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1 Missing proofs

1.1 Proof of Theorem 2.1

In what follows, we use the notation [k] to denote the set of integers 1, 2, . . . , k. Recall that each cell
of our axis-parallel hyper-grid Γ has side-length 2d

ε . Also recall that we put on a second-level more
refined lattice (grid) which gives us pixels of side-length δ′ = δ/

√
d. For simplicity of argument,

we assume that 1
δ′ (i.e, the reciprocal of the pixel side-length) is an integer. This condition can

be removed by slightly more careful analysis. In what follows, we will show that the output of
Baker’s paradigm, Y , is a (1 + 2ε, 1 + 6δ)-bi-criteria approximation in expectation for d-MIS for
0 < ε, δ < 1/3, with the desired time complexity.

Now fix some optimal solution Y ∗ ⊆ X for d-MIS over X . Let Y ′ ⊆ Y ∗ be the subset of points in
Y ∗ such that the unit balls centered at them intersect the shifted grid Γ + τ ; that is

Y ′ = {p ∈ Y ∗ : ball(p, 1) ∩ (Γ + τ) 6= ∅}.

Note that Y ′ ⊆ X ′ as constructed in (Step 2) of the main paper. For any point p ∈ X , for any i ∈ [d],
let Ep,i be the event that ball(p, 1) intersects some (d− 1)-dimensional hyperplane of the shifted grid
Γ + τ , that is orthogonal to ei. The event Ep,i occurs precisely when the i-th coordinate of τ falls
within an interval of length 2 out of the side-length 2d

ε of a cell: This is because it is equivalent to that
we have a segment of length 2d/ε (along the i-th axis in direction ei), and a point is within distance 1
to either endpoint of this segment. Hence the total probability is the same as a point to fall within an
interval of length 1 + 1 = 2 out of an interval of length 2d/ε. Since τ is chosen uniformly at random,
we get

Pr[Ep,i] =
2

2d/ε
= ε/d.

Let Ep be the event p ∈ Y ′. By the union bound, we have

Pr[Ep] = Pr[
⋃
i∈[d]

Ep,i] ≤
∑
i∈[d]

Pr[Ep,i] = ε.
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Using linearity of expectation, the above implies

E[|Y ′|] =
∑
p∈Y ∗

Pr[Ep] ≤ |Y ∗| · ε = OPT(X) · ε. (1)

In other words, if we only consider points in X \X ′, then the size of the optimal solution of d-MIS
for X \X ′ can only be at most OPT(X) · ε less than OPT(X), that is, it is at least (1− ε)OPT(X).

Recall that X̂ is the “snapping" of of points in X \X ′ to the second-level lattice points: in particular,
a point p = (p1, . . . , pd) ∈ X \X ′ is mapped to the point p̂ = (δ′bp1δ′ c, . . . , δ

′bpdδ′ c) which intuitively
is the (d-dimensional analog of the) left-bottom of the pixel (of side length δ′) in the second-level
lattice containing p. Let GX̂ be the intersection graph spanned by balls centered points in X̂ but with
radius 1− δ. First, note that as all points within 1 from cell-boundaries are removed2, we have that
each connected component of GX̂ has to be contained inside some cell C of Γ + τ . Hence to compute
MIS (maximum independent set) for GX̂ , we can do so by computing an optimal MIS for GX̂C

, the
restriction of GX̂ within every cell C of Γ + τ , and then the union of them over all cells is necessarily
an MIS for GX̂ . In (Step 2), we compute ŶC, which is an MIS for GX̂C

. If we take the union of this

for all cells, namely Ŷ =
⋃

C ŶC, then it is clear that Ŷ is an MIS for GX̂ .

