
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

3D Human Pose Estimation from Multiple Dynamic Views via
Single-view Pretraining with Procrustes Alignment

Anonymous Authors

ABSTRACT
3D Human pose estimation from multiple cameras with unknown
calibration has received less attention than it should. The few ex-
isting data-driven solutions do not fully exploit 3D training data
that are available on the market, and typically train from scratch
for every novel multi-view scene, which impedes both accuracy
and efficiency. We show how to exploit 3D training data to the
fullest and associate multiple dynamic views efficiently to achieve
high precision on novel scenes using a simple yet effective frame-
work, dubbed Multiple Dynamic View Pose estimation (MDVPose).
MDVPose utilizes novel scenarios data to finetune a single-view
pretrained motion encoder in multi-view setting, aligns arbitrary
number of views in a unified coordinate via Procruste alignment,
and imposesmulti-view consistency. The proposedmethod achieves
22.1 mm P-MPJPE or 34.2 mm MPJPE on the challenging in-the-
wild Ski-Pose PTZ dataset, which outperforms the state-of-the-art
method by 24.8% P-MPJPE (-7.3 mm) and 19.0% MPJPE (-8.0 mm).
It also outperforms the state-of-the-art methods by a large margin
(-18.2mm P-MPJPE and -28.3mm MPJPE) on the EgoBody dataset.
In addition, MDVPose achieves robust performance on the Hu-
man3.6M datasets featuring multiple static cameras. Code will be
released upon acceptance.

CCS CONCEPTS
• Computing methodologies→ Tracking..

KEYWORDS
3D human pose estimation, multi-view, dynamic viewpoint

1 INTRODUCTION
3D human pose estimation (HPE) [41] is a heated research area
in computer vision that estimates the 3D coordinate positions of
human body joints, known as 3D pose. It is one of the fundamental
techniques used in understanding human behavior analysis and
can be applied in many areas such as video surveillance, virtual
reality, healthcare, and autonomous driving. Depending on the
number of camera views, 3D HPE can be divided into single-view
and multi-view 3D HPE.

Multi-view 3D human pose estimation methods [14, 17, 33] typi-
cally require precise camera calibration during both training and
inference. However, requiring camera calibration have a few issues
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Figure 1: 3D human pose estimation from multiple dynamic
(possiblymoving) views. (a) Sports capture. (b) Multiple views
in a traffic network.

that limit their application in practice. First, obtaining camera cali-
bration is inconvenient or impractical, especially during inference.
Second, due to the high cost of motion capture, the scarcity of 3D
training data becomes a bottleneck. Since motion capture data is
usually recorded in a constrained space, there is a lack of in-the-
wild data [47]. Third, and more importantly, these methods cannot
be applied to dynamic (possibly moving) cameras without camera
calibration.

Human pose estimation from multiple cameras with unknown
calibration has received less attention than it should. For sports
capture where close-ups of players are captured in front of moving
cameras, camera calibration cannot easily be estimated [37], as
shown in Fig. 1(a). Another scenario is in a dynamic camera net-
work for autonomous driving, a pedestrian’s pose can be estimated
collaboratively using several potentially moving cameras in a traffic
Internet of Things (IoT) network, such as vehicle-installed cameras
and surveillance cameras (See Fig. 1 (b)).

MetaPose [37] is the first multi-view 3D HPE method that re-
quires no camera parameters at both training and inference time,
and thus can be applied to dynamic cameras. MetaPose aggregates
pose predictions and uncertainty estimates across multiple views,
and outperforms both classical bundle adjustment and weakly-
supervised monocular 3D baselines on the Human3.6M dataset,
as well as the more challenging in-the-wild Ski-Pose PTZ dataset.
Nevertheless, MetaPose exploits only 2D keypoint data for training
and chooses not to make use of 3D joint annotations, whereas we
exploit 3D data when available. FLEX [13] and HMVformer [46]
design cross-view deep feature fusion to integrate the relationship
between views, to avoid camera calibration. Nonetheless, FLEX
[13] and HMVformer [46] train from scratch on every novel scene,
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Figure 2: Errors of 3D human pose estimation from multiple
dynamic (possibly moving) views on SkiPose.

overlooking existing pretrained motion model empowered by large-
scale and heterogeneous data resources, thus leading to deficiency
in both accuracy and efficiency on the novel scene. In contrast, we
show that by exploiting a single-view pretrained motion model and
transforming multi-view 3D poses into a unified coordinate system
with Procrustes alignment, we can also bypass camera calibration
and obtain highly accurate 3D estimates in the wild without bells and
whistles, even if with a weak baseline without heavy efforts in feature
fusion.

