
Variational Inference with Gaussian Score Matching

Anonymous Author(s)
Affiliation
Address
email

Abstract

Variational inference (VI) is a method to approximate the computationally in-1

tractable posterior distributions that arise in Bayesian statistics. Typically, VI fits2

a simple parametric distribution to be close to the target posterior, minimizing an3

appropriate objective such as the evidence lower bound (ELBO). In this work, we4

present a new approach to VI. Our method is based on the principle of score match-5

ing, that if two distributions are equal then their score functions (i.e., gradients of6

the log density) are equal at every point on their support. With this principle, we7

develop score matching VI, an iterative algorithm that seeks to match the scores8

between the variational approximation and the exact posterior. At each iteration,9

score matching VI solves an inner optimization, one that minimally adjusts the10

current variational estimate to match the scores at a newly sampled value of the11

latent variables. We show that when the variational family is a Gaussian, this inner12

optimization enjoys a closed form solution, which we call Gaussian score matching13

VI (GSM-VI). GSM-VI is also a “black box” variational algorithm in that it only14

requires a differentiable joint distribution, and as such it can be applied to a wide15

class of models. We compare GSM-VI to black box variational inference (BBVI),16

which has similar requirements but instead optimizes the ELBO. We first study17

how GSM-VI behaves as a function of the problem dimensionality, the condition18

number of the target covariance matrix (when the target is Gaussian), and the degree19

of mismatch between the approximating and exact posterior distribution. We then20

study GSM-VI on a collection of real-world Bayesian inference problems from21

the posteriorDB database of datasets and models. In all of our studies we find that22

GSM-VI is faster than BBVI, but without sacrificing accuracy. It requires 10-100x23

fewer gradient evaluations to obtain a comparable quality of approximation.24

1 Introduction25

This paper is about variational inference for approximate Bayesian computation. Consider a statistical26

model p(θ,x) of parameters θ ∈ Rd and observations x. Bayesian inference aims to infer the27

posterior distribution p(θ |x), which is often intractable to compute. Variational inference is an28

optimization-based approach to approximate the posterior [4, 16].29

The idea behind VI is to approximate the posterior with a member of a variational family of dis-30

tributions qw(θ), parameterized by variational parameters w [4, 16]. Specifically, VI methods31

establish a measure of closeness between qw(θ) and the posterior, and then minimize it with an32

optimization algorithm. Researchers have explored many aspects of VI, including different objec-33

tives [7, 8, 18, 22, 23, 25, 30] and optimization strategies [1, 13, 24].34

In its modern form, VI typically minimizes KL (qw(θ)||p(θ |x)) with stochastic optimization, and35

further satisfies the so-called “black-box” criteria [1, 24, 29]. The resulting black-box VI (BBVI) only36
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requires the practitioner to specify the log joint log p(θ,x) and (often) its gradient ∇θ log p(θ,x),37

which for many models can be obtained by automatic differentiation. For these reasons, BBVI has38

been widely implemented, and it is available in many probabilistic programming systems [3, 19, 27].39

In this paper, we propose a new approach to VI. We begin with the principle of score matching [14],40

that when two densities are equal then their gradients are equal as well, and we use this principle41

to derive a new way to fit a variational distribution to be close to the exact posterior. The result42

is score-matching VI. Rather than explicitly minimize a divergence, score-matching VI iteratively43

projects the variational distribution onto the exact score matching constraint. This strategy enables a44

new black-box VI algorithm.45

Score-matching VI relies on the same ingredients as reparameterization BBVI [19]—a differen-46

tiable variational family and a differentiable log joint—and so it can be as easily incorporated into47

probabilistic programming systems as well. Further, when the variational family is a Gaussian,48

score-matching VI is particularly efficient: each iteration is computable in closed form. We call the49

resulting algorithm Gaussian score matching VI (GSM-VI).50

Unlike BBVI, GSM-VI does not rely on stochastic gradient descent (SGD) for its core optimization.51

Though SGD has the appeal of simplicity, it is also known to require the careful tuning of learning52

rates. GSM-VI was inspired by a different tradition of constraint-based algorithms for online53

learning [2, 6, 11, 12, 20]. These algorithms have been extensively developed and analyzed for54

problems in classification, and under the right conditions, they have been observed to outperform55

SGD. This paper shows how to extend this constraint-based framework—and the powerful machinery56

behind it—from the problem of classification to the workhorse of Gaussian VI. The key insight is that57

score-matching (unlike ELBO maximization) lends itself naturally to a constraint-based formulation.58

We empirically compared GSM-VI to reparameterization BBVI on several classes of models, and with59

both synthetic and real-world data. In general, we found that GSM requires 10-100x fewer gradient60

evaluations to converge to an equally good approximation. When the exact posterior is Gaussian,61

we found GSM-VI scales significantly better with respect to dimensionality and is insensitive to62

the condition number of the target covariance. When the exact posterior is non-Gaussian, we found63