Furthermore, for any cell C, as it is a d-dimensional hypercube of side-length 2d/ε, we have that
its volume is (2d/ε)d. As any independent set in the cell necessarily has pairwise distance > 2, it
follows that the maximum cardinality of any independent set in C is at most s = (2d/ε)d/Vd =
V −1
d (2d/ε)d, where Vd stands for the volume of a radiue (1− δ) ball in Rd. Furthermore, there are

only M := ( 2d
εδ′ )

d = ( 2d
√
d

εδ )d number of pixels inside cell C, we can thus enumerate all possible
independent sets for X̂C in time Ms = ( 1

εδ )(d/ε)O(d)

time. Since there are at most n cells of Γ + τ

that contains non-empty X̂C, the total time to construct an MIS for GX̂ is thus ( 1
εδ )(d/ε)O(d)

n as
claimed in Theorem 2.1.

Note that in (Step 2) of Baker’s paradigm, after computing ŶC, we need to transfer it to a subset
YC ⊆ XC ⊆ X of original input points. In particular, we achieve this by mapping each point p̂ ∈ ŶC
to an arbitrary point p = π(p̂) ∈ XC contained in the pixel that p̂ is the bottom-left corner of (this is
a consequence of the construction of set X̂C, where we snap each point q in XC to the left-bottom
vertex of the pixel q lies in). Obviously, this map π : ŶC → YC is a bijection, and the distance
‖p̂− π(p̂)‖2 ≤ δ. (Note that the diameter of a pixel in the cell C is δ as the side-length of this pixel
is δ′ = δ/

√
d.)

What remains is to prove that Y =
⋃

C YC as computed in (Step 3) of Baker’s paradigm is indeed a
bi-criteria approximation in expectation for the MIS of GX , the unit-ball intersection graph spanned
by input points X .

To this end, first, note that Ŷ =
⋃

C ŶC is a maximum independent set for GX̂ as argued earlier. We
claim that |Ŷ | ≥ |Y ∗ \ Y ′|. This is because that since Y ∗ \ Y ′ is an independent set for the unit-ball
graph spanned by points in X \ X ′, we have that for any points y, y′ ∈ Y ∗ \ Y ′, ‖y − y′‖2 > 2.
Now map y and y′ to ŷ and ŷ′, the respective left-bottom corner of the pixels they are contained in;
note that ŷ, ŷ′ ∈ X̂ . By the triangle inequality, we have that ‖ŷ − ŷ′‖2 ≥ 2− 2δ as the diameter of
each pixel is δ. This means that snapping all points in Y ∗ \ Y ′ as such to points in X̂ gives rise to an
independent set of GX̂ . This in turn implies that a maximum independent set of GX̂ , namely Ŷ , is at
least as large as the set Y ∗ \ Y ′; that is, |Ŷ | ≥ |Y ∗ \ Y ′|. Combining this with Eqn (1), we then have
that

E[|Y |] = E[|Ŷ |] ≥ |Y ∗| −E[|Y ′|] ≥ (1− ε)|Y ∗| = (1− ε)OPT(X) ≥ OPT/(1 + 2ε), (2)
where the last inequality holds for any positive ε < 1. This establishes one side (lower-bound side)
of the bi-criteria approximation.

We now consider the upper-bound in the bi-criteria approximation. Note that we have a bijection
π : Ŷ → Y which sends a point p̂ ∈ Ŷ to a point π(p) within δ distance. Combining this with the

2We removed all points in X within distance 1 from the cell boundaries. But since we assume that the 1/δ′,
the reciprocal of the pixel side-length, is an integer, this statement about points in X̂ still holds.
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fact that Ŷ itself is an independent set for GX̂ (i.e, any two points inside are at least distance 2− 2δ
apart), we have that Y is an (1 + 6δ)-independent set: This is because any two points in Y are at least
2− 4δ ≥ 2/(1 + 6δ) apart, as 1− 2δ ≥ 1/(1 + 6δ) holds for any positive δ < 1/3. It then follows
that |Y | ≤ OPT1+Θ(δ)(X).

Putting both sides (upper and lower bounds) together, we have that the set Y computed by our
proposed Baker’s paradigm is a (1 + Θ(ε), 1 + Θ(δ))-bicriteria approximation of d-MIS for input
point set X in expectation. Together with the time complexity bound computed earlier, this concludes
the proof of Theorem 2.1.

