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ABSTRACT

Continual Learning (CL) with foundation models has recently emerged as a promis-
ing paradigm to exploit abundant knowledge acquired during pre-training for tack-
ling sequential tasks. However, existing prompt-based and Low-Rank Adaptation-
based (LoRA-based) methods often require expanding a prompt/LoRA pool or
retaining samples of previous tasks, which poses significant scalability challenges
as the number of tasks grows. To address these limitations, we propose Scalable
Decoupled LoRA (SD-LoRA) for class incremental learning, which continually
separates the learning of the magnitude and direction of LoRA components without
rehearsal. Our empirical and theoretical analysis reveals that SD-LoRA tends to
follow a low-loss trajectory and converges to an overlapping low-loss region for
all learned tasks, resulting in an excellent stability-plasticity trade-off. Building
upon these insights, we introduce two variants of SD-LoRA with further improved
parameter efficiency. All parameters of SD-LoRAs can be end-to-end optimized
for CL objectives. Meanwhile, they support efficient inference by allowing direct
evaluation with the finally trained model, obviating the need for component se-
lection. Extensive experiments across multiple CL benchmarks and foundation
models consistently validate the effectiveness of SD-LoRA. The code is available
at https://github.com/WuYichen-97/SD-Lora-CL.

1 INTRODUCTION

Continual Learning (CL, Rolnick et al. 2019,Wang et al. 2024b,Zhou et al. 2024,Wang et al. 2022b)
aims to develop computational learning systems capable of continually adapting to evolving environ-
ments while retaining previously acquired knowledge. In contrast to standard supervised learning,
which assumes that training data are independent and identically distributed (i.i.d.), CL trains models
on non-stationary data where tasks are presented sequentially. This departure from the i.i.d. assump-
tion introduces the central challenge of catastrophic forgetting (French, 1999; McClelland et al.,
1995; McCloskey & Cohen, 1989; Kirkpatrick et al., 2017), indicated by a significant performance
degradation of previous tasks when new tasks are introduced.

Over the last five years, foundation models—large-scale pre-trained neural networks—have proven
highly effective at transferring knowledge while exhibiting strong resistance to catastrophic forget-
ting (Wang et al., 2022b;a; Smith et al., 2023; Huang et al., 2024; Wang et al., 2024a; Liang &
Li, 2024) in the context of CL. One prominent approach centers on adapting input and intermedi-
ate representations (i.e, prompts) of foundation models to accommodate new tasks. For example,
L2P (Wang et al., 2022b) and DualPrompt (Wang et al., 2022a) incrementally learn a prompt pool
and selectively insert the most relevant prompts based on their match with incoming test samples.
CODA-Prompt (Smith et al., 2023) refines this strategy by end-to-end optimizing the prompt selection
module for CL objectives. Despite obviating manual task identifiers, these methods rely heavily on
accurately identifying task-relevant prompts from a potentially growing pool, raising concerns about
inference scalability.

*Equal contribution.
†Corresponding authors.
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Table 1: Comparisons of existing CL methods with foundation models in terms of three desirable
properties: 1) Rehearsal-free (i.e, without memory for sample storage), 2) inference efficiency (i.e,
without additional computational overhead during inference), and 3) end-to-end optimization (of all
model parameters for CL objectives).

Method Rehearsal-free Inference Efficiency End-to-end Optimization

L2P (Wang et al., 2022b) ✓ ✗ ✗
DualPrompt (Wang et al., 2022a) ✓ ✗ ✗
CODA-Prompt (Smith et al., 2023) ✓ ✗ ✓
HiDe-Prompt (Wang et al., 2024a) ✗ ✗ ✓
InfLoRA (Liang & Li, 2024) ✗ ✓ ✓

SD-LoRA(Ours) ✓ ✓ ✓

Another line of work has taken a more memory-intensive route by retaining samples of previous
tasks to bolster performance. Building upon CODA-Prompt, HiDe-Prompt (Wang et al., 2024a)
continues to learn prompts incrementally but stores large quantities of samples. Likewise, InfLoRA
(Liang & Li, 2024) leverages Low-Rank Adaptation (LoRA) (Hu et al., 2022) to remain parameter-
efficient, yet similarly rehearses extensive samples during incremental LoRA optimization. This
reliance on large-scale memory makes them less scalable in real-world deployments, particularly in
resource-constrained or large-scale CL settings.

Table 1 outlines three desirable properties for an ideal CL method with foundation models:

• Rehearsal-free: The method should eliminate the need to store samples from previous tasks,
thereby ensuring learning scalability;

• Inference Efficiency: The method should maintain computational efficiency during inference,
preferably without added computational costs, thereby ensuring inference scalability;

• End-to-end Optimization: All method parameters should be end-to-end optimized for CL
objectives, rather than through segmented and separate optimization stages, thereby maximizing
CL performance.

To achieve these properties, we propose Scalable and Decoupled LoRA (SD-LoRA), which incre-
mentally adds LoRA components by separating the magnitude and direction learning. By directly
employing the finally trained model for testing—without task-specific component selection—SD-
LoRA supports computationally efficient inference (Huang et al., 2024), while being rehearsal-free.
Through an in-depth empirical and theoretical analysis, we show that SD-LoRA learns to follow a
low-loss path that converges to an overlapping low-loss region for all learned tasks, thus achieving an
excellent stability-plasticity trade-off. Meanwhile, the importance of the incrementally learned LoRA
directions diminishes as CL progresses. Building upon these observations, we introduce two variants
of SD-LoRA with improved parameter efficiency through rank reduction and knowledge distillation,
respectively. All SD-LoRA parameters can be end-to-end optimized for CL objectives.

In summary, the principal contributions of our work include

• A CL method with foundation models—SD-LoRA, offering a rehearsal-free, inference-efficient,
and end-to-end optimized solution. We additionally include two SD-LoRA variants that improve
parameter efficiency;

• An empirical and theoretical analysis of SD-LoRA, elucidating its plausible working mechanism
that eliminates task-specific component selection;

• A comprehensive experimental evaluation of SD-LoRAs, demonstrating their effectiveness across
multiple CL benchmarks and foundation models.