We propose theMultiple Dynamic View Pose Estimation (MDV-
Pose) framework, to exploit available 3D joint annotations to the
fullest and associate different views by human 3D joints themselves.
With a relatively small amount of novel scene training data, MDV-
Pose can make highly accurate predictions on novel scenes. Specif-
ically, 2D keypoint sequences from multiple views are fed into a
single-view pretrained motion encoder, which can be adapted to the
downstream 3D pose estimation task (essentially 2D-to-3D motion
lifting and inpainting). Then, we fine-tune the single-view motion
encoder using limited 3D annotations of novel scenarios if they
are available, and predict the 3D pose in each view. Subsequently,
we associate and procrustes-align all views by the predicted 3D
human joints themselves in a unified coordinate, and apply multi-
view consistency. By exploiting the powerful pretrained motion
encoder combined with transfer learning, and further imposing
constraints of multi-view consistency, high accuracy is achieved
for novel scenarios such as skiing. Our proposed MDVPose shows
a superior performance of 22.1 P-MPJPE or 34.2 MPJPE, which ex-
ceeds the state-of-the-art method by 24.8% P-MPJPE (-7.3 mm) and
19.0% MPJPE (-8.0 mm) on the challenging in-the-wild Ski-Pose
PTZ dataset [12] (See Fig. 2). It also outperforms the state-of-the-art
methods by a large margin (-18.2mm P-MPJPE and -28.3mmMPJPE)
on natural scenes in the EgoBody dataset. In addition, MDVPose
achieves robust performance on the Human3.6M datasets featuring
multiple static cameras even if using a weak baseline without heavy
efforts on multi-view feature fusion.

Moreover, MDVPose designs a flexible strategy to train and
test on an arbitrary number of dynamic views. In a complicated
environment in the wild, the number of views can vary over time.
In a skiing motion capture scenario, if the subject skies in long
tracks, it is likely that he/she would be out of sight from some

of the camera views. In a traffic IoT network, as the car-mounted
cameras move, the pedestrian is probably only available in some of
the views. Therefore, we train arbitrary number of dynamic views,
enabling the algorithm to adapt to real-world scenarios.

Our contributions are summarized as follows:

• We propose a simple yet effective framework that estimates
3D human pose from multiple dynamic (possibly moving)
views which does not require camera calibration, and out-
performs state-of-the-art methods by a large margin.

• We utilize a shared pretrained single-view motion encoder to
extract multi-view features, followed by exploiting 3D train-
ing data of the novel scenario when it is available to fine-tune
the novel scene poses. Further, we procrustes-align the mul-
tiple dynamic views almost for free in a unified coordinate,
and impose multi-view consistency to achieve high accu-
racy. Experiments on multiple challenging datasets show the
effectiveness of our framework in natural scenes.

• We propose a flexible strategy to train and test on arbitrary
number of dynamic views, enabling the algorithm to be
practical and flexible in real-world scenarios.

2 RELATEDWORK
Multi-view 3D HPE. Supervised multi-view 3D HPE methods
[4, 10, 36], includingmulti-view single person [15] andmulti-person
[2, 4, 18] methods, can predict highly accurate poses, but typically
require precise camera calibration during both training and infer-
ence. Most methods [9, 14, 17, 33] obtain the 2D pose by running a
CNN over 2D poses given in multiple views. To exploit temporal
information, Chen et al. [4] couple cross-view tracking and multi-
human 3D pose estimation in a unified framework. TesseTrack [34]
handles multi-person 3D body joint reconstruction and associa-
tion in space and time in a single end-to-end learnable framework.
VoxelPose[36] aggregates features of all camera views in the 3D
voxel space and directly operates in the 3D space to avoids mak-
ing incorrect decisions in each camera view. However, supervised
methods has a few issues. First, obtaining camera calibration is in
convenient or impractical during inference. Second, due to the high
cost of motion capture, the scarcity of 3D training data becomes
a bottleneck. Third, and more importantly, these methods cannot
be applied to dynamic (possibly moving) cameras without camera
calibration.

Some works turn to weakly or self-supervised solutions [5, 16,
22, 40]. EpipolarPose uses 2D poses from multi-view images and
then utilizes epipolar geometry to obtain a 3D pose and camera
geometry, which are subsequently used to train a 3D pose estimator.
Iqbal et al. [16] propose a weakly-supervised baseline to predict
pixel coordinates of joints and their depth in each view and penalize
the discrepancy between rigidly aligned predictions for different
views during training. RepNet [39] and Chen et al. [3] use more
realistic data to train 2D-to-3D lifting networks. CanonPose [40]
presents a self-supervised approach that learns a single image 3D
pose estimator from unlabeled multi-view data. These solutions,
however, do not allow pose inference from multiple images.

