
Appendix

A Proof of Theorem 2.1

As in the main paper, let Z = (X,Y ) be a random variable representing a labeled data point (data
point X and label Y ) with distribution Z. Let Zn = {(Xi, Yi) : i = 1, 2, . . . , n} be a random
variable representing iid training data of size n drawn from Z.

We have the following lemma.

Lemma A.1. Given an arbitrary model parameter distribution Θ0, let

f̄P (x) =EZ′
n
f̄P |Z′

n
(x) = EZ′

n
EΘ∼ΘP |Z′

n
f(Θ, x),

ℓθ(z) =ϕ(f(θ, x), y)− ϕ(f̄P (x), y) where z = (x, y)

then

−nEZn
EΘ∼ΘP |Zn

lnEZ exp(−λℓΘ(Z)) ≤ EZn
EΘ∼ΘP |Zn

n∑
i=1

λℓΘ(Xi, Yi)+EZn
KL(ΘP |Zn

||Θ0).

Proof. Let Θ∗ be a model parameter distribution such that

Θ∗ ∝ Θ0 exp

[
n∑

i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))

]
.

We have

EZn
exp

[
EΘ∼ΘP |Zn

n∑
i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))−KL(ΘP |Zn
||Θ0)

]

≤EZn
sup
Θ

exp

[
EΘ∼Θ

n∑
i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))−KL(Θ||Θ0)

]

=EZn sup
Θ

EΘ∼Θ0 exp

[
n∑

i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))−KL(Θ||Θ∗)

]

=EZn
EΘ∼Θ0 exp

[
n∑

i=1

(−λℓΘ(Xi, Yi)− lnEZ exp(−λℓΘ(Z)))

]
= 1.

The first inequality takes sup over all probability distributions of model parameters. The first equality
can be verified using the definition of the KL divergence. The second equality follows from the fact
that the supreme is attained by Θ = Θ∗. The last equality uses the fact that (Xi, Yi) for i = 1, . . . , n
are iid samples drawn from Z. The desired bound follows from Jensen’s inequality and the convexity
of exp(·).

Proof of Theorem 2.1. Using the notation of Lemma A.1, we have

EΘ∼ΘP |Zn
lnEZ exp(−λℓΘ(Z)) ≤ EΘ∼ΘP |Zn

EZ [exp(−λℓΘ(Z)− 1]

≤ −λEΘ∼ΘP |Zn
EZℓΘ(Z) + ψ(λ)λ2EΘ∼ΘP |Zn

EZℓΘ(Z)
2

≤ −λEΘ∼ΘP |Zn
EZℓΘ(Z) +

γ2

4
ψ(λ)λ2EΘ∼ΘP |Zn

EX∥f(Θ,X)− f̄P (X)∥21. (1)

The first inequality uses lnu ≤ u− 1. The second inequality uses the fact that ψ(λ) is increasing in
λ and −λℓθ(z) ≤ λ. The third inequality uses the Lipschitz assumption of the loss function.
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We also have the following from the triangle inequality of norms, Jensen’s inequality, the relationship
between the 1-norm and the total variation distance of distributions, and Pinsker’s inequality.

EZn
EΘ∼ΘP |Zn

EX∥f(Θ,X)− f̄P (X)∥21
≤2EZn

EΘ∼ΘP |Zn
EX

[
∥f(Θ,X)− f̄P |Zn

(X)∥21 + ∥f̄P |Zn
(X)− f̄P (X)∥21

]
≤2EZnEΘ,Θ′∼ΘP |Zn

EX∥f(Θ,X)− f(Θ′, X)∥21 + 2EZnEX∥f̄P |Zn
(X)− f̄P (X)∥21

≤4EZn
EΘ,Θ′∼ΘP |Zn

EXKL(f(Θ,X)||f(Θ′, X)) + 2EZn
EX∥f̄P |Zn

(X)− f̄P (X)∥21
=4CP + 2EZnEX∥f̄P |Zn

(X)− f̄P (X)∥21 ≤ 4CP + 2EZnEZ′
n
EX∥f̄P |Zn

(X)− f̄P |Z′
n
(X)∥21

≤4CP + 4EZn
EZ′

n
EXKL(f̄P |Zn

(X)||f̄P |Z′
n
(X)) = 4 (CP + SP ) = 4DP . (2)

Using (1), (2), and Lemma A.1, we obtain

λEZn
EΘ∼ΘP |Zn

EZ

[
nℓΘ(Z)−

n∑
i=1

ℓΘ(Xi, Yi)

]
≤ nγ2ψ(λ)λ2DP + EZn

KL(ΘP |Zn
||Θ0).

(3)

Set Θ0 = EZ′
n
ΘP |Z′

n
so that we have

IP = EZn KL(ΘP |Zn
||Θ0). (4)

Also note that f̄P in ℓΘ cancels out since Zn is iid samples of Z, and so using the notation for the
test loss and empirical loss defined in Theorem 2.1, we have

λEZn
EΘ∼ΘP |Zn

EZ

[
nℓΘ(Z)−

n∑
i=1

ℓΘ(Xi, Yi)

]
= nλEZn

EΘ∼ΘP |Zn
[ΦZ(Θ)− Φ(Θ,Zn)] .

(5)

(3), (4) and (5) imply the result.

B Additional figures

Figure 10 supplements ‘Relation to disagreement’ at the end of Section 2. It shows an example where
the behavior of inconsistency is different from disagreement. Training was done on 10% of ImageNet
with the seed procedure (tuned to perform well) with training length variations described in Table 6
below. Essentially, in this example, inconsistency goes up like generalization gap, and disagreement
goes down like test error and goes up in the end, as training becomes longer.

Figure 11 supplements Figure 4 in Section 3.1. It shows inconsistency and instability of model
outputs of the models trained with SGD with constant learning rates without iterate averaging. In this
setting of high final randomness, larger learning rates make inconsistency larger while instability is
mostly unaffected. By contrast, Figure 12 shows that when final randomness is low (due to iterate
averaging in this case), both inconsistency and instability are predictive of generalization gap both
within and across the learning rates.

Figure 13–15 supplement Figure 8 in Section 3.2. These figures show the relation of inconsistency
and sharpness to generalization gap. Note that each graph has at least 16 points, and some of them
(typically for the models trained with the same procedure) are overlapping. Inconsistency shows a
stronger correlation with generalization gap than sharpness does.

C Experimental details

All the experiments were done using GPUs (A100 or older).

C.1 Details of the experiments in Section 3.1

The goal of the experiments reported in Section 3.1 was to find whether/how the predictiveness of
DP is affected by the diversity of the training procedures in comparison. To achieve this goal, we
chose the training procedures to experiment with in the following four steps.
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Figure 10: Inconsistency CP and disagreement (y-axis) in comparison with generalization gap and test error
(y-axis). The x-axis is train loss. The arrows indicate the direction of training becoming longer. Each point is the
average of 16 instances. Training was done on 10% of ImageNet with the seed procedure (tuned to perform well)
with training length variations; see Table 6. In this example, essentially, inconsistency goes up like generalization
gap, and disagreement goes down like test error and goes up in the end, as training becomes longer.