2 RELATED WORK

Continual Learning (CL). CL seeks to sequentially learn from new tasks while retaining previously
acquired knowledge, with the central goal of mitigating catastrophic forgetting. Broadly, existing
CL methods can be categorized according to three main design philosophies: Rehearsal-based,
regularization-based, and architecture-based approaches. Rehearsal-based methods (Riemer et al.,
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2018; Chaudhry et al., 2019; Tiwari et al., 2022) selectively retain and replay samples from previous
tasks to alleviate catastrophic forgetting. Regularization-based methods (Kirkpatrick et al., 2017; Li &
Hoiem, 2017; Lee et al., 2019) introduce penalty terms into the training objective to constrain updates
on parameters deemed important for learned tasks. Architecture-based methods (Mallya et al., 2018;
Ebrahimi et al., 2020; Ramesh & Chaudhari, 2021) expand or adapt the model architecture to account
for new tasks. By allocating additional task-specific parameters or modules, these methods prevent
the overwriting of learned important weights. Among various CL settings, this paper focuses on
particularly challenging and practical class-incremental learning, in which the model must perform
all learned tasks with no access to task identity at test time. Conventional class-incremental learning
methods often require expensive training from scratch or parameter-intensive tuning, which can lead
to overfitting and interference among tasks.

CL with Foundation Models. Foundation models have recently demonstrated their effectiveness
in CL by facilitating knowledge transfer across tasks and reducing catastrophic forgetting (Wang
et al., 2022b;a; Smith et al., 2023; Wang et al., 2024a; Liang & Li, 2024). Specifically, methods
like L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a), and CODA-Prompt (Smith et al.,
2023) integrate Vision Transformers (ViTs) with prompt-tuning strategies (Lester et al., 2021; Jia
et al., 2022), thereby improving knowledge retention as new tasks are introduced. Building on these,
HiDe-Prompt (Wang et al., 2024a) further stores a large number of samples to boost performance.
Rather than prompt-tuning, InfLoRA (Liang & Li, 2024) adopts a LoRA-based Parameter-Efficient
Fine-Tuning (PEFT) approach, which similarly necessitates substantial sample storage. Despite their
promise, none of the existing CL methods with foundation models simultaneously satisfy the three
desirable properties outlined in Table 1. To fill this gap, we introduce SD-LoRA, which can also be
viewed as a form of model-merging techniques (Chitale et al., 2023; Ilharco et al., 2023), developed
in parallel with, yet complementary to ongoing CL research.

Parameter-Efficient Fine-Tuning (PEFT). The integration of PEFT methods with CL with founda-
tion models is essential because full fine-tuning for each individual task is prohibitive in terms of
computation and storage requirements. Representative PEFT methods include adapters (Houlsby
et al., 2019), which insert lightweight learnable modules into Transformer layers; prompt-tuning (Qin
& Eisner, 2021; Jia et al., 2022) and prefix-tuning (Li & Liang, 2021), which introduce learnable
input representations into Transformer layers; and LoRA (Hu et al., 2022), which adds and tunes
low-rank branches as updates to the pre-trained weights. While these techniques have proven effec-
tive in single-task and multi-task offline learning settings, their performance boundaries in CL with
foundation models remain insufficiently explored. The proposed SD-LoRA adopts a rehearsal-free,
LoRA-based PEFT approach for CL with foundation models.

3 PROPOSED METHOD: SD-LORA

In this section, we first present the necessary preliminaries. We then present in detail the SD-LoRA
method for CL with foundation models, accompanied by an empirical and theoretical analysis. Finally,
we describe two SD-LoRA variants with improved parameter efficiency.

3.1 PRELIMINARIES

Problem Formulation. Let {T1, T2, . . . , TN} be N sequential classification tasks. The training
split of Tt, denoted as Dt = {x(i)

t , y
(i)
t }

|Dt|
i=1 , comprises of |Dt| training example pairs, where x

(i)
t

representing the input image and y
(i)
t its corresponding label. We consider a classification model

fθ, parameterized by θ. When training on Dt, no data from previous tasks {Tk}t−1
k=1 is accessible.

Accordingly, the training objective is given by

ℓ (Dt;θ) =
1

|Dt|

|Dt|∑
i=1

ℓ
(
fθ

(
x
(i)
t

)
, y

(i)
t

)
, (1)

where ℓ(·, ·) is a per-sample loss function such as cross-entropy. For model evaluation, we may
compute the average loss of fθ across all tasks encountered so far: 1

t

∑t
k=1 ℓ(Vk;θ), where Vk

denotes the test split of Tk. That is, the overarching goal is to ensure that fθ performs well on both
the current task and all previous tasks. We generally follow the class-incremental learning setting
described in (Wang et al., 2022b; Liang & Li, 2024).
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Figure 1: Illustration of the parameter update in (a) Vanilla LoRA and (b) the proposed SD-LoRA,
where the current task index is t = 2 and r, r1, r2 ≪ min{m,n}.

Low-Rank Adaptation (LoRA). As illustrated in Fig. 1(a), LoRA (Hu et al., 2022) constrains the
parameter updates during fine-tuning to lie in a low-rank subspace. Concretely, let W0 ∈ Rm×n

denote the original weight matrix of a layer in the classifier fθ. LoRA expresses the parameter
update ∆W ∈ Rm×n as the product of two learnable matrices A ∈ Rm×r and B ∈ Rr×n, i.e.,
∆W = AB, with r ≪ min{m,n}. For a given layer of fθ, the LoRA-updated output is

h′ = W0x+∆Wx = (W0 +AB)x. (2)

Throughout fine-tuning, the original weight matrix W0 remains fixed.

3.2 SD-LORA

In LoRA, the parameter update ∆W can be decomposed as follows:

∆W = ∥AB∥F ·AB = ∥AB∥F ·
AB

∥AB∥F
. (3)

This decomposition highlights two crucial elements of the update: The magnitude (i.e, the Frobenius
norm ∥AB∥F ) and direction (i.e, the normalized matrix AB). Recent work (Liu et al., 2024)
has demonstrated that compared to full fine-tuning, LoRA exhibits limited flexibility in precisely
adjusting these two elements. This drawback hinders its performance on complex tasks that demand
fine-grained control over both magnitude and direction. Furthermore, Qiu et al. (2023) highlighted a
more critical role of the direction in fine-tuning than the magnitude.