3D HPE from Multiple Dynamic Views. Human pose estima-
tion from multiple cameras with unknown calibration has received
less attention than it should. MetaPose [37] is the first multi-view
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Figure 3: Overview. Top: The pose sequence of each view is fed into the motion lifting and inpainting network (Sec. 3.2) though
a control gate (Sec. 3.4) and finetuned using 3D data of the novel scene with multi-view consistency (Sec. 3.4, 3.5). Bottom: The
motion lifting and inpainting network we adopt is DSTFormer.

3DHPEmethod that requires no camera parameters at both training
and inference time, and thus can be applied to dynamic (possibly
moving) cameras. MetaPose aggregates pose predictions and un-
certainty estimates across multiple views and trains the network
without 3D Supervision. The advantage of MetaPose is that it re-
quires only 2D keypoint data for training, which is suitable for
cases where 3D data is unavailable. Yet, the downside of MetaPose
is it does not utilize the 3D training data when available. FLEX [13]
presents an extrinsic parameter-free multi-view model, in the sense
that it does not require extrinsic camera parameters. It learns fused
deep features through a multi-view fusion layer. HMVformer [46]
proposes a hierarchical multi-view fusion transformer framework
for 3D HPE, incorporating cross-view feature fusion methods into
the spatial and temporal feature extraction process in a coarse-to-
fine manner. In contrast, we show that without designs in deep
feature fusion, by exploiting a single-view pretrained motion model
and transforming multi-view 3D poses into a unified coordinate
system with Procrustes alignment which is robust to the relative
positions of multiple views, we can obtain highly accurate 3D esti-
mates in the wild.

3D HPE with Transformer backbones. 3DHPE with Trans-
fomer backbones, such as PoseFormer [45],MHFormer [24],MixSTE
[42], and MotionBERT [48], have gained great success due to its
competence in handling sequences. MotionBERT [48] proposes

a pretraining stage in which a motion encoder is trained to re-
cover the underlying 3D motion from noisy partial 2D observa-
tions, and implements the motion encoder with a Dual-stream
Spatio-temporal Transformer (DSTformer) neural network. Re-
cently, PoseFormerV2 [44] exploits a compact representation of
lengthy skeleton sequences in the frequency domain to efficiently
scale up the receptive field and boost robustness to noisy 2D joint
detection. HSTFormer [32] focuses on capturing multi-level joints’
spatial-temporal correlations from local to global gradually for ac-
curate 3D HPE, and [8] focuses on parameter reduction for 3D HPE
by leveraging dynamic multi-headed convolutional attention. Mo-
tionAGFormer [29] presents an Attention-GCNFormer (AGFormer)
block that divides the number of channels by using two parallel
Transformer and GCNFormer streams, and reportedly achieves
impressive results.

Orthogonal to these efforts in improving the Transformer back-
bones, we simply take advantage of the Transformer backbone as
our motion encoder, and focus on improving the performance and
flexibility of 3D HPE from multiple dynamic views. We adopt the
DSTFormer proposed by motionBERT [48].

3 METHOD
3.1 Overview
The overview of the proposed framework is demonstrated in Fig.
3. The pose sequences of multiple views are fed into the shared

2024-04-13 00:48. Page 3 of 1–10.
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motion lifting and inpainting network. We adopt the DSTFormer
in motionBERT [48] (Sec. 3.2) as our motion lifting and inpainting
network, where inpainting is achieved by randomly masking 2D
skeletons during training. Subsequently, we fine-tune the motion
lifting and inpainting network using 3D data of the novel scene
with multi-view consistency (Sec. 3.3, 3.5). The motion feature and
3D pose output of each view are passed through a control gate (Sec.
3.4) during training to mimic in-the-wild cases where the number
of views can vary over time.

