′(·) ≤ B. We conclude by proving part (c), and keep the notation τ̃h = (τh, s1:h+1).
Let P,E and P ′, E′ denote probability and expectation operators under Pθ,alg(θ) and Pθ,alg(θ′),
respectively. Introduce the conditional reward function

µ̄h(a, s, y,ϕ) = E[rh | ah = a, sh = s, yh = y,ϕ].

By the tower rule,

R(θ, alg(θ))−R(θ, alg(θ′)) = E

[
H∑

h=1

µ̄h(ah, sh, yh,ϕ)

]
− E′

[
H∑

h=1

µ̄h(ah, sh, yh,ϕ)

]
.

By Lemma B.4 and the fact that P (ϕ) = P ′(ϕ), there exists a coupling Q such over random variables
(ϕ, τ̃H , τ̃′H) such that both

Q(ϕ, τ̃H) = P (ϕ, τ̃H), Q(ϕ, τ̃′H) = P ′(ϕ, τ̃H),

and

Q[τ̃H ̸= τ̃′H ] = TV(P (ϕ, τ̃H) ∥ P ′(ϕ, τ̃H)).

Letting (ah, sh, yh) and (a′h, s
′
h, y

′
h) denote states and actions corresponding to τ̃H and τ̃′H , and let

EQ denote expectations under the coupling Q, we then have

R(θ, alg(θ))−R(θ, alg(θ′))

= EQ

[
H∑

h=1

µ̄h(ah, sh, yh,ϕ)− µ̄h(a
′
h, s

′
h, y

′
h,ϕ)

]
(i)
= EQ

[
I{τ̃H ̸= τ̃′H}

(
H∑

h=1

µ̄h(ah, sh, yh,ϕ)− µ̄h(a
′
h, s

′
h, y

′
h,ϕ)

)]

= H

EQ

I{τ̃H ̸= τ̃′H}︸ ︷︷ ︸
:=Y

· 1
H

H∑
h=1

µ̄h(ah, sh, yh,ϕ)︸ ︷︷ ︸
:=X

− EQ

I{τ̃H ̸= τ̃′H}︸ ︷︷ ︸
:=Y

· 1
H

H∑
h=1

µ̄h(a
′
h, s

′
h, y

′
h,ϕ)︸ ︷︷ ︸

:=X′



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where (i) uses that
∑H

h=1 µ̄h(ah, sh, yh,ϕ) − µ̄h(a
′
h, s

′
h, y

′
h,ϕ) = 0 whenever τ̃H = τ̃′H . By the

triangle inequality,

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ H (E [|X| · Y ] + EQ [|X ′| · Y ]) .

Since |X| and |X ′| are nonnegative, and that Y ∈ [0, 1] satisfies

E[Y ] = Q[τ̃H ̸= τ̃′H ] = TV(P (ϕ, τ̃H) ∥ P ′(ϕ, τ̃H)) ≤ δ := 2nHε,

where the first equality is from our choice of coupling Q and the inequality follows from part (a) of
the theorem. Hence, by definition of the tail expectation functional which maximizes the correlation
with [0, 1]-bounded random variables Y satisfying the above constraints (Definition B.2),

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ Hδ
(
Ψ|X|(δ) + Ψ|X′|(δ)

)
.

Finally, we observe that X has the same distribution of r̄H,θ,alg(θ) and X ′ the distribution of
r̄H,θ,alg(θ′). Hence, Ψ|X|(δ) = Ψ̄θ(δ) and Ψ|X′|(δ) = Ψ̄θ/θ′(δ). We therefore conclude

|R(θ, alg(θ))−R(θ, alg(θ′))| ≤ Hδ
(
Ψ̄θ(δ) + Ψ̄θ/θ′(δ)

)
= 2nH2ε ·

(
Ψ̄θ(2Hε) + Ψ̄θ/θ′(2Hε)

)
.

E.4 The Monte-Carlo property in POMDPs

We conclude this section by mentioning that, as in the bandit setting, any algorithm whose actions
depend only on independent samples of environments drawn from the posterior distribution is n-
Monte Carlo. Thus, Algorithm 5, which is the POMDP generalization of Algorithm 2, is k-Monte
Carlo, where k is the number of environments sampled from the posterior. The proof of this fact
is identical to the proof of Lemma C.2. Similarly, along the lines of Lemma C.3, one can establish
the Monte-Carlo property for a suitable generalizations of the 2-RHC algorithm (Algorithm 3); for
brevity we omit details.