Motivated by these observations, we describe SD-LoRA for CL with foundation models. In a
nutshell, SD-LoRA incrementally decouples the learning of the magnitude and direction of LoRA
components, while fixing the directions learned from previous tasks as CL progresses. Concretely,
letM = {αk}tk=1 denote the learnable LoRA magnitudes, andW = {AkBk}t−1

k=1 represent the
previously learned directions. As illustrated in Fig. 1(b), during learning on Tt, SD-LoRA computes
the output of a given layer of the classifier fθ by

h′ = (W0 + α1A1B1 + α2A2B2 + . . .+ αtAtBt)x, (4)

where the color-highlighted terms {αk}tk=1 and AtBt are learnable. The original weight matrix W0

and the previously learned directions {AkBk}t−1
k=1 remain fixed.

3.3 EMPIRICAL ANALYSIS OF SD-LORA

By incrementally decoupling the magnitude and direction of LoRA components while preserving
the directions learned from previous tasks, we observe substantial performance gains across various
CL benchmarks (see Sec. 4). Nevertheless, the underlying working mechanism—particularly how
SD-LoRA mitigates catastrophic forgetting—remains poorly understood. To shed light on this, we
conduct a series of experiments and distill our observations into three key findings.

Finding 1: When fine-tuning the foundation model directly on different downstream tasks, the
resulting task-specific weights end up closer to each other than the original model weights. To
illustrate this, we consider five tasks drawn from ImageNet-R (Boschini et al., 2022), and fine-tune
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(a) (b) (c)

Figure 2: (a) Distances between the five optimal weights {W⋆
i } on ImageNet-R (N = 5) relative

to the foundation model weights W0. All relative distances are much smaller than one, indicating
that {W⋆

i } are closer to each other than to W0. (b) and (c) Performance comparison of Vanilla
LoRA versus LoRA with the first learned direction fixed, on ImageNet-R across five and ten tasks,
respectively. Shaded regions indicate standard error.

the ViT-B-16 model (Dosovitskiy et al., 2020) for each task, thereby obtaining five sets of optimal
task-specific weights {W⋆

i }5i=1. As shown in Fig. 2(a), measuring the relative distances in parameter
space reveals that these task-specific weights cluster more closely with one another than the original
weights of the foundation model W0.

We further conduct a CL experiment in which only the LoRA magnitude is continually optimized,
while the direction remains fixed after the first task. Consequently, the updated output for a given
layer at the current Tt becomes h′ = (W0 + αA1B1)x. As shown in Figs. 2(b) and (c), the
average accuracy up to the current task consistently surpasses that of the vanilla LoRA baseline, i.e,
h′ = (W0+AB)x . Aligning well with (Entezari et al., 2022; Gueta et al., 2023), our results further
indicate that the fine-tuned weights for different tasks lie in close proximity, enabling relatively strong
performance even when fixing a single learned direction.

(a) (b) (c)

Figure 3: Analysis of the learning process of SD-LoRA. (a) Least squares fitting residual between
the newly learned direction AtBt and all previous directions {AkBk}t−1

k=1 over time. (b) and (c)
Learned magnitudes {αk}Nk=1 on ImageNet-R across five and ten tasks, respectively.

Finding 2: The directions preserved from previous tasks (i.e., {AkBk}t−1
k=1) play a significant role

in the CL process—particularly those learned in the initial tasks. To reveal this, we first compute
the least squares fitting residual between AtBt and {AkBk}t−1

k=1, which increases over time (see
Fig. 3(a)). Initially, the newly learned direction strongly aligns with earlier ones, enabling learned
direction reuse. As training continues, AtBt gradually diverges, incorporating subtle variations that
distinguish it from previous directions.

Further analysis of the learned magnitudes, all initialized to ones, reveals that αk values corresponding
to earlier tasks rise rapidly, while those for later tasks exhibit a general decline trend (see Figs. 3(b)
and (c) as well as Appendix A.2). This pattern suggests that the classifier increasingly relies on
directions learned from the earlier tasks, whereas the recently introduced directions serve primarily
as slight adjustments to accommodate the specific requirements of the later tasks.

Finding 3: SD-LoRA effectively uncovers a low-loss path by leveraging the fixed directions from
previous tasks with the learned magnitudes {αk}Nk=1, toward a low-loss region shared by all tasks. To
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Figure 4: Learning trajectory comparison of vanilla LoRA and SD-LoRA. (a) Toy illustration of the
learning trajectories for vanilla LoRA (W0 →WLoRA

1 →WLoRA
2 ) and SD-LoRA (W0 →WSD

1 →
WSD

2 ) across two sequential tasks. (b) Classification accuracy along the vanilla LoRA path. The
improvement on T2 but degradation on T1 indicates that vanilla LoRA suffers from catastrophic
forgetting. (c) Classification accuracy along the SD-LoRA path, showing that it successfully lands on
an overlapping low-loss region.

verify this, we conduct weight interpolation experiments to examine the linear path between the two
sets of model weights for two sequential tasks. As depicted in Fig. 4, along the linear path from WSD

1
to WSD

2 learned by SD-LoRA, the performance on T2 steadily improves without loss in accuracy on
T1. However, this is not the case for vanilla LoRA, where the performance improvement of T2 is at
the expense of T1, indicative of catastrophic forgetting. These observations suggest that SD-LoRA
selectively scales the parameter update along the previously learned directions, effectively enabling
the classifier to trace a low-loss path that ultimately settles on an overlapping low-loss region for all
tasks (see Fig. 4 (a)).

These findings elucidate why SD-LoRA excels in CL with foundation models. Initially, it identifies
critical LoRA directions during learning earlier tasks, and relies heavily on these directions to guide
the classifier toward an overlapping low-loss region for learned tasks. Subsequently, by progressively
incorporating LoRA components, SD-LoRA refines these directions to converge on the shared
low-loss region for both earlier and later tasks. This mechanism of tracing a low-loss trajectory
eliminates the need to store samples from previous tasks for task-specific component selection,
making SD-LoRA strong and rehearsal-free.

