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A EXPERIMENT DETAILS

A.1 DETAILS ON GRAPH DATASETS

We show the statistics of the datasets for node classification in Table 4. For each dataset, we list its
graph statistics, data split, and homophily score, which is computed as follows.

Homophily. We adopt the homophily indicator H(G) of the graph G from Liu et al. (2021b), which
can be calculated as:

H(G) = 1

|V |
∑

v∈V

| {u : u ∈ N (v) and y(u) = y(v)} |
|N (v)| ,

where | {u : u ∈ N (v) and y(u) = y(v)} | denotes the number of v′ s directly connected nodes
who have the same label as v and |N (v)| is the number of neighbouring nodes of v. Intuitively, high
H(G) indicates an assortative graph and vice versa.

Table 4: Statistics of the node-classification datasets used in our experiments. The homophily level of
the dataset can be used to distinguish assortative and disassortative graph datasets.

Datasets Cora Citeseer Pubmed Chameleon Squirrel Cornell Texas Wisconsin

Homophily 0.83 0.71 0.79 0.25 0.22 0.11 0.06 0.16
Splits 140/500/1, 000 120/500/1, 000 60/500/1, 000 60%/20%/20% 60%/20%/20% 60%/20%/20% 60%/20%/20% 60%/20%/20%
#Nodes 2, 708 3, 327 19, 717 2, 277 5, 201 183 183 251
#Edges 5, 429 4, 732 44, 338 36, 101 217, 073 295 309 499
#Features 1, 433 3, 703 500 2, 325 2, 089 1, 703 1, 703 1, 703
#Classes 7 6 3 5 5 5 5 5

For the graph classification task, we adopt Mutagenicity, D&D, NCI1, Ogbg-molhiv, and QM7
datasets. The D&D and PROTEINS datasets are used for protein structure classification, which
aims to categorize proteins into enzyme and non-enzyme structures. The NCI1 dataset is used for
identifying chemical compounds that inhibit lung cancer cells. The Mutagenicity dataset is used
for recognizing mutagenic molecular compounds that have the potential for drug development. The
QM7 dataset is used for predicting the atomization energy value of molecules. The Ogbg-Molhiv is a
molecular property prediction dataset for predicting whether a molecule inhibits HIV virus replication
or not. All the datasets contain more than 1,000 graphs with varying graph structures (in terms of the
average number of nodes and edges, the average degree of nodes) and node features. The statistics of
each dataset are displayed in Table 5.

Table 5: Summary of the datasets for the graph property prediction tasks.

Datasets PROTEINS Mutagenicity D&D NCI1 ogbg-molhiv QM7
# Graphs 1,113 4,337 1,178 4,110 41,127 7,165
Min # Nodes 4 4 30 3 2 4
Max # Nodes 620 417 5,748 111 222 23
Avg # Nodes 39 30 284 30 26 15
Avg # Edges 73 31 716 32 28 123
# Features 3 14 89 37 9 0
# Classes 2 2 2 2 2 1 (R)

A.2 IMPLEMENTATION DETAILS

We implement our model using PyTorch. We set the default number of filters as four, which is
suitable for most of the datasets. The default Chebyshev approximation order is set to 6. The
dimension of hidden variables is searched from {16, 32, 64}, and the level of filters are selected from
{2, 3, 4, 5}. Other hyperparameters are set at: 0.001 for the learning rate, 0.001 for weight decay,
0.5 for dropout, and 2 for the number of MM-FGConv layers. These hyper-parameters are used
for both node and graph classification tasks. For the graph classification task, we further apply our
proposed MM-FGPool operation as elaborated in Section 4.3, followed by a linear classifier. For
baseline methods in node classification, we adopt the code from the author’s released implementation
with the default settings. For graph classification, we adopt the experiment setting form Zheng et al.
(2021a), where we use two-layer GCN networks followed by the pooling methods listed in Table 2.
Specifically, this experiment setting is comparable to our model’s design, where we also adopt two
convolutional layers and one pooling layer.
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B EXTRA EXPERIMENTS

B.1 EXPERIMENTS ON RANDOM 60%/20%/20% SPLITS

The main results of the full sets of node classification experiments with statistics of datasets are
summarized in Table 1, and Table 4. For a fair comparison with the state-of-the-art methods, we list
the additional experiments for node classification on homophily graph datasets with 60%/20%/20%
split. Corresponding results are shown in Table 6.