GSM-VI enjoys faster convergence without sacrificing the quality of the final approximation.64

This paper makes the following contributions:65

• We introduce score matching variational inference, a new black-box approach to fitting66

qw(θ) to be close to p(θ |x). Score matching VI requires no tunable optimization hyperma-67

rameters, to which BBVI can be sensitive.68

• When the variational family is Gaussian, we develop Gaussian score matching variational69

inference (GSM-VI). It establishes efficient closed-form iterates for score matching VI.70

• We empirically compare GSM-VI to reparameterization BBVI. Across many models and71

datasets, we found that GSM-VI enjoys faster convergence to an equally good approximation.72

We develop score matching VI in Section 2 and study its performance in Section 3.73

Related work. Our work introduces a new method for black-box variational inference that relies only74

on having access to the gradients of the variational distribution and the log joint. GSM-VI has similar75

goals to automatic-differentiation variational inference (ADVI) [19] and Pathfinder [31], which also76

fit multivariate Gaussian variational families, but do so by maximizing the ELBO using stochastic77

optimization. Similar to GSM-VI, the algorithm of ref. [28] also seeks to match the scores of the78

variational and the target posterior, but it does so by minimizing the L2 loss between them.79

A novel aspect of this work is how GSM-VI fits the variational parameters. Rather than minimize a80

loss function, it aims to solve a set of nonlinear equations. Similar ideas have been pursued in the81

context of fitting a model to data using empirical risk minimization (ERM). For example, passive82

agressive (PA) methods [6] and the stochastic polyak stepsize (SPS) are also derived via projections83

onto sampled nonlinear equations [2, 12, 20]. A probabilistic extension of PA methods is known as84

confidence-weighted (CW) learning [11]. In this framework, the learner maintains a multivariate85

Gaussian distribution over the weight vector of a linear classifier. Like CW learning, the second86
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step of GSM-VI also minimizes a KL divergence between multivariate Gaussians. But it involves a87

different projection, one of score-matching versus linear classification.88

2 Score Matching Variational Inference89

Suppose for the moment that the variational family qw(θ) is rich enough to perfectly capture the90

posterior p(θ |x). That is, there exists a w∗ such that91

log qw∗(θ) = log p(θ|x), ∀θ . (1)

If we could solve Eq. 1 for w∗, the resulting variational distribution would be a perfect fit. The92

challenge is that the posterior on the right side is intractable to compute.93

To help, we appeal to score matching [14]. Define the score of a distribution to be the gradient of its94

log with respect to the variable1, e.g., ∇θ log qw(θ). The principle of score matching is that if two95

distributions are equal at each point in their support then their score functions are also equal.96

To use score matching for VI, we first write the log posterior as the log joint minus the normalizing97

constant, i.e., the marginal distribution of x,98

log p(θ |x) = log p(θ,x)− log p(x). (2)

With this expression, the principle of score matching leads to the following Lemma.99

Lemma 2.1. The parameter w∗ satisfies

∇θ log qw∗(θ) = ∇θ log p(θ, x), ∀θ, (3)

if and only if w∗ also satisfies Eq. 1.

What is notable about Eq. 3 is that the right side is the gradient of the log joint. Unlike the posterior,100

the gradient of the log joint is tractable to compute for a large class of probabilistic models. (The101

proof is in the appendix.)102

This lemma motivates a new algorithm, score matching VI. The idea is to iteratively refine the103

variational parameters w to try to solve the system of equations in Eq. 3 as well as possible. At each104

iteration t, it first samples a new θt from the current variational approximation and then minimally105

adjusts w to satisfy Eq. 3 for that value of θt.106

Score matching variational inference

At iteration t:

1. Sample θt ∼ qwt(θ).
2. Update the variational parameters:

wt+1 = argmin
w

KL (qwt
(θ) || qw(θ))

such that ∇θ log qw(θt) = ∇θ log p(θt,x).
(4)

This algorithm for score matching VI was inspired by earlier online algorithms for learning a classifier107

from a stream of labeled examples. One particularly elegant algorithm in this setting is known as108

passive-aggressive (PA) learning [6], in which a model is incrementally updated by the minimal109

amount to classify each example correctly by a large margin. This approach was subsequently110

extended to a probabilistic setting, known as confidence-weighted (CW) learning [11] in which one111

minimally updates a distribution over classifiers. Our algorithm is similar in that it minimally updates112

an approximating distribution for VI, but it is different in that enforces constraints for score matching113

instead of large margin classification.114

At a high level, what makes this approach to VI likely to succeed or fail? Certainly it is necessary115

that there are more variational parameters than elements of the latent variable θ; when this is not the116

1We make this clear because, in some literature, the score is the gradient with respect to the parameter.
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(a) Two iterations of GSM-VI. The log density of the
target posterior p is shaded blue; the initial distribution
qw0 is light grey; the first update qw1 is medium grey;
and the second update qw2 is dark grey.