3.4 THEORETICAL ANALYSIS OF SD-LORA

In this subsection, based on the results in (Jiang et al., 2023), we present a theoretical analysis to
explain why the initially learned LoRA directions are so critical (as in Finding 2).

Let ∆W⋆ ∈ Rm×n be the optimal update matrix lying in the overlapping low-loss region for all
N sequential tasks. Additionally, let {∆W⋆

i }Ni=1 represent the optimal update matrices in their
respective low-loss regions. Denote the singular values of ∆W⋆

t as σ1 ≥ . . . ≥ σmin{m,n} ≥ 0. The
matrices A ∈ Rm×r and B ∈ Rr×n are updated iteratively, starting from initial values given by

ρ
3
√
m+n+r

(A0,B0), where the entries of A0 and B0 are i.i.d. according to N (0, σ1), and ρ is the
initialization scaling factor. For an integer j in the range {0, 1, . . . ,min{r,m, n}}, define the j-th
condition number as κj =

σ1

σj
. Finally, let ∥ · ∥op denote the operator norm.

Theorem 1. Suppose the assumptions stated in Appendix A.1 hold, where ϵ1 is a small constant.
Let δ ∈ (0, 1) be such that δ ≤ mink∈{1,...,j}

σk−σk+1

σk
. Fix any tolerance level ϵ2 satisfying

ϵ2 ≤ 1
m+n+r . Let η denote the learning rate for updating the matrices A and B, and define ∆W[:i]

as the rank-i approximation of ∆W⋆, obtained by retaining the top-i principal components.

Then, there exist some numerical constants c and c′, and a sequence of iteration indices:

i1 ≤ i2 ≤ . . . ≤ ij ≤
c′

δησj
log

(
κj

δϵ2

)
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such that, with high probability, gradient descent with step size η ≤ cmin{δ, 1− δ}σ
2
j

σ3
1

and initializa-

tion scaling factor ρ ≤ ( cδϵ2κj
)

1
cδ ensures that the approximation error satisfies∥∥∥AikBik −∆W[:k]

∥∥∥
op
≤ ϵ2σ1 + ϵ1, ∀k = 1, 2, . . . , j. (5)

In Theorem 1, we formulate the learning process of SD-LoRA as a matrix factorization problem, and
prove that gradient descent with small initialization drives the learned product AB to approximate
the principal components of ∆W⋆, i.e, ∆W[1],∆W[:2], . . . ,∆W[:j], sequentially. This theoretical
insight explains the observed decreasing trend in the learned magnitudes, and further supports the
feasibility of the subsequent parameter-efficient variants of SD-LoRA.

3.5 TWO VARIANTS OF SD-LORA

Our analysis in Sec. 3.3 reveals an interesting behavior of SD-LoRA: LoRA directions acquired
during learning on earlier tasks are heavily reused and contribute substantially to classification
accuracy. In contrast, directions learned through later tasks primarily serve as minor refinements,
exhibiting a diminishing utility. We leverage this behavior and propose two variants of SD-LoRA with
improved parameter efficiency, which integrate rank reduction and knowledge distillation, termed
SD-LoRA-RR and SD-LoRA-KD, respectively.

SD-LoRA-RR. To mitigate incremental parameter expansion, we implement an empirical rank-
reduction strategy for the learnable matrices At ∈ Rm×rt and Bt ∈ Rrt×n associated with later
tasks. Specifically, the rank rt is reduced in a stepwise manner:

r1 = r2 = . . . > rµ = rµ+1 = . . . > rν = rν+1 = . . . = rN , (6)

where µ and ν are predefined task indices. The set of hyperparameters include {µ, ν, r1, rµ, rν}.
This stepwise reduction ensures that later tasks, which contribute less, are encoded with lower-rank
approximations, thereby curbing computational and memory overhead.

SD-LoRA-KD. While the rank-reduction strategy limits parameter expansion, each new task still
grows parameters incrementally. To fully address this issue, we propose a knowledge distillation
approach based on least squares. Our method evaluates whether a newly introduced LoRA direc-
tion AtBt can be linearly represented by the subspace spanned by previously learned directions
{AkBk}t−1

k=1. If a sufficient linear approximation exists, the fitting coefficients will be absorbed into
existing learned magnitudesM rather than expanding the direction setW . Formally, after training
on Tt, we solve the least squares optimization problem:

{∆αk}t−1
k=1 = argmin

{α′
k}

t−1
k=1

∥∥∥∥∥AtBt −
t−1∑
k=1

α′
kAkBk

∥∥∥∥∥
2

F

, (7)

where ∆αk denotes the optimal coefficient for the k-th learned direction. If the fitting residual is less
than a predefined threshold τ , we assimilate the new direction by updating the first t − 1 learned
magnitudes from Tt as

h′ =
(
W0 +(α1+∆α1)A1B1 +(α2+∆α2)A2B2 +. . .+ (αt−1 +∆αt−1)At−1Bt−1

)
x, (8)

which prevents parameter expansion while preserving knowledge through coefficient fusion. The
complete implementations of SD-LoRAs are detailed in Algorithm 1.

4 EXPERIMENTS

In this section, we first present the experimental setups, and then compare SD-LoRAs with state-of-
the-art CL methods across multiple benchmarks and foundation models.

4.1 EXPERIMENTAL SETUPS

Evaluation Benchmarks and Protocols. Following (Gao et al., 2023; Liang & Li, 2024), we evaluate
SD-LoRAs on three standard CL benchmarks: ImageNet-R (Boschini et al., 2022), ImageNet-
A (Hendrycks et al., 2021), and DomainNet (Peng et al., 2019). Specifically, ImageNet-R consists
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Algorithm 1 SD-LoRA and its Variants on the Current Task Tt
Input: Weight matrix from the foundation model W0, current task Tt, learned LoRA directions

from previous tasksW = {AkBk}t−1
k=1, rank parameters {µ, ν, r1, rµ, rν} in Eqn. (6), residual

threshold τ for Eqn. (7), and maximum number of iterations MaxIter.
Output: Sets of learned LoRA magnitudesM and directionsW .