Smallest learning rate
2nd smallest l.r.
3rd smallest l.r.

Largest l.r.

In Figures 11-12: Only the learning rate and the length of training are varied.  Each point represents a 
procedure.  The procedures with the same learning rate are connected by a line in the increasing order 
of training length; generally, generalization gap goes up as the training length goes up, with some 
exceptions towards the end.  
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Figure 11: Inconsistency CP (left) and instability SP (right) (x-axis) and generalization gap (y-axis). Sup-
plement to Figure 4 in Section 3.1. SGD with a constant learning rate. No iterate averaging, and therefore,
high randomness in the final state. Same procedures (and models) as in Figure 2. A larger learning rate makes
inconsistency larger, but instability is mostly unaffected.
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Figure 12: Inconsistency CP (left) and instability SP (right) (x-axis) and generalization gap (y-axis). SGD
with a constant learning rate with iterate averaging, and therefore, low randomness in the final state. Same
procedures (and models) as in Figure 1. Both inconsistency and instability are predictive of generalization gap
across the learning rates.

1. Choose a network architecture and the size of training set. First, for each dataset, we chose
a network architecture and the size of the training set. The training set was required to
be smaller than the official set so that disjoint training sets can be obtained for estimating
instability. For the network architecture, we chose relatively small residual nets (WRN-28-2
for CIFAR-10/100 and ResNet-50 for ImageNet) to reduce the computational burden.

2. Choose a seed procedure. Next, for each dataset, we chose a procedure that performs
reasonably well with the chosen network architecture and the size of training data, and we
call this procedure a seed procedure. This was done by referring to the previous studies
[32, 10] and performing some tuning on the development data considering that the training
data is smaller than in [32, 10]. This step was for making sure to include high-performing
(and so practically interesting) procedures in our empirical study.

3. Make core procedures from the seed procedure. For each dataset, we made core pro-
cedures from the seed procedure by varying the learning rate, training length, and the
presence/absence of iterate averaging. Table 6 shows the resulting core procedures.

4. Diversify by changing an attribute. To make the procedures more diverse, for each dataset,
we generated additional procedures by changing one attribute of the core procedure. This
was done for all the pairs of the core procedures in Table 6 and the attributes in Table 7.
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Figure 13: Supplement to Figure 8 in Section 3.2. Inconsistency (x-axis) and generalization gap (y-axis) for
all the 10 cases. All values are standardized so that the average is 0 and the standard deviation is 1.
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Figure 14: Supplement to Figure 8 in Section 3.2. 1-sharpness (x-axis) and generalization gap (y-axis) for all
the 10 cases. All values are standardized. Same legend as in Figure 13.
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Figure 15: Supplement to Figure 8 in Section 3.2. Hessian (x-axis) and generalization gap (y-axis) for all the
10 cases. All values are standardized except that for the x-axis of Case#8 and 9, non-standardized values are
shown in the log-scale for better readability. Same legend as in Figure 13.
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Table 6: Core training procedures of the experiments in Section 3.1. The core training procedures consist of
the exhaustive combinations of these attributes. The seed procedure attributes are indicated by ∗ when there are
multiple values. The optimizer was fixed to SGD with Nesterov momentum 0.9.
† More precisely, { 25, 50, . . . , 250, 300, . . . , 500, 600, . . . , 1000, 1200, . . . , 2000 } so that the interval gradually
increased from 25 to 200. ‡ After training, a few procedures with very high training loss were excluded from
the analysis. The cut-off was 0.3 (CIFAR-10), 2.0 (CIFAR-100), and 3.0 (ImageNet), reflecting the number of
classes (10, 100, and 1000).
The choice of the constant scheduling is for starting the empirical study with simpler cases by avoiding the
complex effects of decaying learning rates, as mentioned in the main paper; also, we found that in these settings,
constant learning rates rival the cosine scheduling as long as iterate averaging is performed.

CIFAR-10/100 ImageNet
Network WRN-28-2 ResNet-50

Training data size 4K 120K
Learning rate {0.005, 0.01, 0.025∗, 0.05} {1/64, 1/32, 1/16∗, 1/8}
Weight decay 2e-3 1e-3

Schedule Constant Constant
Iterate averaging {EMA∗, None} {EMA∗, None}

Epochs { 25, . . . , 1000∗, . . . , 2000 }†‡ {10, 20, . . . , 200∗}‡
Mini-batch size 64 512

Data augmentation Standard+Cutout Standard
Label smoothing – 0.1

Table 7: Attributes that were varied for making variations of core procedures. Only one of the attributes was
varied at a time.

CIFAR-10 CIFAR-100 ImageNet
Network WRN-16-4 – –

Weight decay 5e-4 – 1e-4
Schedule Cosine Cosine Cosine

Mini-batch size 256 256 –
Data augmentation None – –

Table 8: The values of the fixed attributes of the procedures shown in Figures 1–4 and 6 as well as 11–12. The
training length and the learning rate were varied as shown in Table 6. The presence/absence of iterate averaging
is indicated in each figure.

CIFAR-10 CIFAR-100 ImageNet
Network WRN-28-2 ResNet-50

Training data size 4K 120K
Weight decay 2e-3 1e-3

Schedule Constant Constant
Mini-batch size 256 64 512

Data augmentation Standard+Cutout Standard
Label smoothing – 0.1

Table 9: The values of the fixed attributes of the procedures shown in Figures 16–19. The training length and
the learning rate were varied as shown in Table 6. The presence/absence of iterate averaging is indicated in each
figure. The rest of the attributes are the same as in Table 8

CIFAR-10 CIFAR-100 ImageNet
Weight decay 5e-4 2e-3 1e-4

Mini-batch size 64 256 512

Note that after training, a few procedures with very high training loss were excluded from the
analysis (see Table 6 for the cut-off). Right after the model parameter initialization, inconsistency
CP is obviously not predictive of generalization gap since it is non-zero merely reflecting the initial
randomness while generalization gap is zero. Similar effects of initial randomness are expected in the
initial phase of training; however, these near random models are not of practical interest. Therefore,
we excluded from our analysis.
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C.1.1 SGD with constant learning rates (Figures 1–4 and 6)

In Section 3.1, we first focused on the effects of varying learning rates and training lengths while
fixing anything else, with the training procedures that use a constant learning rate with or without
iterate averaging. We analyzed all the subsets of the procedures that met this condition, and reported
the common trend. That is, when the learning rate is constant, with iterate averaging, DP is predictive
of generalization gap within and across the learning rates, and without iterate averaging, DP is
predictive of generalization gap only for the procedures that share the learning rate; moreover,
without iterate averaging, larger learning rates cause DP to overestimate generalization gap by larger
amounts. Figures 1–4 and 6 show one particular subset for each dataset, and Table 8 shows the values
of the attributes fixed in these subsets. To demonstrate the generality of the finding, we show the
corresponding figures for one more subset for each dataset in Figures 16–19. The values of the fixed
attributes in these subsets are shown in Table 9.

Smallest learning rate
2nd smallest l.r.
3rd smallest l.r.