Algorithm 5 (k, f1:H)-Posterior Sampling ((k, f1:H)-PosteriorSample(θ))

1: Input: Prior θ, sample size k ∈ N, functions f1, . . . , fH : RΦ×k → ∆A.
2: for h = 1, . . . ,H do

// action selection at step h
3: Sample ϕ(1), . . . ,ϕ(k) independently from the posterior Pθ[· | τh−1]
4: Select action ah ∼ fh(· | ϕ(1), . . . ,ϕ(k)).

F Accuracy of moment estimators

F.1 Beta priors and Bernoulli rewards

We first show how to translate sufficiently good error bounds in parameter estimation for regular
exponential families into bounds on total variation error.
Lemma F.1. Let {Pθ : θ ∈ Θ} be a standard exponential family with natural parameter space
Θ ⊂ Rp. For any θ ∈ Θ, there exist C, c > 0 depending only on θ such that TV(Pθ ∥ Pθ′) ≤
C · ∥θ′ − θ∥2 for all θ′ ∈ Θ satisfying ∥θ′ − θ∥2 ≤ c.

Proof. Let A be the log-partition function for the exponential family, which is infinitely-differentiable
on Θ [Bro86], and let DA(θ

′ ∥ θ) = A(θ′)−A(θ)−⟨∇A(θ),θ′−θ⟩ be its corresponding Bregman
divergence. By Pinsker’s inequality and properties of Bregman divergences [BMD+05, Appendix A],
we have

2TV(Pθ ∥ Pθ′)2 ≤ KL(Pθ ∥ Pθ′) = DA(θ
′ ∥ θ) = A(θ′)−A(θ)− ⟨∇A(θ),θ′ − θ⟩.

Let g(t) = A
(
t · θ′ + (1 − t) · θ

)
. By Taylor’s theorem, there exists ξ ∈ [0, 1] such that A(θ′) =

A(θ) + ⟨∇A(θ),θ′ − θ⟩+ 1
2 (θ

′ − θ)T∇2A
(
ξθ′ + (1− ξ)θ

)
(θ′ − θ). We can therefore take any C

and c such that the Hessian has eigenvalues bounded by 4C2 in a Euclidean ball of radius c around θ,
upon which we have DA(θ

′ ∥ θ) ≤ 2C2∥θ′ − θ∥22.
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Now we argue that the method-of-moments estimator of [TGG94] for the Beta-Binomial distribution
gives accurate parameter estimates of the Beta component parameters (i.e., α and β) provided a large
enough sample size. The bound is given for the parameters corresponding to a single arm; applying
the result for all arms a ∈ A with a union bound delivers the final sample complexity claim.
Lemma F.2. Let m̂1 and m̂2 be empirical moments based on N i.i.d. draws from a Beta-Binomial
distribution with parameters (α, β, n) where n ≥ 2. Let (α̂, β̂) be the method-of-moments estimate
of (α, β) obtained using

α̂ :=
nm̂1 − m̂2

n( m̂2

m̂1
− m̂1 − 1) + m̂1

and β̂ :=
(n− m̂1)(n− m̂2

m̂1
)

n( m̂2

m̂1
− m̂1 − 1) + m̂1

.

There exists a positive constant C > 0 depending only on (α, β, n) such that for any ϵ > 0 and
δ ∈ (0, 1), if N ≥ C log(1/δ)/ϵ2, then P(max{|α̂− α|, |β̂ − β|} ≤ ϵ) ≥ 1− δ.

Proof. Let X1, . . . , XN denote an i.i.d. sample from the Beta-Binomial distribution with parameters
(α, β, n), and let m1 := E[X1] and m2 := E[X2

1 ]. First, by Hoeffding’s inequality and union bounds,
with probability at least 1− δ, we have

|m̂1 −m1| ≤ n

√
2 ln(4/δ)

N
and |m̂2 −m2| ≤ n2

√
2 ln(4/δ)

N
,

where m̂1 := 1
N

∑N
i=1 Xi and m̂2 := 1

N

∑N
i=1 X

2
i . Let us henceforth condition on this 1 − δ

probability event. Now, treating α̂(m̂1, m̂2) and β̂(m̂1, m̂2) as functions of (m̂1, m̂2), we have by
Taylor’s theorem that

α̂(m̂1, m̂2) = α̂(m1,m2) +
∂α̂

∂m̂1
(m̃1) · (m̂1 −m1) +

∂α̂

∂m̂2
(m̃2) · (m̂2 −m2)