3.2 DSTformer Backbone for Feature Extraction
Given the input 2D keypoint sequences from 𝑁 dynamic views
x ∈ R𝑁×𝑇× 𝐽 ×𝐶𝑖𝑛 , and 3D joints sequence from multiple dynamic
views X ∈ R𝑁×𝑇× 𝐽 ×𝐶𝑜𝑢𝑡 , we project the 2D keypoints to a high-
dimensional feature F0 ∈ R𝑁×1× 𝐽 ×𝐶𝑓 following motionBERT [48].
𝑁 is the number of views,𝑇 is the pose sequence length, 𝐽 is the
number of joints in the human skeleton, and 𝐶𝑖𝑛 is the number
of input channels. Learnable spatial positional encoding 𝑃𝑇𝑝𝑜𝑠 ∈
R𝑁×1× 𝐽 ×𝐶𝑓 and temporal positional encoding 𝑃𝑇𝑝𝑜𝑠 ∈ R𝑁×𝑇×1×𝐶𝑓

are then added to the extracted feature. The sequence-to-sequence
model DSTformer is then used to calculate F𝑑 ∈ R𝑁×𝑇× 𝐽 ×𝐶𝑓 (𝑑 =

1, ..., 𝐷), where 𝐷 is the network depth. Same as motionBERT, a
linear layer is applied to FD to compute the motion feature E ∈
RN×T×J×Ce .𝐶𝑖𝑛 ,𝐶𝑓 ,𝐶𝑒 , and𝐶𝑜𝑢𝑡 are the channel numbers of input,
feature, embedding, and output respectively. 𝐶𝑜𝑢𝑡 equals 3, i.e. the
three dimensions 𝑋,𝑌, 𝑍 . We let batch size equal the number of
viewpoints 𝑁 during training.

To extract the motion features, the Dual-stream Spatio-temporal
Transformer which stacks the spatial and temporal MHSA blocks
alternately in two branches [48] and the output features of the
two branches are adaptively fused by an attention regressor. The
dual-stream-fusion module is repeated for D times:

F𝑑 = 𝛼𝑑𝑆𝑇 ◦𝑇𝑑1 (𝑆𝑑1 (F
𝑑−1)) + 𝛼𝑑𝑇𝑆 ◦𝑇

𝑑
2 (𝑆𝑑2 (F

𝑑−1)), (1)

where 𝑑 ∈ 1, ..., 𝐷 is the network depth and F𝑑 denotes the feature
embedding at depth 𝑑 . 𝑆 and 𝑇 are spatial and temporal blocks.
Adaptive fusion weights 𝛼𝑑

𝑆𝑇
, 𝛼𝑑
𝑇𝑆

∈ R𝐷×𝑁×𝑇× 𝐽 are given by a
shallow layer, following the same architecture as in motionBERT
[48].

The DSTFormer architecture is illustrated in Fig. 3. The building
blocks of DSTFormer consists of spatial and temporal Multi-Head
Self Attention (MHSA) blocks stacked in different orders, forming
two parallel computation streams which are expected to specialize
in different spatial-temporal aspects. DSTFormer takes multi-view
2D keypoint sequences x as input and passes it through a fully
connected (FC) later before feeding it into the DSTFomer.

Spatial MHSA.The Spatial MHSA (S-MHSA) models the rela-
tionship among the joints from a view within the same time step.
Note that each view is computed separately. It is defined as:

S −MHSA(Q𝑆 ,K𝑆 ,V𝑆 ) = [ℎ1, ...ℎ𝐻 ]W𝑃
𝑆 ,

ℎℎ = Softmax

(
Qℎ
𝑆
(𝐾ℎ
𝑆
)⊤√︁

𝑑𝐾

)
Vℎ𝑆 ,

(2)

where W𝑃
𝑆
is a projection parameter matrix. Query 𝑄ℎ

𝑆
, key 𝐾ℎ

𝑆
,

and value 𝑉ℎ
𝑆

are per frame spatial feature from input 𝐹𝑆 from

each attention head ℎ. 𝑑𝐾 is the feature dimension of 𝐾𝑆 . Residual
connection and layer normalization (LayerNorm) are used to the
S-MHSA block following classical Transformers [38].

Temporal MHSA. The Temporal MHSA (T-MHSA), on the other
hand, models the relationship across the time steps for a body joint
and applies to a feature 𝐹𝑇 ∈ R𝑇×𝐶𝑒 . The notation is similar to the
spatial MHSA.

T −MHSA(Q𝑇 ,K𝑇 ,V𝑇 ) = [ℎ1, ...ℎ𝐻 ]W𝑃
𝑇

ℎℎ = Softmax

(
Qℎ
𝑇
(𝐾ℎ
𝑇
)⊤√︁

𝑑𝐾

)
Vℎ𝑇 .