Largest l.r.

In Figures 16-19: Only the learning rate and the length of training are varied.  Each point represents a 
procedure.  The procedures with the same learning rate are connected by a line in the increasing order 
of training length; generally, generalization gap goes up as the training length goes up, with some 
exceptions towards the end.  
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Figure 16: DP (x-axis) and generalization gap (y-
axis). SGD with a constant learning rate and iterate
averaging. Only the learning rate and training length
were varied as in Figure 1 and the attributes were fixed
to the values different from Figure 1; see Table 9 for the
fixed values. As in Figure 1, a positive correlation is
observed between DP and generalization gap.
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Figure 17: DP (x-axis) and generalization gap (y-
axis). Constant learning rates. No iterate averaging.
Only the learning rate and training length were varied
as in Figure 2 and the attributes were fixed to the values
different from Figure 2; see Table 9 for the fixed the val-
ues. As in Figure 2, DP is predictive of generalization
gap for the procedures that share the learning rate, but
not clear otherwise.
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Figure 18: Inconsistency CP (left) and instability SP (right) (x-axis) and generalization gap (y-axis). Same
procedures (and models) as in Figure 17 (no iterate averaging). As in Figures 4 and 11 (also no iterate
averaging), a larger learning rate makes inconsistency larger, but instability is mostly unaffected.
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Figure 19: Disagreement (x-axis) and test error (y-
axis). Same models and legend as in Fig 16.

C.1.2 Procedures with low final randomness (Figures 5 and 7)

The procedures shown in Figures 5 and 7 are subsets (three subsets for three datasets) of all the
procedures (the core procedures in Table 6 times the attribute changes in Table 7). The subsets consist
of the procedures with either iterate averaging or a vanishing learning rate (i.e., going to zero) so
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that they meet the condition of low final randomness. These subsets include those with the cosine
learning rate schedule. With the cosine schedule, we were interested in not only letting the learning
rate go to zero but also stopping the training before the learning rate reaches zero and setting the
final model to be the iterate averaging (EMA) at that point, which is well known to be useful (e.g.,
[32]). Therefore, we trained the models with the cosine schedule for { 250, 500, 1000, 2000 } epochs
(CIFAR-10/100) or 200 epochs (ImageNet), and saved the iterate averaging of the models with the
interval of one tenth (CIFAR-10/100) or one twentieth (ImageNet) of the entire epochs.

C.2 Details of the experiments in Section 3.2

Section 3.2 studied inconsistency in comparison with sharpness in the settings where these two
quantities are reduced by algorithms. The training algorithm with consistency encouragement
(co-distillation) is summarized in Algorithm 1. These experiments were designed to study

• practical models trained on full-size training data, and
• diverse models resulting from diverse training settings,

in the situation where algorithms are compared after basic tuning is done, rather than the hyperparam-
eter tuning-like situation in Section 3.1.

C.2.1 Training of the models

Table 10: Basic settings shared by all the models for each case (Case#1–7,10; images)
Training type From scratch Fine-tuning Distillation
Dataset ImageNet Food101 CIFAR10 Cars / Dogs Food101
Network ResNet50 ViT ViT / Mixer WRN28-2 EN-B0 ResNet-18
Batch size 512 4096 512 64 256 512
Epochs 100 300 200 / 100 – – 400
Update steps – – – 500K 4K / 2K –
Warmup steps 0 10K 0 0 0 0
Learning rate 0.125 3e-3 3e-3 0.03 0.1 0.125
Schedule Cosine Linear/Cosine Cosine Constant Cosine
Optimizer Momentum AdamW AdamW Momentum Momentum Momentum
Weight decay 1e-4 0.3 0.3 5e-4 1e-5 1e-3
Label smooth 0.1 0 0.1 0 0 0
Iterate averaging – – – EMA EMA –
Gradient clipping – 1.0 1.0 – 20.0 –
Data augment Standard Cutout Standard
Reference [10] [5] [5] [10],[32] [10],[33] [10]
Case# 1 2 3 / 4 5 6 / 7 10
‘Momentum’: SGD with Nesterov momentum 0.9.

This section describes the experiments for producing the models used in Section 3.2.

Basic settings Within each of the 10 cases, we used the same basic setting for all, and these shared
basic settings were adopted/adapted from the previous studies when possible. Tables 10 and 11

Table 11: Basic settings shared by all the models for each case (Case#8–9; text). Hyperparameters for Case#8–9
(text) basically followed the RoBERTa paper [26]. The learning rate schedule was equivalent to early stopping of
10-epoch linear schedule after 4 epochs. Although it appears that [26] tuned when to stop for each run, we used
the same number of epochs for all. Iterate averaging is our addition, which consistently improved performance.

Initial learning rate η0 1e-5
Learning rate schedule Linear from η0 to 0.6η0
Epochs 4
Batch size 32
Optimizer AdamW (β1=0.9, β2=0.98, ϵ=1e-6)
Weight decay 0.1
Iterate averaging EMA with momentum 0.999
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describe the basic settings and the previous studies that were referred to. Some changes to the
previous settings were made for efficiency in our computing environment (no TPU); e.g., for Case#1,
we changed the batch size from 4096 to 512 and accordingly the learning rate from 1 to 0.125. When
adapting the previous settings to new datasets, minimal tuning was done for obtaining reasonable
performance, e.g., for Cases#3 and 4, we changed batch size from 4096 to 512 and kept the learning
rate without change as it performed better.

For CIFAR-10, following [32], we let the learning rate decay to 0.2η0 instead of 0 and set the final
model to the EMA of the models with momentum 0.999. For Cases#6–7 (fine-tuning), we used a
constant learning rate and used the EMA of the models with momentum 0.999 as the final model,
which we found produced reasonable performance with faster training. Cases#6–7 fine-tuned the
publicly available EfficientNet-B02 pretrained with ImageNet by [33]. The dropout rate was set to
0.1 for Case#3, and the stochastic depth drop rate was set to 0.1 for Case#4. The teacher models for
Case#10 (distillation) were ensembles of ResNet-18 trained with label smoothing 0.1 for 200 epochs
with the same basic setting as the student models (Table 10) otherwise.

For CIFAR-10, the standard data augmentation (shift and horizontal flip) and Cutout [8] were applied.
For the other image datasets, only the standard data augmentation (random crop with distortion and
random horizontal flip) was applied; the resolution was 224×224.

Table 12: Hyperparameters for SAM.

Case# 1 2 3 4 5 6 7 8,9 10
m-sharpness 128 256 32 32 32 16 16 2 128

ρ 0.05,0.1 0.05 0.1 0.1 0.1,0.2 0.1,0.2 0.1 0.005,0.01 0.1

Hyperparameters for SAM There are two values that affect the performance of SAM, m for
m-sharpness and the diameter of the neighborhood ρ. Their values are shown in Table 12. [10]
found that smaller m performs better. However, a smaller m can be less efficient as it can reduce
the degree of parallelism, depending on the hardware configuration. We made m no greater than
the reference study in most cases, but for practical feasibility we made it larger for Case#2. ρ was
either set according to the reference when possible or chosen on the development data otherwise,
from {0.05, 0.1, 0.2} for images and from {0.002, 0.005, 0.01, 0.02, 0.05, 0.1} for texts. For some
cases (typically those with less computational burden), we trained the models for one additional value
of ρ to have more data points.