(b) The vector field of Eq. 4, averaged over 5
independent samples, where p(θ |x) = N (0, 1).
The solution (µ, σ) = (0, 1) is the green star.

case, it may be impossible to satisfy a single score matching constraint in Eq. 4. That said, setting117

the number of variational parameters to be at least as large as the latent variable is standard, as in,118

e.g., a factorized (or mean-field) variational family. It is also apparent that the algorithm may never119

converge if the target posterior is not contained in the variational family, or that the the variational120

approximation collapses to a point mass, which stalls the updates altogether. While we cannot dismiss121

these possibilities out of hand, we did not see either issue in any of the empirical studies of Section 3.122

For more intuition, Figure 1a illustrates the effect of the update in Eq. 4 when both the target and123

approximating distribution are 1d Gaussian. The target posterior p(θ |x) is shaded blue. The plot124

shows the initial variational distribution qw0
(light grey curve) and its update to qw1

(medium grey)125

so that the gradient of the updated distribution matches the gradient of the target at the sampled θ0126

(dotted red tangent line). It also shows the update from w1 to w2, now matching the gradient atθ1.127

With these two updates, qw2 (dark grey) is very close to the target p(θ |x). With this picture in mind,128

we now develop the details of this algorithm for a widely applicable setting.129

Gaussian Score Matching VI. Suppose the variational distribution belongs to a multivariate Gaus-130

sian family qw(θ) := N (µ,Σ), which is a common setting especially in systems for automated131

approximate inference [1, 19]. One of our main contributions is to show that in this case Eq. 4 has a132

closed form solution. The solution wt+1 = (µt+1,Σt+1) has the following form:133

µt+1 = µt +At (∇θ log p(θt,x)−∇θ log qwt
(θt)) (5)

Σt+1 = Σt + (µt − θt)(µt − θt)
⊤ − (µt+1 − θt)(µt+1 − θt)

⊤ (6)
134

where At ∈ Rd×d is a matrix defined in the theorem below. These exact updates only require the135

score of the log joint ∇θ log p(θ,x) and the score of the variational distribution∇θ log qw(θ).136

Eqs. 5 and 6 also provide intuition. Consider the approximation at the tth iteration qwt
and the137

current sample θt. First suppose the scores already match at this sample, that is ∇θ log p(θt,x) =138

∇θ log qwt
(θt). Then the mean does not change µt+1 = µt and, similarly, the two rank-one terms139

in the covariance update in Eq. 6 cancel out so Σt+1 = Σt. This shows that when qwt
(θ) = p(θ,x)140

for all θ, the method stops. On the other hand, if the scores do not match, then the mean is updated141

proportionally to the difference between the scores, and the covariance is updated by a rank-two142

correction. For a one dimensional target p(θ,x) = N (0, 1), Figure 1b illustrates the vector field of143

updates The vector field points to the solution (green star) and, once there, the method stops.144

We now formalize this result and give the exact expression for At.145
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Algorithm 1: Gaussian Score Matching VI
Input :Initial mean estimate µ0, initial covariance estimate Σ0, target distribution p(θ|x),

number of iterations N ∈ N, batch size B ∈ N.
Output :Multivariate normal variational distribution qw(θ) := N (µ,Σ)
for i = 0, . . . , N − 1 ▷ iteration loop
do

for j = 0, . . . , B − 1 ▷ batch loop
do

Sample θ(j) ∼ N (µi,Σi)
g ← ∇θ log p(θ

(j)|x)
ε ← Σig − µi + θ

Solve ρ(1+ρ) = g⊤Σig +
[
(µi−θ)⊤g

]2
for ρ > 0

δµ(j) ← 1
1+ρ

[
I− (µi−θ)g⊤

1+ρ+(µi−θ)⊤g

]
ε

µ
(j)
i ← µi + δµ(j)

δΣ(j) ← (µi − θ)(µi − θ)⊤ − (µ
(j)
i − θ)(µ

(j)
i − θ)⊤

end
Update µi+1 ← µi +

∑
j δµ

(j)/B

Update Σi+1 ← Σi +
∑

j δΣ
(j)/B

end
qw(θ)← N (µN ,ΣN )

Theorem 2.2. (GSM-VI updates) Let p(θ,x) be given for some θ ∈ Rd, and let qwt(θ) and
qw(θ) be multivariate normal distributions with means µt and µ and covariance matrices Σt and
Σ, respectively. As shorthand, let gt := ∇θ log p(θt,x) and let

µt+1,Σt+1 = argmin
µ,Σ⪰0

[
KL(qt, q)

]
such that ∇θ log q(θt) = ∇θ log p(θt,x). (7)