Cora Citeseer Pubmed

MLP 76.44± 0.30 76.25± 0.28 86.43± 0.13
GCN 87.78± 0.96 81.39± 1.23 88.9± 0.32
GAT 76.70± 0.42 67.20± 0.46 83.28± 0.12
GraphSAGE 86.58± 0.26 78.24± 0.30 86.85± 0.11
Geom-GCN 85.27 77.99 90.05
ACM-GCN 88.62± 1.22 81.68± 0.97 90.66± 0.47
GCNII 88.98± 1.33 81.58± 1.3 89.8± 0.30
MM-FGCN (Ours) 89.89∗ ± 1.12 82.97∗ ± 0.85 91.52∗ ± 0.21

Table 6: Test accuracy for classifications on homophily graphs under 60%/20%/20% random split.

B.2 EXPERIMENTS ON FIXED 48%/32%/20% SPLITS

We further conduct the node classification experiments on data split with fixed 48%/32%/20%
according to Pei et al. (2020). The corresponding results are shown in Table 7.

Cornell Wisconsin Texas Chameleon Squirrel Cora Citeseer Pubmed

Geom-GCN 60.54± 3.67 64.51± 3.66 66.76± 2.72 60.00± 2.81 38.15± 0.92 85.35± 1.57 78.02± 1.15 89.95± 0.47
GGCN 85.68± 6.63 86.86± 3.29 84.86± 4.55 71.14± 1.84 55.17± 1.58 87.95± 1.05 77.14± 1.45 89.15± 0.37
H2GCN 82.70± 5.28 87.65± 4.98 84.86± 7.23 60.11± 2.15 36.48± 1.86 87.87± 1.20 77.11± 1.57 89.49± 0.38
MixHop 73.51± 6.34 75.88± 4.90 77.84± 7.73 60.50± 2.53 43.80± 1.48 87.61± 0.85 76.26± 1.33 85.31± 0.61
Geom-GCN 60.54± 3.67 64.51± 3.66 66.76± 2.72 60.00± 2.81 38.15± 0.92 85.35± 1.57 78.02± 1.15 89.95± 0.47
ACM-GCN 85.14± 6.07 88.43± 3.22 87.84± 4.4 69.14± 1.91 55.19± 1.49 87.91± 0.95 77.32± 1.7 90.00± 0.52
GCNII 77.86± 3.79 80.39± 3.40 77.57± 3.83 63.86± 3.04 38.47± 1.58 88.37± 1.25 77.33± 1.48 90.15± 0.43
NLMLP 84.9± 5.7 87.3± 4.3 85.4± 3.8 50.7± 2.2 33.7± 1.5 76.9± 1.8 73.4± 1.9 88.2± 0.5
NLGCN 57.6± 5.5 60.2± 5.3 65.5± 6.6 70.1± 2.9 59.0± 1.2 88.1± 1.0 75.2± 1.4 89.0± 0.5
NLGAT 54.7± 7.6 56.9± 7.3 62.6± 7.1 65.7± 1.4 56.8± 2.5 88.5± 1.8 76.2± 1.6 88.2± 0.3
MM-FGCN (Ours) 87.35∗ ± 6.18 89.02∗ ± 5.41 89.31∗ ± 1.56 72.61∗ ± 1.84 61.34∗ ± 1.22 89.35∗ ± 1.15 79.86 ± 1.42 91.42∗ ± 0.41

Table 7: Test accuracy for node classification results under fixed 48%/32%/20% split.

B.3 PERTURBATION RESILIENCE OF MM-FGCN.