Hyperparameters for the inconsistency penalty term The weight of the inconsistency penalty
term for encouraging consistency was fixed to 1.

Number of the models For each training procedure (identified by the training objective within each
case), we obtained 4 models trained with 4 distinct random sequences. Cases#1–9 consisted of either
4 or 6 procedures depending on the number of the values chosen for ρ for SAM. Case#10 (distillation)
consisted of 6 procedures3, resulting from combining the choice of the training objectives for the
teacher and the choice for the student. In total, we had 52 procedures and 208 models.

C.2.2 Estimation of the model-wise inconsistency and sharpness in Section 3.2

When the expectation over the training set was estimated, for a large training set such as ImageNet,
20K data points were sampled for this purpose. As described above, we had 4 models for each
of the training procedures. For the procedure without encouragement of low inconsistency, the
expectation of the divergence of each model was estimated by taking the average of the divergence
from the three other models. As for the procedure with encouragement of low inconsistency, the four
models were obtained from two runs as each run produced two models, and so when averaging for
estimating inconsistency, we excluded the divergence between the models from the same run due to
their dependency.

2 https://github.com/google-research/sam
3Although the number of all possible combinations is 16, considering the balance with other cases, we chose

to experiment with the following: teacher { ‘Standard’, ‘Consist.’, ‘Consist+Flat’} × student { ‘Standard’,
‘Consist.’}
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Algorithm 1: Training with consistency encouragement. Co-distillation (named by [1], closely
related to deep mutual learning [42]). Without additional unlabeled data.
Input & Notation: Labeled set Zn, β (default: 1), learning rate η. Let ϕ be loss, and let f(θ, x)
be the model output in the form of probability estimate.

1 Sample θa and θb from the initial distribution.
2 for t = 1, . . . , T do
3 Sample two labeled mini-batches Ba and Bb from Zn.

4 θa←θa−ηt∇θa

[
1

|Ba|
∑

(x,y)∈Baϕ(f(θa,x),y)+β 1
|Ba|

∑
(x,·)∈BaKL(f(θb,x)||f(θa,x))

]
5 θb←θb−ηt∇θb

[
1

|Bb|
∑

(x,y)∈Bbϕ(f(θb,x),y)+β 1
|Bb|

∑
(x,·)∈BbKL(f(θa,x)||f(θb,x))

]

1-sharpness requires ρ (the diameter of the local region) as input. We set it to the best value for SAM.

C.3 Details of the experiments in Sections 3.3

The optimizer was SGD with Nesterov momentum 0.9.

Table 13: Supplement to Figure 9 (a). Error rate (%) and inconsistency of ensembles in comparison with
non-ensemble models (+). Food101, ResNet-18. The average and standard deviation of 4 are shown. Ensemble
reduces test error and inconsistency.

Training method Test error(%) inconsistency
+ Non-ensemble 17.09±0.20 0.30±0.001

∗ Ensemble of standard models 14.99±0.05 0.14±0.001

• Ensembles of Consist. models 14.07±0.08 0.10±0.001

C.3.1 Ensemble experiments (Figure 9 (a))

The models used in the ensemble experiments were ResNet-18 trained for 200 epochs with label
smoothing 0.1 with the basic setting of Case#10 in Table 10 otherwise. Table 13 shows the standard
deviation of the values presented in Figure 9 (a). The ensembles also served as the teachers in the
distillation experiments.

C.3.2 Distillation experiments (Figure 9 (b))

The student models were ResNet-18 trained for 200 epochs with the basic setting of Case#10 of
Table 10 otherwise. The teachers for Figure 9(b) (left) were ResNet-18 ensemble models trained
as described in C.3.1. The teachers for Figure 9(b) (middle) were ResNet-50 ensemble models
trained similarly. The teachers for Figure 9(b) (right) were EfficientNet-B0 models obtained by
fine-tuning the public ImageNet-trained model (footnote 2); fine-tuning was done with encouragement
of consistency and flatness (with ρ=0.1) with batch size 512, weight decay 1e-5, the initial learning
rate 0.1 with cosign scheduling, gradient clipping 20, and 20K updates. Table 14 shows the standard
deviations of the values plotted in Figure 9 (b).

Table 14: Supplement to Figure 9 (b). Test error (%) and inconsistency of distilled-models in comparison with
standard models (+). The average and standard deviation of 4 are shown.

Test error (%) inconsistency
left middle right left middle right

+ 17.09±0.20 0.30±0.001

△ 15.74±0.09 14.95±0.17 14.61±0.14 0.19±0.001 0.21±0.001 0.22±0.002

▲ 14.99±0.07 14.28±0.11 13.89±0.08 0.14±0.001 0.15±0.001 0.14±0.002

• 14.41±0.05 13.63±0.09 13.06±0.06 0.10±0.001 0.12±0.001 0.08±0.001
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Algorithm 2: Our semi-supervised variant of co-distillation.
Input & Notation: Labeled set Zn, unlabeled set U , β (default: 1), τ (default: 0.5), learning rate
η, momentum of EMA (default: 0.999). Let ϕ be loss, and let f(θ, x) be the model output in the
form of probability estimate.

1 Initialize θa, θb, θ̄a, and θ̄b.
2 for t = 1, . . . , T do
3 Sample labeled mini-batches Ba and Bb from Zn, and sample an unlabeled mini-batch BU

from U .
4 Let ψ(θ, θ̄, x) = βI(maxi f(θ̄;x)[i] > τ)KL(f(θ̄, x)||f(θ, x)) where I is the indicator

function.
5 θa ← θa − ηt∇θa

[
1

|Ba|
∑

(x,y)∈Ba ϕ(f(θa, x), y) + 1
|BU |

∑
x∈BU

ψ(θa, θ̄b, x)
]

6 θb ← θb − ηt∇θb

[
1

|Bb|
∑

(x,y)∈Bb ϕ(f(θb, x), y) + 1
|BU |

∑
x∈BU

ψ(θb, θ̄a, x)
]

7 θ̄a and θ̄b keep the EMA of θa and θb, with momentum µ, respectively.

C.3.3 Semi-supervised experiments reported in Table 4

The unlabeled data experiments reported in Table 4 used our modification of Algorithm 1, taylored
for use of unlabeled data, and it is summarized in Algorithm 2. It differs from Algorithm 1 in two
ways. First, to compute the inconsistency penalty term, the model output is compared with that of
the exponential moving average (EMA) of the other model, reminiscent of Mean Teacher [34]. The
output of the EMA model during the training typically has higher confidence (or lower entropy) than
the model itself, and so taking the KL divergence against EMA of the other model serves the purpose
of sharpening the pseudo labels and reducing the entropy on unlabeled data. Second, we adopted the
masked divergence from Unsupervised Data Augmentation (UDA) [37], which masks (i.e., ignores)
the unlabeled instances for which the confidence level of the other model is less than threshold. These
changes are effective in the semi-supervised setting (but not in the supervised setting) for preventing
the models from getting stuck in a high-entropy region.

