
Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL: FAILURE MODES OF
VARIATIONAL AUTOENCODERS AND THEIR EFFECTS
ON DOWNSTREAM TASKS

Anonymous authors
Paper under double-blind review

CONTENTS

A The Semi-Supervised VAE Training Objective 2

B Proofs of Theorems 2

B.1 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

B.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

C Experimental Details 4

D Quantitative Results 5

D.1 Approximation of p(x) is poor when both conditions of Theorem 1 hold . . . . . . 5

D.2 Failure to Learn Disentangled Representations due to Theorem 1 . . . . . . . . . . 6

D.3 VAE training pathologies hinder learning compressed representations due to Theorem 1 6

D.4 VAEs trade-off between generating realistic data and realistic counterfactuals in
semi-supervision due to Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 6

E Defense Against Adversarial Perturbations Requires the True Observation Noise and
Latent Dimensionality 9

F Unsupervised Pedagogical Examples 10

F.1 Figure-8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

F.2 Circle Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

F.3 Absolute-Value Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

F.4 Clusters Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

F.5 Spiral Dots Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

G Semi-Supervised Pedagogical Examples 12

G.1 Discrete Semi-Circle Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

G.2 Continuous Semi-Circle Example . . . . . . . . . . . . . . . . . . . . . . . . . . 12

H Qualitative Results 14

H.1 Qualitative results to support necessity of both conditions of Theorem 1 . . . . . . 14

H.2 Qualitative Demonstration of Unsupervised VAE Pathologies . . . . . . . . . . . . 16

1



Under review as a conference paper at ICLR 2021

H.3 Qualitative Demonstration of Semi-Supervised VAE Pathologies . . . . . . . . . . 24

H.4 When learning compressed representations, posterior is simper for mismatched models 30

A THE SEMI-SUPERVISED VAE TRAINING OBJECTIVE

We extend VAE model and inference to incorporate partial labels, allowing for some supervision of
the latent space dimensions. For this, we use the semi-supervised model first introduced by Kingma
et al. (2014) as the “M2 model”. We assume the following generative process:

z ∼ N (0, I), ε ∼ N (0, σ2
ε · I), y ∼ p(y), x|y, z = fθ(y, z) + ε (1)

where y is observed only a portion of the time. Inference objective for this model can be written as a
sum of two objectives, a lower bound for the likelihood of M labeled observations and a lower bound
for the likelihood for N unlabeled observations:

J (θ, φ) =

N∑
n=1

U(xn; θ, φ) + γ ·
M∑
m=1

L(xm, ym; θ, φ) (2)

where U and L lower bound pθ(x) and pθ(x, y), respectively:

log pθ(x, y) ≥ Eqφ(z|x,y) [− log pθ(x|y, z)]− log p(y) +DKL [qφ(z|x, y)||p(z)]︸ ︷︷ ︸
L(x,y;θ,φ)

(3)

log pθ(x) ≥ Eqφ(y|x)qφ(z|x) [− log pθ(x|y, z)] +DKL [qφ(y|x)||p(y)] +DKL [qφ(z|x)||p(z)]︸ ︷︷ ︸
U(x;θ,φ)

(4)

and γ controls their relative weight (as done by Siddharth et al. (2017)). When using IWAE, we
substitute the IWAE lower bounds for U and L as follows:

log pθ(x, y) ≥ Ez1,...,zS∼qφ(z|x,y)
[
log

1

S

pθ(x, y, zs)

qφ(zs|x, y)

]
︸ ︷︷ ︸

L(x,y;θ,φ)

(5)

log pθ(x) ≥ E(y1,z1),...,(yS ,zS)∼qφ(y|x)qφ(z|x)

[
log

1

S

S∑
s=1

pθ(x, ys, zs)

qφ(ys|x)qφ(zs|x)

]
︸ ︷︷ ︸

U(x;θ,φ)

(6)

B PROOFS OF THEOREMS

B.1 PROOF OF THEOREM 1

Recall the decomposition the negative ELBO in Main Paper Equation 3. In the following discussion,
we alway set φ to be optimal for our choice of θ. Assuming that p(x) is continuous, then for any
η ∈ R, we can further decompose the PMO:

Ep(x) [DKL[qφ(z|x)||pθ(z|x)]] =Pr[XLo(θ)]Ep(x)|XLo
[DKL[qφ(z|x)||pθ(z|x)]]

+ Pr[XHi(θ)]Ep(x)|XHi
[DKL[qφ(z|x)||pθ(z|x)]]

(7)

where DKL[qφ(z|x)||pθ(z|x)] ≤ η on XLo(θ), DKL[qφ(z|x)||pθ(z|x)] > η on XHi(θ), with Xi(θ) ⊆
X ; where Ep(x)|Xi is the expectation over p(x) restricted to Xi(θ) and renormalized, and Pr[Xi] is
the probability of Xi(θ) under p(x). Let us denote the expectation in first term on the right hand side
of Equation 7 as DLo(θ) and the expectation in the second term as DHi(θ).

Let fθGT ∈ F be the ground truth likelihood function, for which we may assume that the MLE
objective (MLEO) term is zero. We can now state our claim:
Theorem. Suppose that there exist an η ∈ R such that Pr[XHi(θGT)]DHi(θGT) is greater than
Pr[XLo(θGT)]DLo(θGT). Suppose that (1) there exist an fθ ∈ F such that DLo(θGT) ≥ DLo(θ)
and

Pr[XHi(θGT)] (DHi(θGT)−DLo(θGT)) > Pr[XHi(θ)]DHi(θ) +DKL[p(x)||pθ(x)];
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suppose also that (2) that for no such fθ ∈ F is the MLEO DKL[p(x)||pθ(x)] equal to zero. Then at
the global minima (θ∗, φ∗) of the negative ELBO, the MLEO will be non-zero.