β̂(m̂1, m̂2) = β̂(m1,m2) +
∂β̂

∂m̂1
(m̃1) · (m̂1 −m1) +

∂β̂

∂m̂2
(m̃2) · (m̂2 −m2)

where (m̃1, m̃2) = (1 − ξ)(m̂1, m̂2) + ξ(m1,m2) for some ξ ∈ [0, 1]. It can be verified using
properties of the Beta-Binomial distribution that α̂(m1,m2) = α and β̂(m1,m2) = β. Moreover,
since the functions α̂(m̂1, m̂2) and β̂(m̂1, m̂2) are analytic, it follows that there is a Euclidean ball
of radius (say) c′ > 0 around (m1,m2) on which the gradients of α̂ and β̂ are uniformly bounded by
(say) C ′ > 0 in Euclidean norm. Here, both C ′ and c′ depend only on m1 and m2. So, as long as√

(m̂1 −m1)2 + (m̂2 −m2)2 ≤ c′, we have

|α̂(m̂1, m̂2)− α| ≤ C
√

(m̂1 −m1)2 + (m̂2 −m2)2

|β̂(m̂1, m̂2)− β| ≤ C
√
(m̂1 −m1)2 + (m̂2 −m2)2

by Cauchy-Schwarz. The claim now follows by choosing N ≥ C log(1/δ)/ϵ2 for some C depending
only on C ′, c′, and n.

F.2 Gaussian priors and Gaussian rewards

We directly bound the KL-divergence between two multivariate Gaussian distributions in terms of
distances between their corresponding parameters.

Lemma F.3 (Gaussian KL-divergence). Let P := N (ν⋆,Ψ⋆) and P̂ := N (ν̂, Ψ̂) be multivariate
Gaussian distributions in RA. Then

KL(P̂ ∥ P ) =
1

2

{
tr(Ψ

−1/2
⋆ Ψ̂Ψ

−1/2
⋆ − I)− ln det(Ψ

−1/2
⋆ Ψ̂Ψ

−1/2
⋆ ) + ∥Ψ−1/2

⋆ (ν̂ − ν⋆)∥22
}
.

Moreover, if

∥Ψ−1/2
⋆ Ψ̂Ψ

−1/2
⋆ − I∥2 ≤

2

3
,

then
KL(P̂ ∥ P ) ≤ 1

2

{
|A| · ∥Ψ−1/2

⋆ Ψ̂Ψ
−1/2
⋆ − I∥22 + ∥Ψ

−1/2
⋆ (ν̂ − ν⋆)∥22

}
.
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Proof. The formula for the KL-divergence is standard. Now suppose that ∥Ψ−1/2
⋆ Ψ̂Ψ

−1/2
⋆ − I∥2 ≤

2/3. This means that all of the eigenvalues λ1, . . . , λK of Ψ−1/2
⋆ Ψ̂Ψ

−1/2
⋆ are contained in the

interval [1/3, 5/3]. In this case, we have

tr(Ψ
−1/2
⋆ Ψ̂Ψ

−1/2
⋆ − I)− ln det(Ψ

−1/2
⋆ Ψ̂Ψ

−1/2
⋆ ) =

K∑
i=1

{λi − 1} − ln

K∏
i=1

λi

=

K∑
i=1

{λi − 1− lnλi}

≤
K∑
i=1

(λi − 1)2

≤ K · ∥Ψ−1/2
⋆ Ψ̂Ψ

−1/2
⋆ − I∥22,

where the first inequality uses the fact ln(1+ x) ≥ x− x2 for all x ≥ −2/3. Plugging this inequality
into the KL-divergence formula gives the claimed inequality.

Lemma F.3 and Pinsker’s inequality imply that, to obtain an estimate of N (ν⋆,Ψ⋆) that is ε-close in
total variation distance, it suffices to obtain estimates ν̂ and Ψ̂ such that

∥Ψ−1/2
⋆ (ν̂ − ν⋆)∥2 ≤ ε, ∥Ψ−1/2

⋆ (Ψ̂−Ψ⋆)Ψ
−1/2
⋆ ∥2 ≤

ε√
|A|

.

Below, we give estimators ν̂ and Ψ̂ that satisfy these inequalities with probability at least 1 − δ
provided that

T ≥ C ′ · d · (|A|
4 + |A|3 log(1/δ))

ε2
,

where d is defined in Lemma F.6, and C ′ is an absolute constant. We note that if Ψ⋆ is known and
does not need to be estimated, then the requirement improves to

T ≥ C ′′ · d2 · (|A|
2 + |A| log(1/δ))

ε2
,

where d2 is defined in Lemma F.4, and C ′′ is another absolute constant.