The solution to eq. (7) is given by Eqs. 5 and 6 where

At :=
1

1 + ρ

[
I− (µt − θt)g

⊤
t

1 + ρ+ (µt − θt)⊤gt

]
Σt , (8)

and ρ is the positive root of the quadratic equation

ρ(1+ρ) = g⊤
t Σtgt +

[
(µt−θt)⊤gt

]2
. (9)

With the definition of At in Eq. 8 we can see that the computational complexity of updating µ and Σ146

via Eqs. 5 and 6 isO(d2), where θ ∈ Rd and we assume the cost of computing the gradients isO(d).147

Note this is the best possible iteration complexity we can hope for, since we store and maintain the148

full covariance matrix of d2 elements. (The proof is in the appendix.)149

Algorithm 1 presents the full GSM-VI algorithm. Here we also use mini-batching, where we average150

over B ∈ N independently sampled updates of Eqs. 5 and 6 before updating the mean and covariance.151

3 Empirical Studies152

We evaluate the performance of GSM-VI in different settings. GSM-VI uses a multivariate Gaussian153

distribution as its variational family. We separately investigate when the target posterior is in this154

family and when it is not.155

Algorithmic details and comparisons. We compare GSM-VI with a reparameterization variant of156

BBVI as the baseline, similar to [19]. BBVI uses the same multivariate Gaussian variational family,157

which we fit by maximizing the ELBO. (Maximizing the ELBO is equivalent to minimizing KL). We158
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Algorithm 2: Black-box variational inference
Input :Initial mean estimate µ0, Initial covariance estimate Σ0, target distribution p(θ|x),

number of iterations N, batch size B, learning rate ϵ
Output :Multivariate normal variational distribution qw(θ) := N (µ,Σ)
qw ← N (µ0,Σ0) ;
for i = 0, . . . , N − 1 ▷ iteration loop
do
{θ(0),θ(1), ...,θ(B)} ∼ qw(θ) ▷ Sample a batch of B points;
ELBO =

∑
j log(p(θ(j),x)− log qw(θ(j)) ;

w ← w − ϵ∇wELBO ▷ Optimization step, we use ADAM;
end
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Figure 2: Scaling with dimensions: evolution of FKL with the number of gradient evaluations of the
target distribution, which is a Gaussian distribution with dense covariance. Different panels show the
results for different dimensions D of the distribution, specified in the title. Translucent lines show the
scatter of 10 different runs and the solid line shows the average.

use the ADAM optimizer [17] with default settings but vary the learning rate between 10−1 and 10−3.159

We report results only for the best performing setting. The full BBVI algorithm is in Algorithm 2.160

The only free parameter in GSM-VI is the batch size B. We find that B = 2 is better than B = 1, but161

there is no improvement beyond that. In all studies, we report results for B = 2.162

Both algorithms require an initial variational distribution. Unless specified otherwise, we initialize163

the variational distribution with zero mean and identity covariance matrix.164

Evaluation metric. GSM-VI does not explicitly minimize any loss function. Hence to compare its165

performance against BBVI, we estimate empirical divergences between the variational and the target166

distribution and show their evolution with the number of gradient evaluations. In the experiments with167

synthetic models in Sections 3, 3.1, and 3.1 we have access to the true distribution; so we measure168

the forward KL divergence (FKL) empirically
(
FKL =

∑
θi∼p(θ) log p(θi)− log q(θi)

)
. To reduce169

stochasticity, we always use the same pre-generated set of 1000 samples from the target distribution.170

In Section 3.3, we do not have access to the samples from the target distribution; so we monitor the171

negative ELBO. In all experiments, we show the results for 10 independent runs.172

3.1 GSM-VI for Gaussian approximation173

We begin by studying GSM-VI where the target distribution is also a multivariate Gaussian.174

Scaling with dimensions. How does GSM-VI scale with respect to the dimensions of the sample175

space? Figure 2 shows the convergence of FKL for GSM-VI and BBVI as the dimension (D) of the176

sample space increases. Empirically, we find that the number of iterations required for convergence177

increases almost linearly with dimensions for GSM. The scaling for BBVI is worse, and it requires178

100 times more iterations even for small problems (D < 64), while also converging to a sub-optimal179

solution as measured by the FKL metric.180
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Figure 3: Impact of condition number: evolution of FKL with the number of gradient evaluations of
the target distribution. The target is a 10-dimensional Gaussian albeit with a dense covariance matrix
of different condition numbers c specified in the title of different panels. Translucent lines show the
scatter of 10 different runs and the solid line shows the average.
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Figure 4: Impact of non-Gaussianity: evolution of FKL with the number of gradient evaluations for
Sinh-arcsinh distributions with 10-dimensional dense Gaussian as the base distribution. Gaussian
distribution has s = 0, t = 1. In the left panel, we vary skewness s while fixing t = 1, and in the
right panel we vary the tail-weight t with skewness fixed to s = 0. Solid lines are the results for
GSM, dashed for BBVI.