Proof. The proof is straightforward. Condition (1) of the theorem implies that the negative ELBO of
fθ will be lower than that of fθGT

. That is, we can write:

−ELBO(θGT, φGT) = Pr[XHi(θGT)]DHi(θGT) + Pr[XLo(θGT)]DLo(θGT) (8)
= Pr[XHi(θGT)]DHi(θGT) + (1− Pr[XHi(θGT)])DLo(θGT) (9)
= Pr[XHi(θGT)] (DHi(θGT)−DLo(θGT)) +DLo(θGT) (10)
> Pr[XHi(θ)]DHi(θ) + Pr[XLo(θ)]DLo(θ) +DKL[p(x)||pθ(x)︸ ︷︷ ︸

−ELBO(θ,φ)

] (11)

So we have that −ELBO(θGT, φGT) > −ELBO(θ, φ). Note again that by construction φGT and φ
are both optimal for θGT and θ, respectively.

Furthermore, if there is an fθ′ ∈ F such that −ELBO(θ′, φ′) < −ELBO(θ, φ), then it must also
satisfy the conditions in assumption (1) and, hence, the global minima of the negative ELBO satisfy
the conditions in assumption (1). By assumption (2), at the global minima of the negative ELBO, the
MLEO DKL[p(x)||pθ(x)] cannot be equal to zero.

B.2 PROOF OF THEOREM 2

In practice, the noise variance of the dataset is unknown and it is common to estimate the variance as
a hyper-parameter. Here, we show that learning the variance of ε either via hyper-parameter search or
via direct optimization of the ELBO can be biased.

Theorem. For an observation set of size N , we have that

argmin
σ(d)2

ε

− ELBO(θ, φ, σ(d)2

ε) =
1

N

N∑
n=1

Eqφ(z|xn)
[
(x(d)n − fθ(z)(d))2

]
. (12)

Proof. We rewrite the negative ELBO:

argmin
σ(d)2

ε

−ELBO(θ, φ, σ2
ε ) (13)

= argmin
σ(d)2

ε

Ep(x)
[
Eqφ(z|x) [− log pθ(x|z)] +DKL [qφ(z|x)||p(z)]

]
(14)

= argmin
σ(d)2

ε

Ep(x)
[
Eqφ(z|x) [− log pθ(x|z)]

]
(15)

= argmin
σ(d)2

ε

Ep(x)

Eqφ(z|x)
− D∑

d=1

log

 1√
2πσ(d)2

ε

· exp

(
−(x(d) − fθ(z)(d))2

2σ(d)2
ε

)
(16)

= argmin
σ(d)2

ε

D∑
d=1

Ep(x)

[
Eqφ(z|x)

[
log

(√
2πσ(d)2

ε

)
+

(x(d) − fθ(z)(d))2

2σ(d)2
ε

]]
(17)

= argmin
σ(d)2

ε

D∑
d=1

Ep(x)

[
Eqφ(z|x)

[
log
(
σ(d)

ε

)
+

(x(d) − fθ(z)(d))2

2σ(d)2
ε

]]
(18)

= argmin
σ(d)2

ε

D∑
d=1

log
(
σ(d)

ε

)
+

1

2σ(d)2
ε

· Ep(x)
[
Eqφ(z|x)

[
(x(d) − fθ(z)(d))2

]]
︸ ︷︷ ︸

C(θ,φ,d)

(19)
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Setting the gradient of the above with respect to σ2
ε equal to zero yields the following:

0 = − ∂

∂σ
(d)
ε

ELBO(θ, φ, σ(d)
ε ) (20)

=
σ(d)2

ε − C(θ, φ, d)

σ(d)3
ε

. (21)

Thus, we can write,

σ(d)2

ε = C(θ, φ, d) = Ep(x)
[
Eqφ(z|x)

[
(x(d) − fθ(z)(d))2

]]
(22)

≈ 1

N

N∑
n=1

Eqφ(z|xn)
[
(x(d)n − fθ(z)(d))2

]
(23)

C EXPERIMENTAL DETAILS

Initialization at Global Optima of the VAE Objective The decoder function fθ is initialized to
the ground-truth using full supervision given the ground-truth z’s and fθGT . The encoder is initialized
to φGT by fixing the decoder at the ground-truth and maximizing the ELBO (with the 10 random
restarts). We fix the observation error σ2

ε to that of the ground truth model, and we fix a sufficiently
flexible architecture – one that is significantly more expressive than needed to capture fθGT – to ensure
that, if there exists a fθ with simpler posteriors, it would be included in our feasible set F . Lastly, we
select the restart that yields the lowest value of the objective function.

Synthetic Datasets We use 4 synthetic data-sets for unsupervised VAEs (described in Appendix
F), and 2 synthetic data-sets for semi-supervised VAEs (described in Appendix G), and generate 5
versions of each data-set (each with 5000/2000/2000 train/validation/test points). We use 3 real
semi-supervised data-sets: Diabetic Retinopathy Debrecen (Antal & Hajdu, 2014), Contraceptive
Method Choice (Alcala-Fdez et al., 2010; Dua & Graff, 2017) and the Titanic (Alcala-Fdez et al.,
2010; Simonoff, 1997) datasets, each with 10% observed labels, split in 5 different ways equally into
train/validation/test.

Real Datasets We consider 3 UCI data-sets: Diabetic Retinopathy Debrecen (Antal & Hajdu, 2014),
Contraceptive Method Choice (Alcala-Fdez et al., 2010; Dua & Graff, 2017) and the Titanic (Alcala-
Fdez et al., 2010; Simonoff, 1997) datasets. In these, we treat the outcome as a partially observed label
(observed 10% of the time). We split the data 5 different ways into equally sized train/validation/test.
On each split of the data, we run 5 random restarts and select the run that yielded the best value on
the training objective, computed on the validation set.

Evaluation Metrics To evaluate the quality of the generative model, we use the smooth kNN test
statistic (Djolonga & Krause, 2017) on samples from the learned model vs. samples from the training
set / ground truth model as an alternative to log-likelihood, since log-likelihood has been shown
to be problematic for evaluation because of its numerical instability / high variance (Theis et al.,
2016; Wu et al., 2017). In the semi-supervised case, we also use the smooth kNN test statistic to
compare p(x|y) with the learned pθ(x|y). Finally, in cases where we may have model mismatch, we
also evaluate the mutual information between x and each dimension of the latent space z, using the
estimator presented in (Kraskov et al., 2004).