In the experiments reported in Table 4, we penalized inconsistency between the model outputs of two
training instances of Unsupervised Data Augmentation (UDA) [37], using Algorithm 2, by replacing
loss ϕ(θ, x) with the UDA objective. The UDA objective penalizes discrepancies between the model
outputs for two different data representations (a strongly augmented one and a weakly augmented
one) on the unlabeled data (the UDA penalty). The inconsistency penalty term of Algorithm 2 also
uses unlabeled data, and for this purpose, we used a strongly augmented unlabeled batch sampled
independently of those for the UDA penalty. UDA ‘sharpens’ the model output on the weakly
augmented data by scaling the logits, which serves as pseudo labels for unlabeled data, and the degree
of sharpening is a tuning parameter. However, we tested UDA without sharpening and obtained better
performance on the development data (held-out 5K data points) than reported in [32], and so we
decided to use UDA without sharpening for our UDA+‘Consist.’ experiments. We obtained test error
3.95% on the average of 5 independent runs, which is better than 4.33% of UDA alone and 4.25%
of FixMatch. Note that each of the 5 runs used a different fold of 4K examples as was done in the
previous studies.

Following [32], we used labeled batch size 64, weight decay 5e-4, and updated the weights 500K
times with the cosine learning rate schedule decaying from 0.03 to 0.2×0.03. We set the final model
to the average of the last 5% iterates (i.e., the last 25K snapshots of model parameters). We used
these same basic settings for all (UDA, FixMatch, and UDA+‘Consist.’). The unlabeled batch size
for testing UDA and FixMatch was 64×7, as in [32]. For computing each of the two penalty terms
for UDA+‘Consist.’, we set the unlabeled batch size to 64×4, which is approximately one half of that
for UDA and FixMatch. We made it one half so that the total number of unlabeled data points used
by each model (64×4 for the UDA penalty plus 64×4 for the inconsistency penalty) becomes similar
to that of UDA or FixMatch. RandAugment with the same modification as described in the FixMatch
study was used as strong augmentation, and the standard data augmentation (shift and flip) was used
as weak augmentation. The threshold for masking was set to 0.5 for both the UDA penalty and the
inconsistency penalty and the weights of the both penalties were set to 1. Note that we fixed the
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weights of penalties to 1, and only tuned the threshold for masking by selecting from {0, 0.5, 0.7} on
the development data (5K examples).

C.3.4 Fine-tuning experiments in Table 5

The EfficientNet-B4 (EN-B4) fine-tuning experiments reported in Table 5 were done with weight
decay 1e-5 (following [10]), batch size 256 and number of updates 20K following the previous
studies. We set the learning rate to 0.1 and performed gradient clipping with size 20 to deal with
a sudden surge of the gradient size. The diameter of the local region ρ for SAM was chosen from
{0.05, 0.1, 0.2} based on the performance of SAM on the development data, and the same chosen
value 0.2 was used for both SAM and SAM+‘Consist.’ Following the EN-B7 experiments of [10], the
value m for m-sharpness was set to 16. Since SAM+‘Consist.’ is approximately twice as expensive
as SAM as a result of training two models, we also tested SAM with 40K updates (20K×2) and
found that it did not improve performance. We note that our baseline EN-B4 SAM performance is
better than the EN-B7 SAM performance of [10]. This is due to the difference in the basic setting. In
[10], EN-B7 was fine-tuned with a larger batch size 1024 with a smaller learning rate 0.016 while
the batch normalization statistics was fixed to the pre-trained statistics. Our basic setting allowed a
model to go farther away from the initial pre-trained model. Also note that we experimented with
smaller EN-B4 instead of EN-B7 due to resource constraints.

D Additional information

D.1 Additional correlation analyses using the framework of Jiang et al. (2020)

This section reports on the additional correlation analysis using the rigorous framework of Jiang et al.
(2020) [18] and shows that the results are consistent with the results in the main paper and the previous
work. The analysis uses correlation metrics proposed by [18], which seek to mitigate the effect of
what [18] calls spurious correlations that do not reflect causal relationships with generalization. For
completeness, we briefly describe below these metrics, and [18] should be referred to for more details
and justification.

Notation In this section, we write π for a training procedure (or equivalently, a combination of
hyperparameters including the network architecture, the data augmentation method, and so forth).
Let g(π) be the generalization gap of π, and let µ(π) be the quantity of interest such as inconsistency
or disagreement.

Ranking-based Let T be the set of the corresponding pairs of generalization gap and the quantity of
interest to be considered: T := ∪π {(µ(π), g(π))}. Then the standard Kendall’s ranking coefficient
τ of T can be expressed as:

τ(T ) := 1

|T |(|T | − 1)

∑
(µ1,g1)∈T

∑
(µ2,g2)∈T \(µ1,g1)

sign(µ1 − µ2)sign(g1 − g2)

[18] defines granulated Kendall’s coefficient Ψ as:

Ψ :=
1

n

n∑
i=1

ψi, ψi :=
1

mi

∑
π1∈Π1

· · ·
∑

πi−1∈Πi−1

∑
πi+1∈Πi+1

· · ·
∑

πn∈Πn

τ (∪πi∈Πi
(µ(π), g(π))) (6)

where πi is the i-th hyperparameter so that π = (π1, π2, · · · , πn), Πi is the set of all possible values
for the i-th hyperparameter, and mi := |Π1 × · · · ×Πi−1 ×Πi+1 × · · · ×Πn|.

Mutual information-based Define Vg(π, π
′) := sign(g(π) − g(π′)), and similarly define

Vµ(π, π
′) := sign(µ(π) − µ(π′)). Let US be a random variable representing the values of the

hyperparameter types in S (e.g., S = { learning rate, batch size }). Then I(Vµ, Vg|US), the con-
ditional mutual information between µ and g given the set S of hyperparameter types, and the

23



Table 15: Correlation scores of inconsistency and disagreement. For the training procedures with low final
randomness (as in Figure 5), model-wise quantities (one model per procedure) were analyzed. (a)–(c) differ
in the restriction on training loss; (b) and (c) exclude the models with high training loss while (a) does not.
The average and standard deviation of 4 independent runs (that use 4 distinct subsamples of training sets as
training data and distinct random seeds) are shown. Correlation scores: Two types of mutual information-
based scores (‘K’ as in (7) and ‘|S|=0’: I(Vµ,Vg|US)

H(Vg|US)
with |S|=0) and two types of Kendall’s rank-correlation

coefficient-based scores (Ψ as in (6) and overall τ ). A larger number indicates a higher correlation. The highest
numbers are highlighted. Tested quantities: ‘Inconsist.’: Inconsistency, ‘Disagree.’: Disagreement, ‘Random’
(baseline): random numbers drawn from the normal distribution, ‘Canonical’ (baseline): a slight extension of
the canonical ordering in [18]; it heuristically determines the order of two procedures by preferring smaller
batch size, larger weight decay, larger learning rate, and presence of data augmentation (which are considered
to be associated with better generalization) by adding one point for each and breaking ties randomly. Target
quantities: Generalization gap (test loss minus training loss) as defined in the main paper, test error, and test
error minus training error. Observation: Inconsistency correlates well to generalization gap, and disagreement
correlates well to test error. With more aggressive exclusion of the models with high training loss (going from
(a) to (c)), the correlation of disagreement to generalization gap improves and approaches that of inconsistency.