1: Initialize At ∈ Rm×rt , Bt ∈ Rrt×n, andM = {αk}tk=1
2: if t = µ or ν then / Only for SD-LoRA-RR
3: Reduce the lower dimension of At and Bt to rµ or rν
4: end if
5: for Iter = 0 to MaxIter do
6: Compute the cross-entropy loss on the current task Tt using Eqn. (4)
7: Update {αk}tk=1 and AtBt by minimizing Eqn. (1) using some stochastic optimizer
8: end for
9: W ←W

⋃
{AtBt}

10: Solve Problem (7) to obtain the optimal fitting coefficients {∆αk}t−1
k=1 / Only for SD-LoRA-KD

11: if the fitting residual
∥∥∥AtBt −

∑t−1
k=1 ∆αkAkBk

∥∥∥
F
≤ τ then

12: M← {αk +∆αk}t−1
k=1 andW ← {AkBk}t−1

k=1

Table 2: Performance comparison on ImageNet-R across different task lengths.

Method ImageNet-R (N = 5) ImageNet-R (N = 10) ImageNet-R (N = 20)
Acc ↑ AAA↑ Acc ↑ AAA ↑ Acc ↑ AAA ↑

Full Fine-Tuning 64.92(0.87) 75.57(0.50) 60.57(1.06) 72.31(1.09) 49.95(1.31) 65.32(0.84)
L2P 73.04(0.71) 76.94(0.41) 71.26(0.44) 76.13(0.46) 68.97(0.51) 74.16(0.32)
DualPrompt 69.99(0.57) 72.24(0.41) 68.22(0.20) 73.81(0.39) 65.23(0.45) 71.30(0.16)
CODA-Prompt 76.63(0.27) 80.30(0.28) 74.05(0.41) 78.14(0.39) 69.38(0.33) 73.95(0.63)
HiDe-Prompt 74.77(0.25) 78.15(0.24) 74.65(0.14) 78.46(0.18) 73.59(0.19) 77.93(0.19)
InfLoRA 76.95(0.23) 81.81(0.14) 74.75(0.64) 80.67(0.55) 69.89(0.56) 76.68(0.57)
SD-LoRA 79.15(0.20) 83.01(0.42) 77.34(0.35) 82.04(0.24) 75.26(0.37) 80.22(0.72)
SD-LoRA-RR 79.01(0.26) 82.50(0.38) 77.18(0.39) 81.74(0.24) 74.05(0.51) 80.65(0.35)

SD-LoRA-KD 78.85(0.29) 82.47(0.58) 77.03(0.67) 81.52(0.26) 74.12(0.66) 80.11(0.75)

of 200 ImageNet classes (Deng et al., 2009) rendered in artistic styles. ImageNet-A features 200
classes with natural adversarial examples, often misclassified by standard ImageNet-trained models.
DomainNet includes 345 classes across six distinct domains. As common practices (Liang & Li, 2024;
Huang et al., 2024), we split ImageNet-R into 5/10/20 tasks (40/20/10 classes per task), ImageNet-A
into 10 tasks (20 classes each), and DomainNet into 5 tasks (69 classes each). Additionally, we
include CIFAR100 (Krizhevsky, 2009) and CUB200 (Wah et al., 2011) results in Appendix A.3.

We adopt two standard and widely used CL metrics: Average accuracy (Acc) and average anytime
accuracy (AAA). The Acc metric measures the overall performance by computing the average
accuracy across all N tasks upon the completion of CL. AAA further accumulates the average
accuracy of all encountered tasks after training on each new task.

Competing Methods and Implementation Details. We compare SD-LoRAs against state-of-the-art
ViT-based CL methods, including L2P (Wang et al., 2022b), DualPrompt (Wang et al., 2022a),
CODA-Prompt (Smith et al., 2023), HiDe-Prompt (Wang et al., 2024a), and InfLoRA (Liang & Li,
2024). We also incorporate full fine-tuning as a form of performance lower bound. Following prior
work (Gao et al., 2023; Huang et al., 2024), we employ ViT-B/16 (Dosovitskiy et al., 2020), pre-
trained on ImageNet-21K and fine-tuned on ImageNet-1K as the foundation model for classification.
We also experiment with a self-supervised ViT-B/16 from DINO (Caron et al., 2021). The SD-LoRA
components are inserted into the attention layers of all Transformer blocks, modifying the query
and value projections, with a fixed rank of r1 = 10. It is noteworthy that we utilize a shared set of
LoRA magnitudes for all projections, each with different LoRA directions. For SD-LoRA-RR, we
set the additional rank parameters as µ = 4, ν = 8, rµ = 8, and rν = 6. For SD-LoRA-KD, we
set the threshold for the fitting residual to τ = 9× 10−4. For all methods, training is carried out by
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Table 3: Performance comparison on ImageNet-A and DomainNet across different task lengths.

Method ImageNet-A (N = 10) DomainNet (N = 5)
Acc ↑ AAA ↑ Acc ↑ AAA ↑

Full Fine-Tuning 16.31(7.89) 30.04(13.18) 51.46(0.47) 67.08(1.13)
L2P (Wang et al., 2022b) 42.94(1.27) 51.40(1.95) 70.26(0.25) 75.83(0.98)
DualPrompt (Wang et al., 2022a) 45.49(0.96) 54.68(1.24) 68.26(0.90) 73.84(0.45)
CODA-Prompt (Smith et al., 2023) 45.36(0.78) 57.03(0.94) 70.58(0.53) 76.68(0.44)
HiDe-Prompt (Wang et al., 2024a) 42.70(0.60) 56.32(0.40) 72.20(0.08) 77.01(0.04)
InfLoRA (Liang & Li, 2024) 49.20(1.12) 60.92(0.61) 71.59(0.23) 78.29(0.50)
SDLoRA 55.96(0.73) 64.95(1.63) 72.82(0.37) 78.89(0.50)

SD-LoRA-RR 55.59(1.08) 64.59(1.91) 72.58(0.40) 78.79(0.78)
SD-LoRA-KD 54.24(1.12) 63.89(0.58) 72.15(0.50) 78.44(0.66)

(a) (b) (c)

Figure 5: Average accuracy during sequential training on (a) ImageNet-A (N = 10), (b) ImageNet-R
(N = 10), and (c) ImageNet-R (N = 5) using ViT-B/16 from DINO (Caron et al., 2021).

