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A Additional experiments

In the following, we repeat the experiments from Section 8 for a wider range of certificate and model
parameters. In Appendix A.1, we investigate the parameter space of the tight certificate for rotation
invariance in 2D. In Appendix A.2, we again apply our certificates to rotation invariant point cloud
classifiers, this time considering all three models (EnsPointNet, AttnPointNet and EnsDGCNN) and
different smoothing distribution parameters. As before, we take 10000 samples per confidence bound
and set α = 0.001, i.e. all certificates hold with 99.9% probability.

All results support our main conclusion from Section 8: The tight certificates for rotation invariance
can offer much stronger robustness guarantees than their orbit-based counterparts. However, in
practical scenarios, where the smoothing standard deviation is small relative to the norm of the clean
data, the orbit-based approach offers a very good approximation.
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A.1 Tight certificate parameter space

For this section, recall that the tight certificate for 2D rotation invariance depends on ||X||2, ||∆||2
and parameters ϵ1 = ⟨X,∆⟩F, ϵ2 =

〈
XR (−π/2)

T
,∆
〉
F

, as well as smoothing standard deviation

σ. We define ϵ̃1 = ϵ1
||X||·||∆|| and ϵ̃2 = ϵ2

||X||·||∆|| . Note that
√
ϵ̃21 + ϵ̃22 ≤ 1 (see also Appendix J).

A.1.1 Adversarial scaling

We begin with adversarial scaling, which corresponds to ϵ̃1 = 1, ϵ̃2 = 0. We consider σ ∈
{0.1, 0.15, 0.2, 0.25, 0.5, 1.0}. For each σ, we vary ||X||2 and ||∆|| and compute pmin, the smallest
value of pX,y∗ for which a prediction can still be certified (see Appendix I). Lower pmin mean that
the certificate can guarantee robustness for models that are less consistent in their predictions.

Fig. 8 shows that, if the clean data norm is small, e.g. ||X|| = 0.01, then the tight certificate yields
much lower pmin than the orbit-based one, save for very small and very large values of ||∆||. That is,
the tight certificate for rotation invariance is beneficial even for adversarial perturbations that do not
have any rotational components. However, as ||X|| approaches σ, this difference shrinks, i.e. both
approaches offer guarantees of similar strength.
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Figure 8: Comparison of tight and orbit-based certificates for rotation invariance in 2D, applied to
adversarial scaling for varying ||∆||, ||X|| and smoothing standard deviation σ (smaller pmin is
better). As ||X|| increases, the difference between the certificates shrinks.
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A.1.2 Effect of clean data norm on certificates for arbitrary perturbations

Next, we study whether the same effect can be observed with arbitrary perturbations, i.e. arbitrary
values of ϵ̃1 and ϵ̃2. In Fig. 4 from Section 8.1, we fixed a specific combination of σ and ||∆||,
varied ||X||2 and evaluated the tight certificate for ϵ̃1, ϵ̃2 taken from a 100 × 100 rasterization of
[0, 1]× [0, 1]. We then measured the difference d(pmin) to the black-box certificate.

Here, we consider different combinations of σ, ||∆|| and ||X||. We can reduce the dimensionality
of the parameter space that needs to be explored by observing that both the tight gray-box and
the black-box certificate do not depend on the absolute value of these parameters, but their value
relative to σ. The black-box baseline has pmin = Φ(||∆||2 / σ). As specified in Appendix F.4.2,
the tight certificate depends on ||X||22 / σ2, ||∆||22 / σ2, ϵ1 / σ2 = 1

σ2 ||X||2 · ||∆||2 · cos(θ1) and
1
σ2 / ||X||2 · ||∆||2 · cos(θ1), where θ1, θ2 are angles between 2N -dimensional vectors. Therefore,
we can fix an arbitrary value of σ and then choose ||X||2 and ||∆||2 relative to it.

We set set σ = 1 and consider ||∆||2 ∈ {14σ, 12σ, σ, 2σ, 3σ}, i.e. perturbation norms that are much
smaller, similar to or much larger than the smoothing standard deviation. For each ||∆||2, we evaluate
the tight certificate ||X||2 ∈ { 1

100σ,
1
2σ, σ, 10σ}, i.e. clean data norms that are much smaller, similar

to or much larger than the smoothing standard deviation.

Fig. 9 shows the resulting d(pmin). In the case where ||∆||2 ≤ 2||X||2 we have additionally
highlighted the two values of (ϵ̃1, ϵ̃2) that correspond to adversarial rotations with blue crosses
(see Appendix J) Note that, to improve readability, the colorbar is scaled differently for each choice
of ||∆||, i.e. each row. Within each row, the same colorbar is used.

We can make four observations.

Firstly, in the case that ||∆||2 ≤ σ and ||X|| = 0.01 the tight certificate yields lower (i.e. better)
pmin for arbitrary perturbations, not just those corresponding to adversarial rotations.

Secondly, as the clean data norm ||X||2 increases, the region where the tight certificate outperforms
the black-box baseline shrinks. It concentrates around values of (ϵ̃1, ϵ̃2) corresponding to adversarial
rotations.

Thirdly, the difference in pmin is not as drastic when ||∆||2 is small. This is to be expected. For
instance, with ||∆||2 = σ / 4, the black-box certificate has pmin = Φ(σ / 4) ≈ 0.6. Here, the
difference to the smallest possible value 0.5 is small, meaning there is little room for improvement.
We already observed this in Fig. 8.

Finally, when ||∆||2 is large relative to σ, and so large that ∆ cannot be the result of an adversarial
rotation (e.g. ||∆||2 = 3, ||X||2 = 0.01), then the tight certificate is almost identical to the black-box
baseline. But, as ||X||2 increases and an adversarial rotation becomes possible (e.g. ||∆||2 = 3,
||X||2 = 10) then the tight certificate does again yield much better pmin – but only for values of
(ϵ̃1, ϵ̃2) that are very close to adversarial rotations.

In summary, these observations support our claim that, if ||X|| is large relative to σ, then the tight
certificate only improves upon the black-box baseline for perturbations that are similar to adversarial
rotations. Combined with the fact that the orbit-based gray-box certificate for rotation invariance also
accounts for rotational components, this suggests that the orbit-based certificate should be a good
approximation in practice.

In Fig. 10, we repeat the same experiments with σ, ||X||2 and ||∆||2 scaled by a factor of 1
2 , to verify

that it is indeed sufficient to only consider a single, arbitrary value of σ and the relative value of all
other parameters. As expected, the results are identical to Fig. 9.

In Fig. 11 we perform the same experiment for fixed values of σ and ||X||2 and two values of ||∆||2
chosen such that adversarial rotations correspond to ϵ̃ =≈ 0.5 and ϵ̃2 ≈ ±0.5, respectively (similar
to Fig. 3 from Section 8.1). In other words: The adversarial rotations move in 30◦-increments in the
parameter space. Again, we can observe that the regions with large pmin move with the adversarial
rotations.
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Figure 9: Difference in pmin between the tight certificate for 2D rotation invariance and the black-box
baseline for σ = 1 under varying ||X||, ||∆||, ϵ̃1 and ϵ̃2. Blue crosses indicate adversarial rotations.
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Figure 10: Difference in pmin between the tight certificate for 2D rotation invariance and the black-
box baseline for σ = 1 / 2 under varying ||X||, ||∆||, ϵ̃1 and ϵ̃2. The results are identical to Fig. 9,
because the certificate only depends on the value of the parameters relative to σ.
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Figure 11: Difference in pmin between the tight certificate for 2D rotation invariance and the black-
box baseline for different combinations of σ, ||X||2 and ||∆||2. Parameter ||∆||2 is chosen such that
adversarial rotations (indicated with blue crosses) correspond to ϵ̃ =≈ 0.5 or ϵ̃2 ≈ ±0.5. The regions
with large pmin are concentrated around adversarial rotations.
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A.2 Application to point cloud classification

Next, we repeat the experiments from Section 8.2 for diverse combinations of parameters and classifier
architectures. We focus on the case σ ≤ 0.25, where the randomly smoothed models achieve at least
50% accuracy (see Fig. 5), as even smaller accuracies are too low to be of any practical use.

We first consider adversarial scaling on the point clouds constructed from MNIST (Appendix A.2.1).
We then consider perturbations with random rotation components on MNIST (Appendix A.2.2) and
ModelNet40 (Appendix A.2.3). For the tight certificates, we show both probabilistic upper and lower
bounds obtained via Monte Carlo evaluation (recall Section 6.3). Note that only the lower bound is
guaranteed to be a valid certificate with high probability.

A.2.1 Adversarial scaling on MNIST

Fig. 12 shows the certified accuracy (i.e. the number of correct and certifiably robust predictions)
under adversarial scaling (i.e. ϵ̃1 = 1, ϵ̃2 = 0) for the randomly smoothed EnsPointNet with different
σ on the MNIST test set. We evaluate the tight and orbit-based certificate for rotation invariance
(SO(2)) and those for simultaneous rotation and translation invariance (SE (2)).

In all cases, the tight and orbit-based certificates yield similar certified accuracies. The certified
accuracies of the tight certificate deviate slightly from the orbit-based ones, because we compute a
probabilistic bound that holds with high probability 1− α, rather than evaluating it exactly. The gap
between the probalistic lower bound and the orbit-based certificate is particularly large for σ = 0.1,
which can be explained by our observations from Appendix A.1: The smaller σ is, relative to ||X||2
(which is defined by each datapoint of the test set and thus constant), the smaller the benefit of using
it over the orbit-based baseline becomes.

Additionally enforcing translation invariance yields stronger robustness guarantees. For instance,
with σ = 0.2, the SE (2) certificates can still certify some predictions for ||∆||2 = 0.8, whereas the
SO(2) certificates can not certify robustness beyond ||∆||2 ≈ 0.62.
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Figure 12: Comparison of certificates for adversarial scaling of MNIST with EnsPointNet and
σ ∈ {0.1, 0.15, 0.2, 0.25}. Tight and orbit-based certificates yield similar certified accuracies.
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A.2.2 Perturbations with random rotation components on MNIST

Like in Section 8.2, we construct perturbations with rotational components by fixing ||∆||, randomly
sampling perturbations of the specified norm and then rotating Z = X +∆ by a specified angle
θ. We obtain the original, unrotated perturbations via sampling from an isotropic matrix normal
distribution and then scaling the sample to be of the desired norm. Per value of θ, we sample ten
such perturbed inputs per element of the test set (i.e. 100000 per θ). We then compare the tight and
the orbit-based certificate for simultaneous rotation and translation invariance (SE ), as well as the
black-box baseline. As our metric, we use probabilistic certified accuracy, i.e. the percentage of
samplesX ′ for which f(X) is correct and f(X ′) = f(X) is provably guaranteed.

Fig. 13 shows the results for σ ∈ {0.05, 0.1, 0.2}, ||∆||2 ∈ {σ / 2, σ, 2σ} and θ ∈ [0◦, 90◦]. While
the black-box baseline fails to certify robustness even for small rotation angles, both gray-box
certificates effectively eliminate the rotations, i.e. are constant in θ. However, the tight gray-box
certificate does not offer any noteable benefit beyond that. The probabilistic lower bound never yields
better probabilistic certified accuracy than the orbit-based certificate.

These results are consistent with our observartions about the tight certificate’s parameter space: All
values of σ that retain high accuracy are small, relative to the average norm of the test set (10.67).

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

SE(2) Tight
SE(2) Orbit
Black-box

(a) σ = 0.05, ||∆|| = 0.025

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

(b) σ = 0.05, ||∆|| = 0.05

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.
(c) σ = 0.05, ||∆|| = 0.1

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

(d) σ = 0.1, ||∆|| = 0.05

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

(e) σ = 0.1, ||∆|| = 0.1

0 25 50 75

θ / deg

0.0

0.5

1.0
Pr

.C
er

t.
A

cc
.

(f) σ = 0.1, ||∆|| = 0.2

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

(g) σ = 0.2, ||∆|| = 0.1

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

(h) σ = 0.2, ||∆|| = 0.2

0 25 50 75

θ / deg

0.0

0.5

1.0

Pr
.C

er
t.

A
cc

.

(i) σ = 0.2, ||∆|| = 0.4

Figure 13: Comparison of tight gray-box, orbit-based gray-box and black-box certificates for MNIST
with EnsPointNet and different σ, with respect to probabilistic certified accuracy. Perturbed inputs
are generated by sampling perturbations with ||∆||2 ∈ {σ / 2, σ, 2σ} and rotating by angle θ. Group
SE (2) refers to simultaneous rotation and translation invariance. The orbit-based certificate is a good
approximation of the tight certificate.
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A.2.3 Perturbations with random elemental rotation components on ModelNet40

Next, we repeat the same experiment on ModelNet40. After sampling a perturbation ∆ of specified
norm ||∆||2, we randomly rotate X ′ = X +∆ by angle θ around a random axis. We obtain this
axis by sampling from a three-dimensional isotropic normal distribution and normalizing the result.

We then compare the tight certificate for simultaneous invariance under rotation and translation to the
orbit-based one and the black-box baseline.

Figs. 14 to 16 show the results for EnsPointNet, AttnPointNet and EnsDGCNN. In all cases, both
the tight- and orbit-based certificate are constant in θ, but the tight certificate does not noticeably
improve upon the orbit-based one w.r.t. probabilistic certified accuracy.
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Figure 14: Comparison of tight gray-box, orbit-based gray-box and black-box certificates for Model-
Net40 with EnsPointNet and different σ, w.r.t. probabilistic certified accuracy. Perturbed inputs are
generated by sampling perturbations with ||∆||2 ∈ {σ / 2, σ, 2σ} and rotating around a random axis
by angle θ. Group SE (3) refers to simultaneous rotation and translation invariance. The orbit-based
certificate is a good approximation of the tight certificate.
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Figure 15: Comparison of tight gray-box, orbit-based gray-box and black-box certificates for Model-
Net40 with AttnPointNet and different σ, w.r.t. probabilistic certified accuracy. Perturbed inputs are
generated by sampling perturbations with ||∆||2 ∈ {σ / 2, σ, 2σ} and rotating around a random axis
by angle θ. Group SE (3) refers to simultaneous rotation and translation invariance. The orbit-based
certificate is a good approximation of the tight certificate.
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Figure 16: Comparison of tight gray-box, orbit-based gray-box and black-box certificates for Model-
Net40 with EnsDGCNN and different σ, w.r.t. probabilistic certified accuracy. Perturbed inputs are
generated by sampling perturbations with ||∆||2 ∈ {σ / 2, σ, 2σ} and rotating around a random axis
by angle θ. Group SE (3) refers to simultaneous rotation and translation invariance. The orbit-based
certificate is a good approximation of the tight certificate.
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B Full experimental setup

In the following, we provide a full specification of the used models, data sets and training parameters
(Appendix B.1, randomized smoothing parameters (Appendix B.2), as well as the used computational
resources (Appendix B.3) and third-party assets (Appendix B.4).

The code and all configuration files needed for reproducing the experimental results will be made
available at https://www.cs.cit.tum.de/daml/invariance-smoothing.

B.1 Models, data and training parameters

B.1.1 Models

The experiments in Section 8.2 and Appendix A.2 are performed with three models: EnsPointNet,
EnsDGCNN and AttnPointNet, which are rotation and translation invariant versions of PointNet [6],
and the Dynamic Graph Convolutional Neural Network [128].