Architectures On the synthetic data-sets, we use a leaky-ReLU encoder/decoder with 3 hidden
layers, each 50 nodes. On the UCI data-sets, we use a leaky-ReLU encoder/decoder with 3 hidden
layers, each 100 nodes.

Optimization For optimization, we use the Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.001 and a mini-batch size of 100. We train for 100 epochs on synthetic data and for 20000
on real data (and verified convergence). We trained 5 random restarts on each of the split of the data.
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For semi-supervised data-sets with discrete labels, we used continuous relaxations of the categorical
distribution with temperature 2.2 (Jang et al., 2016) as the variational family in order to use the
reparametarization trick (Kingma & Welling, 2013).

Baselines For our baselines, we compare the performance of a MFG-VAE with that of a VAE
trained with the Lagging Inference Networks (LIN) algorithm (still with a MFG variational family),
since the algorithm claims to be able to escape local optima in training. Since the pathologies we
describe are global optima, we do not expect LIN to mitigate the issues. We use Importance Weighted
Autoencoders (IWAE) as an example of a inference algorithm that uses a more complex variational
family. Since the pathologies described are exacerbated by a limited variational family, we expect
IWAE to out-perform the other two approaches. For each method, we select the hyper-parameters for
which the best restart yields the best log-likelihood (using the smooth kNN test-statistic, described
below).

Hyper-parameters When using IWAE, let S be the number of importance samples used. When
using the Lagging Inference Networks, let T be the threshold for determining whether the inference
network objective has converged, and let R be the number of training iterations for which the loss
is averaged before comparing with the threshold. When using semi-supervision, α determines the
weight of the discriminator, and γ determines the weight of the labeled objective, L. We grid-searched
over all combination of the following sets of parameters:

Unsupervised datasets:

• IWAE: S ∈ {3, 10, 20}
• Lagging Inference Networks: T ∈ {0.05, 0.1}, R ∈ {5, 10}

Semi-supervised synthetic datasets:

• IWAE: S ∈ {3, 10, 20}
• Lagging Inference Networks: T ∈ {0.05, 0.1}, R ∈ {5, 10}
• All methods: α ∈ {0.0, 0.1, 1.0}, γ ∈ {0.5, 1.0, 2.0, 5.0}

Semi-supervised real datasets:

• IWAE: S ∈ {3, 10, 20}
• Lagging Inference Networks: T ∈ {0.05, 0.1}, R ∈ {5, 10}
• All methods: α ∈ {0.0, 0.1, 1.0}, γ ∈ {0.5, 1.0, 2.0, 5.0}, σ2

ε ∈ {0.01, 0.5}. On Titanic
dimensionality of z is ∈ {1, 2}, on Contraceptive and Diabetic Retinopathy ∈ {2, 5}.

Hyper-parameters Selection For each method, we selected the hyper-parameters that yielded the
smallest value of the smooth kNN test statistic (indicating that they learned the p(x) best).

D QUANTITATIVE RESULTS

In this section we present the quantitative results for the paper. For all data-sets, we fix a sufficiently
flexible architecture (one that is significantly more expressive than needed to capture fθGT ) so that
our feasible set F is diverse enough to include likelihoods with simpler posteriors. For the synthetic
data-sets, we then train each model to reach the global optima as follows: we train 10 restarts for
each method and hyper-parameter settings – 5 random where we initialize randomly, and 5 random
where the decoder and encoder are initialized to ground truth values. We select the restart with the
best value of the objective function. See Appendix C for a complete detail on the experimental setup.

D.1 APPROXIMATION OF p(x) IS POOR WHEN BOTH CONDITIONS OF THEOREM 1 HOLD

Here we show that on data-sets for which Theorem 1 holds, VAEs approximate p(x) poorly. We do
this on two data-sets, the “Figure-8” and the “Clusters” Examples (described in Appendices F.1 and
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F.4, respectively). Table 1 shows that these data-sets, VAEs (even with a better training algorithm,
LIN) approximate p(x) poorly, while methods with a more complex variational family (like IWAE)
do not. Visualization of the posterior (in Appendix H.1) confirm that the VAE objective under-fits
the generative model in order to learn a simpler posterior, whereas the IWAE objective does not:
for the “Figure-8 Example” see Figures 4, 5 and 6, and for the “Clusters Example” see Figures 7,
8 and 9. In these two examples, we further see the ELBO’s regularizing effect on the learned fθ.
On the “Figure-8 Example”, the learned fθ ensures that x’s generated from z ∈ [−∞,−3] ∪ [3,∞]
are sufficiently different from x’s generated from z ≈ 0: fθ(z) curls away from the center z ≈ 0
and thus simplifies the posterior. On the “Clusters Examples”, the learned fθ has less pronounced
changes in slope, and thus a simpler posterior.

D.2 FAILURE TO LEARN DISENTANGLED REPRESENTATIONS DUE TO THEOREM 1

In disentangled representation learning, we suppose that each dimension of the latent space corre-
sponds to a task-meaningful concept (Ridgeway, 2016; Chen et al., 2018). Our goal is to infer these
meaningful ground truth latent dimensions. It’s been noted in literature that this inference problem is
ill-posed - that is, there are an infinite number of likelihood functions (and hence latent codes) that can
capture p(x) equally well (Locatello et al., 2018). Here, we show that, more problematically, the VAE
objective can prefer learning the representations that entangles the ground-truth latent dimensions
due to the pathology in Theorem 1.

Consider data generated by fθGT(z) = Az + b. If A is non-diagonal, then the posteriors of this
model are correlated Gaussians (poorly approximated by MFGs). Let A′ = AR, where we define
R = (ΣV >)−1(Λ− σ2I)1/2 with an arbitrary diagonal matrix Λ and matrices Σ, V taken from the
SVD of A, A = UΣV >. In this case, fθ = A′z + b has the same marginal likelihood as fθGT , that is,
pθ(x) = pθGT(x) = N (b, σ2

ε · I + AAᵀ). However, since the posteriors of fθ are uncorrelated, the
ELBO will prefer fθ over fθGT ! In the latent space corresponding to fθ , the original interpretations
of the latent dimensions are now entangled.