Mean estimation. We first consider the estimate of ν⋆. To do so, we assume the first round in each
of T episodes is chosen uniformly at random from A. In episode t:

1. let µt ∼ P = N (ν⋆,Ψ⋆) denote the mean reward vector;
2. let at ∼ Uniform(A) be the action taken in the first round (independent of µt);
3. let rt be the reward vector for the first round, so

rt | (µt, at) ∼ N (µt, σ
2I).

The reward observed (and accrued) in the first round of episode t is rT
teat . Our estimate of prior

mean ν⋆ is

ν̂ :=
|A|
T

T∑
t=1

(rT

teat
)eat

. (F.1)

Lemma F.4 (Gaussian mean estimation). There exists a universal constant C > 0 such that the
following holds. Consider any multivariate Gaussian distribution P := N (ν⋆,Ψ⋆) in RA. Let

(µ1, a1, r1), (µ2, a2, r2), . . . , (µT , aT , rT )

be T iid random variables, with

(µt, at) ∼ P ⊗Uniform(A),
rt | (µt, at) ∼ N (µt, σ

2I);

47



and define ν̂ as in (F.1). For any δ ∈ (0, 1), with probability at least 1− δ,

∥Ψ−1/2
⋆ (ν̂ − ν⋆)∥2 ≤ C

(√
d2(|A|2 + |A| log(1/δ))

T
+

d∞(|A|2 + |A| log(1/δ))
T

)
,

where

d2 := λmax

(
Ψ

−1/2
⋆

(
diag(Ψ⋆) + σ2I+ diag(ν⋆)

2
)
Ψ

−1/2
⋆

)
,

d∞ := max
a∈A

√
(Ψ−1

⋆ )a,a((Ψ⋆)a,a + σ2 + (ν⋆)2a).

Proof. First, since

E [(rT

teat
)eat

] =
1

|A|
∑
a∈A

E [(rT

teat
)eat

| at = a] =
1

|A|
E [rt] =

1

|A|
E [µt] =

1

|A|
ν⋆,

it follows by linearity that E[ν̂] = ν⋆. Next, we show that for any unit vector u ∈ S|A|−1, the random
variable

Xu,t := (Ψ
−1/2
⋆ u)T

(
(rT

teat
)eat
− 1

|A|
ν⋆

)
= (Ψ

−1/2
⋆ u)Teat

eT

at
(rt − ν⋆) + (Ψ

−1/2
⋆ u)Teat

eT

at
ν⋆ −

(Ψ
−1/2
⋆ u)Tν⋆

|A|

is (4d2/|A|, 2d∞)-subexponential. Consider λ ∈ R such that |λ| ≤ 1/(2d∞), and let v := Ψ
−1/2
⋆ u.

Then

λ2v2at

2

(
eT

at
Ψ⋆eat

+ σ2
)
+ λvat

eT

at
ν⋆

=
λ2(uTΨ

−1/2
⋆ eat)

2(eT
at
Ψ⋆eat + σ2)

2
+ λ(uTΨ

−1/2
⋆ eat

)eT

at
ν⋆

≤
λ2eT

at
Ψ−1

⋆ eat(e
T
at
Ψ⋆eat + σ2)

2
+ |λ|

√
eT
at
Ψ−1

⋆ eat
|eT

at
ν⋆|

≤ λ2d2∞
2

+ |λ|d∞ ≤ 1

where the first inequality follows by Cauchy-Schwarz, the second inequality follows by definition
of d∞, and the third inequality follows by assumption on λ. Further, observe that rt has the same
distribution as ν⋆ +Ψ

1/2
⋆ x + σy, where (x,y)

i.i.d.∼ N (0, I)⊗2, independent of at. Since at and
(x,y) are independent,

E exp(λXu,t) = E
[
E
[
exp

(
λvat

eT

at
(Ψ

1/2
⋆ x+ σy) + λvTeat

eT

at
ν⋆ −

λvTν⋆

|A|

)
| at
]]

= E
[
exp

(
λ2v2at

(eT
at
Ψ⋆eat

+ σ2)

2
+ λvTeate

T

at
ν⋆ −

λvTν⋆

|A|

)]
≤ exp

(∑
a∈A

2λ2v2a
(
eT
aΨ⋆ea + σ2 + (eT

aν⋆)
2
)

|A|

)