EnsPointNet is based on a standard PointNet architecture with an input T-Net but without a feature
T-Net (we did not find the feature T-Net to improve the accuracy of the rotation invariant model). The
input T-Net uses three convolutional layers with kernel size 1× 1 (64, 128 and 1024 filters) and three
linear layers (512, 256 and 9 neurons). The PointNet itself uses three convolutional layers with kernel
size 1× 1 (64, 128 and 1024 filters) and three linear layers (512, 256 and |Y| neurons). All layers,
except the last one, use BatchNorm (ϵ = 1e− 05, momentum = 0.1). The second linear layer uses
dropout (p = 0.4). To achieve rotation and translation invariance, the input data is centered and the
two (for 2D data) or three (for 3D data) principal components are computed. Principal components
are not unique. One has to account for order and sign ambiguities to ensure rotation invariance (see
discussion in [129, 130]). If two or more eigenvalues are numerically close (relative tolerance 1e−5,
absolute tolerance 1e−8), we iterate over all possible eigenvector signs and orders (8 · 6), multiply
the input data with the principal components, and pass it through the PointNet. If the eigenvalues
are distinct, we sort them in ascending order and iterate over all possible signs (8). The 8 or 48 logit
vectors are then averaged to obtain a prediction.

EnsDGCNN is based on a standard DGCNN architecture with an input spatial transform. The spatial
transform uses uses three convolutional layers with kernel size 1× 1 (64, 128 and 1024 filters) and
three linear layers (512, 256 and 9 neurons). The DGCNN encodes the spatially transformed input
with three DGC layers (64, 64, 64 and 128 filters and k = 20). The encoder output and residuals are
concatenated and passed through a convolution with kernel size 1 × 1 (1024 filters), followed by
max-pooling and three linear layers (512, 256, |Y| neurons). All layers use BatchNorm (ϵ = 1e− 05,
momentum = 0.1). The first two linear layers use dropout (p = 0.5). We use the same ensembling
approach as for EnsPointNet to achieve rotation and translation invariance.

AttnPointNet combines PointNet with the attention-based mechanism for combining canonical poses
proposed in [129]. It uses the same encoder as EnsPointNet. After passing the different PCA-based
canonical poses through the encoder, the hidden vectors are combined via a self-attention layer (1024
neurons each for query, key and value transform) and then passed through the same decoder as in
EnsPointNet. To reduce memory usage, we only consider sign combinations that correspond to
proper rotation matrices (see discussion in [130]).

B.1.2 Data

ModelNet40 [126] consists of 12311 CAD models from 40 categories, split into 9843 training
samples and 2468 test samples. We subdivide the original training set into 80% train data and 20%
validation data. The same split is used for all experiments. Each CAD model is then transformed
into a 3D point cloud with 1024 points using the same pre-processing steps as in [6], i.e. randomly
sampling from the mesh faces according to surface area and normalizing the resulting point cloud
into the unit sphere.

MNIST [127] consists of 70000 handwritten digits, split into 60000 training samples and 10000 test
samples. We subdivide the original training set into 80% train data and 20% validation data. The
same split is used for all experiments. Each image is transformed into a 2D point with 1024 points
using the same pre-processing steps as in [6], i.e. mapping all pixels with values greater than 128 to
x-y coordinates, then uniformly sub-sampling or padding with a randomly chosen point and finally
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normalizing into the unit sphere. We additionally combine classes 6 and 9, because these digits
cannot be expected to be differentiated by a rotation-invariant model.

B.1.3 Training parameters

All models are trained on samples from the smoothing distribution (i.e. the model that is evaluated
and certified with σ is trained on data augmented with Gaussian noise sampled from an isotropic
normal distribution with standard deviation σ). Per element of a training batch, we take exactly one
sample from the smoothing distribution. We do not use consistency regularization.

EnsPointNet is trained with cross entropy loss and the TNet regularization from [6] (weight 0.0001).
Training is performed for 200 epochs with batch size 128 using Adam (β1 = 0.9, β2 = 0.99,
ϵ = 1e − 8, weight_decay = 1e−4). The learning rate starts at 0.001 and is multiplied with 0.7
every 20 epochs. The input data is randomly scaled by a factor from [0.8, 1.25] and then transformed
via principal component analysis, using a single set of eigenvectors with randomized sign and order.

EnsDGCNN is trained in the same manner as EnsPointNet, but with batch size 32, 400 epochs and
learning rate decay every 40 epochs.

AttnPointNet is trained with batch size 64, 400 epochs and learning rate decay every 40 epochs. The
other parameter values are identical to those for EnsPointNet. In order to train the self-attention layer,
we do not transform the input with a single set of eigenvectors, but pass all possible eigenvectors
corresponding to rotations through the network.

B.2 Randomized smoothing parameters

We use 1000 samples from the smoothing distribution to compute smoothed predictions. Abstentions,
i.e. predictions for which we cannot guarantee that pX,y∗ ≥ 0.5, are considered as incorrect.

For certification, we set the significance parameter α to 0.01. i.e. each certificate holds with probability
99.9%. We use 10000 samples per confidence bound, i.e. 10000 samples to bound pX,y∗ . For the tight
gray-box certificates involving rotation invariance we additionally use 10000 samples to bound the
threshold κ and 10000 samples to bound the optimal value itself (for more details, see Appendix F.5).
We then use Holm-Bonferroni correction ([131]) to ensure that all three confidence bounds hold
simultaneously with probability 1− α.

Evaluating the tight certificates for SO(3) and SE (3) requires numerical integration over the two-
dimensional parameter space [−π2 , π2 ] × [0, 2π] (see Appendix F.4.3). We use Clenshaw-Curtis
quadrature with degree 20 in each dimension.

B.3 Computational resources

Training and Monte Carlo sampling of smoothed predictions was performed on a single NVIDIA
A100 GPU (40GB VRAM) with an AMD EPYC 7543 CPU @ 2.8GHz. For EnsPointNet and
AttnPointNet, 16GB RAM were allocated. For EnsDGCNN, which requires additional memory
for computation of k-nearest-neighbor graphs, 32GB RAM were allocated. The average time for
training EnsPointNet on MNIST was 42.8min. The average time for training EnsPointNet, AttnPoint
and EnsDGCNN on ModelNet40 was 20.2min, 114min and 158min, respectively. The average
time for obtaining 11000 samples from EnsPointNet on MNIST was 1.1 s. The average time for
obtaining 11000 samples from EnsPointNet, AttnPoint and EnsDGCNN on ModelNet40 was 1.59 s,
1.4 s and 24.91 s, respectively.

Computation of certificates was performed on an Intel Xeon E5-2630 v4 CPU @ 2.2GHz, with
16GB RAM allocated to each experiment. The average time for computing a tight certificate for 2D
rotation invarance (i.e. computing threshold κ and bounding the optimal value, using 10000 samples
each), was 0.05 s. The average time for computing a tight certificate for 3D rotation invariance was
6.3 s. The increase in computational cost is caused by the fact that we can only evaluate the worst-
case classifier via numerical integration. The average time for computing the black-box randomized
smoothing certificate and the tight certificate for translation invariance was in the sub-milisecond
range and can thus not be accurately reported.
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B.4 Third-party assets

Our work uses the publicly available MNIST [127] and ModelNet40 [126] datasets, as well as the
quadpy quadrature library [132]. Our implementation additionally uses code from a publicly available
implementation of PointNet and PointNet++ [133], as well as the author’s reference implementation
of DGCNN [128]. Both are available under MIT license.
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C Group definitions

In the following, we define the different groups we consider in our work, each corresponding to a
specific type of spatial invariance. Recall from Section 3.2 that a group is a set T, associated with
a binary operator · : T× T → T that is closed and associative under the operation, has an inverse
t−1 for each element t ∈ T and features an identity element e. Further recall that we associate each
group with a group action ◦ : T×RN×D → RN×D that describes how elements of the group modify
elements of the input space.

C.1 Translation group T (D)

The translation group in D dimensions is the set of all D-dimensional continuous vectors, i.e.
T (D) = RD. Two group elements t, t′ ∈ T (D) are combined via vector addition, i.e. t·t′ = t+t′. A
group element t ∈ T (D) acts on an inputX ∈ RN×D via row-wise addition, i.e. t◦X =X+1N t

T

with all-ones vector 1N ∈ RN . The identity element e is the all-zeros vector 0D.

C.2 Rotation group SO(D)

The rotation group in D dimensions, SO(D) (short for special orthogonal), is the set of all D-
dimensional rotation matrices, i.e. SO(D) =

{
R ∈ RD×D | RTR = IN ∧ det(R) = 1

}
. Two

group elements R,R′ ∈ SO(D) are combined via matrix multiplication, i.e. R ·R′ = RR′. A
group elementR ∈ SO(D) acts on an inputX ∈ RN×D via row-wise matrix-vector multiplication,
i.e.R ◦X =XRT . The identity element e is the identity matrix ID.

C.3 Orthogonal group O(D)

The orthogonal group in D dimensions, O(D), is the set of all D-dimensional orthogonal matrices,
i.e. O(D) =

{
A ∈ RD×D | RTR = IN

}
. Note that O(D) ⊃ SO(D). Like the rotation group,

group elements are combined via matrix multiplication, i.e. A · A′ = AA′ and act on an input
X ∈ AN×D via row-wise matrix-vector multiplication, i.e.A ◦X =XAT . The identity element e
is the identity matrix ID.

C.4 Roto-translation group SE (D)

The roto-translation group in D dimensions, SE (D) (short for special Euclidean), is composed of all
pairs of D-dimensional rotation matrices and translation vectors. That is, SE (D) = SO(D)×T (D).
Two group elements (R, t), (R′, t′) ∈ SE (D) are combined via a semidirect product, i.e. (R, t) ·
(R′, t′) = (RR′,Rt′ + t). A group element (R, t) ∈ SE (D) acts on an inputX ∈ RN×D via row-
wise matrix-vector multiplication, followed by a row-wise addition i.e. (R, t) ◦X =XRT + 1N t

T .
The identity element e is (ID,0D).

C.5 Euclidean group E (D)

The Euclidean group in D dimensions, E (D), corresponds to the set of all distance-preserving
functions in Euclidean space. It is composed of all pairs of D-dimensional orthonormal matrices
and translation vectors. That is, E (D) = O(D) × T (D). Note that E (D) ⊃ SE (D). Like the
roto-translation group, group elements combined via a semidirect product, i.e. (A, t) · (A′, t′) =
(AA′,At′ + t) and act on an inputX ∈ RN×D via row-wise matrix-vector multiplication, followed
by a row-wise addition i.e. (A, t) ◦X =XAT + 1N t

T . The identity element e is (ID,0D).

C.6 Permutation group S (N)

The permutation group in N dimensions, S (N), is the set of all permutation matrices, i.e. S (N) ={
P ∈ {0, 1}N×N | P TP = IN

}
. Two group elements P ,P ′ ∈ S (N) are combined via matrix

multiplication, i.e. P · P ′ = PP ′. A group element P ∈ S (N) acts on an input X ∈ RN×D via
matrix multiplication, i.e. P ◦X = PX . Note that the group action permutes the rows and not the
columns. The identity element e is the identity matrix IN .
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D Proof of Theorem 1

Theorem 1. Let base classifier g : RN×D → Y be invariant under group T with T ⊆ E (D) or
T ⊆ S (N), where E (D) is the Euclidean group and S (N) is the permutation group. Then the
isotropically smoothed classifier f , as defined in Section 3.1, is also invariant under T.

Recall that

f(X) = argmaxy∈YpX,y

with pX,y = Pr
Z∼µX

[g(Z) = y]

and µX(Z) =

D∏
d=1

N
(
Z:,d |X:,d, σ

2IN
)
.

We shall prove Theorem 1 by showing that ∀t ∈ T : pX,y = p(t◦X),y , i.e. the prediction probabilities
are invariant. To do so, we need the following simple lemma:
Lemma 2. Consider an arbitrary invertible matrix A ∈ RN×N , vectors z,m ∈ RN and scalar
σ > 0. Then ∣∣det (A−1

)∣∣N (A−1z |m, σ2IN
)
= N

(
z | Am, σ2AAT

)
.

Proof. It follows from the change of variables formula for densitiy functions that the l.h.s. term is
the density function of random variable z′ = Az with z ∼ N

(
m, σ21N

)
. Due to the behavior

of multivariate normal distributions under affine transformation, the r.h.s. term is also the density
function of z′.

We begin by proving Theorem 1 for T ⊆ E (D), before considering T ⊆ S (N). In the following, let
ĝ(Z) = 1 [g(Z) = y∗] indicate whether base classifier g classifies input Z as y∗.

Case 1: Assume that T ⊆ E (D) and consider an arbitrary t ∈ T. By definition of the Euclidean
group and the associated group action (see Appendix C.5) we must have t = (A, b) and t ◦X =
XAT +1Nb

T for some orthogonal matrixA ∈ RD×D and translation vector b ∈ RN . By definition
of the smoothing distribution, we have

p(t◦X),y =

∫
RN×D

ĝ(Z)µ(XAT+1NbT )(Z) dZ

=

∫
RN×D

ĝ(Z)

N∏
n=1

N
(
Zn | AXn + b, σ2ID

)
dZ

=

∫
RN×D

ĝ(Z)

N∏
n=1

N
(
Zn − b | AXn, σ

2ID
)
dZ,

where in the last equality we have used that N (z | m+ b) = N (z − b | m). We can now perform
two substitutions, V = Z − 1Nb

T andW = V (A−1)T , to transform this term into an expectation
w.r.t. the original smoothing distribution µX :

=

∫
RN×D

ĝ(V + 1Nb
T )

N∏
n=1

N
(
Vn | AXn, σ

2ID
)
dV

=

∫
RN×D

ĝ(V + 1Nb
T )

N∏
n=1

N
(
Vn | AXn, σ

2AAT
)
dV

=

∫
RN×D

ĝ(V + 1Nb
T )

N∏
n=1

N
(
A−1Vn |Xn, σ

2IN
)
dV

=

∫
RN×D

ĝ(WAT + 1Nb
T )

N∏
n=1

N
(
Wn |Xn, σ

2IN
)
dW .
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In the second step we have used the fact thatA is orthogonal, i.e.AAT = IN . In the third step, we
have applied Lemma 2. Note that, because |det(A)| = 1, we did not have to change the volume
element. Finally, we can use the fact that g is invariant w.r.t. group T to prove that

p(t◦X),y =

∫
RN×D

ĝ(AW + 1Nb
T )

N∏
n=1

N
(
Wn |Xn, σ

2IN
)
dW

=

∫
RN×D

ĝ(W )

N∏
n=1

N
(
Wn |Xn, σ

2IN
)
dW

= pX,y.

Case 2: Assume that T ⊆ S (N) and consider an arbitrary t ∈ T. By definition of the permutation
group and the associated group action (see Appendix C.6) we must have t = P and t ◦X = PX for
some orthogonal matrix P ∈ {0, 1}N×N . The proof is virtually identical to that for the Euclidean
group, except we now use the substitution V = PZ:

p(t◦X),y =

∫
RN×D

ĝ(Z)µ(PX)(Z) dZ

=

∫
RN×D

ĝ(Z)

D∏
d=1

N
(
Z:,d | PX:,d, σ

2IN
)
dZ

=

∫
RN×D

ĝ(Z)

D∏
d=1

N
(
Z:,d | PX:,d, σ

2PP T
)
dZ

=

∫
RN×D

ĝ(Z)

D∏
d=1

N
(
P−1Z:,d |X:,d, σ

2IN
)
dZ

=

∫
RN×D

ĝ(PV )

D∏
d=1

N
(
V:,d |X:,d, σ

2IN
)
dV

=

∫
RN×D

ĝ(V )

D∏
d=1

N
(
V:,d |X:,d, σ

2IN
)
dV

= pX,y.
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E Orbit-based gray-box certificates

In the following, we first prove the soundness of our orbit-based approach to gray-box robustness
certification. We then present more explicit characterizations of the orbit-based certificates, which let
us determine whether a specific perturbed input is part of the augmented certified region.

E.1 Proof of Theorem 2

Theorem 2. Let f ∈ RN×D → Y be invariant under a group T. Let y∗ = f(X) be a prediction
that is certifiably robust to a set of perturbed inputs B ⊆ RN×D, i.e. ∀Z ∈ B : f(Z) = y∗. Let
B̃ = ∪Z∈B[Z]T. Then ∀X ′ ∈ B̃ : f(X ′) = y∗.

