
A Theoretical Results

In this section we prove the theoretical results around the dual curriculum game and use these results
to show approximation bounds for our methods, given that they have reached a Nash equilibrium
(NE).

The first theorem is the main result that allows us to analyze dual curriculum games. The high-level
result says that the NE of a dual curriculum game are approximate NE of the base game from the
perspective of any of the individual players, or from the perspective of the joint strategy.
Theorem 1. Let B be the maximum difference between U1

t and U2
t , and let (π, θ1, θ2) be a NE for

G. Then (π, pθ1 + (1− p)θ2) is an approximate NE for the base game with either teacher or for a
teacher optimizing their joint objective. More precisely, it is a 2Bp(1− p)-approximate NE when
Ut = pU1

t + (1− p)U2
t , a 2B(1− p)-approximate NE when Ut = U1

t , and a 2Bp-approximate NE
when Ut = U2

t .

At a high level, this is true because, for low values of p, the best-response strategies for the individual
players can be thought of as approximate-best response strategies for the joint-player, and vis-versa.
Since the Nash Equilibrium consists of each of the players playing their own best response, they must
be playing an approximate best response for the joint-player. We provide a formal proof below:

Proof. Let B be the maximum difference between U1
t and U2

t , and let (π, θ1, θ2) be a Nash
Equilibrium for G. Then consider pθ1 + (1 − p)θ2 as a strategy in the base game for the joint
player pU1

t + (1− p)U2
t . Let θ1+2 be the best response for the joint player to π. Since π is a best

response by assumption, it is sufficient to show that pθ1 + (1− p)θ2 is an approximate best response.
We then have

Ut(π, pθ
1 + (1− p)θ2) (6)

=p2U1
t (π, θ1) + p(1− p)U2

t (π, θ1) + p(1− p)U1
t (π, θ2) + (1− p)2U2

t (π, θ2) (7)

≥p2U1
t (π, θ1) + p(1− p)(U1

t (π, θ1)−B) + p(1− p)(U2
t (π, θ2)−B) + (1− p)2U2

t (π, θ2) (8)

=pU1
t (π, θ1) + (1− p)U2

t (π, θ2)− 2Bp(1− p) (9)

≥Ut(π, θ1+2)− 2Bp(1− p) (10)

Thus, we have shown that (π, pθ1 + (1− p)θ2) represents an 2Bp(1− p)-Nash equilibrium for the
joint player. For the first teacher we have the opposite condition trivially, the teacher is doing a best
response to the student. We must now show that the student is doing an approximate best response to
the teacher.

Let π1 be the best response to the first teacher (with utility U1
t) and let π1+2 be the best

response policy to the joint teacher. In this argument we will start with the observation that
Us(π

1, θ1+2) ≤ Us(π
1+2, θ1+2) by definition, and then argue that we can construct an upper

bound on the performance of π1 on θ1, Us(π1, θ1), and a lower bound on the performance of π1+2

on θ1, Us(π1+2, θ1). We get the desired result by combining these two arguments.

First we use Us(π1, θ1+2) to upper bound Us(π1, θ1):

Us(π
1, θ1+2) = pUs(π

1, θ1) + (1− p)Us(π1, θ2) (11)

≥ pUs(π1, θ1) + (1− p)(Us(π1, θ1)−B) (12)

= Us(π
1, θ1)− (1− p)B (13)

Second we can use Us(π1+2, θ1+2) to lower bound Us(π1+2, θ1):

Us(π
1+2, θ1+2) = pUs(π

1+2, θ1) + (1− p)Us(π1+2, θ2) (14)

≤ pUs(π1+2, θ1) + (1− p)(Us(π1+2, θ1) +B) (15)

= Us(π
1+2, θ1) + (1− p)B (16)

15

Putting this all together, we have

Us(π
1+2, θ1) + (1− p)B ≥ Us(π1, θ1)− (1− p)B.

Which, after rearranging terms, gives

Us(π
1+2, θ1) ≥ Us(π1, θ1)− 2(1− p)B

as desired. Repeating the symmetric argument shows the desired property for the second teacher.