= exp

(
2λ2uTΨ

−1/2
⋆

(
diag(Ψ⋆) + σ2I+ diag(ν⋆)

2
)
Ψ

−1/2
⋆ u

|A|

)

≤ exp

(
2d2λ

2

|A|

)
,

where we have used the moment generating function of standard Gaussian random variables,
Lemma F.7 with the inequality from the previous display, and the definition of d2. Thus Xu,t is
(4d2/|A|, 2d∞)-subexponential. By independence,

∑T
t=1 Xu,t is (4Td2/|A|, 2d∞)-subexponential.
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For any δ′ ∈ (0, 1), a Bernstein inequality for subexponential random variables [Ver18, Theorem
2.8.1] gives, with probability at least 1− δ′,

T∑
t=1

Xu,t ≤
C

2

(√
Td2 log(1/δ′)

|A|
+ d∞ log(1/δ′)

)
.

Combining with a union bound over all choices of u from a (1/2)-net N of S|A|−1 shows that with
probability at least 1− |N |δ′, the inequality in the previous display holds for all u ∈ N . A standard
volume argument shows that we can take |N | ≤ 5|A| [Ver18, Corollary 4.2.13]. Therefore, the claim
follows by choosing δ′ := δ/5|A| and observing that [Ver18, Exercise 4.4.2]

∥Ψ−1/2
⋆ (ν̂ − ν⋆)∥2 =

|A|
T

sup
u∈S|A|−1

T∑
t=1

Xu,t ≤
2|A|
T

sup
u∈N

T∑
t=1

Xu,t.

Covariance estimation. We now consider the estimate of Ψ⋆. To do so, we first consider the case
where ν⋆ is already known, so only Ψ⋆ needs to be estimated. We assume the first two rounds in
each of T episodes are chosen independently and uniformly at random from A. In episode t:

1. let µt ∼ P = N (ν⋆,Ψ⋆) denote the mean reward vector;

2. let at, bt
i.i.d.∼ Uniform(A) be the actions taken in the first two rounds (independent of µt);

3. let rt and st be the reward vectors for the first two rounds, so

rt, st | (µt, at, bt)
i.i.d.∼ N (µt, σ

2I).

The rewards observed (and accrued) in the first two rounds of episode t are rT
teat

and sT
tebt . Our

estimate of prior covariance Ψ⋆ is

Ψ̂ :=
|A|2

2T

T∑
t=1

(rt − ν⋆)
Teat(st − ν⋆)

Tebt
(
eate

T

bt + ebte
T

at

)
. (F.2)

Lemma F.5 (Gaussian covariance estimation with known mean). There exists a universal constant
C > 0 such that the following holds. Consider any multivariate Gaussian distribution P :=
N (ν⋆,Ψ⋆) in RA. Let

(µ1, a1, b1, r1, s1), (µ2, a2, b2, r2, s2), . . . , (µT , aT , bT , rT , sT )

be T iid random variables, with

(µt, at, bt) ∼ P ⊗Uniform(A)⊗Uniform(A),
(rt, st) | (µt, at, bt) ∼ N (µt, σ

2I)⊗N (µt, σ
2I);

and define Ψ̂ as in (F.2). For any δ ∈ (0, 1), with probability at least 1− δ,

∥Ψ−1/2
⋆ (Ψ̂−Ψ⋆)Ψ

−1/2
⋆ ∥2 ≤ C

√
d

(√
|A|3 + |A|2 log(1/δ)

T
+
|A|3 + |A|2 log(1/δ)

T

)
,

where

d :=
σ4 +maxa∈A(Ψ⋆)

2
a,a

λmin(Ψ⋆)2
.

Proof. The proof is very similar to that of Lemma F.4. We first observe that

E
[
1

2
(rt − ν⋆)

Teat
(st − ν⋆)

Tebt
(
eat

eT

bt + ebte
T

at

)]
=

1

|A|2
Ψ⋆.

We claim that for any unit vector u ∈ S|A|−1,

Xu,t := (Ψ
−1/2
⋆ u)T

(
1

2
(rt − ν⋆)

Teat(st − ν⋆)
Tebt

(
eate

T

bt + ebte
T

at

)
− 1

|A|2
Ψ⋆

)
(Ψ

−1/2
⋆ u)
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is (v, c)-subexponential with v = O(d/|A|2) and c = O(
√
d). We defer this argument until the end.