(3)

3.3 Multi-view 3D HPE Finetuning
We use the pretrained motion encoder given by motionBERT [48],
where the learned feature embedding E serves as a 3D-aware and
temporal-aware human motion representation. Since the motion
encoder adopts masking strategy during pretraining, it can realize
pose track inpainting as well. Our work focuses on the 3D human
pose estimation task; therefore, we fine-tune the network to achieve
2D-to-3D lifting and inpainting, i.e. 3D human pose estimation.

The loss for multi-view 3D HPE finetuning is computed as:

L =

𝑁∑︁
𝑛=1

𝜆3𝐷L3𝐷 + 𝜆𝑂L𝑂 (4)

where 𝑁 is the number of viewpoints. L3𝐷 is the pose regression
loss, L𝑂 is the velocity loss. Predicted velocity is calculated by
O𝑡 = X𝑡 − X𝑡−1, and likewise for ground truth velocity Ô𝑡 .

L3𝐷 =

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

X𝑡𝑗 − X̂𝑡𝑗
 ,

L𝑂 =

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

O𝑡𝑗 − Ô𝑡𝑗
 , (5)

where 𝐽 is the number of joints, and 𝑇 the sequence length.

3.4 Arbitrary Number of Viewpoint
We design the framework such that the model can take a arbitrary
number of viewpoints as input. This is done by gating the data
of any viewpoint with a certain probability during training, only
keeping some of the viewpoints. Let E𝑖 ∈ R𝑇× 𝐽 ×𝐶𝑜𝑢𝑡 be the motion
feature and X𝑖 ∈ R𝑇× 𝐽 ×𝐶𝑜𝑢𝑡 be the output from View 𝑖 , we add a
control gate𝐺𝑖 ∈ 0, 1 at each view to mask the feature and 3D pose
output sequence.

Ẽ𝑖 = 𝐺𝑖 ∗ E𝑖 ,
X̃𝑖 = 𝐺𝑖 ∗ X𝑖 ,

(6)

When 𝐺𝑖 = 1, View 𝑖 is valid, otherwise it is invalid. 𝑃𝑖 is the
probability of having 𝑖 valid views.

𝑃𝑖 =

{
𝑃1, 𝑖 = 1
1−𝑃1
𝑁−1 𝑖 = 2, ..., 𝑁

(7)

3.5 Multi-view Consistency
When there are multiple viewpoints in the input, we associate
multiple viewpoints by 3D human joints themselves and apply
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multi-view consistency constraint. This process can be done almost
for free. The multi-view consistency loss. LMV is computed as
follows.
(1) We predict the 3D human pose of each viewpoint 𝑖 at time 𝑡 as

X𝑡
𝑖
∈ R𝐽 ×𝐶𝑜𝑢𝑡 . 𝐶𝑜𝑢𝑡 = 3.

(2) Using the first viewpoint as the reference view, we procrustes-
align the 3D pose estimated from the other viewpoints to the
first viewpoint if there should be other viewpoints, i.e. 𝑁 ≥ 2.
PROC(x, y) denotes the procrustes alignment of 3D joints.

PROC(x, y) = 𝑠 (Rx + t)

s.t.min
𝑠,R,t

1
𝐽

𝐽∑︁
𝑗=1

y𝑗 − 𝑠 (Rx𝑗 + t)
 (8)

The procrustes alignment calculates the scale 𝑠 , rotation R, and
translation t between two sets of 3D point correspondences,
which is the same as calculating P-MPJPE from MPJPE [41].

X̃𝑡𝑖 = PROC(X𝑡𝑖 ,X
𝑡
1), 𝑖 = 2, ..., 𝑁 (9)

(3) Using the procruste-aligned X̃𝑡𝑖 , compute the multi-view con-
sistency loss:

LMV =

𝑁∑︁
𝑖=2

X̃𝑡𝑖 − X𝑡1
 (10)

Thus, the overall loss of our framework becomes:

L = I(𝐺𝑖=0) (𝑖=2,...,𝑁 )𝜆MVLMV +
𝑁∑︁
𝑖=1

(𝜆3DL3D + 𝜆𝑂L𝑂 ), (11)

where𝑁 is the number of viewpoints. I is a binary indicator function
to decide whether to include the multi-view consistency loss.