Proof. Consider an arbitraryX ′ ∈ B̃. Due to the definition of B̃, there must be a Z ∈ B and a t ∈ T
such that X ′ = t ◦ Z. Since t ∈ T, we know that f(t ◦ Z) = f(Z). Since Z ∈ B, we know that
f(Z) = y∗. By the transitive property, we have f(X ′) = y∗.

E.2 Explicit characterizations

Recall that, for randomly smoothed models, a prediction y∗ = f(X) is certifiably robust within a
Frobenius norm ball B = {Z | ||Z −X||2 < r} with r = σΦ−1 (pX,y∗). For this certificate, we
can determine whether a specific perturbed inputX ′ is in augmented certified region B̃ = ∪Z∈B[Z]T
by finding a transformation that minimizes the Frobenius distance betweenX ′ andX:
Corollary 1. Let f ∈ RN×D → Y be invariant under group T. Let y∗ = f(X) be a prediction that is
certifiably robust to a set of perturbed inputs B = {Z | ||Z −X||2 < r}, i.e. ∀Z ∈ B : f(Z) = y∗.
If mint∈T ||(t ◦X ′)−X||2 < r, then f(X ′) = y∗.

Proof. Let t∗ = argmint∈T||(t◦X ′)−X||2, defineZ = t∗◦X ′ and assume that ||Z−X||2 < r. By
definition of B, we have Z ∈ B. Because T is a group, there must be an inverse element (t∗)−1 ∈ T
with (t∗)−1 ◦ Z = X ′. Thus, by definition of orbits (see Definition 1), we have X ′ ∈ [Z]T. It
follows from Theorem 2 that f(X ′) = y∗.

In the following, we discuss how to solve the optimization problem minτ∈T ||τ (X ′) −X||2 < r
for invariance under different groups T. Before proceeding, remember that solving this optimization
problem is not necessary for certifying robustness, i.e. specifying a set of inputs B̃ such that ∀X ′ ∈ B̃ :
f(X ′) = y∗ (see Theorem 2). It is only a way of performing membership inference, i.e. determining
whetherX ′ ∈ B̃ for a specificX ′ ∈ RN×D – just like computing the Frobenius distance between
X ′ andX can be used to determine whetherX ′ is part of the original certified region B.

E.2.1 Translation invariance

By definition of the translation group T (D) and the associated group action (see Appendix C.1), we
have t ◦X ′ =X ′ + 1Nb

T for some translation vector b ∈ RD. Thus,

min
τ∈T
||(τ ◦X ′)−X||2 = min

b∈RD
||(X ′ + 1Nb

T )−X||2 = ||∆− 1N∆||2,

where ∆ = X ′ −X and ∆ ∈ R1×D are the column-wise averages. The second equality can be
shown by computing the gradients w.r.t. b and setting them to zero.

E.2.2 Rotation invariance

By definition of the rotation group SO(D) and the associated group action (see Appendix C.2), we
have t ◦X ′ =X ′RT for some rotation matrixR. Thus,

min
τ∈T
||(τ ◦X ′)−X||2 = min

R∈SO(D)
||X ′RT −X||2.

This is a special case of the orthogonal Procrustes problem, which can be solved via singular
value decomposition [111]. The optimal rotation matrix R∗ is given by R∗ = V ŜUT , where
USV = (X ′)TX and Ŝ = diag

(
1, . . . , 1, sign

(
det
(
V UT

)))
.
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E.2.3 Simultaneous rotation and reflection invariance

By definition of the orthogonal group O(D) and the associated group action (see Appendix C.3), we
have t ◦X ′ =X ′AT for some orthogonal matrixA. Thus,

min
τ∈T
||(τ ◦A′)−X||2 = min

A∈O(D)
||X ′AT −X||2.

This is the orthogonal Procrustes problem, which can again be solved via singular value decomposi-
tion [111]. The optimal orthogonal matrixA∗ is given byA∗ = V UT , where USV = (X ′)TX .
Here, accounting for the sign of the determinant is not necessary.

E.2.4 Simultaneous rotation and translation invariance

By definition of the special Euclidean group SE (D) and the associated group action (see Ap-
pendix C.4), we have t ◦X ′ =X ′RT + 1Nb

T for some rotation matrixR and translation vector
b ∈ RD. Thus,

min
τ∈T
||(τ ◦X ′)−X||2 = min

R∈O(D),c∈RD
||X ′RT + 1Nc

T −X||2.

It can be shown that this is equivalent to centering X ′ and X and then solving the orthogonal
Procrustes problem [112], i.e.

min
τ∈T
||τ (X ′)−X||2 = min

R∈SO(D)
||
(
X ′ − 1NX ′

)
RT −

(
X − 1NX

)
||2.

As discussed in Appendix E.2.2, this problem can be solved via singular value decomposition.

E.2.5 Permutation invariance

By definition of the permutation group S (N) and the associated group action (see Appendix C.6),
we have t ◦X ′ = PX ′ for some permutation matrix P . Thus,

min
τ∈T
||(τ ◦X ′)−X||2 = min

P∈S(N)
||PX ′ −X||2 =

√
min

P∈S(N)
||PX ′ −X||22.

The inner optimization problem is equivalent to finding an optimal matching in a bipartite graph with
2 ·N nodes whose cost matrix is given by Cn,m = ||X ′

n −Xm||22. This problem can be solved in
polynomial time, for example via the Hungarian algorithm [134].

E.2.6 Simultaneous permutation, rotation and translation invariance

By definition of the permutation group S (N) and the special Euclidean group SE (N), we have

min
τ∈T
||(τ ◦X ′)−X||2 = min

P∈S(N)R∈O(D),c∈RD
||P

(
X ′RT + 1Nc

T
)
−X||2.

Different from the previously discussed problems, the above is a challenging optimization problem
known as point cloud registration, which does not have an efficiently computable solution. Approx-
imate solutions to this problem are being actively studied (for a comprehensive survey, see [135]).
Note that, if some upper bound m̂ with minτ∈T ||(τ ◦ X ′) − X||2 < m̂ fulfills m̂ < r, then
minτ∈T ||(τ ◦X ′)−X||2 < r. Thus, any approximate solution to the point cloud registration prob-
lem can be used for certification. If m̂ < r, we provably know that X ′ ∈ B̃ and thus f(X ′) = y∗.
However, there may be someX ′ ∈ B̃ with m̂ > r, which would be incorrectly declared as potential
adversarial examples. Thus, an explicit characterization based on approximate solutions to the point
cloud registration problem is sound, but not optimal.
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F Tight gray-box certificates

In the following, we first prove Lemma 1, which lets us reduce the invariance-constrained optimization
problem from Section 6 to a problem that is only constrained by the classifier’s clean prediction
probability. Then, we restate the Neyman-Pearson lemma from statistical testing, which provides an
exact solution for the worst-case classifier, given its clean prediction probability. After that, we use
the two lemmeta in proving Theorem 3, which summarizes tight certificates for translation, rotation
and roto-translation invariance. Next, we discuss the certificates for each type of invariance in more
detail and derive the results presented in Sections 6.2 to 6.5 from Theorem 3. We conclude by
showing how to use Monte Carlo sampling to obtain narrow probabilistic bounds on the certificates
involving rotation invariance (Appendix F.5).

F.1 Proof of Lemma 1

Recall from Section 6 that, in order to obtain tight gray-box certificates, we need to find the worst-case
invariant classifier. That is, we need to solve minh∈HT PrZ∼µX′ [h(Z) = y∗], where HT is the set of
all classifiers that are at least as likely as base classifier g to predict class pX,y∗ and have the same
invariances. We want to prove that the invariance constraint can be eliminated via a canonical map
γ(Z), which maps each input Z ∈ RN×D to a distinct representative of its orbit [Z]T.
Lemma 1. Let g : RN×D → Y be invariant under group T and let HT be defined as in Eq. (2). If
γ : RN×D → RN×D is a canonical map for invariance under T, then

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = min
h:RN×D→Y

Pr
Z∼µX′

[h(γ(Z)) = y∗] s.t. Pr
Z∼µX

[h(γ(Z)) = y∗] ≥ pX,y∗ .

For the proof, recall
Definition 1. The orbit of an inputX ∈ RN×D w.r.t. a group T is [X]T = {t ◦X | t ∈ T}.

and
Definition 3. A canonical map for invariance under a group of transformations T is a function
γ : RN×D → RN×D with

∀Z ∈ RN×D : γ(Z) ∈ [Z]T , (3)

∀Z ∈ RN×D,∀Z ′ ∈ [Z]T : γ(Z) = γ(Z ′). (4)

and

HT =

{
h : RN×D → Y | Pr

Z∼µX

[h(Z) = y] ≥ pX,y∗ ∧ ∀Z,∀Z ′ ∈ [Z]T : h(Z) = h(Z ′)

}
.

We begin our proof by deriving two lemmeta.

The first lemma states that, if an input Z is not the representative of its own orbit, then it cannot be
the representative of any orbit.
Lemma 3. Let γ be a canonical map for invariance under T. Then, for all Z ∈ RN×D

Z ̸= γ(Z) =⇒ ∄Z ′ ∈ RN×D : γ(Z ′) = Z.

Proof. Proof by contraposition. Assume there was some Z ′ with γ(Z ′) = Z. Eq. (3) from Defini-
tion 1 would imply that Z ∈ [Z ′]T. Eq. (4) from Definition 1 would then imply that γ(Z ′) = γ(Z).
By the transitive property, we would have Z = γ(Z ′) = γ(Z).

The second lemma allows us to replace all equality constraints ∀Z ′ ∈ [Z]T : h(Z) = h(Z ′) involving
input Z and element of its equivalence class with a single equality constraint h(Z) = h(γ(Z)).
Lemma 4. Let γ be a canonical map for invariance under T. Then

∀Z,∀Z ′ ∈ [Z]T : h(Z) = h(Z ′) ⇐⇒ ∀Z : h(Z) = h(γ(Z)).

Proof.
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⇒ Consider an arbitrary Z ∈ RN×D. Due to Eq. (3) from Definition 1, we know that γ(Z) ∈ [Z]T.
Therefore, ∀Z ′ ∈ [Z]T : h(Z) = h(Z ′) implies h(Z) = h(γ(Z)).

⇐ Assume that ∀Z : h(Z) = h(γ(Z)). Consider an arbitrary pair of inputs Z ∈ RN×D,Z ′ ∈ [Z]T.
Due to our assumption, we know that h(Z) = h(γ(Z)). Due to Eq. (4) from Definition 3, we know
that γ(Z) = γ(Z ′) and thus h(γ(Z)) = h(γ(Z ′)). Again, due to our assumption, we know that
h(γ(Z ′)) = h(Z ′). By the transitive property, we have h(Z) = h(Z ′).

We can now apply the two lemmata to prove Lemma 1. Lemma 4 allows us to restate HT as follows:

HT =

{
h : RN×D → Y | Pr

Z∼µX

[h(Z) = y] ≥ pX,y∗ ∧ ∀Z : h(Z) = h(γ(Z))

}
.

Thus, the optimization problem minh∈HT PrZ∼µX′ [h(Z) = y∗] can be written as

min
h:RN×D→Y

Pr
Z∼µX′

[h(Z) = y∗]

s.t. Pr
Z∼µX

[h(Z) = y∗] ≥ pX,y∗ ∧ ∀Z : h(Z) = h(γ(Z)).

Since we already know from the second constraint that any feasible solution must fulfill h(Z) =
h(γ(Z)), we may as well substitute h(γ(Z)) for h(Z) before solving the problem:

min
h:RN×D→Y

Pr
Z∼µX′

[h(γ(Z)) = y∗]

s.t. Pr
Z∼µX

[h(γ(Z)) = y∗] ≥ pX,y∗ ∧ ∀Z : h(Z) = h(γ(Z)).
(13)

For each Z ∈ RN×D, we can now distinguish two cases: If Z = γ(Z), then the constraint
h(Z) = h(γ(Z)) is trivially fulfilled and can thus be dropped. If Z ̸= γ(Z), then Lemma 3 shows
that h(Z) does not appear in the objective function or first constraint of Eq. (13), because there is no
other Z ′ with γ(Z ′) = Z. We can thus ignore the second constraint, solve the optimization problem

min
h:RN×D→Y

Pr
Z∼µX′

[h(γ(Z)) = y∗] s.t. Pr
Z∼µX

[h(γ(Z)) = y∗] ≥ pX,y∗

and then let h(Z)← h(γ(Z)) to obtain an optimal, feasible solution to Eq. (13).

F.2 Neyman-Pearson Lemma

For our purposes, the Neyman-Pearson lemma [107] can be formulated as follows:
Lemma 5 (Neyman-Pearson lower bound). Let µX′ , µX , be two continuous distributions over a
measurable set A such that, for all κ ∈ R+, the set

{
z | µX′ (z)

µX(z) = κ
}

has measure zero. Consider

an arbitrary label set Y, a specific class label y ∈ Y and scalar p ∈ [0, 1]. Then(
min
h:A→Y

Pr
z∼µX′

[h(z) = y] s.t. Pr
z∼µX

[h(z) = y] ≥ p
)

= E
z∼µX′

[h∗(z)]

with h∗(z) = 1

[
µX′(z)

µX(z)
≤ κ

]
and κ ∈ R+ such that E

z∼µX

[h∗(z)] = p.

Here, indicator function h∗ corresponds to a classifier that predicts class y if and only if the likelihood
ratio is below a specific threshold κ. For an application of this variant of the Neyman-Pearson
lemma to black-box robustness certification, as well as a discussion of its relation to most powerful
hypothesis tests, see [26]. For various other formulations of the lemma, see [136].

One can use the same approach to obtain an upper bound on the probability of predicting a specific
class. This will be relevant for our discussion of multi-class certificates in Appendix H.
Lemma 6 (Neyman-Pearson upper bound). Let µX′ , µX , be two continuous distributions over a
measurable set A such that, for all κ ∈ R+, the set

{
z | µX′ (z)

µX(z) = κ
}

has measure zero. Consider

an arbitrary label set Y, a specific class label y ∈ Y and scalar p ∈ [0, 1]. Then(
max
h:A→Y

Pr
z∼µX′

[h(z) = y] s.t. Pr
z∼µX

[h(z) = y] ≤ p
)

= E
z∼µX′

[h∗(z)]

with h∗(z) = 1

[
µX′(z)

µX(z)
≥ κ

]
and κ ∈ R+ such that E

z∼µX

[h∗(z)] = p.
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F.3 Proof of Theorem 3

Theorem 3. Let g : RN×D → Y be invariant under T with T chosen from {T (D),SO(D),SE (D)}.
For SO(D) and SE (D), let D ∈ {2, 3}. Let HT be defined as in Eq. (2) and η be a right Haar
measure on T. Define the indicator function h∗ : RN×D → {0, 1} with

h∗(Z) = 1

[
βX′(Z)

βX(Z)
≤ κ

]
, where βX(Z) =

∫
t∈T

exp
(
⟨t ◦Z,X⟩F / σ2

)
dη(t) (5)

and κ ∈ R such that E
Z∼µX

[h∗(Z)] = pX,y∗ . (6)

Then
min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = E
Z∼µX′

[h∗(Z)] . (7)

We begin our proof by applying Lemma 1, which lets us restate the l.h.s. optimization problem
from Eq. (7) as

min
h:RN×D→Y

Pr
Z∼µX′

[h(γ(Z)) = y∗] s.t. Pr
Z∼µX

[h(γ(Z)) = y∗] ≥ pX,y∗ (14)

with canonical map γ : RN×D → RN×D. Note that Eq. (14) has the same form as the optimization
problem solved by the Neyman Pearson lemma (Lemma 5), save for the canonical representation in
the probability terms.