(a) No restriction on training loss
CIFAR-10 CIFAR-100 ImageNet

K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ
Correlation to generalization gap (‘test loss - training loss’)
Inconsist. 0.23±.01 0.38±.01 0.60±.05 0.69±.01 0.51±.01 0.55±.01 0.68±.06 0.81±.01 0.75±.01 0.75±.01 0.73±.17 0.92±.00

Disagree. 0.14±.01 0.26±.01 0.54±.05 0.58±.01 0.11±.01 0.11±.01 0.48±.06 0.39±.01 0.11±.01 0.16±.01 0.53±.07 0.47±.01

Random 0.00±.00 0.00±.00 -0.02±.04 0.01±.03 0.00±.00 0.00±.00 -0.01±.07 0.02±.02 0.00±.00 0.01±.00 -0.00±.11 -0.04±.08

Canonical 0.01±.00 0.10±.00 0.32±.03 0.37±.01 0.00±.00 0.09±.00 0.14±.05 0.36±.01 0.00±.00 0.07±.00 0.36±.05 0.32±.00

Correlation to test error
Inconsist. 0.08±.01 0.16±.01 0.51±.04 0.46±.01 0.00±.00 0.01±.00 0.33±.01 0.14±.01 0.03±.00 0.03±.00 0.20±.03 -0.20±.00

Disagree. 0.31±.01 0.37±.00 0.58±.05 0.68±.00 0.19±.01 0.31±.02 0.57±.05 0.63±.01 0.04±.00 0.05±.00 0.30±.07 0.25±.01

Random 0.00±.00 0.00±.00 0.02±.03 0.00±.01 0.00±.00 0.00±.00 -0.05±.07 -0.00±.04 0.00±.00 0.00±.00 -0.07±.08 0.01±.04

Canonical 0.01±.00 0.03±.00 0.15±.02 0.20±.01 0.00±.00 0.19±.01 0.31±.15 0.49±.01 0.00±.00 0.03±.00 0.08±.03 0.18±.00

Correlation to ‘test error - training error’
Inconsist. 0.11±.00 0.25±.01 0.53±.04 0.57±.01 0.41±.01 0.48±.01 0.60±.02 0.77±.01 0.73±.01 0.73±.00 0.91±.03 0.91±.00

Disagree. 0.16±.01 0.28±.01 0.54±.07 0.60±.01 0.12±.01 0.12±.01 0.45±.05 0.40±.01 0.12±.01 0.16±.01 0.52±.06 0.46±.01

Random 0.00±.00 0.00±.00 0.03±.04 0.00±.02 0.00±.00 0.00±.00 0.01±.07 -0.01±.03 0.00±.00 0.00±.00 0.06±.17 -0.03±.07

Canonical 0.01±.00 0.07±.00 0.31±.06 0.31±.01 0.00±.00 0.09±.00 0.21±.09 0.35±.01 0.00±.00 0.07±.00 0.24±.02 0.32±.00

(b) Excluding the models with very high training loss, as described in Appendix C.1 and Table 6.
CIFAR-10 CIFAR-100 ImageNet

K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ
Correlation to generalization gap (‘test loss - training loss’)
Inconsist. 0.37±.01 0.57±.01 0.64±.05 0.83±.01 0.47±.01 0.52±.01 0.68±.07 0.79±.01 0.74±.01 0.75±.01 0.74±.16 0.92±.00

Disagree. 0.34±.02 0.53±.02 0.61±.05 0.80±.02 0.26±.03 0.33±.01 0.60±.05 0.65±.01 0.24±.02 0.33±.02 0.61±.07 0.65±.01

Random 0.00±.00 0.00±.00 -0.01±.05 -0.00±.03 0.00±.00 0.00±.00 0.06±.06 -0.01±.03 0.00±.00 0.00±.00 -0.10±.07 -0.05±.07

Canonical 0.02±.00 0.15±.00 0.28±.04 0.44±.01 0.00±.00 0.21±.01 0.23±.06 0.52±.01 0.00±.00 0.10±.00 0.46±.16 0.38±.00

Correlation to test error
Inconsist. 0.10±.00 0.18±.01 0.51±.04 0.49±.01 0.01±.00 0.10±.01 0.42±.00 0.36±.02 0.01±.00 0.01±.00 0.21±.02 -0.10±.00

Disagree. 0.27±.00 0.33±.01 0.57±.06 0.65±.00 0.15±.01 0.27±.01 0.56±.05 0.59±.01 0.02±.00 0.02±.00 0.25±.07 0.16±.01

Random 0.00±.00 0.00±.00 0.03±.03 0.01±.02 0.00±.00 0.00±.00 0.04±.07 0.02±.02 0.00±.00 0.00±.00 0.04±.10 0.01±.06

Canonical 0.01±.00 0.03±.00 0.14±.02 0.21±.01 0.00±.00 0.20±.01 0.25±.14 0.51±.01 0.00±.00 0.02±.00 0.41±.03 0.19±.00

Correlation to ‘test error - training error’
Inconsist. 0.19±.01 0.37±.01 0.57±.04 0.69±.01 0.35±.01 0.44±.01 0.60±.02 0.74±.01 0.72±.01 0.73±.00 0.93±.03 0.91±.00

Disagree. 0.35±.02 0.52±.02 0.60±.06 0.80±.01 0.30±.03 0.35±.01 0.57±.05 0.67±.01 0.25±.02 0.32±.01 0.61±.06 0.64±.01

Random 0.00±.00 0.00±.00 0.01±.06 -0.02±.01 0.00±.00 0.00±.00 -0.01±.08 0.01±.03 0.00±.00 0.00±.00 -0.02±.09 -0.06±.06

Canonical 0.01±.00 0.10±.00 0.29±.03 0.36±.01 0.00±.00 0.20±.01 0.23±.06 0.50±.01 0.00±.00 0.11±.00 0.65±.03 0.38±.00

(c) Excluding the models with high training loss more aggressively with smaller cut-off values (one half of (b))
CIFAR-10 CIFAR-100 ImageNet

K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ
Correlation to generalization gap (‘test loss - training loss’)
Inconsist. 0.36±.01 0.57±.01 0.65±.05 0.82±.01 0.44±.01 0.50±.01 0.69±.06 0.78±.01 0.77±.01 0.79±.01 0.74±.16 0.93±.00

Disagree. 0.39±.01 0.57±.01 0.62±.05 0.82±.01 0.31±.02 0.43±.01 0.65±.05 0.73±.01 0.43±.01 0.53±.01 0.69±.06 0.80±.01

Random 0.00±.00 0.00±.00 0.02±.03 0.00±.02 0.00±.00 0.00±.00 0.03±.11 0.04±.02 0.00±.00 0.00±.00 -0.05±.12 -0.02±.03