4 EXPERIMENTS
4.1 Experimental Settings
Data. We evaluate the performance of our proposed method on
three 3D human pose estimation benchmarks, i.e., one challeng-
ing in-the-wild dataset SkiPose [12], one recent dataset EgoBody
[43], and one well-established dataset Human3.6M [15]. Ski-Pose
PTZ (SkiPose) is a challenging in-the-wild dataset with sixmoving
pan-tilt-zoom cameras that is perfect for evaluating our proposed
method. This multi-view pant-tilt-zoom-camera (PTZ) dataset fea-
tures competitive alpine skiers performing giant slalom runs. It
provides labels for the skiers’ 3D poses in each frame, their pro-
jected 2D pose in all 20k images, and accurate per-frame calibration
of the PTZ cameras.The model is trained and tested using an official
training and testing set. EgoBody is another large-scale dataset for
3D human motions during social interactions in complex 3D scenes.
For each sequence, multiple Azure Kinects capture the two-subject
interactions from different views with RGBD streams, and a syn-
chronized HoloLens2 worn by one subject captures the first-person
view image.We only use the RGB data fromKinect cameras for train-
ing in our experiments. Human3.6M is a large-scale 3D dataset
of 3.6 Million accurate 3D Human poses, acquired by recording
the performance of 5 female and 6 male subjects, under 4 different
viewpoints, providing a diversity of human activities.We keep the
same training and test split as in [28, 48].

Metrics.We report (1) Mean Per Joint Position Error (MPJPE),
and (2) Procrustes aligned Mean Per Joint Position Error (P-MPJPE)
that measure the L2-error of 3D joint estimates after applying the
optimal rigid alignment (including scale) [7, 41]. Some other meth-
ods report (3) normal mean per joint position error (NMPJPE) that
normalizes MPJPE to exclude the effect of scale.

Implementation details.We use 2 RTX3090 to train our model.
DSTformer is trained with depth 𝐷 = 5, number of heads ℎ =

8, feature size 𝐶𝑓 = 512, embedding size 𝐶𝑒 = 512, following
motionBERT. The probability of having 1 valid viewpoint during
training is set to 𝑃1 = 0.5. 𝜆𝑀𝑉 = 1, 𝜆3𝐷 = 1, 𝜆𝑂 = 1. We set batch
size to be the number of views 𝑁 , which is 6 for SkiPose and 4 for
Human3.6M. For Human3.6M, the 2D skeletons are provided by 2D
pose estimator trained on MPII [1] and Human3.6M following the
common practice of [48].

Table 1: Comparisons with SOTA methods on SkiPose. The
results of AniPose, Rhodin et al. [35], CannonPose[40],
MetaPose[37] were provided by [37]. IR means iterative re-
finement, the details of which can be found in motionBERT.
↓means the lower the better. Best in bold.

MPJPE ↓ PMPJPE ↓ NMPJPE↓
AniPose w/ GT[20] Cell Rep.’21 - 50 221
CanonPose [40] CVPR’21 128 90 -
Chen [6] AAAI’21 99.4 74.7 -
MetaPose [37] CVPR’22 - 42 53
MetaPose (IR) [37] CVPR’22 - 30 53
FLEX [13] ECCV’22 65.5 - -
HMVformer [46] MM’23 42.2 29.4 -
MDVPose (Ours) 34.2 22.1 -

Table 2: Comparisons with SOTA methods on EgoBody. The
results of SPIN [23], METRO [25], PARE [21] and EFT [19]
were provided by the official repository of EgoBody [43]. ft
denotes results of fine-tuning SPIN, METRO and EFT on the
EgoBody training set. ↓means the lower the better. gt indi-
cates ground truth 2D keypoints were fed into the network.
Best in bold.

MPJPE ↓ PMPJPE ↓
PARE [21] ICCV’21 123.0 83.8
SPIN (ft) [23] ICCV’19 106.5 67.1
METRO (ft) [25] CVPR’21 98.5 66.9
EFT (ft) [19] 3DV’20 102.1 64.8
MEEV [30] ECCV’22 82.3 55.1
MDVPose (Ours) 54.0 36.9

MDVPose (gt) (Ours) 36.6 24.2
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Figure 4: Qualitative Evaluation on the SkiPose (left) and EgoBody (right) dataset. Output 3D pose sequences of synchronized
dynamic views. The red skeletons are the ground truth (GT) and the green skeletons are the predicted poses. The predicted
poses align well with the ground truth.