Adam (Kingma & Ba, 2014) with a learning rate of 0.008 and a minibatch size of 128 for 30 epochs
on ImageNet-R, 10 epochs on DomainNet, and 20 epochs on all other datasets. We report mean
results across five runs with standard errors.

4.2 EXPERIMENTAL RESULTS

Results on Different CL benchmarks Using Different Backbones. In Tables 2 and 3, it is clear
that SD-LoRA achieves significant improvements over existing methods. Specifically, on ImageNet-
R (N = 20), SD-LoRA surpasses InfLoRA by margins of 7.68% in Acc and 4.62% in AAA.
Similarly, on ImageNet-A, SD-LoRA outperforms HiDe-prompt by approximately 31.05% in Acc
and 15.32% in AAA. Even on the more complex DomainNet, comprising six distinct domains,
SD-LoRA consistently attains the best performance. To demonstrate the generality of SD-LoRA,
we also evaluate it using the self-supervised ViT-B/16 from DINO. The results in Fig. 5(c) show
that SD-LoRA continues to deliver superior performance under both Acc and AAA using different
backbones. Finally, we observe that the two variants SD-LoRA-RR and SD-LoRA-KD, exhibit only
marginal performance degradations relative to the full SD-LoRA model, confirming the effectiveness
of their parameter-efficient designs.

Results across Varied Task Lengths. To evaluate the scalability and generalizability of SD-LoRAs
under different task lengths, we follow (Liang & Li, 2024; Huang et al., 2024) and partition ImageNet-
R into 5, 10, and 20 sequential tasks containing 40, 20, and 10 classes per task, respectively. As shown
in Table 2, SD-LoRAs demonstrate consistent superiority over existing methods, with performance
margins growing as the number of tasks. This underscores the suitability of SD-LoRAs for scenarios
requiring resource-efficient CL without compromising accuracy.

Ablation Studies. To validate the contributions of design choices in the proposed SD-LoRA, we
conduct a series of ablation experiments, with quantitative results summarized in Table 4. First, we
fix the singly learned LoRA direction while allowing its magnitude to adapt during training. This
simplified configuration already achieves nontrivial performance, highlighting the critical role of
the initial LoRA direction in CL. Second, we decouple the magnitude and direction learning, but
restrict the classifier to a single LoRA component. The inferior performance relative to SD-LoRA
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Table 4: Ablation analysis of the proposed SD-LoRA. Trainable parameters are highlighted in orange.

Training Strategy ImageNet-R (N = 5) ImageNet-R (N = 10)
Acc ↑ AAA ↑ Acc ↑ AAA ↑

W0 + αA1B1 78.17(0.27) 81.93(0.51) 74.82(0.96) 80.63(0.63)
W0 + αAB 73.24(0.31) 78.80(0.13) 70.62(0.78) 76.32(0.16)
W0 +A1B1 + . . .+ αAtBt 78.28(0.59) 82.02(0.71) 74.29(0.32) 79.74(0.71)
W0 + α1A1B1 + . . .+ αtAtBt (SD-LoRA) 79.15(0.20) 83.01(0.42) 77.34(0.35) 82.04(0.24)

Table 5: Comparison on ImageNet-R (N = 20) in terms of computation (GFLOPs), parameter, and
storage efficiency.

Method GFLOPs Learnable
Parameters (M)

Stored
Features (M)

L2P (Wang et al., 2022b) 70.14 0.48 0
DualPrompt (Wang et al., 2022a) 70.26 0.06 0
CODA-Prompt (Smith et al., 2023) 70.61 0.38 0
HiDe-Prompt (Wang et al., 2024a) 70.36 0.08 0.15
InfLoRA (Liang & Li, 2024) 35.12 0.37 0.10
SD-LoRA 35.12 0.37 0
SD-LoRA-RR 35.12 0.23 0

suggests that the performance gains of SD-LoRA cannot be attributed solely to decoupling. Instead,
the synergistic effect of training multiple decoupled LoRA components is essential for achieving
satisfactory results. Last, we fix learned LoRA components without magnitude rescaling, and also
observe a noticeable performance decline. This suggests that the rescaling mechanism enables
SD-LoRA to navigate low-loss paths by reweighting contributions from earlier components.

Analysis of Computation, Parameter, and Storage Efficiency. As presented in Table 5, we
compare the inference computations in terms of GFLOPs, trainable parameters, and feature storage
requirements of various CL methods. Notably, InfLoRA (Liang & Li, 2024) and the proposed
SD-LoRA eliminate the need for task-specific prompt selection during inference, thereby enjoying
the highest inference efficiency. Moreover, our proposed SD-LoRA-RR is capable of further reducing
the number of LoRA parameters without reliance on sample rehearsal, making it an ideal choice for
resource-constrained CL scenarios.

5 CONCLUSION AND DISCUSSION

In this paper, we have introduced SD-LoRA, a computational method designed to address scalability
challenges in class-incremental learning with foundation models. By decoupling the learning of
magnitude and direction of LoRA components, SD-LoRA provides a rehearsal-free, inference-
efficient, and end-to-end optimized solution. Our empirical and theoretical analysis demonstrates
that SD-LoRA uncovers a low-loss trajectory that converges to an overlapping low-loss region for
all learned tasks, effectively balancing stability and plasticity. Extensive experiments confirmed the
effectiveness of SD-LoRA in mitigating catastrophic forgetting while maintaining adaptability to new
tasks. Additionally, our two parameter-efficient variants, SD-LoRA-RR and SD-LoRA-KD, further
enhance its practicality for resource-constrained applications.

While SD-LoRA has shown promise, several avenues for future research warrant exploration. First,
extending SD-LoRA to other foundation models beyond ViTs could provide valuable insights into its
generality and effectiveness across different backbone architectures. Second, integrating SD-LoRA
with other PEFT techniques, such as adapters or prefix-tuning, may further enhance its performance
and scalability. Finally, developing more theoretically grounded strategies for rank reduction and
knowledge distillation within SD-LoRA could lead to additional improvements in parameter efficiency
and overall performance.
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A APPENDIX

A.1 PROOF OF THEOREM 1

In this section, we prove Theorem 1 as a specific case of Theorem 2.