Following this main theorem, we can apply it to two of our methods. First we can apply it to naive
PLR, which trains on a mixture of domain randomization (a teacher with utility UCt) and the PLR
bandit (a teacher with utility URt). This result shows that as we reduce the number of random
episodes, the approximation to a minimax regret strategy improves. The intuition behind this is a
direct application of Theorem 1, to show that it is an approximate Nash for the minimax regret player,
and then showing that the minimax reget player has access to a strategy which ensures small regret,
thus the regret that the equilibrium ensures must be approximately small.

Corollary 1. Let G be the dual curriculum game in which the first teacher maximizes regret,
so U1

t = URt , and the second teacher plays randomly, so U2
t = UUt . Let V θ(π) be

bounded in [B−, B+] for all θ, π. Further, suppose that (π, θ1, θ2) is a Nash equilibrium
of G. Let R∗ = minπA∈Π{maxθ,πB∈Θ,Π{REGRETθ(πA, πB)}} be the optimal worst-case
regret. Then π is 2(B+ − B−)(1 − p) close to having optimal worst-case regret, or formally,
maxθ,πB∈Θ,Π{REGRETθ(πA, π)} ≥ R∗−2(B+−B−)(1−p). Moreover, there exists environments
for all values of p within a constant factor of achieving this bound.

Proof. Since V θ(π) is bounded in [B−, B+] for all θ, π, we know that U1
t and U2

t are within
(B+ − B−) of each other. Thus by Theorem 1 we have that (π, θ1, θ2) is a 2(B+ − B−)(1 − p)-
Nash equilibrium of the base game when Ut = U1

t . Thus π is a 2(B+ −B−)(1− p) approximate
best-response to θ1. However, since θ1 is a best response it chooses a regret maximizing parameter
distribution. Thus the 2(B+ −B−)(1− p) does not just measure the sub-optimally of π with respect
to θ1, but measures the worst-case regret of π across all θ as desired.

The intuition for the existence of examples in which this approximation of regret decays linearly in p
is that a random level and the maximal regret level can be very different, and so the two measures
may diverge drastically. For an example environment where π deviates strongly from the minimax
regret strategy, consider the one-step UMDP described in Table 1.

θ0 θ1 θ2 . . . θn
π0 B 0 0
π1 0 B 0

π2 Bp+ 2ε 0 Bp
2 + ε

π3 0 Bp+ 2ε Bp
2 + ε

Table 1: In this environment all payoffs are between 0 and B(for p ∈ (0, 1) and ε < B(1−p)
2), where

B is assumed to be positive. Randomizing between π0 and π1 minimizes regret, but choosing π2 or
π3 is better in expectation under the uniform distribution. For large n it is especially clear that π2 and
π3 have better expected value under the uniform distribution, though we show that even for n = 2,
the optimal joint policy can mix between π2 and π3 incurring high regret.

Note that in Table 1, no policy has less than B
2 regret, since every policy will have to incur B regret

on either {θ0, θ1} at least half the time. The minimax regret policy mixes uniformly between π0 and
π1 to achieve regret of exactly B

2 . We can ignore θ2 . . . θn for the regret calculations by assuming
that ε < B(1−p)

2 , since every policy achieves less than B
2 regret on these levels.

Our claim is that in equilibrium ofG in this environment, the student policy can incur B2 + B(1−p)
2 −ε

regret, B(1−p)
2 − ε more than the minimax regret policy. An example of such an equilibrium point

would be when the student policy uniformly randomizes between π2 and π3, which we will call π2+3,
when the minimax teacher uniformly randomizes between θ0 and θ1 which we will call θ0+1, and

16

when the uniform teacher randomizes exactly which we call θ̃. To check this we must show that
(π2+3, θ0+1, θ̃) is in fact a NE of G. Then we must show that π2+3 incurs B

2 + B(1−p)
2 − ε regret.

To show that (π2+3, θ0+1, θ̃) is a NE of G first note that θ̃ is trivially a best response for the uniform
utility function. Also note that θ0+1 maximizes the regret of π2+3 since θ0 and θ1 are the only two
parameters on which π2+3 incur regret, and they incur the same regret; thus, any mixture over them
will be optimal for the regret-based teacher. Finally, we need to show that π2+3 is optimal for the
student. To do this we will calculate the expected value of each policy and notice that the expected
values for π2 and π3 are higher than for π0 and π1. Thus any optimal policy will place no weight on
π0 and π1, but any distribution over π2 and π3 will be equivalently optimal. By symmetry, we can
show only the calculations for π0 and π2:

π0 = p(
1

2
B +

1

2
0) + (1− p)0 =

Bp

2
(17)

π2 = p(
1

2
(Bp+ 2ε) +

1

2
0) + (1− p)(Bp

2
+ ε) =

Bp

2
+ ε (18)

Thus π2 and π3 achieve ε higher expected value by the joint distribution. Thus, we know that π2+3 is
a best response and (π2+3, θ0+1, θ̃) is in fact a NE of G.