Canonical 0.02±.00 0.14±.00 0.36±.04 0.44±.01 0.00±.00 0.27±.01 0.23±.06 0.60±.01 0.00±.00 0.13±.00 0.44±.09 0.42±.00

Correlation to test error
Inconsist. 0.12±.01 0.21±.01 0.53±.04 0.53±.01 0.04±.00 0.19±.01 0.48±.00 0.50±.02 0.01±.00 0.01±.00 0.31±.02 0.13±.00

Disagree. 0.27±.00 0.35±.01 0.58±.06 0.66±.01 0.19±.02 0.34±.01 0.58±.06 0.65±.01 0.05±.00 0.05±.00 0.27±.08 0.25±.00

Random 0.00±.00 0.00±.00 -0.01±.03 0.01±.03 0.00±.00 0.00±.00 0.01±.11 0.01±.04 0.00±.00 0.00±.00 -0.01±.15 -0.01±.01

Canonical 0.01±.00 0.03±.00 0.25±.03 0.22±.01 0.00±.00 0.24±.01 0.25±.03 0.56±.01 0.00±.00 0.06±.00 0.20±.10 0.29±.01

Correlation to ‘test error - training error’
Inconsist. 0.18±.01 0.37±.01 0.58±.04 0.68±.01 0.30±.01 0.42±.01 0.61±.02 0.72±.01 0.72±.01 0.76±.00 0.93±.03 0.92±.00

Disagree. 0.37±.01 0.54±.01 0.61±.06 0.80±.01 0.37±.03 0.46±.01 0.63±.05 0.75±.01 0.44±.01 0.52±.01 0.69±.06 0.79±.01

Random 0.00±.00 0.00±.00 0.01±.05 0.02±.02 0.00±.00 0.00±.00 0.00±.04 0.02±.03 0.00±.00 0.00±.00 -0.05±.18 -0.04±.04

Canonical 0.01±.00 0.09±.00 0.28±.04 0.35±.01 0.00±.00 0.26±.01 0.24±.02 0.58±.01 0.00±.00 0.14±.00 0.42±.09 0.44±.00
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conditional entropy H(Vg|US) can be expressed as follows.

I(Vµ, Vg|US) =
∑
US

p(US)
∑

Vµ∈{±1}

∑
Vg∈{±1}

p(Vµ, Vg|US) log

(
p(Vµ, Vg|US)

p(Vµ|US)p(Vg|US)

)
H(Vg|US) = −

∑
US

p(US)
∑

Vg∈{±1}

p(Vg|US) log(p(Vg|US))

Dividing I(Vµ, Vg|US) by H(Vg|US) for normalization and restricting the size of S for enabling
computation, [18] defines the metric K(µ) as:

K(µ) := min
US s.t.|S|≤2

I(Vµ, Vg|US)

H(Vg|US)
. (7)

Results (Tables 15–16) In Table 15, we show the average and standard deviation of the
correlation scores of model-wise quantities (for one model per training procedure), follow-
ing [18]. The model-wise inconsistency for model θ trained on Zn with procedure P is
EΘ∼ΘP |Zn

EXKL(f(Θ,X)||f(θ,X)), and Zn was fixed here; similarly, model-wise disagreement
is EΘ∼ΘP |Zn

EXI [ c(Θ,X) ̸= c(θ,X) ] where c(θ, x) is the classification decision of model θ on
data point x. The average and standard deviation were computed over 4 independent runs that used 4
distinct subsamples of training sets as training data Zn and distinct random seeds for model parameter
initialization, data mini-batching, and so forth.

Table 15 compares inconsistency and disagreement in terms of their correlations with the gener-
alization gap (test loss minus training loss as defined in the main paper), test error, and test error
minus training error. The training procedures analyzed here are the procedures that achieve low final
randomness by either a vanishing learning rate or iterate averaging as in Figure 5. Tables (a), (b),
and (c) differ in the models included in the analysis. As noted in Appendix C.1, since near-random
models in the initial phase of training are not of practical interest, procedures with very high training
loss were excluded from the analysis in the main paper. Similarly, Table 15-(b) excludes the models
with high training loss using the same cut-off values as used in the main paper, and (c) does this with
smaller (and therefore more aggressive) cut-off values (one half of (b)), and (a) does not exclude any
model. Consequently, the average training loss is the highest in (a) and lowest in (c).

Let us first review Table 15-(a). The results show that inconsistency correlates well to generalization
gap (test loss minus training loss) as suggested by our theorem, and disagreement correlates well
to test error as suggested by the theorem of the original disagreement study [17]. Regarding ‘test
error minus training error’ (last 4 rows): on CIFAR-10, training error is relatively small and so it
approaches test error, which explains why disagreement correlates well to it; on the other datasets,
‘test error minus training error’ is more related to ‘test loss minus training loss’, which explains why
inconsistency correlates well to it. The standard deviations are relatively small, and so the results are
solid. (The standard deviation of Ψ tends to be higher than the others for all quantities including the
baseline ‘Random’, and this is due to the combination of the macro averaging-like nature of Ψ and
the smallness of |Πi| for some i’s, independent of the nature of inconsistency or disagreement.)

The overall trend of Table 15-(b) and (c) is similar to (a). That is, inconsistency correlates well to
generalization gap (test loss minus training loss) while disagreement correlates well to test error,
consistent with the results in the main paper and the original disagreement study. Comparing (a),
(b), and (c), we also note that as we exclude the models with high training loss more aggressively
(i.e., going from (a) to (c)), the correlation of disagreement to generalization gap (relative to that of
inconsistency) improves and approaches that of inconsistency. For example, on CIFAR-100, the ratio
of K for (disagreement, generalization gap) with respect to K for (inconsistency, generalization gap)
improves from (a) 0.11/0.51=22% to (b) 0.26/0.47=55% to (c) 0.31/0.44=70%. With these models,
empirically, high training loss roughly corresponds to the low confidence-level on unseen data, and
so this observation is consistent with the theoretical insight that when the confidence-level on unseen
data is high, disagreement should correlate to generalization gap as well as inconsistency, which is
discussed in more detail in Appendix D.3.

Table 16 shows that the correlation of the estimate of CP (defined in Section 2) to the generalization
gap is generally as good as the estimate of DP (defined in Theorem 2.1), which is consistent with the
results in the main paper.
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Table 16: Correlation analyses of the estimates of CP and DP (as defined in Section 2) using the rank-based
and mutual information-based metrics from [18]. Training procedures with low final randomness of Figure 5.
Correlation scores: see the caption of Table 15. Target quantities: Generalization gap (test loss minus training
loss) analyzed in Theorem 2.1. Observation: The correlation of CP to generalization gap is generally as good
as DP , which is consistent with the results in the main paper.