By independence,
∑T

t=1 Xu,t is (Tv, c)-subexponential. For any δ′ ∈ (0, 1), a Bernstein inequality
for subexponential random variables [Ver18, Theorem 2.8.1] gives, with probability at least 1− δ′,∣∣∣∣ T∑

t=1

Xu,t

∣∣∣∣ ≤ C

2

(√
Td log(1/δ′)

|A|2
+
√
d log(1/δ′)

)
.

Combining with a union bound over all choices of u from a (1/4)-net N of S|A|−1 shows that with
probability at least 1− |N |δ′, the inequality in the previous display holds for all u ∈ N . A standard
volume argument shows that we can take |N | ≤ 9|A| [Ver18, Corollary 4.2.13]. Therefore, the claim
follows by choosing δ′ := δ/9|A| and observing that [Ver18, Exercise 4.4.3(b)]

∥Ψ−1/2
⋆ (Ψ̂−Ψ⋆)Ψ

−1/2
⋆ ∥2 =

|A|2

T
sup

u∈S|A|−1

∣∣∣∣ T∑
t=1

Xu,t

∣∣∣∣ ≤ 2|A|2

T
sup
u∈N

∣∣∣∣ T∑
t=1

Xu,t

∣∣∣∣
It remains to show that Xu,t is (v, c)-subexponential with v = O(d/|A|2) and c = O(

√
d). Observe

that (rt, st, at, bt) has the same joint distribution as (ν⋆ +Ψ
1/2
⋆ x+ σy,ν⋆ +Ψ

1/2
⋆ x+ σz, at, bt),

where x,y, z are i.i.d. N (0, I) random vectors in RA, independent of (at, bt). Let v := Ψ
−1/2
⋆ u

and w := Ψ
1/2
⋆ x, so

Xu,t = (Ψ
−1/2
⋆ u)T

(
1

2
(rt − ν⋆)

Teat
(st − ν⋆)

Tebt
(
eat

eT

bt + ebte
T

at

)
− 1

|A|2
Ψ⋆

)
(Ψ

−1/2
⋆ u)

dist
= (Ψ

−1/2
⋆ u)T

(
1

2
(w + σy)Teat(w + σz)Tebt

(
eate

T

bt + ebte
T

at

)
− 1

|A|2
Ψ⋆

)
(Ψ

−1/2
⋆ u)

=

(
vat

vbt(wat
+ σyat

)(wbt + σzbt)−
1

|A|2

)
.

Now we fix λ ∈ R such that |λ| ≤ 1/(C
√
d) for some sufficiently large constant C > 0, and bound

the moment generating function of Xu,t at λ. To do so, we use the above characterization of the
distribution of Xu,t in terms of the independent Gaussian random vectors. First, taking expectation
only with respect to (y, z) (i.e., conditional on at, bt,x):

E [exp(λXu,t)]

= E
[
E
[
exp

(
λ

(
vatvbt(wat + σyat)(wbt + σzbt)−

1

|A|2

))
| at, bt,x

]]
= E

[
exp

(
ηwat

wbt +
η2σ2w2

at
+ η2σ2w2

bt
+ η3σ4wat

wbt

2(1− η2σ4)
+

1

2
ln

1

1− η2σ4
− λ

|A|2

)]

≤ E

[
exp

(
ηwat

wbt +
η2σ2w2

at
+ η2σ2w2

bt
+ η3σ4wat

wbt

2(1− η2σ4)
+ η2σ4 − λ

|A|2

)]
where η := λvatvbt satisfies η2σ4 ≤ 1/2 (due to the assumption on λ). Next, we note that

ηwat
wbt +

η2σ2w2
at

+ η2σ2w2
bt
+ η3σ4wat

wbt

2(1− η2σ4)
= xTAx

where A is the random symmetric matrix defined by

A :=
η

2(1− η2σ4)
Ψ

1/2
⋆

(
(1− η2σ4/2)(eat

eT

bt + ebte
T

at
) + ησ2(eat

eT

at
+ ebte

T

bt)
)
Ψ

1/2
⋆

= η

(
1 +

η2σ4

2(1− η2σ4)

)
Ψ

1/2
⋆

(
1

2
(eat

eT

bt + ebte
T

at
)

)
Ψ

1/2
⋆

+
η2σ2

1− η2σ4
Ψ

1/2
⋆

(
1

2
(eat

eT

at
+ ebte

T

bt)

)
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(where the randomness comes from at, bt). Since A is symmetric, it has real eigenvalues
λ1, λ2, . . . , λ|A|. We shall ensure via the assumption on λ that ∥A∥2 ≤ 1/3, which implies that
|λi| ≤ 1/3 for all i. The rotational invariance of N (0, I) implies that the distribution of xTAx
(conditional on at, bt) is the same as that of