Finally, we simply need to show that π2+3 incurs B
2 + B(1−p)

2 − ε regret. WLOG, we can evaluate
its regret on θ0. On θ0, π2+3 achieves Bp

2 + ε reward while π0 achieves B. Thus π2+3 incurs regret
of B − (Bp2 + ε) = B

2 + B−Bp
2 − ε = B

2 + B(1−p)
2 − ε as desired. As discussed before, since the

minimax regret policy achieves B
2 , this is B(1−p)

2 − ε more regret than optimal.

Lastly, we can also apply Theorem 1 to prove that REPAIRED achieves a minimax regret strategy in
equilibrium. The intuition behind this corollary is that, since the utility functions of both teachers are
the same, the approximate NE ensured by Theorem 1 is actually a true NE; therefore, the minimax
theorem applies.

Corollary 2. Let G be the dual curriculum game in which both teachers maximize regret, so
U1
t = U2

t = URt . Further, suppose that (π, θ1, θ2) is a Nash equilibrium of G. Then, π ∈
argminπA∈Π{maxθ,πB∈Θ,Π{REGRETθ(πA, πB)}}.

Proof. Since U1
t = U2

t = URt the joint objective is pU1
t + (1 − p)U2

t = URt . Note
that since U1

t = U2
t , B = 0. Thus by Theorem 1 (π, pθ1 + (1 − p)θ2) is a 0-Nash

Equilibrium of the base game with teacher objective URt , thus by the minimax theorem, π ∈
argminπA∈Π{maxθ,πB∈Θ,Π{REGRETθ(πA, πB)}} as desired.

17

B Algorithms

Although the PLR update rule for the level buffer of size K in the case of unbounded training levels
is described in [17], we provide the pseudocode for this update rule in Algorithm 2 for completeness.
Given staleness coefficient ρ, temperature β, a prioritization function h (e.g. rank), level buffer scores
S, level buffer timestamps C, and the current episode count c (i.e. current timestamp), the Preplay
update takes the form

Preplay = (1− ρ) · PS + ρ · PC ,

PS =
h(Si)

1/β∑
j h(Sj)1/β

,

PC =
c− Ci∑

Cj∈C c− Cj
.

The pseudocode for Replay-Enhanced PAIRED (REPAIRED), the method described in Section 5, is
presented in Algorithm 3.

Algorithm 2: PLR level-buffer update rule
Input: Level buffer Λ of size K with scores S and timestamps C; level θ; level score Sθ; and

current episode count c
if |Λ| < K then

Insert θ into Λ, and set S(θ) = Sθ, C(θ) = c
else

Find level with minimal support, θmin = arg min
θ

Preplay(θ)

if S(θmin) < Sθ then
Remove θmin from Λ
Insert θ into Λ, and set S(θ) = Sθ, C(θ) = c
Update Preplay with latest scores S and timestamps C

end
end

Algorithm 3: REPAIRED

Randomly initialize Protagonist, Antagonist, and Generator policies πA(φA), πB(φB), and θ̃
Initialize Protagonist and Antagonist PLR level buffers ΛA and ΛB

while not converged do
Sample replay-decision Bernoulli, d ∼ PD(d)
if d = 0 then

Teacher policy θ̃ generates the next level, θ
Set θA = θB = θ
Collect trajectory τA on θA and τB on θB with stop-gradients φA⊥, φB⊥
Update θ̃ with REGRETθ(πA, πB)

else
PLR samples replay levels, θA ∼ ΛA and θB ∼ ΛB

Collect trajectory τA on θA and τB on θB
Update πA with rewards R(τA), and πB , with rewards R(τB)

end
Compute PLR score SA = score(τA, τB , πA)
Compute PLR score SB = score(τB , τA, πB)
Update ΛA with θA using score SA
Update ΛB with θB using score SB

end

18

SixteenRooms SixteenRooms2 Labyrinth Labyrinth2 Maze Maze2 PerfectMaze* LargeCorridor*

Figure 7: Test maze environments for evaluating zero-shot transfer. An asterisk (*) next to the maze name
indicates the maze is procedurally-generated, and thus each attempt corresponds to a random configuration of
the maze.