Our goal is to 1.) specify a canonical map γ for invariance w.r.t. group T 2.) bring the two probability
terms from Eq. (14) into a form that does not depend γ, so that we can solve Eq. (14) exactly via the
Neyman-Pearson lemma. To this end, we make the following proposition, which we shall later verify
for the different considered groups T:
Proposition 1. Let T ∈ {T (D),SO(D),SE (D)}. For SO(D) and SE (D), let D ∈ {2, 3}.
Let e ∈ T be the group’s identity element and ◦ : T × RN×D → RN×D be the group action
(see Appendix C). There exist a parameter space Ω ⊆ RK , a function τ : Ω→ T with τ(0) = e, as
well as a parameter space Ψ ⊆ RN ·D−K and a function ξ : ψ → RN×D withK ∈ {1, . . . , N ·D−1}
such that

λ(ω,ψ) = τ(ω) ◦ ξ(ψ). (15)

is a differentiable, surjective function from Ω×Ψ to RN×D, injective almost everywhere and fulfills

∀t ∈ T,ω ∈ Ω,ψ ∈ Ψ,∃ω′ ∈ Ω : t ◦ λ(ω,ψ) = λ(ω′,ψ). (16)

That is, the input space RN×D can be parameterized by a matrix ξ(ψ) ∈ RN×D that is transformed
by a group element τ(ω) ∈ T. As formalized in Eq. (16), this alternative parameterization lets us
neatly disentagle the effect of a group action, which is a translation and/or rotation of the coordinate
system, from the (group-invariant) geometry of Z, i.e. ξ(ψ).

Canonical map. Based on Proposition 1, we can define the following canonical map γ : RN×D →
RN×D for Z = λ(ω,ψ):

γ(Z) = (τ(ω))−1 ◦ λ(ω,ψ). (17)

Note that (τ(ω))−1 ∈ T is the inverse of group element τ(ω) ∈ T and not the inverse of the function
τ . Further note that by Eq. (15), it holds for arbitrary Z = λ(ω,ψ) that

γ(Z) = (τ(ω))−1 ◦ τ(ω) ◦ ξ(ψ) = e ◦ ξ(ψ) = τ(0) ◦ ξ(ψ) = λ(0,ψ). (18)

We can verify that γ is indeed a valid canonical map by testing the two criteria from Definition 3.
Because γ(Z) applies a group action, we have γ(Z) ∈ [Z]T, where [Z]T is the orbit of Z w.r.t.
T. Due to Eq. (16), we have ∀Z,∀Z ∈ [Z]T : γ(Z) = γ(λ(ω, z)) = λ(0,ψ) = γ(λ(ω′,ψ)) =
γ(Z ′).

Substitution. Next, we use Proposition 1 and the canonical map from Eq. (17) to bring the probabili-
ties from our optimization problem in Eq. (14) into a form that is compatible with the Neyman-Pearson
lemma. To declutter the terms, we first introduce ĥ(Z) as a shorthand for 1 [h(Z) = y∗]:

Pr
Z∼µX

[h(γ(Z)) = y∗] = E
Z∼µX

[
ĥ(γ(Z))

]
.
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We then perform the substitution Z = λ(ω,ψ) with ω ∈ Ω ⊆ RK and ψ ∈ Ψ ⊆ RN ·D−K :

E
Z∼µX

[
ĥ(γ(Z))

]
=

∫
RN×D

ĥ(γ(Z)) · µX(Z) dZ (19)

=

∫
Ψ

∫
Ω

ĥ(γ(λ(ω,ψ))) · µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dωdψ.

where Jλ is the Jacobian of λ after vectorizing its domain and codomain. Next, we apply the
canonical map defined in Eq. (17) to eliminate the group parameters ω from the term involving
classifier ĥ. This allows us to marginalize out ω:∫

Ψ

∫
Ω

ĥ(γ(λ(ω,ψ))) · µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dωdψ

=

∫
Ψ

∫
Ω

ĥ(λ(0,ψ)) · µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dωdψ

=

∫
Ψ

ĥ(λ(0,ψ))

∫
Ω

µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dωdψ

:= E
ψ∼νX

[
ĥ(λ(0,ψ))

]
(20)

= Pr
ψ∼νX

[h(λ(0,ψ)) = y∗] ,

where νX(ψ) =
∫
Ω
µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dω is the marginal density of parameters ψ.

Finally, we can insert our result into Eq. (14) to obtain the simplified optimization problem

min
h:RN×D→Y

Pr
ψ∼νX′

[h(λ(0,ψ)) = y∗] s.t. Pr
ψ∼νX

[h(λ(0,ψ)) = y∗] ≥ pX,y∗ . (21)

Applying the Neyman-Pearson lemma. Eq. (21) is almost in the form required by the Neyman-
Pearson lemma. But, unlike in Lemma 5, we optimize over a function defined on RN×D while only
evaluating it on a subset of RN×D, namely λ (0,Ψ). To resolve this mismatch, it is convenient to
treat h as a family of variables (hZ) indexed by RN×D. As specified in Proposition 1, λ is injective
almost everywhere, meaning that each tuple (0,ψ) indexes a distinct variable hλ(0,ψ), save for sets
of measure zero, which do not influence the objective and constraint in Eq. (21). Therefore, we may
equivalently optimize over a family of variables (h̃ψ) indexed by Ψ:

min
h̃:Ψ→Y

Pr
ψ∼νX′

[
h̃(ψ) = y∗

]
s.t. Pr

ψ∼νX

[
h̃(ψ) = y∗

]
≥ pX,y∗ . (22)

According to Lemma 5, the minimizer is a function that classifies ψ as y∗ iff h̃∗(ψ) = 1 with

h̃∗(ψ) = 1

[
νX′(ψ)

νX(ψ)
≤ κ

]
with κ ∈ R+ such that E

ψ∼νX

[
h̃∗(ψ)

]
= pX,y∗ .

Consequently, the optimum of our original problem Eq. (21) is given by any function h∗(Z) with
h∗(λ(0,ψ)) = h̃(ψ), i.e. we can use an arbitrary classifier for all parts of the domain that do not
appear in the probability terms of Eq. (21). We make the following proposition for our choice of
worst-case classifier h∗(Z):

Proposition 2. Consider marginal density νX(ψ) =
∫
Ω
µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dω. Let

η be a right Haar measure on group T ∈ {T (D),SO(D),SE (D)}. For SO(D) and SE (D), let
D ∈ {2, 3}. Define the group-averaged kernel

βX(Z) =

∫
t∈T

exp
(
⟨t ◦Z,X⟩F / σ2

)
dη(t) (23)

Then,
νX′(ψ)

νX(ψ)
∝ βX′(λ(0,ψ))

βX(λ(0,ψ))
,

where ∝ absorbs factors that are constant in ψ.
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Assuming Proposition 2 holds, we have by transitivity of the previous equalities that

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = E
ψ∼νX′

[h∗(λ(0,ψ))] (24)

with

h∗(Z) = 1

[
βX′(Z)

βX(Z)
≤ κ

]
and κ ∈ R+ such that E

ψ∼νX
[h∗(λ(0,ψ))] = pX,y∗ . (25)

Resubstitution. Next, we need to transform the expectations w.r.t. marginal distribution νX over
Ψ ⊆ RN ·D−K back into an expectation w.r.t. our original smoothing distribution µX over RN×D.
Applying the steps from Eq. (19) to Eq. (20) in reverse order shows that

E
ψ∼νX

[h∗(λ(0,ψ))] = E
Z∼µX

[h∗(γ(Z))] . (26)

Exploiting invariance. Finally, we use the fact that our worst-case classifier h∗ is invariant under
group T to eliminate the canonical map γ from the expectation. Recall from Eq. (17) that, for any
Z = λ(ω,ψ), we defined γ(Z) = (τ(ω))−1 ◦Z, i.e. the canonical map lets a group element act on
Z. Since η is a right Haar measure, we have

βX((τ(ω))−1 ◦Z) =

∫
t∈T

exp
(〈
t ◦ (τ(ω))−1 ◦Z,X

〉
F
/ σ2

)
dη(t)

=

∫
t∈T

exp
(〈
(t · (τ(ω))−1) ◦Z,X

〉
F
/ σ2

)
dη(t)

=

∫
t∈T

exp
(
⟨u ◦Z,X⟩F / σ2

)
dη(u)

= βX(Z),

where the second equality follows from the fact that ◦ is a group action The third equality holds
because η is a right Haar measure, meaning we can make the substitution u = t · (τ(ω))−1) without
having to change the measure. Thus, we have

h∗(γ(Z)) = 1

[
βX′(γ(Z))

βX(γ(Z))
≤ κ

]
= 1

[
βX′(Z)

βX(Z)
≤ κ

]
= h∗(Z).

Combined with Eq. (26) and Eqs. (24) and (25), this proves that the optimal value of the original
variance-constrained problem is

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = E
Z∼µX′

[h∗(Z)] (27)

with

h∗(Z) = 1

[
βX′(Z)

βX(Z)
≤ κ

]
and κ ∈ R+ such that E

Z∼µX

[h∗(Z)] = pX,y∗ = pX,y∗ .

The last thing we need to do in order to conclude our proof is verify that Propositions 1 and 2 hold
for each of the considered groups T.

F.3.1 Verifying Propositions 1 and 2 for translation invariance

For T = T (D), we define λ(ω,ψ) = τ(ω) ◦ ξ(ψ) with τ : RD → T (D), ξ : R(N−1)D → RN×D

and

τ(ω) = ω

ξ(ψ) =

[
0TD

vec−1(ψ)

]
,

where vec−1 : R(N−1)D → R(N−1)×D reshapes an input vector into a matrix. Due to the definition
of group action ◦ from Appendix C.1, we have

λ(ω,ψ) =

[
0TD

vec−1(ψ)

]
+ 1Nω

T ,
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with all-ones vector 1N ∈ RN . In other words: We represent each element of RN×D as a matrix
whose first row is zero, translated by a vector ω.

The function λ is evidently a differentiable bijection with inverse

λ−1(Z) =
(
Z1, vec

(
Z2: − 1D(Z1)

T
))
,

meaning it is surjective and injective. Furthermore, we have τ(0D) = 0D, with 0D being the identity
element of T (D). Lastly, we have for all t ∈ T (D), ω ∈ RD, ψ ∈ R(N−1)D that

t ◦ λ(ω,ψ) = λ(t+ ω,ψ).

Thus, all conditions from Proposition 1 are fulfilled.

To verify Proposition 2, we need to show that
νX′(ψ)

νX(ψ)
∝ βX′(λ(0,ψ))

βX(λ(0,ψ))
,

with marginal density νX(ψ) =
∫
RD µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dω and Haar integral

βX(Z) =
∫
t∈RD exp

(
⟨t ◦Z,X⟩F / σ2

)
dη(t), where η is an arbitrary right Haar measure on

translation group T (D) = RD. Firstly, we see that |det(Jλ(ω,ψ))| = 1, since we are only
performing translations. Thus,

νX(ψ) =

∫
RD

µX(λ(ω,ψ)) dω

∝
∫
RD

N∏
n=1

exp

(
− 1

2σ2
(λ(ω,ψ)n −Xn)

Tλ(ω,ψ)n −Xn

)
dω

∝
∫
RD

N∏
n=1

exp

(
1

σ2
(λ(ω,ψ)n)

Tλ(ω,ψ)n

)
dω

=

∫
RD

exp
(
⟨λ(ω,ψ),X⟩F / σ2

)
dω

=

∫
RD

exp
(
⟨ω ◦ λ(0D,ψ),X⟩F / σ2

)
dω,

where ∝ absorbs factors that are constant in ω. In the above equalities we have first inserted the
definition of our isotropic matrix normal smoothing distribution, then removed constant terms, then
expressed the product of exponential functions more compactly using the Frobenius inner product
and finally used that, by definition, λ(ω,ψ) = τ(ω) ◦ ξ(ψ) = ω ◦ λ(0D,ψ). Finally, we note that
the Lebesgue measure is translation-invariant, i.e.

∫
RD h(ω + c) dω =

∫
RD h(ω) dω for arbitrary

functions h, meaning it is a Haar measure of the translation group. Since the translation group is a Lie
group and thus locally compact, the Haar measure is unique up to a multiplicative constant [109, 110].
Thus, Proposition 2 holds.

F.3.2 Verifying Propositions 1 and 2 for rotation invariance in 2D

In this section, let

R(ω) =

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
(28)

be the matrix that rotates counter-clockwise by angle ω. Note that SO(2) = {R(ω) | ω ∈ [0, 2π]}. To
verify our propositions for T = SO(2), we define λ(ω,ψ) = τ(ω) ◦ ξ(ψ) with τ : [0, 2π]→ SO(2)
and ξ : R+ × R2(N−1) → RN×2 (note that the first argument is non-negative) with

τ(ω) = R(ω)

ξ(ψ) =

[
ψ1 0
vec−1(ψ2:)

]
,

where vec−1 : R2(N−1) → R(N−1)×2 reshapes an input vector into a matrix. Due to the definition
of group action ◦ from Appendix C.2, we have

λ(ω,ψ) =

[
ψ1 0
vec−1(ψ2:)

]
R(ω)T
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In other words: We represent each element of RN×2 as a matrix whose first row is aligned with the
x-axis, rotated counter-clockwise by an angle ω.

The function λ is evidently surjective. Any Z ∈ RN×2 can be represented via

Z =

[
||Z||2 0
Z2:R(−ω∗)T

]
R(ω∗)T

with ω∗ = arctan2(Z1,2, Z1,1). It is also injective, save for the set {Z ∈ RN×2 | Z1 = 0}, which
has measure zero. The first row Z1 uniquely defines ψ1 = ||Z1||2 and ω = arctan2(Z1,2, Z1,1),
because polar coordinates for non-zero vectors are unique. The parameter vector z2: must fulfill

vec−1(ψ2:)R(ω) = Z2:,

which has a unique solution because rotation matrix R(ω) is invertible. In addition to surjectivity
and injectivity almost everywhere, λ is differentiable and we have τ(0) = IN , with identity matrix
IN being the identity element of SO(2). Furthermore, we have for allR(α), ω, ψ that

R(α) ◦ λ(ω,ψ) = λ(α+ ω,ψ).

Thus, all conditions from Proposition 1 are fulfilled.

To verify Proposition 2, we need to show that
νX′(ψ)

νX(ψ)
∝ βX′(λ(0,ψ))

βX(λ(0,ψ))
,

with marginal density νX(ψ) =
∫
[0,2π]

µX(λ(ω,ψ)) · |det(Jλ(ω,ψ))| dω and Haar integral
βX(Z) =

∫
R∈SO(2)

exp
(
⟨t ◦Z,X⟩F / σ2

)
dη(t). We begin by calculating the Jacobian

Jλ(ω,ψ) =
[
∂vec(λ)
∂ω

∂vec(λ)
∂ψ1

∂vec(λ)
∂ψ2

. . . ∂vec(λ)
∂ψ2N−1

]
=

[−ψ1 sin(ω) cos(ω) 0
ψ1 cos(ω) sin(ω) 0

a 0 B

]
,

with some vector a ∈ R2(N−1) and block-diagonal matrixB ∈ R2(N−1)×2(N−1) with

B =

R(ω) 0
. . .

0 R(ω)

 .
Due to the block structure, we have

|det(Jλ(ω,ψ))| =
∣∣∣∣det([−ψ1 sin(ω) cos(ω)

ψ1 cos(ω) sin(ω)

])∣∣∣∣ N∏
n=2

|det(R(ω))| = |ψ1|.