Impact of condition number. What is the impact of the conditioning of the target distribution? We181

again consider a Gaussian target distribution, but vary the condition number of its covariance matrix182

by fixing its smallest eigenvalue to 0.1, and scaling the largest eigenvalue to 0.1× c. Figure 3 shows183

the results for a 10 dimensional Gaussian where we vary the condition number c from 1 to 1000.184

Convergence of GSM-VI seems to be largely insensitive to the condition number of the covariance185

matrix. BBVI on the other hand struggles with poorly conditioned problems, and it does not converge186

for c > 100 even with 100 times more iterations than GSM.187

3.2 GSM-VI for non-Gaussian target distributions188

GSM-VI was designed to solve the exact score-matching equations Eq. 3, which only have a solution189

when the family of variational distributions contains the target distribution (see Lemma 2.1). Here we190

investigate the sensitivity of GSM-VI to this assumption by fitting non-Gaussian target distributions191

with varying degrees on non-Gaussianity. Specifically, we suppose that the target has a multivariate192

Sinh-arcsinh normal distribution [15]193

z ∼ N (µ,Σ); x = sinh

(
1

t

[
sinh−1(z) + s

])
(10)

where the scalar parameters s and t control, respectively, the skewness and the heaviness of the tails,194

and the choices s = 0 and t = 1 reduce a Gaussian distribution as a special case.195

Figure 4 shows the result for fitting the variational Gaussian to a 10-dimensional Sinh-arcsinh normal196

distribution for different values of s and t. As the target departs further from Gaussianity, the quality197
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Figure 5: Models from posteriordb: Convergence of the ELBO for four models with multivariate
normal posteriors. We show results for 10 runs.
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of variational fit worsens for both GSM-VI (solid lines) and BBVI (dashed lines), but they converge to198

a fit of similar quality in terms of average FKL. GSM converges to this solution at least 10 times faster199

than BBVI. For highly non-Gaussian targets (s ≥ 1 or |t− 1| ≥ 0.8), we have found that GSM-VI200

does not converge to a fixed point, and it can experience oscillations that are larger in amplitude than201

BBVI, see for instance s = 1.8 and t = 0.1 on the left and right of Figure 4, respectively.202

3.3 GSM-VI on real-world data203

We evaluate GSM-VI for approximate on real-world data with 8 models from the posteriordb204

database [21]. The database provides the Stan code, data and reference posterior sam-205

ples, and we use bridgestan to access the gradients of these models [5, 26]. We study206

the following models: diamonds (generalized linear models), hudson-lynx-hare (differ-207

ential equation dynamics), bball-drive (hidden Markov models) and arK (time-series),208

eight-schools-centered and non-centered (hierarchical meta-analysis), gp-pois-regr209

(Gaussian processes), low-dim-gauss-mix (Gaussian mixture).210

For each model (except hudson-lynx-hare), we initialize the variational parameter µ0 at the211

mode of the distribution, and we set Σ0 = 0.1 Id where Id is the identity matrix of dimension d.212

For hudson-lynx-hare, we initialize the variational distribution as standard normal. We also213

experimented with other initializations. We find that they do not qualitatively change the conclusions,214

but can have larger variance between different runs.215

We show the evolution of the ELBO for 10 runs of these models. Four of the models have pos-216

teriors that can be fit with multivariate normal distribution: diamonds, hudson-lynx-hare,217

bball-drive, and arK. Figure 5 shows the result for these models. The other models218

have non-Gaussian posteriors: eight-schools-centered, eight-schools-non-centered,219

gp-pois-regr,, and low-dim-gauss-mix. Figure 6 shows the results.220
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Overall, GSM-VI outperforms BBVI by a factor of 10-100x. When the target posterior is Gaussian,221

GSM-VI leads to more stable solutions. When the target is non-Gaussian, it converges to the same222

quality of variational approximation as BBVI. Further, though the ELBO estimate is noisy at the223

convergence, the 1-D marginals and moments of parameters remain stable.224

4 Conclusion and Future Work225

In this paper we proposed Gaussian score matching VI (GSM-VI), a new approach for VI when the226

variational family is multivariate Gaussian. GSM-VI is not based on minimizing a divergence or loss227

function between the variational and target distribution; instead, it repeatedly solves the exact score228

matching equations with closed-form updates for the mean and covariance matrix of the variational229

distribution.230

Unlike approaches that are rooted in stochastic gradient descent, GSM-VI does not require the231

tuning of step-size hyper-parameters. It has only one free parameter, the batch size, and we found a232

batch-size of 2 to perform competitively across all experiments. Another choice is how to initialize233

the variational distribution. For the experiments in this paper, we initialized the covariance matrix234

as the identity matrix, but additional gains could potentially be made with more informed choices235

derived from a Laplace approximation or L-BFGS Hessian approximation [31].236

We evaluated the performance of GSM-VI on synthetic targets and real-world models from237

posteriordb. In general, we found that it requires 10-100x fewer gradient evaluations than BBVI238

for the target distribution to converge. When the target distribution is itself multivariate Gaussian, we239

observed that GSM-VI scales almost linearly with dimensionality, which is significantly better than240