∑
i λiti, where t1, t2, . . . , t|A| are i.i.d. χ2(1) random

variables. This implies that

E [exp (xTAx) | at, bt] = exp

(
1

2

∑
i

ln
1

1− 2λi

)

≤ exp

(∑
i

λi + 2λ2
i

)
= exp

(
tr(A) + 2∥A∥2F

)
where the inequality uses the bound |λi| ≤ 1/3. We expand tr(A) to reveal its dependence on at, bt:

tr(A) = η(Ψ⋆)at,bt +
η3σ4(Ψ⋆)at,bt + η2σ2((Ψ⋆)at,at + (Ψ⋆)bt,bt)

2(1− η2σ4)
.

And we bound ∥A∥2F as follows:

∥A∥2F ≤ 2η2
(
1 +

η2σ4

2(1− η2σ4)

)2 ∥∥∥∥Ψ1/2
⋆

(
1

2
(eat

eT

bt + ebte
T

at
)

)
Ψ

1/2
⋆

∥∥∥∥2
F

+ 2η2
(

ησ2

1− η2σ4

)2 ∥∥∥∥Ψ1/2
⋆

(
1

2
(eat

eT

at
+ ebte

T

bt)

)
Ψ

1/2
⋆

∥∥∥∥2
F

= η2
(
1 +

η2σ4

2(1− η2σ4)

)2 (
(Ψ⋆)

2
at,bt + (Ψ⋆)at,at

(Ψ⋆)bt,bt
)

+
η2

2

(
ησ2

1− η2σ4

)2 (
(Ψ⋆)

2
at,at

+ 2(Ψ⋆)
2
at,bt + (Ψ⋆)

2
bt,bt

)
≤ 4η2

(
1 +

η2σ4

2(1− η2σ4)

)2 (
(Ψ⋆)

2
at,at

+ (Ψ⋆)
2
bt,bt

)
+ η2

(
ησ2

1− η2σ4

)2 (
(Ψ⋆)

2
at,at

+ (Ψ⋆)
2
bt,bt

)
≤ 11η2

(
(Ψ⋆)

2
at,at

+ (Ψ⋆)
2
bt,bt

)
.

Above the first inequality follows by the triangle inequality and the fact (a+ b)2 ≤ 2(a2 + b2) for
a, b ≥ 0; the second inequality uses Cauchy-Schwarz and the AM/GM inequality; the third inequality
uses the assumption η2σ4 ≤ 1/2. Thus, we have shown that

E [exp(λXu,t)] ≤ E
[
exp

(
tr(A) + 2∥A∥2F + η2σ4 − λ

|A|2

)]
≤ E

[
exp

(
η(Ψ⋆)at,bt +

η3σ4(Ψ⋆)at,bt + η2σ2((Ψ⋆)at,at + (Ψ⋆)bt,bt)

2(1− η2σ4)

+ 11η2
(
(Ψ⋆)

2
at,at

+ (Ψ⋆)
2
bt,bt

)
− λ

|A|2

)]
.

Define

αa,b := βa,b + γa,b
βa,b := λvavb(Ψ⋆)a,b

γa,b :=
λ3v3av

3
bσ

4(Ψ⋆)a,b + λ2v2av
2
bσ

2((Ψ⋆)a,a + (Ψ⋆)b,b)

2(1− λ2v2av
2
bσ

4)

+ λ2v2av
2
b (11((Ψ⋆)

2
a,a + (Ψ⋆)

2
b,b) + σ4).

Observe that
1

|A|2
∑

a,b∈A

βa,b = 1.
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The assumptions λ ensure that |βa,b| + |γa,b| ≤ 1, so we can apply Lemma F.7 to bound the final
expression in the previous display to obtain the inequality

E [exp(λXu,t)] ≤ exp

 1

|A|2
∑

a,b∈A

(
αa,b + α2

a,b

)
− λ

|A|2


≤ exp

 1

|A|2
∑

a,b∈A

(4γa,b + β2
a,b)


≤ exp

(
8∥v∥42(σ4 + ∥ diag(Ψ⋆)∥22)

|A|2

[
|λ|∥v∥2∞σ2 + 2

4(1− λ2∥v∥4∞σ4)
+ 23

]
λ2

2

)
≤ exp

(
200∥v∥42(σ4 + ∥ diag(Ψ⋆)∥22)

|A|2
· λ

2

2

)
,

where the inequalities use the bounds on |βa,b| and |γa,b|, and the additional bound |λ|∥v∥2∞(σ2 +
∥ diag(Ψ⋆)∥2) ≤ 1/10 which is implied by the assumption on λ. The final bound is exp(C(d/|A|2) ·
λ2/2) for a sufficiently large absolute constant C > 0.