1.2 Removing the bi-criteria condition and Theorem 2.2

We note that one can easily modify our algorithm Baker-MIS to obtain a (1 + Θ(ε))-approximation
for MIS (instead of a bi-criteria approximation), by trading off a slower running time, similarly to [1].
We include the details here for completeness. The algorithm proceeds exactly as Baker-MIS, with
the only difference being that Step 2 is replaced by the following:

Step 2”: Solving the problem exactly locally on each cell. For each cell C of Γ + τ , let XC be the
restriction of X \X ′ to cell C. Now in this modified step 2′′, we will work with XC instead
of working with the set X̂C, which is the snapping of set XC to pixels in the cell. Let GXC

be the intersection graph of unit balls centered at the points in XC; that is V (GXC
) = XC,

and

E(GXC
) =

{
{p, q} ∈

(
XC

2

)
: ‖p− q‖2 ≤ 2

}
.

We compute the maximum independent set YC in GXC
which we know has size at most

s = V −1
d (2d/ε)d, where Vd denotes the volume of the d-dimensional unit ball. This can be

done by enumerating all possible subsets of XC = V (GXC
) of size at most s, and taking the

maximum cardinality such subset that is independent in GC.

In (Step 3), we will return Y =
⋃

C YC as before. As seen in Theorem 2.2, the price to pay to obtain
a standard (1 + ε)-approximation is that the dependency of time complexity on n increases from
previous n (i.e, linear) to n(1/ε)O(d)

. This is because during the exhaustive enumeration to solve MIS
for GXC

, we have to take all subsets of XC of size at most s. Since the cardinality of XC could be n
(say when all points in X happen to be inside a single cell C of the randomly shifted grid Γ + τ ),
we thus needs n(1/ε)O(d)

time for this enumeration. The approximation guarantee follows the proof
of Theorem 2.1, but as Y constructed is now a valid independent set for X , we do not have the
relaxation of (1 + Θ(δ))-independent set. Theorem 2.2 thus follows.

1.3 Proof of Theorem 3.2

By Theorem 3.1 stated in the main text, we can obtain a neural network N ∗ with a single hidden
layer that computes a function gN∗ : [0, 1]k → [0, 1]k, such that

sup
x∈[0,1]k

|gN∗(x)− fMIS(x)| < 1/2,

where the hidden layer has size N = N(ε, δ, d). By rounding the output of gN∗ , we obtain the
indicator vector of a maximum-independent set ŶC for X̂C. The same holds for the greedy strategy to
choose an output as described in (Step 2′) of NN-Baker. The proof of Theorme 2.1 states that Eqn (2)
holds for Ŷ =

⋃
C ŶC.

Next, we map ŶC to YC as before by mapping each p̂ ∈ ŶC to π(p) on XC within δ distance to p̂.
Following the same argument as in the proof of Theorem 2.1, we know that the resulting Y =

⋃
C YC

is a (1 + Θ(ε), 1 + Θ(δ))-bicriteria approximation in expectation of d-MIS for the input points X .
Finally, since there will be at most n cells containing at least one point from X , we know that we
only need to call this neural network N ∗ at most n times. This completes the proof of Theorem 3.2.
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2 Additional experimental results

Hardware information All baselines and NN-Baker models are trained and test on an AMD-
EPYC-7452 CPU and a RTX-A6000 GPU.

Additional dataset information 2D-Gaussian dataset is a collection of geometric graphs generated
from 40k - 50k points sampled from a 2D mixture of 5 Gaussian distribution. The centers of this 5
Gaussian distribution are [(64, 64), (32, 32), (32, 96), (96, 32), (96, 96)] and their standard deviance
is 20.0. The input domain is partitioned into cells of side-length 12.8, and each cell is further
partitioned into 128× 128 pixels. 3D dataset is a collection of geometric graphs generated by points
uniformly sampled from a 3D cube region with around 40k - 50k points. Each cell in the domain
has side-length 5, and is partitioned into 50 × 50 × 50 pixels. Torus-4D dataset is a collection of
geometric graphs generated by points sampled from a 4D surface with around 40k - 50k points. The
4D surface is generated by two functions f, g : [0, 1]2 → R4 that:

f(α) = (r sinα, r cosα, 0, 0)

g(β) = (0, 0, r sinβ, r cosβ)
(3)

where r > 0 is a constant, and we set r = 20 in experiments. Given a point set X uniformly sampled
from [0, 1]2, we have a resulting point set (f + g)(X) ⊂ R4. Each cell in the 4D surface is mapped
from a cell with side-length 0.1 in [0, 1]2 which is partitioned into 100× 100 pixels.

More experimental statistics As a baseline comparison, we compared our CNN and GNN ap-
proaches to a standard feed forward NN. Both models were trained on the image segmentation
problem of converting 128x128 images with the points as inputs to 128x128 images of points which
should be in the independent set. This was combined with the Baker technique to produce the figures
in Table 1. For the “Small” neural network, this model contained two hidden layers and a total number
of parameters equal to our UNet-Baker approach (76 million). The “Large” model also contains two
hidden layers and a total number of parameters roughly equal to double that value (147 million). For
this data, models were trained and tested on data from the same distribution.

Table 1: Performance on MIS by fully connected models

Small Large

2D-dense 0.714 0.788
2D-sparse 0.789 0.898

2DGaussian 0.724 0.852

To report the variance of the architectures proposed, we trained ten models for each architecture
from different random start weights. We report the standard deviations (×10−3) of the ratios of MIS
results from our models to ground truth in Table 2.

Table 2: The standard deviations of MIS results from different models (×10−3).

UNetBaker Erdős ErdősBaker TGS TGSBaker LwD LwDBaker

2D-dense 3.06 2.70 5.83 1.15 3.72 3.58 6.75
2D-sparse 2.93 2.73 8.25 1.12 3.49 3.61 8.53

2DGaussian 3.10 10.62 14.36 2.35 4.28 8.57 7.82
3D - 3.53 5.85 1.82 2.95 5.42 8.63

Torus-4D - 5.64 5.24 2.10 3.87 5.35 8.30

To show the generalization power of the NN-Baker models, we tested our models on data with different
distributions than the data was trained. For these, we used the data same three 2D distributions as our
other results. We report the ratio of MIS results from these generalized models to ground truth in
Table 3.
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Table 3: The ratio of MIS results from generalized models to ground truth

Train Test UNetBaker ErdősBaker TGSBaker LwDBaker

2D-dense 2D-sparse 0.910 0.901 0.925 0.914
2DGaussian 0.912 0.832 0.912 0.915

2D-sparse 2D-dense 0.915 0.908 0.926 0.936
2DGaussian 0.917 0.825 0.919 0.908

We also evaluate the performance of CNN-Baker and GNN-Baker on solving minimum vertex cover
(MVC) problems. The training and test dataset is the same as what we take in MIS problems, and the
ground truth is computed by KaMIS. We report the ratio of MVC results from different approaches to
ground truth in Table 4. Since this is a minimization problem, results closer to 1.0 are more optimal.

Table 4: The ratio of MVC results from different approaches to ground truth.

UNetBaker Erdős ErdősBaker TGS TGSBaker LwD LwDBaker

2D-dense 1.210 1.141 1.066 1.072 1.054 1.071 1.038
2D-sparse 1.301 1.531 1.248 1.271 1.206 1.274 1.221

2DGaussian 1.234 1.203 1.133 1.084 1.064 1.078 1.066

Post-processing is an important part of our implementations. After each of the cells are solved by the
NN-Baker framework, we then add in points close to the boundaries that do not intersect any of the
points already in the set. The percentage of points added for all methods is given in Table 5.

Table 5: Proportion of points added in post processing

UNetBaker ErdősBaker TGSBaker LwDBaker

2D-dense 0.085 0.080 0.025 0.032
2D-sparse 0.086 0.043 0.005 0.006

2DGaussian 0.082 0.042 0.025 0.016
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