BBVI, and that GSM-VI is almost insensitive to the condition number of the target covariance matrix.241

Compared to BBVI, we also found that GSM-VI converges more quickly to a solution with a larger242

ELBO, which is surprising given that BBVI explicitly maximizes the ELBO.243

GSM-VI is derived from a principled goal and justification, and the empirical studies indicate that244

it is a promising method. An important avenue for future work is to provide a proof that GSM-VI245

converges. We note that good convergence results have been obtained for analogous methods that246

project onto interpolation equations for empirical risk minimization. For instance the Stochastic247

Polyak Step achieves the min-max optimal rates of convergence for SGD [20]. Note that convergence248

of VI is a generally challenging problem, with no known rates of convergence even for BBVI [9, 10].249

In another avenue of future work, the score-matching VI idea can potentially be used to design other250

methods for VI. As one example, we can consider non-Gaussian variational approximations, such251

as those in the exponential family. As another example, if the variational family is a mixture of252

Gaussians, we can employ GSM-VI to update the individual components of the mixture.253
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A Proof of Lemma 2.1323

Lemma 2.1. The parameter w∗ satisfies

∇θ log qw∗(θ) = ∇θ log p(θ, x), ∀θ, (3)

if and only if w∗ also satisfies Eq. 1.

Proof. (1) =⇒ (3): Differentiating both sides of (1) in θ gives324

∇θ log qw(θ) = ∇θ log p(θ|x) = ∇θ (log p(θ,x)− log p(x))

= ∇θ log p(θ, x), ∀θ.

(3) =⇒ (1): The inverse implication follows by using that ∇θ log p(θ|x) = ∇θ log p(θ,x), as we325

did in the above, and then integrating both sides of (3) in θ, which gives326

log qw(θ) = log p(θ|x) + C, ∀θ,
where C is some unknown constant. By exponentiating both sides and integrating in θ we have that327

1 =

∫
θ

qw(θ)dθ = eC
∫
θ

p(θ|x)dθ = eC .

Consequently C = 0, which gives our result.328

B Proof of Theorem 2.2329

Here we give the proof for Theorem 2.2. We also re-introduce the theorem with a simplified notation,330

where we use (µ0,Σ0) to denote the mean and covariance at the previous time step of the method,331

thus dropping the iteration counter t.332

Theorem B.1. (GSM updates) Let p(θ,x) be given for some θ ∈ Rd, and let q0(θ) and q(θ) be
the multivariate normal distributions, respectively, with means µ0 and µ and covariance matrices
Σ0 and Σ. We seek the distribution

arg min
µ,Σ=Σ⊤

[
KL(q0, q)

]
such that ∇θ log q(θ) = ∇θ log p(θ,x). (11)

As shorthand, let g := ∇θ log p(θ,x), and let ρ be the positive root of the quadratic equation

ρ(1+ρ) = g⊤Σ0g +
[
(µ0−θ)⊤g

]2
. (12)

Then the solution is given by the following closed-form updates:

µ = µ0 +
1

1 + ρ

[
I− (µ0 − θ)g⊤

1 + ρ+ (µ0 − θ)⊤g

]
Σ0 (g −∇θ log q0(θ0)) , (13)

Σ = Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤. (14)

Furthermore, if Σ0 is symmetric positive definite then so is Σ.

Proof. The constraint in this optimization is given by333

g = ∇θ log q(θ) (15)

= ∇θ

[
− 1

2 (θ − µ)Σ−1(θ − µ)− 1
2 log

(
(2π)d|Σ|

)]
(16)

= −Σ−1(θ − µ). (17)

The KL divergence is given by334

KL(q0, q) =
1

2

{
tr[Σ−1Σ0] + log

|Σ|
|Σ0|

+ (µ− µ0)
⊤Σ−1(µ− µ0)− d

}
. (18)
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Dropping irrelevant terms from the optimization, we obtain the Lagrangian335

L(µ,Σ,λ) =
1

2

{
tr[Σ−1Σ0]− log |Σ−1|+ (µ− µ0)

⊤Σ−1(µ− µ0)
}
+λ⊤(g−Σ−1(µ−θ)

)
.

(19)
It is easier to optimize the matrix Σ−1 instead of Σ. We can enforce the symmetry of Σ−1 by writing336

337

Σ−1 = 1
2

(
Φ+Φ⊤) (20)

and performing an unconstrained optimization over Φ. With respect to the latter, the gradients of the338

Lagrangian are given by339

∂L
∂Φij

=
∑
kl

(
∂L

∂Σ−1
kl

)(
∂Σ−1

kl

∂Φij

)
=
∑
kl

(
∂L

∂Σ−1
kl

)(
1

2
δkiδlj +

1

2
δkjδli

)
=

1

2

(
∂L

∂Σ−1
ij

+
∂L

∂Σ−1
ji

)
.