Thus, our marginal density is

νX(ψ) =

∫
[0,2π]

|ψ1| · µX(λ(ω,ψ)) dω

∝
∫
[0,2π]

N∏
n=1

exp

(
− 1

2σ2
(λ(ω,ψ)n −Xn)

Tλ(ω,ψ)n −Xn

)
dω

∝
∫
[0,2π]

N∏
n=1

exp

(
1

σ2
(λ(ω,ψ)n)

Tλ(ω,ψ)n

)
dω

=

∫
[0,2π]

exp
(
⟨λ(ω,ψ),X⟩F / σ2

)
dω

=

∫
[0,2π]

exp
(
⟨R(ω) ◦ λ(0D,ψ),X⟩F / σ2

)
dω,

where ∝ absorbs factors that are constant in ω. Because the composition of two rotations corre-
sponds to a translation of rotation angles, the translation-invariant Lebesgue measure is an invariant
measure for group SO(2) (in this angle-based parameterization):

∫
[0,2π]

h(R(ω) · R(ω′)) dω =∫
[0,2π]

h(R(ω+ω′)) dω =
∫
[0,2π]

h(R(ω)) dω for arbitrary functions h. Since SO(2) is a Lie group
and thus locally compact, the Haar measure is unique up to a multiplicative constant [109, 110]. Thus,
Proposition 2 holds.
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F.3.3 Verifying Propositions 1 and 2 for rotation invariance in 3D

In this section, let

R(ω) =

[
cos(ω1) − sin(ω1) 0
sin(ω1) cos(ω1) 0

0 0 1

]
·
[

cos(ω2) 0 sin(ω2)
0 1 0

− sin(ω2) 0 cos(ω2)

]
·
[
1 0 0
0 cos(ω3) − sin(ω3)
0 sin(ω3) cos(ω3)

]

be the matrix that performs an intrinsic rotation around the z-axis by angle ω1, followed by a rotation
around the new y-axis by angle ω2 and then a rotation around the new x-axis by angle ω3.

Note that SO(3) = {R(ω) | ω ∈ Ω} with Ω = [0, 2π] × [−π2 , π2 ] × [0, 2π]. To verify our
propositions for T = SO(3), we define λ(ω,ψ) = τ(ω) ◦ ξ(ψ) with τ : Ω → SO(3) and
ξ : R+ ×R×R+ ×R3(N−2) → RN×3 (note that the first and third argument are non-negative) with

τ(ω) = R(ω)

ξ(ψ) =

ψ1 0 0
ψ2 ψ3 0
vec−1(ψ4:)

 ,
where vec−1 : R3(N−1) → R(N−1)×3 reshapes an input vector into a matrix. Due to the definition
of group action ◦ from Appendix C.2, we have

λ(ω,ψ) =

ψ1 0 0
ψ2 ψ3 0
vec−1(ψ4:)

R(ω)T

In other words: We represent each element of RN×3 as a matrix whose first row is aligned with
the x-axis, and whose second row is in the first or second quadrant of the x-y-plane (because ψ3 is
non-negative) which is then intrinsically rotated by z-y-x angles ω1, ω2, ω3.

The function λ(ω,ψ) is injective and surjective, save for the set {Z ∈ RN×3 | Z1 = 0 ∨ ∃c ∈
R : Z2 = c ·Z1}, which has measure zero. That is, for any Z outside this set, Z = λ(ω,ψ) has a
unique solution. Firstly, (ψ1, ω1, ω2) are spherical coordinates of Z1, which are unique for Z1 ̸= 0.
Secondly, the unique angles ω1 and ω2 constrain the x-axis after the intrinsic rotation to be co-linear
with Z1. Thus, and because we assume that Z1 and Z2 are not co-linear, there must be unique angle
ω3 for rotation around the x-axis that ensures that Z2 is in the first or second quadrant of the new
x-y-plane. Finally, with the rotation angles ω and parameter ψ1 fixed, the remaining parameter values
are determined by[

ψ2 ψ3 0
vec−1(ψ4:)

]
R(ω)T = Z2: ⇐⇒

[
ψ2 ψ3 0
vec−1(ψ4:)

]
= Z2:(R(ω)−1)T .

The function is also surjective on the entirety of RN×3. If Z1 = 0, we have ψ1 = 0 and ω1, ω2

can be chosen arbitrarily. If ∃c : Z2 = c · Z1, then ω3 can be chosen arbitrarily. The remaining
parameters can be chosen using the procedure described above. Finally, the function is differentiable,
we have τ(0) = IN and τ is a surjective function into SO(3), meaning

τ(ω′) ◦ λ(ω,ψ) = (R(ω′) ·R(ω)) ◦ ξ(v) = λ(ω′′,ψ)

for some ω′′ ∈ Ω. Thus, all criteria from Proposition 1 are fulfilled.

Like in previous sections, we verify Proposition 2 by first calculating the Jacobian of λ. In the
following, we use the shorthands si = sin(ωi) and ci = cos(ωi). We have

Jλ(ω,ψ) =
[
∂vec(λ)
∂ψ1

∂vec(λ)
∂ω1

∂vec(λ)
∂ω2

∂vec(λ)
∂ω3

∂vec(λ)
∂ψ2

. . . ∂vec(λ)
∂ψ(3(N−1))

]
=

[
A 0 0
D B 0
E F C

]
,
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with

A =

[
c1c2 −ψ1c2s1 −ψ1c1s2
c2s1 ψ1c1c2 −ψ1s1s2
−s2 0 −ψ1c2

]
,

B =

[
ψ3 (c1cγs2 + s1sγ) c1c2 c1s2sγ − cγs1
ψ3 (−c1sγ + cγs1s2) c2s1 c1cγ + s1s2sγ

ψ3 (c2cγ) −s2 c2sγ ,

]

C =

R(ω) 0
. . .

0 R(ω)

 .
Due to the block structure and because ω2 ∈ [−π2 , π2 ] and ψ3 ∈ R+ , we have

|det (Jλ(ω,ψ))| = det (A) · det (B) · det (C)

= |ψ2
1 cos(ω2)| · |ψ3| · |1|

= ψ2
1 · ψ3 · cos(ω2).

Thus, our marginal density νX(ψ) is

νX(ψ) =

∫
Ω

ψ2
1 · ψ3 · cos(ω2) · µX(λ(ω,ψ)) dω

∝
∫
Ω

cos(ω2) ·
N∏
n=1

exp

(
− 1

2σ2
(λ(ω,ψ)n −Xn)

Tλ(ω,ψ)n −Xn

)
dω

∝
∫
Ω

cos(ω2) ·
N∏
n=1

exp

(
1

σ2
(λ(ω,ψ)n)

Tλ(ω,ψ)n

)
dω

=

∫
Ω

cos(ω2) · exp
(
⟨λ(ω,ψ),X⟩F / σ2

)
dω

=

∫
Ω

cos(ω2) · exp
(
⟨R(ω) ◦ λ(0D,ψ),X⟩F / σ2

)
dω.

This is, up to a multiplicative constant, the unique Haar integral for this angle-based parameterization
of SO(D) (see, for instance [137, Chapter 1]).3 Thus, Proposition 2 holds.

F.3.4 Verifying Propositions 1 and 2 for roto-translation invariance in 2D and 3D

Finally, we prove that the propositions hold for T = SE (D) with D ∈ {2, 3}, which amounts to
combining the results from the previous sections. In the following, let τrot : Ωrot → SO(D) with
τrot(ω) = R(ω) be the the parameterization of SO(D) defined in Appendix F.3.2 or Appendix F.3.3.
Further let ξrot : Ψrot → R(N−1)×D be the same function as in Appendix F.3.2 or Appendix F.3.3,
but for matrices with N − 1 instead of N rows.

We begin by defining τ : Φrot × RD :→ SE (D) and ξ : Ψrot → RN×D as follows:

τ(ω, b) = (τrot(ω), b) = (R(ω), b)

ξ(ψ) =

[
0TD
ξ(ψ)

]
,

Due to the definition of group action ◦ from Appendix C.4, we have

λ((ω, b),ψ) = τ(ω, b) ◦ ξ(ψ) =
[
0TD
ξ(ψ)

]
R(ω)T + 1Nb

T .

In other words: We represent each element of RN×D as a matrix whose first row is zero and whose
second row is aligned with the x-axis which is then rotated and finally translated. For D = 3 we

3Note that they have a factor sin instead of cos, because they parameterize SO(D) via z-x-z Euler angles.
The proof for intrinsic z-y-x rotation is analogous.
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additionally constrain the third row to be in the first or second quadrant of the x-y plane (for more
details, see Appendix F.3.3).

The function λ((ω, b),ψ) is surjective and injective, save for

• {Z ∈ RN×2 | Z2 −Z1 = 0} (if D = 2),
• {Z ∈ RN×3 | Z2 −Z1 = 0 ∨ ∃c ∈ R : Z2 −Z1 = c(Z3 −Z1)} (if D = 3),

which have measure zero. That is, given an Z ∈ RN×D the solution to Z = λ((ω, b),ψ) is unique.
Evidently, we must have b = Z1. With this parameter fixed, the remaining parameters can be found
by solving the equation Z2: − 1N−1Z

T
1 = τrot(ω) ◦ ξrot(ψ), whose unique solution we discussed

in Appendix F.3.2 and Appendix F.3.3. The function is also surjective on the entirety of RN×D

for the reasons presented in Appendix F.3.2 and Appendix F.3.3. Further note that the function
λ((ω, b),ψ) is differentiable and that τ(0,0) = (ID,0D), which is the identity element of SE (D)
(see Appendix C.4). Finally, we see that

(R(ω′), b′) ◦ λ((ω, b),ψ) = ((R(ω′), b′) · (R(ω), b) ◦ ξ(ψ)
= (R(ω′)R(ω),R(ω)b+ b′) ◦ ξ(ψ)
= λ((ω′′, b′′),ψ)

for some ω′′ ∈ Ω, b′′ ∈ RD. Thus, all criteria from Proposition 1 are fulfilled.

Next, we verify Proposition 2 by again showing that the marginal density νX(ψ) is a Haar integral.
The function λ is a composition of two functions: The function λrot from the previous sections and a
translation. Thus, the Jacobian determinant is the product of the two corresponding Jacobians. As
discussed in Appendix F.3.1, the Jacobian determinant for translation is 1. Let Jλrot

(ω,ψ) be the
Jacobian of λrot. Then

νX(ψ) =

∫
Ωrot

|det (Jλrot(ω,ψ))| ·
∫
RD

µX(λ((ω, b),ψ)) db dω

∝
∫
Ωrot

|det (Jλrot(ω,ψ))| ·
∫
RD

exp
(
⟨λ((ω, b),ψ),X⟩F / σ2

)
dbd ω

=

∫
Ωrot

|det (Jλrot(ω,ψ))| ·
∫
RD

exp
(
⟨(R(ω), b) ◦ λ((0D,0D),ψ),X⟩F / σ2

)
db dω,

where ∝ absorbs factors that are constant in ω and b. This is a Haar integral, because the inner
and outer integral are Haar integrals for T (D) and SO(D), respectively. Let us verify this by
considering an arbitrary (R(ω′), b′) ∈ SE (D). To avoid clutter, define the shorthand f(Z) =
exp

(
⟨Z,X⟩F / σ2

)
. We have∫

Ωrot

|det (Jλrot(ω,ψ))| ·
∫
RD

f (((R(ω), b) · (R(ω′), b′)) ◦ λ((0D, zerosD),ψ)) db dω

=

∫
Ωrot

|det (Jλrot
(ω,ψ))| ·

∫
RD

f
(
λ(0D,ψ)(R(ω)R(ω′)) + 1N (R(ω)b′ + b)

T
)
db dω

=

∫
Ωrot

|det (Jλrot
(ω,ψ))| ·

∫
RD

f
(
λ(0D,ψ)(R(ω)R(ω′)) + 1Nb

T
)
db dω

=

∫
Ωrot

|det (Jλrot
(ω,ψ))| ·

∫
RD

f
(
λ(0D,ψ)R(ω) + 1Nb

T
)
db dω

=

∫
Ωrot

|det (Jλrot
(ω,ψ))| ·

∫
RD

f ((R(ω), b) ◦ λ((0D,0D),ψ)) db dω.

Here, we have first applied the definition of the group action and group operator from Appendix C.4
and then used the fact that we are integrating over Haar measures for T (D) and then SO(D). Since
SE (D) is a Lie group and thus locally compact, the Haar measure is unique up to a multiplicative
constant [109, 110]. This confirms that Proposition 2 holds.
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F.4 Group-specific certificates

In this section, we prove the results for specific invariances from Sections 6.2 to 6.5, i.e. translation
invariance (Appendix F.4.1), rotation invariance in 2D (Appendix F.4.2 and 3D (Appendix F.4.3, as
well as roto-translation invariance in 2D and 3D (Appendix F.4.4).

F.4.1 Translation invariance

Theorem 4. Let g : RN×D → Y be invariant under T = T (D) and HT be defined as in Eq. (2). Then

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = Φ

(
Φ−1 (pX,y∗)−

1

σ

∣∣∣∣∆− 1N∆
∣∣∣∣
2

)
,

where ∆ ∈ R1×D are the column-wise averages of ∆ =X ′ −X and σ is the standard deviation
of the isotropic matrix normal smoothing distribution µX .

During our proof of Theorem 3 in Appendices F.3 and F.3.1, we have shown that

min
h∈HT

Pr
Z∼µX′

[h∗(Z) = y∗] = E
ψ∼νX′

[
h̃∗(ψ)

]
(29)

with

h̃∗(ψ) = 1

[
νX′(ψ)

νX(ψ)
≤ κ

]
and κ ∈ R+ such that E

ψ∼νX

[
h̃∗(ψ)

]
= pX,y∗ (30)

with ψ ∈ R(N−1)·D and marginal distribution

νX(ψ) =

∫
RD

µX

([
0TD

vec−1(ψ)

]
+ 1Nω

T

)
dω

=

∫
RD

D∏
d=1

N
([

0
vec−1(ψ):,d

]
+ 1Nωd |X:,d, σ

2IN

)
dω,

where we have inserted the definition of our isotropic matrix normal smoothing distribution for

the second equality. Using the matrix A =

[
1 0TN−1

−1N−1 IN−1

]
∈ RN×N with inverse A−1 =[

1 0TN−1
1N−1 IN−1

]
and all-zeros vector 0N−1 ∈ RN−1, all-ones vector 1N−1 ∈ RN−1 and identity

matrix IN−1, the marginal density can equivalently be written as

νX(ψ) =

∫
RD

D∏
d=1

N
(
A−1

[
ωd

vec−1(ψ):,d

]
|X:,d, σ

2IN

)
dω,

=

∫
RD

D∏
d=1

1

|det(A)
N
([

ωd
vec−1(ψ):,d

]
| AX:,d, σ

2AAT

)
dω,

=

∫
RD

D∏
d=1

N
([

ωd
vec−1(ψ):,d

]
| AX:,d, σ

2AAT

)
dω,

where the second equality follows from the change of variable formula for densities (see
also Lemma 2) and the third equality is due to det(A) = 1. Evidently, we are marginalizing
out the first dimension of each of the D densities. For normal distributions, this is equivalent to
dropping the first row of the mean as well as the first row and column of the covariance matrix, i.e.

νX(ψ) =

D∏
d=1

N
(
vec−1(ψ):,d | A2:X:,d, σ

2A2:(A2:)
T
)

= N (ψ |mX ,Σ)
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with

mX = vec (A2:X) ,

Σ =


B 0 . . . 0
0 B . . . 0
...

...
. . . 0

0 0 . . . B


andB = σ2A2: (A2:)

T .

Inserting back into Eqs. (29) and (30), we see that the optimal value of our variance-constrained
optimization problem minh∈HT PrZ∼µX′ [h

∗(Z) = y∗] equals the optimal value of the black-box
certification problem for anisotropic normal smoothing distribution N (mX ,Σ). This optimal value
has been derived in prior work (see [138] and Appendix A of [94]) and is

Φ

(
Φ−1 (pX,y∗)−

√
(mX′ −mX)

T
Σ−1 (mX′ −mX)

)
We can conclude our proof by showing that√

(mX′ −mX)
T
Σ−1 (mX′ −mX) =

1

σ

∣∣∣∣∆− 1N∆
∣∣∣∣
2

(31)

To this end, we need the following result:

Lemma 7. Consider an arbitrary vector x ∈ RD and let x = 1
D

∑D
d=1 xd be its average. Then

xT (x− 1Dx) = (x− 1Dx)
T
(x− 1Dx) .