4.2 Quantitative Evaluation
Quantitative Evaluation on SkiPose.We compare our method
with the state-of-the-art methods for 3D HPE using multiple dy-
namic views on the SkiPose dataset, and the results are listed in
Table 1. Our method achieves an unprecedented 22mm P-MPJPE (af-
ter procrustes alignment) as well as 34mm MPJPE. The P-MPJPE(↓)
is 7.4mm (25.2%) lower than the second-best model HMVPose [46]
(22mm vs. 29.4mm). Note that the MetaPose performance was
achieved with a series of iterative refinement steps, which we do
not perform. Even if we use a weak baseline without heavy efforts
in feature fusion, we were able to easily achieve highly accurate
pose predictions, showing the efficacy of the proposed method on
challenging outdoor data

Quantitative Evaluation on EgoBody. Table 2 presents the
quantitative evaluations on the EgoBody dataset, where two sub-
jects interact in natural scenes. We first evaluate the results when
an off-the-shelf 2D keypoint detector [11] is used during reference.
The proposed method significantly outperforms the state-of-the-art

methods on EgoBody, surpassing the EgoBody Challenge champion
MEEV [30] by 18.2mm P-MPJPE and 28.3mm MPJPE. Subsequently,
we show the upper bound of our method when ground truth 2D
keypoints are fed into the network during inference, listed as "MDV-
Pose(gt)". The experimental results show that our method produces
highly accurate 3D pose estimates for novel natural videos without
bells and whistles.

Quantitative Evaluation on Human3.6M. Table 3 presents
the quantitative results on Human3.6M. The proposed MDVPose
achieves state-of-the-art accuracy on the competitive benchmark,
proving that the MDVPose is robust and generalizes well. Note that
our method cannot be compared with HMVPose or FLEX because of
two reasons. First, HMVPose and FLEX are not intrinsic-parameter
free on Human3.6M, whereas our MDVPose uses neither intrinsic
parameters nor extrinsic parameters. Second, the input 2D key-
points of HMVPose were given by CPN while ours were inherited
from motionBERT [48]. It is also worth mentioning that 3D HPE
from static cameras are not the focus of this paper; yet, MDVPose

2024-04-13 00:48. Page 6 of 1–10.
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Table 3: Quantitative comparison of 3D human pose estimation on Human3.6M. Numbers are MPJPE ↓ (mm) when using
detected 2D keypoint sequences as inputs, which are provided by 2D pose estimator trained on MPII [1] and Human3.6M
following [48].

Protocol 1 (MPJPE ↓) Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Single-view methods
VideoPose3D [31] CVPR’19 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Liu et al. [26] CVPR’20 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1
PoseFormer [45] ICCV’21 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
CanonPose [40] CVPR’21 - - - - - - - - - - - - - - - 74.3
MHFormer [24] CVPR’22 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
MixSTE [42] CVPR’22 36.7 39.0 36.5 39.4 40.2 44.9 39.8 36.9 47.9 54.8 39.6 37.8 39.3 29.7 30.6 39.8
MotionBERT [48] CVPR’22 36.1 37.5 35.8 32.1 40.3 46.3 36.1 35.3 46.9 53.9 39.5 36.3 35.8 25.1 25.3 37.5
PoseFormerV2 [44] CVPR’23 - - - - - - - - - - - - - - - 45.2

Multi-view methods, camera parameters are given
He [14] CVPR’20 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 31.7 28.2 26.4 23.6 28.3 23.5 26.9
Qiu [33] ICCV’19 24.0 26.7 23.2 24.3 24.8 22.8 24.1 28.6 32.1 26.9 31.0 25.6 25.0 28.1 24.4 26.2
Iskakov [17] ECCV’18 19.9 20.0 18.9 18.5 20.5 19.4 18.4 22.1 22.5 28.7 21.2 20.8 19.7 22.1 20.2 20.8

Multi-view methods, uncalibrated cameras, intrinsic and extrinsic camera parameters are not given
Luvizon [27] IJCV’22 40.0 36.0 44.0 39.0 44.0 42.0 41.0 66.0 70.0 46.0 49.0 43.0 34.0 46.0 34.0 45.0
MDVPose (Ours) 35.3 37.0 37.5 31.9 39.2 45.7 36.5 33.5 48.7 54.0 39.5 36.8 34.9 24.4 25.1 37.3

Protocol 2 (P-MPJPE↓) Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait WalkD Walk WalkT Avg.

Single-view methods
MixSTE [42] CVPR’22 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6
PoseFormerV2 [44] CVPR’23 - - - - - - - - - - - - - - - 35.6

Multi-view methods, uncalibrated cameras, intrinsic and extrinsic camera parameters are not given
MetaPose [37] CVPR’22 - - - - - - - - - - - - - - - 32.0
MDVPose (Ours) 29.7 31.4 32.2 27.1 32.9 37.3 30.0 29.4 40.9 48.3 34.3 30.3 30.1 21.2 21.8 31.8

demonstrated robust performance on 3D HPE from multiple views
in general.