(21)
Next we examine where the gradients of the Lagrangian vanish:340

0 =
∂L
∂µ

=⇒ 0 = Σ−1(µ− µ0) − Σ−1λ =⇒ λ = µ− µ0 (22)

0 =
∂L
∂λ

=⇒ 0 = g −Σ−1(µ− θ) =⇒ µ− θ = Σg (23)

0 =
∂L
∂Φ

=⇒ 0 = Σ0 −Σ− (µ− µ0)(µ− µ0)
⊤ −

[
λ(µ− θ)⊤ + (µ− θ)λ⊤] , (24)

=⇒ Σ = Σ0 + (µ− µ0)(µ− µ0)
⊤ − λ(µ− θ)⊤ − (µ− θ)λ⊤ (25)

We claim that these equations (though nonlinear) can be solved in closed form. The first step is to341

eliminate λ from eq. (25) using eq. (22). In this way we find342

Σ = Σ0 + (µ− µ0)(µ− µ0)
⊤ − (µ− µ0)(µ− θ)⊤ − (µ− θ)(µ− µ0)

⊤ (26)

= Σ0 − µµ⊤ + µθ⊤ + θµ⊤ + µ0µ
⊤
0 − µ0θ

⊤ − θµ⊤
0 (27)

= Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤. (28)

It is worth highlighting the form of this equation:

Σ = Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤

This is a simple rank-two update for Σ. Note that Σ = Σ0 if µ = µ0; also, the solution for Σ is343

determined by the solution for µ.344

Ultimately we must solve for µ, but first it is useful to solve for the intermediate quantity g⊤Σg > 0.345

From eq. (28), we obtain346

g⊤Σg = g⊤Σ0g +
[
(µ0 − θ)⊤g

]2 − [(µ− θ)⊤g
]2
, (29)

and from eq. (23), we obtain347

g⊤Σg = g⊤Σ0g +
[
(µ0 − θ)⊤g

]2 − (g⊤Σg
)2

. (30)

As shorthand, let ρ = g⊤Σg. Then from eq. (30) we see that ρ satisfies the quadratic equation

ρ(1+ρ) = g⊤Σ0g +
[
(µ0−θ)⊤g

]2
.

Note that there are no unknowns on the right side of this equation. The correct solution is given by348

the positive root since ρ = g⊤Σg > 0. Also note that ρ = (µ− θ)⊤g from eq. (23).349

It is useful to define one final intermediate quantity before solving for µ. Let

ε0 = Σ0g − µ0 + θ.

Note that ε0 simply measures the degree to which the parameters of q0(θ) violate the desired350

constraint ∇w log q(θ) = ∇w log p(θ,y). Put another way, if ε0 = 0, then we have the trivial351

solution µ = µ0 and Σ = Σ0.352
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Now we have everything to express the solution for µ in a highly intuitive form; in particular, it will353

be immediately evident that µ→ µ0 as ε0 → 0. Starting from eqs. (23) and (28), we find354

µ− µ0 = θ − µ0 +Σg, (31)
= θ − µ0 +

[
Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤

]
g, (32)

= ε0 + (µ0 − θ)(µ0 − θ)⊤g − (µ− θ)(µ− θ)⊤g, (33)

= ε0 + (µ0 − θ)(µ0 − θ)⊤g − (µ− µ0 + µ0 − θ)(µ− θ)⊤g, (34)

= ε0 − ρ(µ− µ0) + (µ0 − θ)[(µ0 − θ)− (µ− θ)⊤]g, (35)

= ε0 − ρ(µ− µ0) + (µ0 − θ)(µ0 − µ)⊤g, (36)

= ε0 − (ρI+ (µ0 − θ)g⊤)(µ0 − µ). (37)

Note what has happened here: eq. (32) is a system of nonlinear equations for µ, but in eq. (37), all355

the nonlinearity has been expressed in terms of ρ. Since ρ can be determined via eq. (30), we arrive356

effectively at a system of linear equations for µ. Collecting terms, we obtain357 [
(1 + ρ)I+ (µ0 − θ)g⊤] (µ− µ0) = ε0. (38)

We thus arrive at the closed-form update358

µ = µ0 +
[
(1 + ρ)I+ (µ0 − θ)g⊤]−1

ε0 (39)