Assumption 1. The optimal updates ∆W⋆
t , t ∈ {1, 2, . . . , N} lie within a small neighborhood in the

loss landscape, meaning there exists a small constant ϵ1 > 0 such that ∥∆W⋆ −∆W⋆
t ∥op < ϵ1.

Assumption 2. The first j + 1 singular values of ∆W⋆
t are distinct, i.e, σ1 > . . . > σj > σj+1.

Theorem 2. Fix any j ≤ r. Suppose σj+1 < σj , choose any γ ∈ (0, 1) such that σj+1

σj
≤ γ. Pick

any stepsize η ≤ min{ γσ2
j

600σ3
1
,
(1−γ)σj

20σ2
j
}. For any cρ < 1, let the initialization size ρ satisfy

ρ ≤ min

1

3
,
1− γ

24
,

cρσ1

12(m+ n+ r)
√

1−γ
24

√
σj

 ,

and

ρ ≤ min


(

(1− γ)cρσj

1200(m+ n+ r)jσ1

) 2(1+γ)
1−γ

,

(
γσ2

j

16000rσ2
j

) 1+γ
1−γ

,
γσj

√
2j

16σj

√
m+ n+ r


Define

T1 =

 log( 12(m+n+r)
√

1−γ
24

√
σj

cρρ
√
σj

)

log(1 + 1+γ
2 ησj)

+ 1, T2 =

 log(
√

24
1−γ )

log(1 + 0.1ησj)

+ 1,

T3 =

⌊
log(ρ

1−γ
2(1+γ) /3)

log(1− 3
2ησj)

⌋
+ 1, T =

⌊
log(ρ

1−γ
2(1+γ) /ρ)

log(1 + γησj)

⌋
Define T0 := T1 + T2 + T3, then we have

T0

T
≤ 1− (3− 2γ)(1− γ)

6(3γ + 1)
.

Furthermore, there exists a universal constant C such that with probability at least 1− (Ccρ)
r−j+1−

C exp(−r/C), for all T0 ≤ i ≤ T , we have

∥AiBi −∆W[:j]∥op ≤ 8ρ
δ

2(2−σ)σ1 + 4ρ
δ

2(2−δ)

√
2jσ1 + ϵ1. (A.9)

Proof. The sequential training of LoRA can be conceptualized as a matrix approximation prob-
lem (Jiang et al., 2023):

ℓ(A,B) =
1

2
∥AB−∆W⋆

t ∥2F , (A.10)

where ∆W⋆
t denotes the optimal update matrix for the current t-th task. We compute the gradients

of ℓ with respect to A and B, respectively:

∇Aℓ = (AB−∆W⋆
t )B

⊺

∇Bℓ = A⊺(AB−∆W⋆
t ).

Then, the gradient descent updates with a step size of η are

A+ = A− η∇Aℓ = A+ η(∆W⋆
t −AB)B⊺,

B+ = B− η∇Bℓ = B+ ηA⊺(AB−∆W⋆
t ).

By performing the singular value decomposition (SVD) of ∆W⋆
t , i.e,

∆W⋆
t = Φt Σt Ψ

⊺
t ,
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and exploiting the rotational invariance of the Frobenius norm in Eqn. (A.10), i.e, by substituting
A→ Φt

⊺A and B→ Ψ⊺
tB, we may assume without loss of generality that ∆W⋆

t is diagonal.

We then rewrite ∆W⋆
t as

∆W⋆
t =

(
Σt 0

0 Σ′
t

)
with Σt = diag(σ1, . . . , σj) ∈ Rj×j and Σ′

t ∈ R(m−j)×(n−j) be a diagonal matrix with
σj+1, . . . , σmin{m,n} on the diagonals. We next introduce the following block partitions:

A =

(
U

J

)
and B = (V K) ,

where
U ∈ Rj×r, J ∈ R(m−j)×r, V ∈ Rr×j , K ∈ Rr×(n−j).

In this way, we can decompose AB−∆W⋆
t as

AB−∆W⋆
t =

(
UV −Σt UK

JV JK−Σ′
t

)
,

and we are ready to bound the difference AB−∆W⋆:

∥AB−∆W⋆∥op = ∥AB−∆W⋆
t +∆W⋆

t −∆W⋆∥op
≤ ∥AB−∆W⋆

t ∥op + ∥∆W⋆
t −∆W⋆∥op

≤ ∥UV −Σt∥op + ∥UK∥op + ∥JV∥op + ∥JK−Σ′
t∥op + ϵ1,

where we note that Σt = ∆W
[:j]
t (after diagonalization of ∆W⋆

t ). To ensure convergence, it suffices
to show that the dominant term UV approaches Σt while the error terms (J,K) remain small. Let
us first extract the gradient descent update of the top left block U:

U+ =U+ η
[
(Σt −UV)V⊺ + (−UK)K⊺

]
=U+ η

(
Σt V

⊺ −U
(
VV⊺ +KK⊺

))
.

Similarly, we have
V+ = V + η

(
U⊺ Σt −

(
U⊺U+ J⊺J

)
V
)
,

J+ = J+ η
(
Σ′

t K
⊺ − J

(
VV⊺ +KK⊺

))
,

K+ = K+ η
(
J⊺Σ′

t −
(
U⊺U+ J⊺J

)
K
)
.

To account for the potential imbalance of U and V, we introduce the following quantities,

F =
U+V⊺

2
and G =

U−V⊺

2
,

so that
U = F+G and V⊺ = F−G.

Then, the updates for F and G are given by

F+ = 1
2

(
U+ +V⊺

+

)
= 1

2

[
U+V⊺ + η

(
Σt V

⊺ +ΣtU
)
− η
(
U
(
VV⊺ +KK⊺

)
+V⊺

(
U⊺U+ J⊺J

))]
= F+ ηΣt F− η

2

[ (
F+G

)(
VV⊺ +KK⊺

)
+
(
F−G

)(
U⊺U+ J⊺J

)]
.