Similarly, for more complicated likelihood functions, we expect the ELBO to prefer learning models
with simpler posteriors which are not necessarily ones that are useful for constructing disentangled
representations. This bias is reduced in the IWAE training objective.

D.3 VAE TRAINING PATHOLOGIES HINDER LEARNING COMPRESSED REPRESENTATIONS DUE
TO THEOREM 1

In practice, if the task does not require a specific latent space dimensionality, K, one chooses K
that maximizes the log pθ(x). Note that using a higher K and a lower σ2

ε means we can capture the
data distribution with a simpler function fθ(z) and hence get simpler posteriors. That is, increasing
K alleviates the need to compromise the generative model in order to improve the inference model
and leads to better approximation of p(x). Thus, the ELBO will favor model mismatch (K larger
than the ground truth) and prevent us from learning highly compressed representations when they are
available.

We demonstrate this empirically by embedding the “Figure-8” and “Clusters” Examples into a 5D
space using a linear transformation, A =

(
1.0 0.0 0.5 0.2 −0.8
0.0 1.0 −0.5 0.3 −0.1

)
, and then training a VAE with latent

dimensionality K ∈ {1, 2, 3}, with K = 1 corresponding to the ground-truth model. Training for
K = 1 is initialized at the ground truth model, and for K > 2 we initialize randomly; in each case
we optimize σ2

ε per-dimension to minimize the negative ELBO. The ELBO prefers models with
larger K over the ground truth model (K = 1), and that as K increases, the average informativeness
of each latent code decreases (Table 2), since the latent space learns to generate the observation noise
ε. We confirm that the posteriors become simpler as K increases, lessening the incentive for the VAE
to compromise on approximating p(x) (Figure 18). Lastly, we confirm that while LIN also shows
preference for higher K’s, IWAE does not (Table 2).

D.4 VAES TRADE-OFF BETWEEN GENERATING REALISTIC DATA AND REALISTIC
COUNTERFACTUALS IN SEMI-SUPERVISION DUE TO THEOREM 1

Trade-offs when labels are discrete The trade-off between realistic data and realistic counterfactuals
generation is demonstrated in the “Discrete Semi-Circle” Example, visualized in Figure 11 (details
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in Appendix G.1). The VAE is able to learn the data manifold and distribution well (Figure 11a).
However, the learned model has a simple posterior in comparison to the true posterior (Figure 11f).
In fact, the learned fθ(z, y) is collapsed to the same function for all values of y (Figure 11b). As a
result, pθ(x|y) ≈ pθ(x) under the learned model (Figure 11c). We call this phenomenon “functional
collapse”. As expected, functional collapse occurs when training with LIN as well (Figure 12). In
contrast, IWAE is able to learn two distinct data conditionals pθ(x|y), but it does so at a cost. Since
IWAE does not regularize the generative model, it overfits (Figure 13). Table 3 shows that IWAE
learns p(x) worse than the VAE, while Table 4 shows that it learns p(x|y) significantly better. We see
a similar pattern in the real data-sets (see Tables 5 and 6).

Trade-offs when labels are continuous When y is discrete, we can lower-bound the number of
modes of pθ(z|x) by the number of distinct values of y, and choose a variational family that is
sufficiently expressive. But when y is continuous, we cannot easily bound the complexity of pθ(z|x).
In this case, we show that the same trade-off between realistic data and realistic counterfactuals
exists, and that there is an additional pathology introduced by the discriminator qφ(y|x) (Equation
2). Consider the “Continuous Semi-Circle” Example, visualized in Figure 14b (details in Appendix
G.2). Here, since the posterior pθ(y|x) is bimodal, encouraging the MFG discriminator qφ(y|x) to
be predictive will collapse fθ(y, z) to the same function for all y (Figure 14b). So as we increase α
(the priority placed on prediction), our predictive accuracy increases at the cost of collapsing pθ(x|y)
towards pθ(x). The latter will result in low quality counterfactuals (see Figure 14c). Like in the
discrete case, γ still controls the tradeoff between realistic data and realistic counterfactuals; in the
continuous case, α additionally controls the tradeoff between realistic counterfactuals and predictive
accuracy. Table 4 shows that IWAE is able to learn p(x) better than VAE and LIN, as expected,
but the naive addition of the discriminator to IWAE means that it learns p(x|y) no better than the
other two models (see below for an explanation); that is, with the naive discriminator, just like the
VAE and LIN, IWAE suffers from functional collapse (see Figure 16).

Naive application adaptation of IWAE for semi-supervision introduces new pathologies. The
variational family implied by the IWAE objective is not the one given by the IWAE decoder qφ
(Cremer et al., 2017). As such, incorporating a discriminator term qφ(y|x) into an IWAE semi-
supervised objective is non-trivial, since the real approximate variational family used is complex and
requires intractable marginalization over z. Although some get around this intractability by working
with lower bounds (Siddharth et al., 2017) on qφ(y, z|x) marginalized over z, the discriminator in
these cases is nonetheless different from the variational posterior. This may be an additional factor of
the poor performance of IWAE in the semi-supervised setting with continuous y.

Data IWAE LIN VAE
Clusters 0.057± 0.028 0.347± 0.057 0.361± 0.083
Fig-8 0.036± 0.013 0.040± 0.081 0.066± 0.014

Table 1: Comparison unsupervised learned vs. true data distributions via the smooth kNN test (lower
is better). Hyper-parameters selected via smaller value of the loss function on the validation set.