It is evident from this update that µ→ µ0 as ε0 → 0. The matrix inverse in this update can also be359

computed efficiently from the Woodbury matrix identity.360

In sum, the joint update for µ and Σ can be efficiently computed as follows:361

362

1. Set g = ∇w log p(θ,y) and ε0 = Σ0g − µ0 + θ.363

2. Solve ρ(1+ρ) = g⊤Σ0g +
[
(µ0−θ)⊤g

]2
for ρ > 0.364

3. Compute µ = µ0 +
[
(1 + ρ)I+ (µ0 − θ)g⊤]−1

ε0.365

4. Compute Σ = Σ0 + (µ0 − θ)(µ0 − θ)⊤ − (µ− θ)(µ− θ)⊤.366

Solving the quadratic in 2. for ρ we have the positive367

ρ =

√
1 + 4(g⊤Σ0g +

[
(µ0−θ)⊤g

]2
)− 1

2
368

Solving the above linear equation for µ and using the Sherman Morrison formula[
aI+ ug⊤]−1

=
1

a

(
I− ug⊤

a+ u⊤g

)
, for every u, g, a

gives369

µ = µ0 +
1

1 + ρ

[
I− (µ0 − θ)g⊤

1 + ρ+ (µ0 − θ)⊤g

]
ε0. (40)

Using that∇θ log q0(θ0) = −Σ−1
0 (θ − µ0) we have that

ε0 = Σ0

(
g −Σ−1

0 (µ0 + θ)
)
= Σ0 (g −∇θ log q0(θ0)) .

Finally substituting out ε0 in (40) the result370

µ = µ0 +
1

1 + ρ

[
I− (µ0 − θ)g⊤

1 + ρ+ (µ0 − θ)⊤g

]
Σ0 (g −∇θ log q0(θ0)) .371

14



Proof that Σ0 p.s.d =⇒ Σ p.s.d. It remains to prove that our solution for Σ is positive-definite,372

or equivalently, that all of its eigenvalues are positive. We begin by rewriting our results for Σ in373

eq. (28) and ρ in eq. (30) in a more convenient form. As shorthand, let374

M0 = Σ0 + (µ0 − θ)(µ0 − θ)⊤, (41)

so that M0 captures the first two terms on the right side of eq. (28). Note that M0 is positive-definite,375

a fact that we will exploit repeatedly in what follows. In addition, recall that µ − θ = Σg from376

eq. (23). Thus with this notation we can rewrite eqs. (28) and (30) as377

Σ = M0 − (Σg)(Σg)⊤, (42)

ρ(1 + ρ) = g⊤M0g. (43)

Now let e be any normalized eigenvector of Σ; we want to show that its corresponding eigenvalue λe378

is positive. From eq. (42), it follows that379

λe = e⊤Σe (44)
= e⊤

[
M0 − (Σg)(Σg)⊤

]
e (45)

= e⊤M0e− λ2
e(e

⊤g)2. (46)

Note that if e⊤g = 0, then it follows trivially that λe = e⊤M0e > 0. So we only need to consider380

the non-trivial case e⊤g ̸= 0. To proceed, we note that381

(e⊤M0g)
2 = (e⊤M

1
2
0 M

1
2
0 g)

2 ≤ (e⊤M0e)(g
⊤M0g), (47)

where we have used the Cauchy-Schwartz inequality to bound (e⊤Mog) in terms of (e⊤M0e), the382

latter of which appears in eq. (46). Substituting this inequality into eq. (46), we find that383

λe ≥
(e⊤M0g)

2

g⊤M0g
− λ2

e(e
⊤g)2. (48)

To prove that λe > 0 we need one more intermediate result. Focusing on the rightmost term in this384

equality, we note that385

λe(e
⊤g) = e⊤Σg = e⊤

[
M0 − (Σg)(Σg)⊤

]
g = e⊤M0g − λe(e

⊤g)(g⊤Σg), (49)

and rearranging the terms in this equation, we find386

e⊤M0g = λe(e
⊤g)(1 + g⊤Σg). (50)

This intermediate result is useful because it relates the two terms on the right side of eq. (48). In387

particular, using eq. (50) to eliminate the term e⊤M0g in eq. (48), we find:388

λe ≥
[
λe(e

⊤g)(1 + g⊤Σg)
]2

g⊤M0g
− λ2

e(e
⊤g)2

= λ2
e(e

⊤g)2
[
(1 + g⊤Σg)2

g⊤M0g
− 1

]

= λ2
e(e

⊤g)2
[
(1 + ρ)2

ρ(1 + ρ)
− 1

]

=
λ2
e(e

⊤g)2

ρ
,

> 0,

where the final inequality follows because the individual terms λ2
e, (e⊤g)2, and ρ are all strictly389

positive; note that λe cannot be equal to zero because this contradicts the equality in eq. (46). This390

completes the proof. Perhaps it is useful that this derivation also gives upper bounds on λe, namely391

1

λe
≥ (e⊤g)2

ρ
=⇒ λe ≤

ρ

(e⊤g)2
=

g⊤Σg

(e⊤g)2
. (51)

392
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