Covariance estimation, redux. Now we consider the case where both ν⋆ and Ψ⋆ are unknown and
need to be estimated. A standard approach to estimating Ψ⋆ is to simply estimate the second moment
of µt (instead of its covariance), and then to subtract ν̂ν̂T using some estimate ν̂ of ν⋆. However,
the quality of our estimate of ν⋆ (described above) depends on properties of ν⋆ itself, which should
not be necessary. Below, we instead analyze an estimator of Ψ⋆ based on differences, essentially
leveraging the fact that the variance of a random variable X is half the expected squared difference
between X and an independent copy of itself.

We assume the first two rounds in each of 2T episodes are chosen independently and uniformly at
random from A. However, we use the same two chosen actions in two consecutive episodes. That is,
in episodes 2t− 1 and 2t:

1. let µt, µ̃t
i.i.d.∼ P = N (ν⋆,Ψ⋆) denote the mean reward vectors for episodes 2t− 1 and 2t;

2. let at, bt
i.i.d.∼ Uniform(A) be the actions taken in the first two rounds (independent of µt, µ̃t);

3. let rt and st be the reward vectors for the first two rounds of episode 2t− 1, and let r̃t and s̃t be
the reward vectors for the first two rounds of episode 2t, so

(rt, st, r̃t, s̃t) | (µt, µ̃t, at, bt) ∼ N (µt, σ
2I)⊗N (µt, σ

2I)⊗N (µ̃t, σ
2I)⊗N (µ̃t, σ

2I).

The rewards observed (and accrued) in the first two rounds of episode 2t − 1 are rT
teat

and sT
tebt ,

and the rewards observed (and accrued) in the first two rounds of episode 2t are r̃T
teat

and s̃T
tebt . Our

estimate of prior covariance Ψ⋆ is

Ψ̂ :=
|A|2

4T

T∑
t=1

(rt − r̃t)
Teat(st − s̃t)

Tebt
(
eate

T

bt + ebte
T

at

)
. (F.3)

Lemma F.6 (Gaussian covariance estimation with unknown mean). There exists a universal constant
C > 0 such that the following holds. Consider any multivariate Gaussian distribution P :=
N (ν⋆,Ψ⋆) in RA. Let

(µ1, µ̃1, a1, b1, r1, s1, r̃1, s̃1), (µ2, µ̃2, a2, b2, r2, s2, r̃2, s̃2), . . . , (µT , µ̃T , aT , bT , rT , sT , r̃T , s̃T ),

be T iid random variables, with

(µt, µ̃t, at, bt) ∼ P ⊗ P ⊗Uniform(A)⊗Uniform(A),
(rt, st, r̃t, s̃t) | (µt, µ̃t, at, bt) ∼ N (µt, σ

2I)⊗N (µt, σ
2I)⊗N (µ̃t, σ

2I)⊗N (µ̃t, σ
2I);

and define Ψ̂ as in (F.3). For any δ ∈ (0, 1), with probability at least 1− δ,

∥Ψ−1/2
⋆ (Ψ̂−Ψ⋆)Ψ

−1/2
⋆ ∥2 ≤ C

√
d

(√
|A|3 + |A|2 log(1/δ)

T
+
|A|3 + |A|2 log(1/δ)

T

)
,
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where

d :=
σ4 +maxa∈A(Ψ⋆)

2
a,a

λmin(Ψ⋆)2
.

We omit the proof of Lemma F.6 since it is completely analogous to that of Lemma F.5.

The following lemma is used to bound the exponential moment of a discrete real-valued random
variable.
Lemma F.7. Let Y be a random variable supported on {α1, . . . , αK} ⊂ R with αi ≤ 1 and
pi := P(Y = αi) for all i. Then

E[exp(Y )] ≤ exp

(
K∑
i=1

piαi + piα
2
i

)
.

Proof. Since et ≤ 1 + t+ t2 for all t ≤ 1, we have

E[exp(Y )] ≤ E[1 + Y + Y 2] = 1 +

K∑
i=1

qiαi +

K∑
i=1

qiα
2
i .

The claim now follows since 1 + t ≤ et for all t ∈ R.
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