A similar computation gives

G+ = 1
2

(
U+ −V⊺

+

)
= G− ηΣtG− η

2

[ (
F+G

)(
VV⊺ +KK⊺

)
−
(
F−G

)(
U⊺U+ J⊺J

)]
.
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It is now natural to introduce the following equations:

P = Σt − FF⊺ +GG⊺, Q = FG⊺ −GF⊺,

so that one can verify that
P+Q = Σt −UV.

According to the Proposition B.2 and B.5 of Jiang et al. (2023), it holds with high probability that for
any T1 + T2 + T3 ≤ i ≤ T ,

∥UiKi∥op ≤ 3ρ
1−γ

2(1+γ)σ1, ∥JiVi∥op ≤ 3ρ
1−γ

2(1+γ)σ1,

∥JiKi∥op ≤ ρ
1−γ

(1+γ)σ1, ∥Qi∥op ≤ 4ρ
1−γ

2(1+γ)

√
2jσ1.

∥Pi∥op ≤ (1− 0.79ησj)
2 + 6η2σ2

1∥Pi−1∥op + 80ηρ
1−γ
1+γ jjσ1

≤ (1− 3ησj

2
)∥Pi−1∥op + 80ηρ

1−γ
1+γ jσ2

1

≤ 2

(
1− 3ησj

2

)i−T1−T2

σ1 +
80ρ

1−γ
1+γ jσ2

1

σr
.

Given that T3 =

⌊
log(ρ

1−γ
2(1+γ) /3)

log(1− 3
2ησj)

⌋
+ 1, it follows that for all i satisfying T1 + T2 + T3 ≤ i ≤ T , we

have ∥Pi∥op ≤ ρ
1−γ

2(1+γ)σ1.

∥UiVi −Σt∥op = ∥Pi +Qi∥op ≤ ∥Pi∥op + ∥Qi∥op ≤ ρ
1−γ

2(1+γ)σ1 + 4ρ
1−γ

2(1+γ)

√
2jσ1.

By combining these parts, we can have

∥AiBi −∆W[:j]∥op ≤ 8ρ
1−γ

2(1+γ)σ1 + 4ρ
1−γ

2(1+γ)

√
2jσ1 + ϵ1 = (8ρ

1−γ
2(1+γ) + 4ρ

1−γ
2(1+γ)

√
2j)σ1 + ϵ1

A.2 ADDITIONAL RESULTS FOR SEC. 3.3

To further investigate the temporal evolution of learned LoRA magnitudesM = {αk}Nk=1 in SD-
LoRA, we conduct additional experiments on ImageNet-R (Boschini et al., 2022) with an extended
task length of N = 20 and a more challenging DomainNet dataset (Peng et al., 2019). As visualized
in Fig. 6, both experimental configurations reveal a systematic decrease in αk values throughout the
training process. These results corroborate the descending trend observed in our main experiments,
demonstrate the consistent behaviors of SD-LoRA across extended task horizons and diverse domain
distributions, and align with the theoretical analysis presented in Sec. 3.4.

(a) (b)

Figure 6: Learned LoRA magnitudesM = {αk}Nk=1 in SD-LoRA on (a) ImageNet-R (N = 20) and
(b) DomainNet (N = 5).
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(a) (b) (c)

Figure 7: Relative distances computed on (a) DomainNet (N = 5), (b) ImageNet-R (N = 5) using
ViT-B/16 from DINO, and (c) ImageNet-R(N = 10), respectively.

A.3 RESULTS ON OTHER CL BENCHMARKS

In addition to ImageNet-R, ImageNet-A, and DomainNet, we evaluate the proposed SD-LoRA on
two other widely recognized benchmarks: CIFAR-100 (Krizhevsky, 2009) and CUB-200 (Wah et al.,
2011). CIFAR-100 is a standard dataset for image classification, comprising 60, 000 images evenly
distributed across 100 classes, with 600 images per class. For our experiments, we split CIFAR-100
into ten tasks, each containing ten classes. Similarly, CUB-200 is a fine-grained dataset specifically
designed for bird classification, which consists of 11, 788 images across 200 classes. We divide this
dataset into ten tasks, with each task encompassing 20 species. As shown in Table 6, the proposed
SD-LoRAs consistently deliver outstanding performance on both datasets.

Additionally, we provide supplementary results to those in Fig. 2(a) by analyzing the relative distances
between fine-tuned and pre-trained weights across different benchmarks, backbones, and task lengths.
As shown in Fig. 7, the observed trends remain consistent with Finding 1.

Table 6: Performance comparison on CIFAR100 and CUB200.

Method CIFAR100 CUB200
Acc ↑ AAA ↑ Acc ↑ AAA ↑

Full Fine-Tuning 69.49(0.50) 80.35(0.87) 51.43(1.41) 69.74(0.93)
L2P (Wang et al., 2022b) 83.18(1.20) 87.69(1.05) 65.18(2.49) 76.12(1.27)
DualPrompt (Wang et al., 2022a) 81.48(0.86) 86.41(0.66) 68.00(1.06) 79.40(0.88)
CODA-Prompt (Smith et al., 2023) 86.31(0.12) 90.67(0.22) 71.92(0.33) 78.76(0.65)
InfLoRA (Liang & Li, 2024) 86.75(0.35) 91.72(0.15) 70.82(0.23) 81.39(0.14)
SD-LoRA 88.01(0.31) 92.54(0.18) 77.48(0.20) 85.59(0.44)

SD-LoRA-RR 87.26(0.22) 92.05(0.31) 76.35(0.28) 83.89(0.35)
SD-LoRA-KD 87.09(0.45) 92.01(0.33) 75.95(0.55) 83.21(0.31)

17


	Introduction
	Related Work
	Proposed Method: SD-LoRA
	Preliminaries
	SD-LoRA
	Empirical Analysis of SD-LoRA
	Theoretical Analysis of SD-LoRA
	Two Variants of SD-LoRA

	Experiments
	Experimental Setups
	Experimental Results

	Conclusion and Discussion
	Appendix
	Proof of Theorem 1
	Additional Results for Sec. 3.3
	Results on Other CL Benchmarks