In this study, we add extra experiments to assess the perturbation resilience of our MM-FGCN against
noise perturbation present in input graph data, which is ubiquitous in real-world datasets. Particularly,
we train the MM-FGCN with corrupted data that are contaminated by random noise of various
magnitudes. The noise magnitude is controlled by the noise ratios, which are defined as the amount
of randomly deleted edges (or randomly flipped binary-valued features) divided by the number of
untainted edges (or features). We then investigate how the performance of the resultant models varies
when the noise level change from 0 to 1. As illustrated in Figure 4, our MM-FGCN consistently
outperforms the baselines with a remarkable margin even under the presence of considerable noise.
Thus, the MM-FGCN demonstrates a strong noise resilience making it a highly promising solution
for real-world applications.

B.4 ABLATION ON THE NUMBER OF THE META-FRAMELET GENERATORS

We analyze how the size of the meta-framelet generator (i.e. a set of spectral filters), I , affects
the performance of MM-FGCN. With an insufficient amount of meta-generators, the model may
fail to learn the optimal frequency partition and cannot disentangle graph signals into desirable
frequency components. Intuitively, an overly small I may hinder the learning of discriminative graph
representations. Conversely, a large I improves the precision of frequency partition learning but also
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Figure 4: Noise resilience experiments with the edge (left) and feature (right) noise perturbations on
Cora.

increases computational expenses. This requires us to strike a balance between the by selectively
choosing the value of I .

We evaluate the performance of MM-FGCN with different choices of I over Cora, Citeseer,
Chameleon, Squirrel, and D&D datasets. As shown in Figure 5 (a), the Meta-FCGN is able to
achieve state-of-the-art performance by constructing the meta-framelet generator with only 3 filters.
Overall, the model performance is stable and robust across different choices of I . In general, we
recommend setting r = 4 for effective and efficient implementation.

B.5 ABLATION ON THE ORDER OF CHEBYSHEV APPROXIMATION

Recall that the Chebyshev approximation trick Defferrard et al. (2016b) is applied in Algorithm
1 for efficient computation of each gωr,i(L). Broadly speaking, using a higher-order Chebyshev
approximation leads to a smaller approximation error w.r.t the meta-generator, but creates a greater
computational overhead. As illustrated in Figure 5 (b), the performance of MM-FGCN is robust
to Chebyshev approximation of different orders. Empirically, the MM-FGCN achieves optimal
performance with a Chebyshev approximation of an order greater than 4. In contrast, a low-order
Chebyshev approximation order incurs an undesirable approximation error, which hinders graph
representation learning and impairs model generalization. We recommend using a higher than 4-order
Chebyshev approximation for good model performance.

(a) Ablation on the number of filters used in the meta-
framelet generator.

(b) Ablation on the order of Chebyshev approxima-
tion.

Figure 5: Ablation studies on MM-FGCN’s hyperparameters.

B.6 VISUALIZATION OF MM-FGCN REPRESENTATION

In this section, we empirically show that the MM-FGCN is able to produce more discriminative
graph representations than conventional GCN, on both assortative (e.g. Cora) and disassortative (e.g.
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Figure 6: Meta-framelet generator (row 1) and feature visualization (row 2-3) on the test and validation
sets of Cora (left, assortative) and Cornell (right, disassortative) datasets using MM-FGCN and GCN.
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Cornell) datasets. In order to assess the quality of the learned graph representation, we visualize the
hidden features generated by the penultimate layer of both MM-FGCN and GCN via t-SNE van der
Maaten & Hinton (2008). As shown in Figure 6, the graph representation of our MM-FGCN is more
spatially clustering than GCN, especially for the disassortative dataset that is more challenging for
classification. In fact, the learned feature of MM-FGCN is strongly correlated to the label, which
significantly facilitates node and graph classification tasks. In summary, the visualization of the
learned hidden features validates that the adaptiveness and expressiveness of our MM-FGCN are
beneficial to learning discriminative graph representations.