CIFAR-10 CIFAR-100 ImageNet
MI-based Ranking MI-based Ranking MI-based Ranking
K |S|=0 Ψ τ K |S|=0 Ψ τ K |S|=0 Ψ τ

CP 0.38 0.59 0.71 0.83 0.49 0.53 0.80 0.80 0.75 0.75 0.59 0.92
DP 0.38 0.59 0.80 0.84 0.42 0.47 0.75 0.76 0.81 0.81 0.60 0.94

D.2 Training error

Tables 17 and 18 show the training error values (the average, minimum, median, and the maximum)
associated with the empirical results reported in Section 3.1 and 3.2, respectively.

Table 17: Training error of the models analyzed in Section 3.1. The four numbers represent the average,
minimum, median, and maximum values (%).

CIFAR-10 CIFAR-100 ImageNet
Figure 1,3,6 0.4 0.0 0.0 8.8 4.7 0.0 0.1 53.6 24.9 3.0 23.5 56.6

Figure 2 3.3 0.0 2.6 10.9 18.2 0.2 13.6 56.3 44.5 16.8 45.6 65.3
Figure 5,7 0.5 0.0 0.0 10.1 4.0 0.0 0.0 54.5 16.3 0.1 11.3 59.0

Table 18: Training error of the models analyzed in Section 3.2. The four numbers represent the average,
minimum, median, and maximum values (%).

Case#1 Case#2 Case#3 Case#4 Case#5
10.0 8.8 10.1 11.6 4.5 2.1 4.5 6.7 0.06 0.02 0.04 0.17 0.04 0.01 0.03 0.11 0.0 0.0 0.0 0.0

Case#6 Case#7 Case#8 Case#9 Case#10
0.7 0.3 0.8 1.1 0.1 0.1 0.1 0.2 4.8 3.9 4.9 5.5 2.7 1.9 2.9 3.3 2.8 0.5 1.8 6.5

D.3 More on inconsistency and disagreement

Inconsistency takes how strongly the models disagree on each data point into account while disagree-
ment ignores it. That is, the information disagreement receives on each data point is binary (whether
the classification decisions of two models agree or disagree) while the information inconsistency
receives is continuous and more complex. On the one hand, this means that inconsistency could use
information ignored by disagreement and thus it could behave quite differently from disagreement
as seen in our empirical study. On the other hand, it should be useful also to consider the situation
where inconsistency and disagreement are highly correlated since in this case our theoretical results
can be regarded as providing a theoretical basis for the correlation of not only inconsistency but also
disagreement with generalization gap though indirectly.

To simplify the discussion towards this end, let us introduce a slight variation of Theorem 2.1, which
uses 1-norm instead of the KL-divergence since disagreement is related to 1-norm as noted in Section
2.
Proposition D.1 (1-norm variant of Theorem 2.1). Using the notation of Section 2, define 1-norm
inconsistency C1,P and 1-norm instability S1,P which use the squared 1-norm of the difference in
place of the KL-divergence as follows.

C1,P = EZnEΘ,Θ′∼ΘP |Zn
EX∥f(Θ,X)− f(Θ′, X)∥21 (1-norm inconsistency)

S1,P = EZn,Z′
n
EX∥f̄P |Zn

(X)− f̄P |Z′
n
(X)∥21 (1-norm instability)

Then with the same assumptions and definitions as in Theorem 2.1, we have

EZnEΘ∼ΘP |Zn
[ΦZ(Θ)− Φ(Θ,Zn)] ≤ inf

λ>0

[
γ2

2
ψ(λ)λ (C1,P + S1,P ) +

IP
λn

]
.
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Sketch of proof. Using the triangle inequality of norms and Jensen’s inequality, replace inequality (2)
of the proof of Theorem 2.1

EZnEΘ∼ΘP |Zn
EX∥f(Θ,X)− f̄P (X)∥21 ≤ 4 (CP + SP ) (2)

with the following,

EZnEΘ∼ΘP |Zn
EX∥f(Θ,X)− f̄P (X)∥21

≤2EZn
EΘ∼ΘP |Zn

EX

[
∥f(Θ,X)− f̄P |Zn

(X)∥21 + ∥f̄P |Zn
(X)− f̄P (X)∥21

]
≤2EZn

EΘ,Θ′∼ΘP |Zn
EX∥f(Θ,X)− f(Θ′, X)∥21 + 2EZn

EZ′
n
EX∥f̄P |Zn

(X)− f̄P |Z′
n
(X)∥21

=2 (C1,P + S1,P ) .

Now suppose that with the models of interest, the confidence level of model outputs is always high
so that the highest probability estimate is always near 1, i.e., for any model θ of interest, we have
1−maxi f(x, θ)[i] < ϵ for a positive constant ϵ such that ϵ ≈ 0 on any unseen data point x. Let c(θ, x)
be the classification decision of θ on data point x as in Section 2: c(θ, x) = argmaxi f(θ, x)[i].
Then it is easy to show that we have

1

2
∥f(θ, x)− f(θ′, x)∥1 ≈ I [ c(θ, x) ̸= c(θ′, x) ] . (8)

Disagreement measured for shared training data can be expressed as

EZnEΘ,Θ′∼ΘP |Zn
EXI [ c(Θ,X) ̸= c(Θ′, X) ] . (9)

Comparing (9) with the definition of C1,P above and considering (8), it is clear that under this high-
confidence condition, disagreement (9) and 1-norm inconsistency C1,P should be highly correlated;
therefore, under this condition, Proposition D.1 suggests the relation of disagreement (measured for
shared training data) to generalization gap indirectly through C1,P .

While this paper focused on the KL-divergence-based inconsistency motivated by the use of the
KL-divergence by the existing algorithm for encouraging consistency, the proposition above suggests
that 1-norm-based inconsistency might also be useful. We have conducted limited experiments in this
regard and observed mixed results. In the settings of Appendix D.1, the correlation scores of 1-norm
inconsistency with respect to generalization gap are generally either similar or slightly better, which
is promising. As for consistency encouragement during training, we have not seen a clear advantage
of using 1-norm inconsistency penalty over using the KL-divergence inconsistency penalty as is done
in this paper, and more experiments would be required to understand its advantage/disadvantage.

In our view, however, for the purpose of encouraging consistency during training, KL-divergence
inconsistency studied in this paper is more desirable than 1-norm inconsistency in at least three
ways. First, minimization of the KL-divergence inconsistency penalty is equivalent to minimization
of the standard cross-entropy loss with soft labels provided by the other model; therefore, with
the KL-divergence penalty, the training objective can be regarded as a weighted average of two
cross-entropy loss terms, which are in the same range (while 1-norm inconsistency is not). This
makes tuning of the weight for the penalty more intuitive and easier. Second, optimization of the
standard cross-entropy loss term with the KL-divergence inconsistency penalty has an interpretation
of functional gradient optimization, as shown in [19]. The last (but not least) point is that optimization
may be easier with KL-divergence inconsistency, which is smooth, than with 1-norm inconsistency,
which is not smooth.

Related to the last point, disagreement, which involves argmax in the definition, cannot be easily
integrated into the training objective, and this is a crucial difference between inconsistency and
disagreement from the algorithmic viewpoint.

Finally, we believe that for improving deep neural network training, it is useful to study the con-
nection between generalization and discrepancies of model outputs in general including instability,
inconsistency, and disagreement, and we hope that this work contributes to progress in this direction.
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