Proof. We substract the left-hand side from the right-hand side

xT (x− 1Dx) = (x− 1Dx)
T
(x− 1Dx)

⇐⇒ 0 = (−1Dx)T (x− 1Dx)

⇐⇒ 0 = x

D∑
d=1

x− x
D∑
d=1

xd

⇐⇒ 0 = xDx− xDx,

where the last equality follows from the fact that
∑D
d=1 xd = Dx.

Now, we can proceed by using the fact that the inverse of a block-diagonal matrix is also a block-
diagonal matrix and inserting the definitions ofmX′ ,mX , Σ andB to show that:

(mX′ −mX)
T
Σ−1 (mX′ −mX) (32)

=(vec (A2:X
′)− vec (A2:X))

T
Σ−1 (vec (A2:X

′)− vec (A2:X)) (33)

=

D∑
d=1

(
A2:X

′
:,d −A2:X:,d

)T
B−1

(
A2:X

′
:,d −A2:X:,d

)
(34)

=

D∑
d=1

(
A2:X

′
:,d −A2:X:,d

)T 1

σ2

(
A2: (A2:)

T
)−1 (

A2:X
′
:,d −A2:X:,d

)
(35)

=
1

σ2

D∑
d=1

(A2:∆:,d)
T
(
A2: (A2:)

T
)−1

(A2:∆:,d) , (36)

=
1

σ2

D∑
d=1

(∆:,d)
T
(A2:)

T
(
A2: (A2:)

T
)−1

A2:∆:,d, (37)

where for the second to last last equality we have used thatX ′ =X +∆.
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Our next step is to compute (A2:)
T
(
A2: (A2:)

T
)−1

A2:. Recall thatA2: ∈ R(N−1)×D andA2: =

[−1N−1 IN−1]. Matrix multiplication shows that

A2: (A2:)
T
= [−1N−1 IN−1] [−1N−1 IN−1]

T
= 1N−1,N−1 + IN−1 =


2 1 . . . 1
1 2 . . . 1
...

...
. . . 1

1 1 . . . 2

 .
The matrix is sufficiently simple to be inverted by inspection:

(
A2: (A2:)

T
)−1

= IN−1 −
1

N
1N−1,N−1 =


1− 1

N − 1
N . . . − 1

N
− 1
N 1− 1

N . . . − 1
N

...
...

. . . 1
N

− 1
N − 1

N . . . 1− 1
N

 .
Finally, matrix multiplication shows that

(A2:)
T
(
A2: (A2:)

T
)−1

A2: = IN −
1

N
1N,N =


1− 1

N − 1
N . . . − 1

N
− 1
N 1− 1

N . . . − 1
N

...
...

. . . 1
N

− 1
N − 1

N . . . 1− 1
N

 . (38)

Note that the matrix in Eq. (38) transforms a vector by subtracting its average from all entries.
Inserting into Eq. (37) shows that

(mX′ −mX)
T
Σ−1 (mX′ −mX)

=
1

σ2

D∑
d=1

(∆:,d)
T
(
∆:,d − 1D∆:,d

)
=

1

σ2

D∑
d=1

(
∆:,d − 1D∆:,d

)T (
∆:,d − 1D∆:,d

)
=

1

σ2

N∑
n=1

D∑
d=1

(
∆− 1N∆

)2
n,d

,

where ∆:,d ∈ R is the average of column ∆:,d, ∆ ∈ R1×D are the column-wise averages of matrix
∆, the second equality is due to Lemma 7 and the third equality uses the definition of inner products.

Taking the square root and using the definition of the Frobenius norm yields our desired result:

√
(mX′ −mX)

T
Σ−1 (mX′ −mX) =

√√√√ 1

σ2

N∑
n=1

D∑
d=1

(
∆− 1N∆

)2
n,d

=
1

σ

∣∣∣∣∆− 1N∆
∣∣∣∣
2
.

F.4.2 Rotation invariance in 2D

Theorem 6. Let g : RN×2 → Y be invariant under T = SO(2) and HT be defined as in Eq. (2).
Define the indicator function ρ : R4 → {0, 1} with

ρ(q) = 1

[
I0
(√

q21 + q22

)
/ I0

(√
q23 + q24

)
≤ κ

]
,

with κ ∈ R such that E
q∼N(m(2),Σ)

[ρ(q)] = pX,y∗ .

Then
min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = E
q∼N(m(1),Σ)

[ρ(q)] ,
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where

m(1) =
1

σ2

2ϵ1 + ||X||
2
2 + ||∆||22

0
ϵ1 + ||X||22

ϵ2

 , m(2) =
1

σ2

ϵ1 + ||X||
2
2

−ϵ2
||X||22

0

 ,

Σ =
1

σ2

2ϵ1 + ||X||
2
2 + ||∆||22 0 ϵ1 + ||X||22 ϵ2

0 2ϵ1 + ||X||22 + ||∆||22 −ϵ2 ϵ1 + ||X||22
ϵ1 + ||X||22 −ϵ2 ||X||22 0

ϵ2 ϵ1 + ||X||22 0 ||X||22.

 ,
with clean data norm ||X||2, perturbation norm ||∆||2 and parameters ϵ1 = ⟨X,∆⟩F, ϵ2 =

⟨XR (−π/2)T ,∆⟩F.

We know from Theorem 3 and our derivations in Appendix F.3.2 that

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = E
Z∼µX′

[h∗(Z)] , (39)

with

h∗(Z) = 1

[
βX′(Z)

βX(Z)
≤ κ

]
and κ ∈ R+ such that E

Z∼µX

[h∗(Z)] = pX,y∗ , (40)

βX(Z) =

∫
[0,2π]

exp
(〈
ZR(ω)T ,X

〉
F
/ σ2

)
dω,

R(ω) =

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
.

To prove Theorem 6, we shall first calculate the integral βX(Z) characterizing our worst-case
classifier and then use the fact that it applies an affine transformation to our random input data
sampled from µX and µX′ .

We begin by factoring out cos(ω) and sin(ω) from the exponent:

〈
ZR(ω)T ,X

〉
F
=

N∑
n=1

(R(ω)Zn)(Xn)
T

=

N∑
n=1

cos(ω)Zn,1Xn,1 − sin(ω)Zn,2Xn,1 + sin(ω)Zn,1Xn,2 + cos(ω)Zn,2Xn,2

= cos(ω)

[
X:,1

X:,2

]T [
Z:,1

Z:,2

]
+ sin(ω)

[
X:,2

−X:,1

]T [
Z:,1

Z:,2

]
= cos(ω) · vec(X)Tvec(Z) + sin(ω) · vec

(
XR (−π / 2)T

)T
vec(Z).

We can then show that

βX(Z)

=

∫
[0,2π]

exp

(
1

σ2

(
cos(ω) · vec(X)Tvec(Z) + sin(ω) · vec

(
XR (−π / 2)T

)T
vec(Z)

))
dω

=

∫
[0,2π]

exp

cos(ω) ·
√
(vec(X)Tvec(Z) / σ2)

2
+

(
vec
(
XR (−π / 2)T

)T
vec(Z) / σ2

)2
 dω

=2π · I0

√(vec(X)Tvec(Z) / σ2)
2
+

(
vec
(
XR (−π / 2)T

)T
vec(Z) / σ2

)2
 ,

where the second equality follows from the fact that cos(ω)η1+sin(ω)η2 = cos(ω+α)
√
η21 + η22 for

some α ∈ [0, 2π] (see also Eq. 29 of [139]) and the third equality is due to the integral representation
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of the modified Bessel function of the first kind with order 0 (see Eq. 10.32.1 of [140]):

I0(z) =
1

π

∫
[0,π]

exp (cos(α)z) dα.

We can now insert this expression for the worst-case classifier into the expectations w.r.t. clean and
perturbed smoothing distributions µX , µ′

X from Eqs. (39) and (40) . Note that, by definition, we
have vec(Z) ∼ N (vec(X), σ2 · I2N ) for Z ∼ µX . Thus:

E
Z∼µX′

[h∗(Z)] = E
q∼N (m(1),Σ)

[
1

[
I0
(√

q21 + q22

)
/ I0

(√
q23 + q24

)
≤ κ

]]
,

E
Z∼µX

[h∗(Z)] = E
q∼N (m(2),Σ)

[
1

[
I0
(√

q21 + q22

)
/ I0

(√
q23 + q24

)
≤ κ

]]
,

with meansm(1) =W vec(X ′),m(2) =W vec(X) and covariance matrix Σ = σ2WW T , where

W =
1

σ2
·


vec(X ′)T

vec
(
X ′R (−π / 2)T

)
vec(X)T

vec
(
XR (−π / 2)T

)
 .

Calculating the matrix-vector and matrix-matrix products yields the values from Theorem 6, thus
proving that the certificate is valid.

F.4.3 Rotation invariance in 3D

As discussed in Section 6.4, we can apply Theorem 3 to T = SO(3), but do not have a closed-form
expression for the Haar integral βX(Z) characterizing our worst-case classifier. We can however
evaluate it using numerical integration. In the following, we first show how we can reduce the number
of integration variables to facilitate numerical integration. We then show that, similar to the 2D
case, the Monte Carlo certification procedure presented in Section 6.3 only requires sampling from a
16-dimensional normal distribution, which allows us to obtain tight bounds via a large number of
samples at little computational cost.

Reducing the number of integration variables. Recall from our proof of Theorem 3 in Appen-
dices F.3 and F.3.3 that

βX(Z) =

∫
Ω

cos(ω2) · exp
(〈
ZR(ω)T ,X

〉
F
/ σ2

)
dω, (41)

with Ω = [0, 2π]× [−π2 , π2 ]× [0, 2π] and rotation matrix

R(ω) =

[
cos(ω1) − sin(ω1) 0
sin(ω1) cos(ω1) 0

0 0 1

]
·
[

cos(ω2) 0 sin(ω2)
0 1 0

− sin(ω2) 0 cos(ω2)

]
·
[
1 0 0
0 cos(ω3) − sin(ω3)
0 sin(ω3) cos(ω3)

]

=

[
cos(ω1) − sin(ω1) 0
sin(ω1) cos(ω1) 0

0 0 1

]
·
[

cos(ω2) sin(ω2) sin(ω3) cos(ω3) sin(ω2)
0 cos(ω3) − sin(ω3)

− sin(ω2) cos(ω2) sin(ω3) cos(ω2) cos(ω3)

]

:=

[
cos(ω1) − sin(ω1) 0
sin(ω1) cos(ω1) 0

0 0 1

]
· R̃(ω2:),

with R̃(ω2:) being the matrix that rotates around the y- and z-axis by angles ω2 and ω3, respectively.
While we cannot evaluate this term analytically, we can calculate the inner integral over ω1 in order
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to reduce it to a double integral. We begin by factoring out cos(ω1) and sin(ω1) from the exponent:〈
ZR(ω)T ,X

〉
F
/ σ2

=

N∑
n=1

(Xn)
TR(ω)Zn / σ

2

=cos(ω1)

(
N∑
n=1

Xn,1

(
R̃(ω2:)Zn

)
1
+Xn,2

(
R̃(ω2:)Zn

)
2

)
/ σ2

+ sin(ω1)

(
N∑
n=1

Xn,2

(
R̃(ω2:)Zn

)
1
−Xn,1

(
R̃(ω2:)Zn

)
2

)
/ σ2

+

N∑
n=1

Xn,3

(
R̃(ω2:)Zn

)
3
/ σ2.

=cos(ω1) · χ1(ω2:,X
TZ) + sin(ω1) · χ2(ω2:,X

TZ) + χ3(ω2:,X
TZ),

where χ1, χ2, χ3 are shorthands we introduce to avoid clutter in the following derivations. Due to the
entries of R̃(ω2 :), the shorthand χ1 : R2 × R3×3 → R is defined as

χ1(ω2:,X
TZ))

:=
1

σ2

N∑
n=1

(
Xn,1 (cos(ω2)Zn,1 + sin(ω2) sin(ω3)Zn,2 + cos(ω3) sin(ω2)Zn,3)

+Xn,2 (cos(ω3)Zn,2 − sin(ω3)Zn,3)
)

=cos(ω2)(X:,1)
TZ:,1 + sin(ω2) sin(ω3)(X:,1)

TZ:,2 + cos(ω3) sin(ω2)(X:,1)
TZ:,3

+ cos(ω3)(X:,2)
TZ:,2 − sin(ω3)(X:,2)

TZ:,3

=cos(ω2)(X
TZ)1,1 + sin(ω2) sin(ω3)(X

TZ)1,2 + cos(ω3) sin(ω2)(X
TZ)1,3

+ cos(ω3)(X
TZ)2,2 − sin(ω3)(X

TZ)2,3

Similarly, the shorthand χ2 : R2 × R3×3 → R is defined as

χ2(ω2:,,X
TZ)

:= cos(ω2)(X
TZ)2,1 + sin(ω2) sin(ω3)(X

TZ)2,2 + cos(ω3) sin(ω2)(X
TZ)2,3

− cos(ω3)(X
TZ)1,2 + sin(ω3)(X

TZ)1,3.

The shorthand χ3 : R2 × R3×3 → R is defined as

χ3(ω2:,,X
TZ)

:=− sin(ω2)(X
TZ)3,1 + cos(ω2) sin(ω3)(X

TZ)3,2 + cos(ω2) cos(ω3)(X
TZ)3,3.

Just like in Appendix F.4.2, we can use the integral formula for the modified Bessel function of the
first kind and order zero to eliminate the integral w.r.t. ω1:

βX(Z)

=

∫
Ω

cos(ω2) · exp
(
χ3(ω2:,X

TZ)
)
· exp

(
cos(ω1) · χ1(ω2:,X,Z) + sin(ω1) · χ2(ω2:,X

TZ)
)
dω

=2π ·
∫
[−π

2 ,
π
2 ]×[0,2π]

cos(ω2) · exp
(
χ3(ω2:,X

TZ))
)
· I0

(√
χ1(ω2:,X,Z)2 + χ2(ω2:,X,Z)2

)
dω2:

:=β̂(XTZ).

We introduce β̂(XTZ) to avoid clutter in the next equations and to highlight that this function
characterizing our worst-case classifier only depends onXTZ ∈ R3×3.

Efficient Monte Carlo certification. Just like in Appendix F.4.2, we can now use the fact that
our worst-case classifier only depends on a small number of variables that are the result of linearly
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transforming our randomized inputs Z ∼ µX , namely the 9 entires of XTZ. Let ζ : R8 → R3×3

with

ζ(q) =

[
q1 q3 q6
0 q4 q7
q2 q5 q8

]
be a function that zero-pads its 8-dimensional input vector before devectorizing into shape 3 × 3.
Since vec(Z) ∼ N

(
vec(X), σ2I3N

)
if Z ∼ µX , we have by definition of β̂ that

E
Z∼µX

[
βX′(Z)

βX(Z)
≤ κ

]
= E
q∼N (mX ,Σ)

[
β̂(ζ(q1:8))

β̂(ζ(q9:16))
≤ κ

]
,

withmX =W vec(X), Σ = σ2WW T and

W =

X ′
:,1 X ′

:,3 0 0 X:,1 X:,3 0 0
0 0 X ′ 0 0 0 X 0
0 0 0 X ′ 0 0 0 X

T .
Thus, the expectation that provides the optimal value of our variance-constrained optimization
problem can be probabilistically bounded via Monte Carlo sampling from a 16-dimensional normal
distribution, regardless of the data dimensionality.