VAE Figure-8 Example Clusters Example

K = 1 (ground-truth) K = 2 K = 3 K = 1 (ground-truth) K = 2 K = 3

Test −ELBO −0.127 ± 0.057 −0.260 ± 0.040 −0.234 ± 0.050 4.433 ± 0.049 4.385 ± 0.034 4.377 ± 0.024
Test avgiI(x; zi) 2.419 ± 0.027 1.816 ± 0.037 1.296 ± 0.064 1.530 ± 0.011 1.425 ± 0.019 1.077 ± 0.105

IWAE Figure-8 Example Clusters Example

K = 1 (ground-truth) K = 2 K = 3 K = 1 (ground-truth) K = 2 K = 3

Test −ELBO −0.388 ± 0.044 −0.364 ± 0.051 −0.351 ± 0.045 4.287 ± 0.047 4.298 ± 0.054 4.295 ± 0.049
Test avgiI(x; zi) 2.159 ± 0.088 1.910 ± 0.035 1.605 ± 0.087 1.269 ± 0.052 1.321 ± 0.033 1.135 ± 0.110

Table 2: The ELBO prefers learning models with more latent dimensions (and smaller σ2
ε ) over the

ground truth model (k = 1). Although the models preferred by the ELBO have a higher mutual
information between the data and learned z’s, the mutual information between dimension of z and
the data decreases since with more latent dimensions, the latent space learns ε. In contrast, IWAE
does not suffer from this pathology. LIN was not included here because it was not able to minimize
the negative ELBO as well as the VAE on these data-sets.
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Data IWAE LIN VAE
Discrete Semi-Circle 0.694± 0.096 0.703± 0.315 0.196± 0.078
Continuous Semi-Circle 0.015± 0.011 0.128± 0.094 0.024± 0.014

Table 3: Comparison of semi-supervised learned vs. true data distributions via the smooth kNN test
(lower is better). Hyper-parameters selected via the smooth kNN test-statistic computed on the data
marginals.

IWAE LIN VAE
Data Cohort 1 Cohort 2 Cohort 1 Cohort 2 Cohort 1 Cohort 2

Discrete Semi-Circle 1.426 ± 1.261 1.698 ± 0.636 18.420 ± 1.220 10.118 ± 0.996 15.206 ± 1.200 11.501 ± 1.300
Continuous Semi-Circle 15.951 ± 3.566 14.416 ± 1.402 15.321 ± 1.507 17.530 ± 1.509 13.128 ± 0.825 16.046 ± 1.019

Table 4: Comparison of semi-supervised learned pθ(x|y) with ground truth p(x|y) via the smooth
kNN test statistic (smaller is better). Hyper-parameters selected via smallest smooth kNN test statistic
computed on the data marginals. For the discrete data, the cohorts are p(x|y = 0) and p(x|y = 1),
and for the continuous data, the cohorts are p(x|y = −3.5) and p(x|y = 3.5).

IWAE VAE
Diabetic Retinopathy 3.571± 2.543 6.206± 1.035
Contraceptive 1.740± 0.290 2.147± 0.225
Titanic 2.794± 1.280 1.758± 0.193

Table 5: Comparison of semi-supervised learned vs. true data distributions via the smooth kNN test
(lower is better). Hyper-parameters selected via the smooth kNN test-statistic computed on the data
marginals.

IWAE VAE
Cohort 1 Cohort 2 Cohort 3 Cohort 1 Cohort 2 Cohort 3

Diabetic Retinopathy 4.240 ± 1.219 4.357 ± 3.417 N/A 5.601 ± 0.843 8.008 ± 1.096 N/A
Contraceptive 7.838 ± 1.138 5.521 ± 3.519 6.626 ± 2.571 5.388 ± 0.788 4.994 ± 0.932 3.722 ± 0.488
Titanic 3.416 ± 0.965 6.923 ± 1.924 N/A 3.730 ± 0.866 8.572 ± 1.766 N/A

Table 6: Comparison of semi-supervised learned vs. true conditional distributions p(x|y) via the
smooth kNN test (lower is better). Hyper-parameters selected via the smooth kNN test-statistic
computed on the data marginals.
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E DEFENSE AGAINST ADVERSARIAL PERTURBATIONS REQUIRES THE TRUE
OBSERVATION NOISE AND LATENT DIMENSIONALITY

(a) Projection of adversarial example onto true mani-
fold.

(b) Projection of adversarial example onto manifold
learned given model mismatch (higher dimensional
latent space and smaller observation noise).

Figure 1: Comparison of projection of adversarial example onto ground truth vs. learned manifold.
The star represents the original point, perturbed by the red arrow, and then projected onto the manifold
by the black arrow.

As a defense against adversarial attacks, manifold-based approaches de-noise the data before feeding
to a classifier with the hope that the de-noising will remove the adversarial perturbation from the data
(Jalal et al., 2017; Meng & Chen, 2017; Samangouei et al., 2018; Hwang et al., 2019; Jang et al.,
2020). In this section we argue that a correct decomposition of the data into fθ(z) and ε (or “signal”
and “noise”) is necessary to prevent against certain perturbation-based adversarial attacks.

Assume that our data was generated as follows:

z ∼ p(z)
ε ∼ N (0, σ2

ε · I)

x|z ∼ fθGT(z) + ε

y|z ∼ Cat (gψ ◦ fθGT(z))

(24)

Let µφ(x) denote the mean of encoder and let Mθ,φ(x) = fθ ◦ µφ(x) denote a projection onto the
manifold. Our goal is to prevent adversarial attacks on a given discriminative classifier that predicts
y|x – that is, we want to ensure that there does not exist any η such that xn + η is classified with
a different label than yn by the learned classifier and not by the ground truth classifier. Since the
labels y are computed as a function of the de-noised data, fθGT(z), the true classifier is only defined
on the manifold M (marked in blue in Figure 1). As such, any learned classifier (in orange) will
intersect the true classifier on M , but may otherwise diverge from it away from the manifold. This
presents a vulnerability against adversarial perturbations, since now any x can be perturbed to cross
the learned classifier’s boundary (in orange) to flip its label, while its true label remains the same,
as determined by the true classifier (in blue). To protect against this vulnerability, existing methods
de-noise the data by projecting it onto the manifold before classifying. Since the true and learned
classifiers intersect on the manifold, in order to flip an x’s label, the x must be perturbed to cross
the true classifier’s boundary (and not just the learned classifier’s boundary). This is illustrated in
Figure 1a: the black star represents some data point, perturbed (by the red arrow) by an adversary to
cross the learned classifier’s boundary but not the true classifier’s boundary. When projected onto the
manifold (by the black arrow), the adversarial attack still falls on the same side of the true classifier
and the learned classifier, rendering the attack unsuccessful and this method successful.