4.3 Qualitative Evaluation
Fig. 4 illustrates several examples from the SkiPose (left) and the
EgoBody (right) dataset. Result 3D pose sequences of synchronized
views at different time steps are plotted. For SkiPose, the 2D key-
points are provided by the dataset, following previous works FLEX
[13] and HMVFormer [46]. For EgoBody, the input 2D keypoints are
extracted by an off-the-shelf 2D keypoint detector [11]. As shown
in Fig. 4, the predicted 3D poses (green skeletons) all align well
with the ground truth (red skeletons).

Fig. 5 compares MDVPose output with the original motionBERT
output. Both using the DSTFormer as backbone, our MDVFormer
performs significantly better than motionBERT.

4.4 Ablations
Effect of multi-view consistency loss.We conduct ablation stud-
ies on the SkiPose dataset with multiple dynamic views. The Perfor-
mance with the multi-view consistency loss LMV versus without
LMV are listed in Table 1. The model with multi-view consistency
loss outputs -3 mm lower P-MPJPE, which is more important in
analyzing the behavior of the individual human. This is reasonable
because the multi-view consistency loss (Eq. 10) basically penalizes
P-MPJPE.

Table 4: Ablation study for multi-view consistency loss on
SKiPose. Notation consistent with Table 1.

Method Setting MPJPE ↓ PMPJPE ↓
Ours w/ LMV scratch 39.6 31.6
Ours w/o LMV fine-tune 33.7 25.0
Ours w/ LMV fine-tune 34.2 22.1

Training from scratch versus fine-tuning. The results trained
from scratch using SkiPose training data is reported in Row 1, Table
1. As shown, the fine-tuning strategy outperforms the train-from-
scratch strategy by a large margin, proving that mining 3D training
data to the fullest can yield the best results. In addition, we plot
the error curves of MPJPE and P-MPJPE in Fig. 6. The fine-tuned
model converges significantly faster than that of the model trained
from scratch, making it more efficient and practical for real-world
applications.

Multi-view versus single view. We compare the qualitative
results using the original motionBERT model and our MDVPose
model in Fig. ??. Using the same backbone, MDVPose shows supe-
rior performance than motionBERT on the SKiPose dataset.

2024-04-13 00:48. Page 7 of 1–10.
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Figure 5: Qualitative comparisons on the Ski-Pose PTZ-Camera dataset. Qualitative comparison with state-of-the-art method
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Figure 6: Fine-tuning vs. training from scratch. Learning curves of fine-tuning versus training from scratch, in terms of MPJPE
(left) and P-MPJPE (right).

5 CONCLUSIONS
This paper presents a simple yet effective and flexible framework,
MDVPOse for 3D human pose estimation in the wild. MDVPose
tackles the problem of estimating 3D coordinates of human joints
from RGB images captured using an arbitrary number of dynamic
(potentially moving) cameras with unknown positions, orienta-
tions, and intrinsic parameters. It utilizes a single-view pretrained
Transformer-based motion encoder trained with massive data, and
exploits novel scenarios data to finetune the pretrained model be-
fore aligning multiple views in a unified coordinate and imposing
multi-view consistency. A strategy is designed to train using a
arbitrary number of dynamic views, allowing the algorithm to flex-
ibly adapt to real-world scenarios. The proposed framework leads
to highly accurate 3D human pose estimates on the challenging
Ski-Pose PTZ dataset, outperforming the second-best model by
24.8% in terms of P-MPJPE (-7.3 mm) and 19.0% MPJPE (-8.2 mm).
It also outperforms the state-of-the-art methods by a large margin

(-18.2mm P-MPJPE and -28.3mm MPJPE) on the EgoBody dataset.
In summary, the benefit of the proposed method are three-folds:
first, With a relatively small amount of novel scene training data,
MDVPose can make highly accurate predictions on the novel scenes
with multiple dynamic views. Second, the proposed simple yet ef-
fective framework does not demand camera calibration, making it
extremely practical for scenarios where camera calibration is hard,
such as skiing. Third, MDVPose adapts to an arbitrary number of
dynamic views to be practical and flexible in complicated real-world
scenarios.

Limitations and future work. MDVPose only uses a weak
baseline without heavy efforts on multi-view feature fusion. We be-
lieve that with stronger backbones and more designs in cross-view
relations the accuracy could be further improved. Currently, MDV-
Pose can only handle single person 3D HPE without considering
multi-person tracking. The framework can be extended to multi-
person 3D HPE using multiple dynamic views in future, which is a
further step towards analyzing human behaviors in the wild.
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