F.4.4 Roto-translation invariance in 2D and 3D

For the roto-granslation group SE (D), we prove that evaluating the tight certificate is equivalent to
evaluating the tight certificate for rotation group SO(D) after centering the clean and perturbed data
X,X ′ by substracting their averages.

Theorem 7. Let X̃ =X − 1NX with column-wise averagesX,X ′ ∈ R1×D. Further let η be a
right Haar measure on SO(3) and µX our isotropic matrix normal smoothing distribution. Let

β
SE(D)
X =

∫
SE(D)

∫
RD

exp
(〈
ZRT + 1Nb

T ,X
〉
F
/ σ2

)
db dη(R)

be the Haar integral characterizing the worst-case classifier for roto-translation invariance (see
also Appendix F.3.4) and

β
SO(D)
X =

∫
SO(D)

∫
RD

exp
(〈
ZRT ,X

〉
F
/ σ2

)
dη(R)

be the Haar integral characterizing the worst-case classifier for rotation invariance (see also Appen-
dices F.3.2 and F.3.3). Then, for all V ∈ RN×D and κ ∈ R+,

E
Z∼µV

[
1

[
β
SE(D)
X′ (Z)

β
SE(D)
X (Z)

≤ κ
]]

= E
Z∼µṼ

[
1

[
β
SO(D)

X̃′ (Z)

β
SO(D)

X̃
(Z)

≤ κ
]]

.

Note that these (with V = X and V = X ′) are exactly the expectations determining the optimal
value of our variance-constrained optimization problem (see Theorem 3).

To prove this theorem, we first simplify the integrand of βSE(D)
X (Z) by moving the rotation matrix

into the second argument of the Frobenius inner product (note that, sinceR is a rotation matrix, we
haveR−1 = RT ): 〈

ZRT + 1Nb
T ,X

〉
F
=
〈
ZRT + 1Nb

TRRT ,X
〉
F

=
〈(
Z + 1Nb

TR
)
RT ,X

〉
F

=
〈
Z + 1Nb

TR,XR
〉
F

=
〈
Z + 1N (RT b)T ,XR

〉
F
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Next, we bring our integral into the same form as in our derivation of the certificate for translation
invariance (see Appendix F.4.1), so that we can easily integrate out the translation vector b. First, we
eliminate the rotation matrixRT via the substitution c = RT b:

β
SE(D)
X (Z) =

∫
SO(D)

∫
RD

exp
(〈
Z + 1N (RT b)T ,XR

〉
F
/ σ2

)
db dη(R)

=

∫
SO(D)

∫
RD

exp
(〈
Z + 1Nc

T ,XR
〉
F
/ σ2

)
dc dη(R)

For the next step, let A =

[
1 0TN−1

−1N−1 IN−1

]
∈ RN×N with inverse A−1 =

[
1 0TN−1

1N−1 IN−1

]
and all-zeros vector 0N−1 ∈ RN−1, all-ones vector 1N−1 ∈ RN−1 and identity matrix IN−1.
Multiplying a vector or matrix withA is equivalent to subtracting the first row from all other rows.
We introduce the redundant factorA−1A and make the substitution u = c+Z1 to show that

β
SE(D)
X (Z) =

∫
SO(D)

∫
RD

exp
(〈
A−1A

(
Z + 1Nc

T
)
,XR

〉
F
/ σ2

)
dc dη(R)

=

∫
SO(D)

∫
RD

exp


〈
A−1

 ZT1 + cT

(Z2 −Z1)
T

. . .
(ZN −Z1)

T

 ,XR〉
F

/ σ2

 dc dη(R)

=

∫
SO(D)

∫
RD

exp


〈
A−1

 uT

(Z2 −Z1)
T

. . .
(ZN −Z1)

T

 ,XR〉
F

/ σ2

 du dη(R)

∝
∫
SO(D)

∫
RD

D∏
d=1

N

A−1

 ud
Z2,d −Z1,d

. . .
ZN,d −Z1,d

 |XR:,d, σ
2IN

 du dη(R).

Next, we use the behavior of multivariate normal densities under affine transformation (see
also Lemma 2), as well as the fact that marginalizing out one dimension of a multivariate nor-
mal density is equivalent to dropping the correspond row of the mean and corresponding row and
column of the adjacency matrix, to show that

β
SE(D)
X (Z) ∝

∫
SO(D)

∫
RD

D∏
d=1

N


 ud
Z2,d −Z1,d

. . .
ZN,d −Z1,d

 | AXR:,d, σ
2AAT

 du dη(R)

=

∫
SO(D)

D∏
d=1

N
([
Z2,d −Z1,d

. . .
ZN,d −Z1,d

]
| A2:XR:,d, σ

2A2:(A2:)
T

)
dη(R)

=

∫
SO(D)

D∏
d=1

N
(
A2:Z:,d | A2:XR:,d, σ

2A2:(A2:)
T
)
dη(R)

∝
∫
SO(D)

D∏
d=1

exp

(
1

σ2
ZT:,d(A2:)

T
(
A2:(A2:)

T
)−1

A2:XR:,d

)
dη(R)

Finally, reusing the fact that (A2:)
T
(
A2:(A2:)

T
)−1

A2:X = X̃ with X̃ = X − 1NX from Ap-
pendix F.4.1 proves that

β
SE(D)
X (Z) ∝

∫
SO(D)

D∏
d=1

exp

(
1

σ2
ZT:,dX̃R:,d

)
dη(R)

=

∫
SO(D)

exp
(〈
ZRT , X̃

〉
/ σ2

)
dη(R).
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The last term is the Haar integral βSO(D)

X̃
(Z) characterizing the worst-case classifier for SO(D),

after centeringX . This means that we have

β
SE(D)
X′ (Z)

β
SE(D)
X (Z)

=
β
SO(D)

X̃′ (Z)

β
SO(D)

X̃
(Z)

.

Note that, when using ∝ in the previous steps, we have only removed constant factors that appear in
the enumerator and denominator and thus cancel out.

The last thing we need to do is verify that not only the classifiers, but also their expectations under V
and Ṽ are identical (see Theorem 7). We use the fact that the worst-case classifier only depends on
a low-dimensional linear projection of our random input variable Z (similar to our derivations for
Monte Carlo evaluation in Appendices F.4.2 and F.4.3):

β
SE(D)
X (Z) ∝

∫
SO(D)

D∏
d=1

exp

(
1

σ2
ZT:,dX̃R:,d

)
dη(R)

=

∫
SO(D)

D∏
d=1

exp

(
1

σ2
(X̃TZ:,d)

TR:,d

)
dη(R)

=

∫
SO(D)

exp
(〈
X̃TZ,R

〉
/ σ2

)
dη(R)

By definition of our smoothing distribution, we have vec(Z) ∼ N (vec(V ) | vec(V ), σ2ID·N ) for
Z ∼ µV . Because our worst-case classifier for SE (D) performs a linear transformation of vec(Z),
we have

E
Z∼µV

[
1

[
β
SE(D)
X′ (Z)

β
SE(D)
X (Z)

≤ κ
]]

= E
Z∼µV

1
∫SO(D)

exp
(〈
X̃ ′TZ,R

〉
/ σ2

)
dη(R)∫

SO(D)
exp

(〈
X̃TZ,R

〉
/ σ2

)
dη(R)

≤ κ


= E
q∼N (mV ,Σ)

[
1

[ ∫
SO(D)

exp
(〈
vec−1(q1:9),R

〉
/ σ2

)
dη(R)∫

SO(D)
exp (⟨vec−1(q10:18),R⟩ / σ2) dη(R)

≤ κ
]]

,

withmV =W vec(V ) and Σ =WW T , where

W =

X̃ ′ 0 0 X̃ 0 0

0 X̃ ′ 0 0 X̃ 0

0 0 X̃ ′ 0 0 X̃

T .
Similarly, we have for SO(3) (after centering V ), that

E
Z∼µṼ

[
1

[
β
SO(D)

X̃′ (Z)

β
SO(D)

X̃
(Z)

≤ κ
]]

= E
q∼N (mṼ ,Σ)

[
1

[ ∫
SO(D)

exp
(〈
vec−1(q1:9),R

〉
/ σ2

)
dη(R)∫

SO(D)
exp (⟨vec−1(q10:18),R⟩ / σ2) dη(R)

≤ κ
]]

,

withmṼ =W vec(Ṽ ) and Σ =WW T . Finally, due to the fact (see Lemma 7) that calculating an
inner product between a centered and an uncentered vector (here: columns of X̃ and V ) is equivalent
to centering both vectors before calculating the inner product (here: columns of X̃ and Ṽ ), we have
mV =mṼ . Thus, both expectations are equal, which concludes our proof.
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F.5 Monte Carlo certification

All of the discussed tight certificates, save for the one for translation invariance, are of the form

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗]] = Pr
V∼υ(1)

[ρ(V ) ≤ κ]

with κ ∈ R such that Pr
V∼υ(2)

[ρ(V ) ≤ κ] = pX,y∗

and pX,y∗ := Pr
Z∼µX

[g(Z) = y∗] ,

where g : RN×D → Y is our base classifier, µX , µX′ are the clean and perturbed smoothing
distribution, υ(1) and υ(2) are distributions over some set S, and ρ : S → R is some arbitrary
scalar-valued function.

As discussed in Section 6.3, we propose to compute a narrow probabilistic lower bound on
minh∈HT PrZ∼µX′ [h(Z) = y∗]] by combining three confidence bounds.

Before computing these bounds, we have to inspect the monotonicity of our certificate. Evi-
dently, PrV∼υ(1) [ρ(V ) ≤ κ] is monotonically decreasing in κ. Furthermore, κ is monotonically
decreasing in pX,y∗ : If pX,y∗ decreases, then a smaller κ is sufficient for fulfilling the constraint
PrV∼υ(2) [ρ(V ) ≤ κ] = pX,y∗ . Thus, we can compute a lower bound on our certificate by

1. lower-bounding pX,y∗ , i.e. pX,y∗ ≤ pX,y∗ ,

2. lower-bounding the κ ∈ R that fulfills PrV∼υ(2) [ρ(V ) ≤ κ] = pX,y∗ , i.e. κ ≤ κ
3. and then lower-bounding PrV∼υ(1) [ρ(V ) ≤ κ].

The random variable 1 [g(Z) = y∗] is a Bernoulli random variable. Just like other randomized
smoothing methods (e.g. [26]), we can lower-bound pX,y∗ by evaluating g on N1 samples from µX
and computing a binomial proportion confidence bound, such as the the Clopper-Pearson confidence
bound [141].

Lower-bounding κ requires computing a lower bound on F−1(pX,y∗), where F−1 is the quantile
function of ρ(V ) with V ∼ υ(2). A non-parametric lower confidence bound on this quantile can be
constructed by evaluating ρ(V ) on N2 samples from υ(2) and returning the largest order statistic
R(n) such that

[
ρ(V ) ≤ R(n)

]
≤ pX,y∗ holds with high probability (see Section 5.2.1. of [142]

and Algorithm 1 below).

The random variable [ρ(V ) ≤ κ] is another Bernoulli random variable and can thus be lower-bounded
by evaluating ρ(V ) on N3 samples from µX′ and computing a binomial proportion confidence bound.

We want all three confidence bounds to simultaneously hold with high probability 1− α. We ensure
this by using Holm-Bonferroni [131] correction to account for the multiple comparisons problem.4
In our case, this corresponds to computing the first bound with significance α, the second one with
significance α/2 and the last one with significance α/3.

Algorithm 1 summarizes our certification procedure. LOWERCOUNFBOUND refers to the Clopper-
Pearson lower confidence bound. BINPVALUE(n,N2,≥, pX,y∗) refers to the p-value of a Binomial
test with the null-hypothesis that the success probability is greater or equal pX,y∗ . Note that only the
first confidence bound requires evaluating the base classifier g. For the other two confidence bounds
a large number of samples can be evaluated at little computational cost.

4Holm-Bonferroni correction has already been used in the context of randomized smoothing, see [91].

60



Algorithm 1 Monte Carlo certification procedure

function PROBCERTIFY(y∗, g, µX , υ(1), υ(2), N1, N2, N3, α)
Z(1), . . . ,Z(N1) ← SAMPLE(µX , N1)
count1 ←

∑N1

n=1 1
[
g(Z(n)) = y∗

]
pX,y∗ ← LOWERCONFBOUND(count1, N1, 1− α) ▷ First bound

n∗ ← max
{
n | BINPVALUE(n,N2,≥, pX,y∗) < α

2

}
V (1), . . . , V (N2) ← SAMPLE(υ(2), N2)
R(1), . . . , R(N2) ← SORTASCENDING(ρ(V (1)), . . . , ρ(V (N2)))
κ← R(n∗) ▷ Second bound
V (1), . . . , V (N3) ← SAMPLE(υ(1), N3)
count2 ←

∑N3

n=1 1 [ρ(V ) ≤ κ]
return LOWERCONFBOUND(count2, N3, 1− α

3 ) ▷ Third bound
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G Proof of Theorem 5

Next, we prove that the post-processing-based certificate for rotation-invariance ( T = SO(D) ) is
not tight, which we formalized in Section 6.3 as follows:
Theorem 5. Let g : RN×D → Y be invariant under T = SO(D) and HT be defined as in Eq. (2).
Assume that perturbed inputX ′ is not obtained via rotation ofX , i.e. ∄R ∈ SO(D) :X ′ =XRT .
Further assume that pX,y∗ ∈ (0, 1). Then, for allR ∈ SO(D):

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] > Φ

(
Φ−1 (pX,y∗)−

1

σ

∣∣∣∣X ′RT −X
∣∣∣∣
2

)
. (8)

The right-hand side term is the optimal value of the black-box optimization problem evaluated for
perturbed inputX ′RT , i.e.

min
h∈H

Pr
Z∼µX′RT

[h(Z) = y∗] ,

with H =
{
h : RN×D → Y | PrZ∼µX

[h(Z) = y∗] ≥ pX,y∗
}

. The left-hand side term is the opti-
mal value of the gray-box optimization problem evaluated for perturbed inputX ′. Note that HT is a
set of rotation invariant classifiers. In Appendix D we have proven that rotation of the smoothing
distribution’s mean does not have an effect on the prediction probabilities of such classifiers, i.e.

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] = min
h∈HT

Pr
Z∼µX′RT

[h(Z) = y∗] .

Thus, we can prove Theorem 5 by proving the following, more general statement:
Lemma 8. Let g : RN×D → Y be invariant under T = SO(D) and HT be defined as in Eq. (2).
Further assume thatX ′ ̸=X and that pX,y∗ ∈ (0, 1). Then:

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗] > min
h∈H

Pr
Z∼µX′

[h(Z) = y∗] (42)

We can do so by showing that no optimal solution to the r.h.s. black-box problem from Eq. (42)
is a feasible solution to the l.h.s. gray-box problem. More formally, let H∗ ⊆ H be the set of all
classifiers minimizing the r.h.s. black box problem. We have H∗ ⊆ H and HT ⊆ H. By showing that
H∗ ∩HT = ∅, we prove that HT ⊆ H \H∗, i.e. all rotation invariant classifiers from HT yield strictly
larger optimal values.

Recall that an optimal solution to the r.h.s. black-box problem in Eq. (42) is given by the Neyman-
Pearson lemma [107]. Later work on hypothesis testing has shown that the Neyman-Pearson lemma
is not only a sufficient, but a necessary condition for optimality[143]: Every most powerful test must
fulfill the likelihood ratio inequalities, save for sets of zero measure. For our formulation of the
Neyman-Pearson lemma (see Lemma 5), this means that any classifier h that is an optimal solution to
the r.h.s. black-box problem from Eq. (42) must fulfill

h(Z) ∈
{
{y∗} if µX′ (Z)

µX(Z) < κ

Y \ {y∗} if µX′ (Z)
µX(Z) > κ

for some κ ∈ R, save for sets of zero measure. Cohen et al. [26] have shown that if X ′ ̸= X and
p ∈ (0, 1) and µX , µX′ are isotropic Gaussian distributions, then these likelihood ratio inequalities
correspond to a linear decision boundary, i.e. any optimal solution most fulfill

h(Z) ∈
{{y∗} if ⟨W ,Z⟩F + b < 0

Y \ {y∗} if ⟨W ,Z⟩F + b > 0
(43)

for some b ∈ R andW ∈ RN×D withw ̸= 0N,D, save for sets of zero measure. Here, ⟨A,B⟩F =
vec(W )Tvec(Z) is the Frobenius inner product.