9
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However, if the manifold is not estimated correctly from the data (i.e. if the ground truth dimension-
ality of the latent space and the observation noise σ2

ε are poorly estimated), this defense may fail.
Consider, for example, the case in which fθ(z) is modeled with a VAE with a larger dimensional
latent space and a smaller observation noise than the ground truth model. Figure 1b shows a uniform
grid in x’s space projected onto the manifold learned by this mismatched model. The figure shows
that the learned manifold barely differs from the original space, since the latent space of the VAE
compensates for the observation noise ε and thus does not de-noise the observation. When the
adversarial attack is projected onto the manifold, it barely moves and is thus left as noisy. As the
figure shows, the attack crosses the learned classifier’s boundary but not the true boundary and is
therefore successful.

F UNSUPERVISED PEDAGOGICAL EXAMPLES

In this section we describe in detail the unsupervised pedagogical examples used in the paper and the
properties that cause them to trigger the VAE pathologies. For each one of these example decoder
functions, we fit a surrogate neural network fθ using full supervision (ensuring that the MSE < 1e−4
and use that fθ to generate the actual data used in the experiments.

F.1 FIGURE-8 EXAMPLE

Generative Process:
z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

u(z) = (0.6 + 1.8 · Φ(z))π

x|z =

[ √
2
2 ·

cos(u(z))
sin(u(z))2+1√

2 · cos(u(z)) sin(u(z))sin(u(z))2+1

]
︸ ︷︷ ︸

fθGT (z)

+ε

(25)

where Φ(z) is the Gaussian CDF and σ2
ε = 0.02 (see Figure 4).

Properties: In this example, values of z on [−∞,−3.0], [3.0,∞] and in small neighborhoods
of z = 0 all produce similar values of x, namely x ≈ 0; as such, the true posterior pθGT(z|x) is
multi-modal in the neighborhood of x = 0 (see Figure 4d), leading to high PMO. Additionally, in the
neighborhood of x ≈ 0, p(x) is high. Thus, condition (1) of Theorem 1 is satisfied. One can verify
condition (2) is satisfied by considering all continuous parametrizations of a figure-8 curve. Any such
parametrization will result in a fθ for which far-away values of z lead to nearby values of x and thus
in high PMO value for points near x = 0.

F.2 CIRCLE EXAMPLE

Generative Process:
z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

x|z =

[
cos(2π · Φ(z))
sin(2π · Φ(z))

]
︸ ︷︷ ︸

fθGT (z)

+ε
(26)

where Φ(z) is the Gaussian CDF and σ2
ε = 0.01 (see Figure 2).

Properties: In this example, the regions of the data-space that have a non-Gaussian posterior are
near x ≈ [1.0, 0.0], since in that neighborhood, z ∈ [−∞,−3.0] and z ∈ [3.0,∞] both generate
nearby values of x. Thus, this model only satisfies condition 2 of Theorem 1. However, since overall
the number of x’s for which the posterior is non-Gaussian are few, the VAE objective does not need to

10
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trade-off capturing p(x) for easy posterior approximation. We see that traditional training is capable
of recovering p(x), regardless of whether training was initialized randomly or at the ground truth
(see Figure 2).

F.3 ABSOLUTE-VALUE EXAMPLE

Generative Process:
z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

x|z =

[
|Φ(z)|
|Φ(z)|

]
︸ ︷︷ ︸
fθGT (z)

+ε
(27)

where Φ(z) is the Gaussian CDF and σ2
ε = 0.01 (see Figure 3).

Properties: In this example, the posterior under fθGT cannot be well approximated using a MFG
variational family (see Figure 3d). However, there does exist an alternative likelihood function fθ(z)
(see 3b) that explains p(x) equally well and has simpler posterior 3e. As such, this model only
satisfies condition 1 of Theorem 1.

F.4 CLUSTERS EXAMPLE

Generative Process:
z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

u(z) =
2π

1 + e−
1
2πz

t(u) = 2 · tanh (10 · u− 20 · bu/2c − 10) + 4 · bu/2c+ 2

x|z =

[
cos(t(u(z)))
sin(t(u(z)))

]
︸ ︷︷ ︸

fθGT (z)

+ε

(28)

where σ2
ε = 0.2.

Properties: In this example, fθGT a step function embedded on a circle. Regions in which
df−1
θGT
dx is

high (i.e. the steps) correspond to regions in which p(x) is high. The interleaving of high density and
low density regions on the manifold yield a multi-modal posterior (see Figure 7d). For this model,
both conditions of Theorem 1 hold. In this example, we again see that the VAE objective learns a
model with a simpler posterior (see Figure 7e) at the cost of approximating p(x) well (see Figure 7a).

F.5 SPIRAL DOTS EXAMPLE

Generative Model:
z ∼ N (0, 1)

ε ∼ N (0, σ2
ε · I)

u(z) =
4π

1 + e−
1
2πz

t(u) = tanh (10 · u− 20 · bu/2c − 10) + 2 · bu/2c+ 1

x|z =

[
t(u(z)) · cos(t(u(z)))
t(u(z)) · sin(t(u(z)))

]
︸ ︷︷ ︸

fθGT (z)

+ε

(29)

where σ2
ε = 0.01.

11



Under review as a conference paper at ICLR 2021

Properties: In this example, fθGT a step function embedded on a spiral. Regions in which
df−1
θGT
dx is

high (i.e. the steps) correspond to regions in which p(x) is high. The interleaving of high density and
low density regions on the manifold yield a multi-modal posterior (see Figure 10d). In this example,
we again see that the VAE objective learns a model with a simpler posterior (see Figure 10e) at the
cost of approximating p(x) well (see Figure 10a). Furthermore, for this model the VAE objective
highly misestimates the observation noise.