We also demonstrate the effectiveness of the MM-FGCN by visualising the filters learned by MM-
FGCN in Figure 6. We can observe that the filters learned from the Cora dataset (assortative)
more concentrate on the low-frequency signals than the filters learned from the Cornell dataset
(disassortative). Due to the assortative properties, aggregating local information with low-frequency
signals can benefit the model’s performance on the Cora dataset. In contrast, as elaborated in Bo
et al. (2021), high-frequency signals are useful for disassortative networks, which corresponds to our
learned multi-resolution filters since more filters concentrate on the high-frequency part, providing
a comprehensive feature extraction on the high-frequency signal. This phenomenon shows the
adaptivity of our MM-FGCN on different types of graphs.

B.7 ROBUSTNESS ANALYSIS

We verify that our MM-FGCN inherently possesses greater robustness compared to conventional
GCN models, even without relying on any specific robust data augmentation techniques. Furthermore,
we observe that the robustness of our MM-FGCN can be further enhanced when combined with data
augmentation methods. We assess the robustness of our MM-FGCN in the face of both adaptive
and non-adaptive graph attacks Mujkanovic et al. (2022). These attacks encompass graph poisoning,
which involves perturbing the adjacency matrix before training, and graph evasion, which perturbs
the adjacency matrix after training. We not only compare our method with GCN but also evaluate two
prevalent graph defense techniques, namely GRAND defense and Jaccard defense. We present the
results on Cora in the top row of Figure 7, demonstrating that our MM-FGCN showcases substantially
higher adversarial accuracy than GCN when subjected to graph attacks. Moreover, by incorporating
GRAND and Jaccard defense techniques, the adversarial accuracy of MM-FGCN can be further
enhanced. This highlights that the inherent robustness gain of MM-FGCN is independent of the
benefits offered by graph defense methods, demonstrating our orthogonal contributions.

We also validate our MM-FGCN’s immunity against realist graph topology perturbations. To evaluate
the robustness of a well-trained model, we introduce noise of varying magnitudes into the adjacency
matrix. Subsequently, we assess the deviation between the perturbed hidden representation and the
original one using the ℓ2 distance metric. As depicted in the bottom row of Figure 7, our MM-FGCN
demonstrates a distinct ‘potential well’, where the potential refers to the distance from the perturbed
feature to the original, unperturbed feature. The results in Figure 7 show that our MM-FGCN has
the capability to learn robust representations that remain intact by minor perturbations in the graph
adjacency matrix. In contrast, conventional GCN experiences a progressively linear increase in
representation distortion as the magnitude of perturbation grows.

C PROOF DETAILS

Proof of Proposition 2. According to the discrete tight framelet transform theory (Theorem 2.1
and Theorem 3.1 in (Dong, 2017a)), the series of progressive resolution subspaces {Vr}r with
Vr = span ({φriv}i,v) inherently satisfies the denseness, translation, and dilation properties, making
it a set of desirable multiresolution bases for graph domain data. To complete the proof, one only
need to verify the tightness of the MMFS, i.e. ΦMMΦ⊤

MMx = x holds for any graph signal x. By
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definition, we have

ΦMMΦ⊤
MM =

∑

r,i,v

φrivφriv (10)

=
∑

r,i

(
Ugωr,i(γ

−J+rL)U⊤) (Ugωr,i(γ−J+rL)U⊤)⊤ (11)

=U


∑

r,i

gωr,i
2(γ−J+rL)


U⊤ (12)

=U


 ∑

r∈[R]

∑

i∈[I]

(
gω1,i

2(γ−J+rL)
)
gω1,1

2(γ−J+r−1L) · · · gω1,12(γ−J+rL)


U⊤ (13)

=U


 ∑

r∈[R]

gω1,1
2(γ−J+r−1L) · · · gω1,12(γ−J+rL)


U⊤ (14)

=U


 ∑

r∈[R]

gω1,1
2(γ−J+r−1L) · · · gω1,12(γ−J+rL)


U⊤ (15)
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Figure 7: Top: the adversarial accuracy of MM-FCGN under graph attack. Bottom: representation distortion of
each perturbation level.
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