Therefore, we can prove Lemma 8 by showing that classifiers complying with Eq. (43) (save for
sets of zero measure) are not rotation invariant, i.e. they are not feasible solutions to the gray-box
optimization problem.

We first do this for the case that D is even and then for the case that D is odd.
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Lemma 9. Assume that D = 2k for some k ∈ N. Let h : RN×D → Y be a classifier that fulfills

h(Z) ∈
{{y∗} if ⟨W ,Z⟩F + b < 0

Y \ {y∗} if ⟨W ,Z⟩F + b > 0
(44)

for some b ∈ R and w ∈ RN×D with w ̸= 0N ·D, save for sets of zero measure. Then, there is an
input Ẑ and a rotation matrixR ∈ SO(D) such that h(Ẑ) ̸= h(ẐRT ).

Proof. Case 1. Assume that b ≥ 0.

Consider the set S = {Z | ⟨W ,Z⟩F < b}. By construction, we have ∀Z ∈ S : ⟨W ,Z⟩F + b < 0
and ∀Z ∈ S : ⟨W ,−Z⟩F + b > 0.

There must be at least one Ẑ ∈ S with h(Ẑ) = y∗ and h(Ẑ) ̸= y∗. Otherwise, all points Z ∈ S
would need to fulfill h(Z) ̸= y∗ or h(−Z) = y∗, in which case we would have sets of non-zero
measure violating the likelihood ratio inequalities from Eq. (44).

Note that −Ẑ = Ẑ(−IN )T and −IN ∈ SO(D), because −IN is orthonormal and det(−IN ) = 1,
due to D being even. Thus, we have found an input Ẑ and a rotation matrixR ∈ SO(D) such that
h(Z) ̸= h(ZRT ).

Case 2. Assume that b < 0. This case follows analogously by constructing the set S =

{Z | ⟨W ,Z⟩F > b} and considering a point Ẑ ∈ S with h(Ẑ) ̸= y∗ and h(−Ẑ) = y∗

Now, we consider the case thatD is odd. Here,−IN /∈ SO(D), because det(−IN ) = −1. Therefore,
we will need to use slightly more complicated constructions.
Lemma 10. Assume that D = 2k − 1 for some k ∈ N. Let h : RN×D → Y be a classifier that
fulfills

h(Z) ∈
{{y∗} if ⟨W ,Z⟩F + b < 0

Y \ {y∗} if ⟨W ,Z⟩F + b > 0
(45)

for some b ∈ R and w ∈ RN×D with w ̸= 0N ·D, save for sets of zero measure. Then, there is an
input Ẑ and a rotation matrixR ∈ SO(D) such that h(Ẑ) ̸= h(ẐRT ).

Proof. In the following, letA =

[
1 0TD

0D−1 −ID−1

]
. We haveA ∈ SO(D), becauseA is orthonor-

mal and det(A) = 1, due to D being odd.

Case 1. Assume that b ≥ 0.

We know that W ̸= 0N,D. Without loss of generality, assume that W:,2: ̸= 0N,(D−1), i.e. at least
one of the the last D − 1 columns is non-zero.

Consider the set S =
{
Z |W T

:,1Z:,1 ∈ [0, 1] ∧ ⟨W:,2:,Z:,2:⟩F < b− 1
}

. By construction, we have
∀Z ∈ S : ⟨W ,Z⟩F + b < 0 and ∀Z ∈ S :

〈
W ,ZAT

〉
F
+ b > 0.

There must be at least one Ẑ ∈ S with h(Ẑ) = y∗ and h(ẐAT ) ̸= y∗. Otherwise, all points Z ∈ S
would need to fulfill h(Z) ̸= y∗ or h(ZAT ) = y∗, in which case we would have sets of non-zero
measure violating Eq. (44).

Case 2. Assume that b < 0. This case follows analogously by constructing the set S ={
Z |W T

:,1Z:,1 ∈ [−1, 0] ∧ ⟨W:,2:,Z:,2:⟩F > b+ 1
}

and considering a point Ẑ ∈ S with h(Ẑ) ̸= y∗

and h(AẐ) = y∗.

Lemmas 9 and 10 combined prove Lemma 8, which in turn proves Theorem 5.
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H Multi-class certificates

In our discussions in Sections 3.1, 5 and 6, we have only considered binary certificates5. That is,
prediction y∗ of smoothed classifier is certifiably robust to a perturbed input X ′ if the probability
of base classifier g predicting y∗ under perturbed smoothing distribution µX′ is greater than the
probability of all other classes combined. That is, pX′,y∗ >

1
2 . We have then, for different invariances,

computed lower bounds pX′,y∗ ≤ pX′,y∗ . If pX′,y∗ >
1
2 , then pX′,y∗ >

1
2 and the prediction is

certifiably robust.

Alternatively, one can certify robustness by showing that y∗ remains more likely than the second
most likely class under the perturbed smoothing distribution [26], i.e. pX′,y∗ > maxy ̸=y∗ pX′,y . To
this end, one can compute a lower bound pX′,y∗ ≤ pX′,y∗ and an upper-bound maxy ̸=y∗ pX′,y ≥
maxy ̸=y∗ pX′,y . If pX′,y∗ > maxy ̸=y∗ pX′,y , then robustness is guaranteed. Due to the monotonicity
of randomized smoothing certificates w.r.t. to the prediction probabilities, this can be achieved by
showing that pX′,y∗ > pX′,y′ , where y′ = argmaxy ̸=y∗pX,y is the second most likely class under
the clean smoothing distribution. This second most likely class y′ can be found via a binomial test,
see [26, 144].

The lower bound pX′,y∗ can be obtained using the same formulae discussed throughout the main text

(e.g. pX′,y∗ = Φ
(
Φ−1(pX,y′)− ||∆||2

σ

)
for black-box randomized smoothing). The upper bound

pX′,y′ can be found via the Neyman-Pearson upper bound discussed in Appendix F.2:
Lemma 6 (Neyman-Pearson upper bound). Let µX′ , µX , be two continuous distributions over a
measurable set A such that, for all κ ∈ R+, the set

{
z | µX′ (z)

µX(z) = κ
}

has measure zero. Consider

an arbitrary label set Y, a specific class label y ∈ Y and scalar p ∈ [0, 1]. Then(
max
h:A→Y

Pr
z∼µX′

[h(z) = y] s.t. Pr
z∼µX

[h(z) = y] ≤ p
)

= E
z∼µX′

[h∗(z)]

with h∗(z) = 1

[
µX′(z)

µX(z)
≥ κ

]
and κ ∈ R+ such that E

z∼µX

[h∗(z)] = p.

Note that it is identical to the lower bound, save for replacing "≤" with "≥" and vice-versa.

The resulting black-box upper bound is pX′,y′ = Φ
(
Φ−1(pX,y′) +

||∆||2
σ

)
. It is identical to the

black-box lower bound, save for replacing "−" with "+". Substituting both bounds into pX′,y∗ >

maxy ̸=y∗ pX′,y and applying the inverse-normal CDF Φ−1 to both sides shows that the classifier is
certifiably robust if ||∆|| ≤ σ

2

(
Φ−1(pX′,y∗)− Φ−1(pX′,y′)

)
[26].

Evidently, the orbit-based versions of the multi-class certificates are identical to their binary counter-
parts, except that the radius of the underlying black-box certificate changes.

For the tight gray-box approach, upper bounds can be derived by going through the same derivations
as in Appendix F, but using the Neyman-Pearson upper bounds from Lemma 6, i.e. replacing "≤"
with "≥" and vice-versa. (see Lemma 6). In the case of translation invariance, this results in upper
bound Φ

(
Φ−1(pX,y′) +

||∆−1N∆||2
σ

)
). In the cases involving rotation invariance, this results in

bounds of the form

Pr
V∼υ(1)

[ρ(V ) ≥ κ]

with κ ∈ R such that Pr
V∼υ(2)

[ρ(V ) ≥ κ] = pX,y′

and pX,y∗ := Pr
Z∼µX

[g(Z) = y′] ,

i.e. the same certificates, but with “≥ κ” instead of “≤ κ”.

Our Monte Carlo certification procedure proposed in Appendix F.5 can also easily be adapted to
computing an upper bound by replacing "≤" with "≥" and vice-versa.:

5Not to be confused with certificates that are limited to binary classifiers.
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Algorithm 2 Monte Carlo certification procedure (Upper bound)

function PROBCERTIFYUPPER(y∗, g, µX , υ(1), υ(2), N1, N2, N3, α)
Z(1), . . . ,Z(N1) ← SAMPLE(µX , N1)
count1 ←

∑N1

n=1 1
[
g(Z(n)) = y∗

]
pX,y′ ← UPPERCONFBOUND(count1, N1, 1− α) ▷ First bound
n∗ ← max

{
n | BINPVALUE(n,N2,≤, 1− pX,y′) < α

2

}
V (1), . . . , V (N2) ← SAMPLE(υ(2), N2)
R(1), . . . , R(N2) ← SORTASCENDING(ρ(V (1)), . . . , ρ(V (N2)))
κ← R(n∗) ▷ Second bound
V (1), . . . , V (N3) ← SAMPLE(υ(1), N3)
count2 ←

∑N3

n=1 1 [ρ(V ) ≥ κ]
return UPPERCONFBOUND(count2, N3, 1− α

3 ) ▷ Third bound

Note that we still need to lower-bound threshold κ, because this increases the probability
PrV∼υ(1) [ρ(V ) ≥ t] and thus leads to more pessimistic, sound multi-class certificates.

Finally note that, because the multi-class certificates are just a combination of two binary certificates,
our evaluation of binary invariance-aware certificates in in Section 8 is a good indicator of the
performance of invariance-aware multi-class certificates.
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I Inverse certificates

In Section 8.1, we evaluate inverse certificates, i.e. compute the smallest prediction probability pmin

for which robustness can still be certified, given the remaining certificate parameters such as ||∆||2
or ||X||2.

In the case of the black-box randomized smoothing baseline, pmin can be calculated by solving
Φ
(
Φ(−1)(p)− ||∆||2

σ

)
= 1

2 for p, which results in pmin = Φ
(

||∆||2
σ

)
.

Similarly, the gray-box certificates for translation invariance has pmin = Φ
(

||∆−1N∆||2
σ

)
, where

∆ ∈ R1×D are the column-wise averages.

The tight gray-box certificates involving rotation invariance do not have closed-form analytic expres-
sions. Instead, they are of the form

min
h∈HT

Pr
Z∼µX′

[h(Z) = y∗]] = Pr
V∼υ(1)

[ρ(V ) ≤ κ]

with κ ∈ R such that Pr
V∼υ(2)

[ρ(V ) ≤ κ] = pX,y∗ .

Here, an inverse certificate can be computed by first finding a threshold κ such that
PrV∼υ(1) [ρ(V ) ≤ κ] = 1

2 and then evaluating PrV∼υ(2) [ρ(V ) ≤ κ]. That is,

pmin = Pr
V∼υ(2)

[ρ(V ) ≤ κ]

with κ ∈ R such that Pr
V∼υ(1)

[ρ(V ) ≤ κ] = 1

2
.

To ensure a fair comparison with our baselines, we modify the Monte Carlo certification procedure
proposed in Appendix F.5 to compute a probabilistic upper bound on pmin that holds with high
probability 1− α.

Algorithm 3 Monte Carlo inverse certification procedure

function INVERSEPROBCERTIFY(υ(1), υ(2), N1, N2, α)
n∗ ← min {n | BINPVALUE(n,N1,≤, 0.5) < α}
V (1), . . . , V (N2) ← SAMPLE(υ(1), N1)
R(1), . . . , R(N2) ← SORTASCENDING(ρ(V (1)), . . . , ρ(V (N2)))
κ← R(n∗) ▷ First bound
V (1), . . . , V (N2) ← SAMPLE(υ(2), N3)
count2 ←

∑N2

n=1 1 [ρ(V ) ≤ κ]
return UPPERCONFBOUND(count2, N2, 1− α

2 ) ▷ Second bound

Note that, different from Appendix F.5 we compute a probabilistic upper bound on threshold κ by
finding the smallest order statistic R(n) such that

[
ρ(V ) ≤ R(n)

]
≥ 1

2 holds with high probability.
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J Parameter space of the tight certificate for rotation invariance in 2D

Our tight certificates for 2D rotation invariance depend on ||X||2, ||∆||2, as well as parameters
ϵ1 = ⟨X,∆⟩F, ϵ2 =

〈
XR

(
−π2
)T
,∆
〉
F

, which capture the orientation of the perturbed pointcloud,
relative to the clean point cloud.

In this section, we determine the feasible range of ϵ1 and ϵ2 and calculate the two pairs of values
corresponding to adversarial rotations, which is relevant for our experiments in Section 8.1.

J.1 Feasible parameter range

Let X̂ = X
||X||2 . Then, parameters ϵ1 and ϵ2 can be equivalently stated as follows:

ϵ1 = ⟨X,∆⟩F = vec(X)Tvec(∆) = vec(X̂)Tvec(||X||2∆),

ϵ2 =

〈
XR

(
−π
2

)T
,∆

〉
F

= vec

(
X̂R

(
−π
2

)T)T
vec(||X||2∆).

Note that vec(X̂) and vec
(
X̂R

(
−π2
)T)

have norm 1 and are orthogonal to each other. Thus, they

are the first two elements of an orthonormal basis of R2N . Parameters ϵ1 and ϵ2 are projections of
vec(||X||2∆) onto the first two elements of this basis. Basis changes preserve the norm of vectors.
Thus, the values ϵ1, ϵ2 must fulfill

√
ϵ21 + ϵ22 ≤ ||X||2 · ||∆||2.

J.2 Adversarial rotations

Known rotation angle. Consider an arbitrary X ∈ RN×2. Further consider an adversarially
perturbedX ′ =XR(θ)T that is the result of rotating all rows ofX by angle θ. Let ∆ =X ′ −X .
Recall that, for any vector a, b ∈ RD, aT bT = ||a||2||b||2 cos(∠ab). Therefore

ϵ1 = ⟨X,∆⟩F =

N∑
n=1

XT
n (X

′
n −Xn) =

N∑
n=1

||XT
n ||22 cos(θ)− ||XT

n ||22 = ||X||22(cos(θ)− 1),

where the last equality follows from the definition of the Frobenius norm. Similarly, we have

ϵ2 = ||X||22(cos(θ + π/2)− cos(π/2)) = −||X||22 sin(θ).

Unknown rotation angle. Now assume that we know ||X||2 and ||∆||2, but do not know the rotation
angle θ. We have

||∆||22 =
〈
XR(θ)T −X,XR(θ)T −X

〉
F

=||XR(θ)T ||22 + ||X||22 − 2
〈
X,XR(θ)T

〉
F

=||X||22 + ||X||22 − 2||X||22 cos(θ)
=2||X||22(1− cos(θ)).

Evidently, such an adversarial rotation is only possible if ||∆|| ≤ 2||X||, which corresponds to a
rotation by angle π. Solving for θ yields

θ = ± arccos

(
1− ||∆||

2
2

2||X||22

)
Inserting into our formulae for ϵ1 and ϵ2 and using that sin(arccos(a)) =

√
1− a2 shows that

ϵ1 = −1

2
||∆||22,

ϵ2 = ±1

2

√
||∆||22 (4||X||22 − ||∆||22).
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