G SEMI-SUPERVISED PEDAGOGICAL EXAMPLES

In this section we describe in detail the semi-supervised pedagogical examples used in the paper
and the properties that cause them to trigger the VAE pathologies. For each one of these example
decoder functions, we fit a surrogate neural network fθ using full supervision (ensuring that the
MSE < 1e− 4 and use that fθ to generate the actual data used in the experiments.

G.1 DISCRETE SEMI-CIRCLE EXAMPLE

Generative Process:
z ∼ N (0, 1)

y ∼ Bern
(

1

2

)
ε ∼ N (0, σ2

ε · I)

x|y, z =

cos
(
I(y = 0) · π ·

√
Φ(z) + I(y = 1) · π · Φ(z)3

)
sin
(
I(y = 0) · π ·

√
Φ(z) + I(y = 1) · π · Φ(z)3

)
︸ ︷︷ ︸

fθGT (y,z)

+ε

(30)

where Φ is the CDF of a standard normal and σ2
ε = 0.01.

Properties: We designed this data-set to specifically showcase issues with the semi-supervised
VAE objective. As such, we made sure that the data marginal p(x) of this example will be learned
well using unsupervised VAE (trained on the x’s only) This way we can focus on the new issues
introduced by the semi-supervised objective.

For this ground-truth model, the posterior of the un-labeled data pθGT(z|x) is bimodal, since there
are two functions that could have generated eeach x: fθGT(y = 0, z) and fθGT(y = 1, z). As such,
approximating this posterior with a MFG will encourage the semi-supervised objective to find a
model for which fθGT(y = 0, z) = fθGT(y = 1, z) (see Figure 11b). When both functions collapse
to the same function, pθ(x|y) ≈ pθ(x) (see Figure 11c). This will prevent the learned model from
generating realistic counterfactuals.

G.2 CONTINUOUS SEMI-CIRCLE EXAMPLE

Generative Process:
z ∼ N (0, 1)

y ∼ N (0, 1)

h(y) = B−1(Φ(y); 0.2, 0.2)

ε ∼ N (0, σ2
ε · I)

x|y, z =

cos
(
h(y) · π ·

√
Φ(z) + (1− h(y)) · π · Φ(z)3

)
sin
(
h(y) · π ·

√
Φ(z) + (1− h(y)) · π · Φ(z)3

)
︸ ︷︷ ︸

fθGT (y,z)

+ε

(31)

where Φ is the CDF of a standard normal and B−1(.;α, β) is the inverse CDF of the beta distribution.
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Properties: As in the “Discrete Semi-Circle Example”, we designed this data-set to have a p(x)
that the VAE objective would learn well so we can focus on the new issues introduced by the semi-
supervised objective. The dataset demonstrates the same pathologies in the semi-supervised objective
as shown by “Discrete Semi-Circle Example” with the addition of yet another pathology: since
the posterior pθ(y|x) is bimodal in this example, encouraging a MFG qφ(y|x) discriminator to be
predictive will collapse fθ(y, z) to the same function for all values of y (see Figure 14b) As such, as
we increase α, the better our predictive accuracy will be but the more pθ(x|y)→ pθ(x), causing the
learned model to generate poor quality counterfactuals (see Figure 14c).
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H QUALITATIVE RESULTS

H.1 QUALITATIVE RESULTS TO SUPPORT NECESSITY OF BOTH CONDITIONS OF THEOREM 1
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 2: MFG-VAE trained on the Circle Example. In this toy data, condition (2) holds of Theorem
1 holds and condition (1) does not. To see this, notice that most examples of the posteriors are
Gaussian-like, with the exception of the posteriors near x = [1.0, 0.0], which are bimodal since in
that neighborhood, x could have been generated using either z > 3.0 or using z < −3.0. Since
only a few training points have a high posterior matching objective, a VAE is able to learn the data
distribution well.
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(a) True vs. learned pθ(x)

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 3: MFG-VAE trained on the Absolute-Value Example. In this toy data, condition (1) holds
of Theorem 1 holds and condition (2) does not. To see this, notice that the function fθ learned with
a VAE is completely different than the ground-truth fθ, and unlike the ground truth fθ which has
bimodal posteriors, the learned fθ has unimodal posteriors (which are easier to approximate with a
MFG). As such, a VAE is able to learn the data distribution well.

H.2 QUALITATIVE DEMONSTRATION OF UNSUPERVISED VAE PATHOLOGIES
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 4: MFG-VAE trained on the Figure-8 Example. In this toy data, both conditions of Theorem
1 hold. The VAE learns a generative model with simpler posterior than that of the ground-truth,
though it is unable to completely simplify the posterior as in the Absolute-Value Example. To learn a
generative model with a simpler posterior, it curves the learned function fθ at z = −3.0 and z = 3.0
away from the region where z = 0. This is because under the true generative model, the true posterior
pθ(z|x) in the neighborhood of x ≈ 0 has modes around either z = 0 and z = 3.0, or around z = 0
and z = −3.0, leading to a high posterior matching objective.
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 5: VAE with Lagging Inference Networks (LIN) trained on the Figure-8 Example. While LIN
may help escape local optima, on this data, the training objective is still biased away from learning
the true data distribution. As such, LIN fails in the same way a MFG-VAE does (see Figure 4).
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x)

(c) Posteriors under true fθ

(d) Posteriors under learned fθ

Figure 6: IWAE trained on the Figure-8 Example. In this toy data, both conditions of Theorem 1 hold.
The IWAE learns a generative model with a slightly simpler posterior than that of the ground-truth.
This is because even with the number of importance samples as large as S = 20, the variational
family implied by the IWAE objective is not sufficiently expressive. The objective therefore prefers
to learn a model with a lower data marginal likelihood. While increasing S →∞ will resolve this
issue, it is not clear how large a S is necessary and whether the additional computational overhead is
worth it.
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 7: MFG-VAE trained on the Clusters Example. In this toy data, both conditions of Theorem
1 hold. The VAE learns a generative model with simpler posterior than that of the ground-truth,
though it is unable to completely simplify the posterior as in the Absolute-Value Example. To learn a
generative model with a simpler posterior, it learns a model with a function fθ(z) that, unlike the
ground truth function, does not have steep areas interleaved between flat areas. As such, the learned
model is generally more flat, causing the learned density to be “smeared” between the modes.

20



Under review as a conference paper at ICLR 2021

(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 8: VAE with Lagging Inference Networks (LIN) trained on the Clusters Example. While LIN
may help escape local optima, on this data, the training objective is still biased away from learning
the true data distribsution. As such, LIN fails in the same way a MFG-VAE does (see Figure 7).
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x)

(c) Posteriors under true fθ

(d) Posteriors under learned fθ

Figure 9: IWAE trained on the Clusters Example. In this toy data, both conditions of Theorem 1
hold. IWAE is able to learn the ground truth data distribution while finding a generative model with a
simpler posterior than that of the ground-truth model.
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(a) True vs. learned pθ(x), and learned vs. true fθ(z), colored by the value of
z.

(b) True vs. learned fθ(x) (c) Aggregated posterior vs. prior

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 10: MFG-VAE trained on the Spiral-Dots Example jointly over θ, φ, ε2ε . In this toy data, as
Theorem 2 predicts, the ELBO drastically misestimates the observation noise. The VAE learns a
generative model with simpler posterior than that of the ground-truth, though it is unable to completely
simplify the posterior as in the Absolute-Value Example. To learn a generative model with a simpler
posterior, it learns a model with a function fθ(z) that, unlike the ground truth function, does not have
steep areas interleaved between flat areas. As such, the learned model is generally more flat, causing
the learned density to be “smeared” between the modes. Moreover due to the error in approximating
the true posterior with a MFG variational family, the ELBO misestimates σ2

ε .
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H.3 QUALITATIVE DEMONSTRATION OF SEMI-SUPERVISED VAE PATHOLOGIES

(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y). (d) Aggregated posterior vs. prior.

(e) Posteriors under true fθ

(f) Posteriors under learned fθ

Figure 11: Semi-Supervised MFG-VAE trained on the Discrete Semi-Circle Example. While using
semi-supervision, a VAE is still able to learn the p(x) relatively well. However, in this example,
given x there is uncertainty as to whether it was generated from fθ(y = 0, z) or from fθ(y = 1, z),
the posterior pθ(z|x) is bimodal and will cause a high posterior matching objective. Since semi-
supervised VAE objective prefers models with simpler posteriors, the VAE learns a unimodal posterior
by collapsing fθ(y = 0, z) = fθ(y = 1, z), causing p(x|y = 0) ≈ p(x|y = 1) ≈ p(x). The learned
model will therefore generate poor sample quality counterfactuals.

24



Under review as a conference paper at ICLR 2021

(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 12: Semi-Supervised VAE trained with Lagging Inference Networks (LIN) trained on the
Discrete Semi-Circle Example. While LIN may help escape local optima, on this data, the training
objective is still biased away from learning the true data distribution. As such, LIN fails in the same
way a MFG-VAE does (see Figure 11).
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 13: Semi-Supervised IWAE trained on the Discrete Semi-Circle Example. While using semi-
supervision, a IWAE is still able to learn the p(x) and p(x|y) better than a VAE. This is because it
allows for more complicated posteriors and therefore does not collapse fθ(y = 0, z) = fθ(y = 1, z).
However, since IWAE has a more complex variational family, the variational family no longer
regularizes the function fθ. As such, in order to put enough mass on the left-side of the semi-circle,
fθ jumps sharply from the right to the left, as opposed to preferring a simpler function such as the
ground truth function.
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 14: Semi-Supervised MFG-VAE trained on the Continuous Semi-Circle Example. In this
example, the VAE exhibits the same problems as in the Discrete Semi-Circle Example (Figure 14).
However, with since y is continuous, this poses an additional issue. Since qφ(y|x) (the discriminator)
in the objective is a Gaussian, and the ground truth pθ(y|x) is multi-modal, the objective will select
a function fθ under which pθ(y|x) is a MFG. This, again, leads to learning a model in which
fθ(y = ·, z) are the same for all values of y, causing p(x|y = 0) ≈ p(x|y = 1) ≈ p(x). The learned
model will therefore generate poor sample quality counterfactuals.
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(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 15: Semi-Supervised VAE trained with Lagging Inference Networks (LIN) trained on the
Continuous Semi-Circle Example. While LIN may help escape local optima, on this data, the training
objective is still biased away from learning the true data distribution. As such, LIN fails in the same
way a MFG-VAE does (see Figure 14).

28



Under review as a conference paper at ICLR 2021

(a) True vs. learned pθ(x). (b) True vs. learned fθ(y, z).

(c) True vs. learned data conditionals pθ(x|y).

(d) Posteriors under true fθ

(e) Posteriors under learned fθ

Figure 16: Semi-Supervised IWAE trained on the Continuous Semi-Circle Example. While using
semi-supervision, a IWAE is still able to learn the p(x) and p(x|y) better than a VAE. However,
since qφ(y|x) (the discriminator) in the objective is a Gaussian, and the ground truth pθ(y|x) is
multi-modal, the objective will select a function fθ under which pθ(y|x) is a MFG. This, again, leads
to learning a model in which fθ(y = ·, z) are the same for all values of y, causing p(x|y = 0) ≈
p(x|y = 1) ≈ p(x). The learned model will therefore generate poor sample quality counterfactuals.
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H.4 WHEN LEARNING COMPRESSED REPRESENTATIONS, POSTERIOR IS SIMPER FOR
MISMATCHED MODELS

(a) True Posterior K = 1

(b) Learned Posterior K = 1

(c) Learned Posterior K = 2

Figure 17: VAEs learn simpler posteriors as latent dimensionality K increases and as the observation
noise σ2

ε decreases on “Clusters Example” (projected into 5D space).
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(a) True Posterior K = 1

(b) Learned Posterior K = 1

(c) Learned Posterior K = 2

Figure 18: VAEs learn simpler posteriors as latent dimensionality K increases and as the observation
noise σ2

ε decreases on “Figure-8 Example” (projected into 5D space).
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