C Additional Experimental Results

This section provides additional experimental results in MiniGrid and CarRacing environments. Note
that we determine the statistical significance of our results using a Welch t-test [43].

C.1 Extended Results for MiniGrid

Unlike the original maze experiments used to evaluate PAIRED in [10], we conduct our main maze
experiments with a block budget of 25 blocks (reported in Section 6.1), rather than 50 blocks.
Following the environment parameterization in [10], for a block budget of B, the teacher attempts
to place B blocks that act as obstacles when designing each maze level. However, the teacher can
place fewer than B blocks, as placing a block in a location already occupied by a block results in
a no-opt. We found that PAIRED underperforms DR when both methods are given a budget of 50
blocks, a setting in which randomly sampled mazes exhibit enough structural complexity to allow
DR to learn highly robust policies. Note that [10] used a DR baseline with a 25-block budget. With a
50-block budget, DR and all replay-based methods are able to fully solve almost all test mazes after
around 500M steps of training, making UED of mazes with a 50-block budget too simple of a setting
to provide an informative comparison among the methods studied.

C.1.1 Mazes with a 25-block budget

We report the results of evaluating policies produced by each method after 250M training steps on each
of the zero-shot transfer environments in Figure 8 and Table 2. Examples of each test environment are
presented in Figure 7. All replay-based UED methods lead to policies with statistically significantly
(p < 0.05) higher test performance than PAIRED, and PLR⊥, after 500M training steps, similarly
improves over PLR when trained for an equivalent number of gradient updates (as replay rate is set to
0.5). Note that for PAIRED and REPAIRED, we evaluate the protagonist policy.

To provide a further sense of the training dynamics, we present the per-agent training returns for
each method in Figure 9. Notably PAIRED results in antagonists that attain higher returns than the
protagonist as expected. This dynamic takes on a mild oscillation, visible in the training return curve
of the generator (adversary). As the protagonist adapts to the adversarial levels, the generator’s return
reduces, until the generator discovers new configurations that better exploit the relative differences
between the two student policies. Notably, the adversary under REPAIRED seems to propose more
difficult levels for both the protagonist and antagonist, while the resulting protagonist policy exhibits
improved test performance, as seen in Figure 4.

0.0

0.5

1.0

S
ol

ve
d

ra
te

SixteenRooms SixteenRooms2 Labyrinth Labyrinth2 Maze Maze2 PerfectMazes LargeCorridor

DR Minimax PAIRED REPAIRED PLR PLR

Figure 8: Zero-shot test performance on OOD environments when trained with a 25-block budget. The plots
report the median and interquartile range of solved rates over 10 runs.

19

Table 2: Mean test returns and standard errors on zero-shot transfer mazes for each method using a 25-block
budget. Results are aggregated over 100 attempts for each maze across 10 runs per method. Bolded figures
overlap in standard error with the method attaining the maximum mean test return in each row.

Environment DR Minimax PAIRED REPAIRED PLR PLR⊥ PLR⊥ (500M)

Labyrinth 0.2± 0.1 0.0± 0.0 0.3± 0.1 0.1± 0.0 0.3± 0.1 0.5± 0.1 0.7± 0.1
Labyrinth2 0.2± 0.1 0.0± 0.0 0.2± 0.1 0.2± 0.1 0.4± 0.1 0.6± 0.1 0.8± 0.1
LargeCorridor 0.7± 0.1 0.1± 0.1 0.3± 0.1 0.5± 0.1 0.7± 0.1 0.8± 0.1 0.8± 0.1
Maze 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.2± 0.1 0.3± 0.1 0.6± 0.1 0.5± 0.1
Maze2 0.0± 0.0 0.0± 0.0 0.1± 0.1 0.1± 0.1 0.4± 0.1 0.4± 0.1 0.5± 0.1
PerfectMaze 0.3± 0.1 0.0± 0.0 0.0± 0.0 0.4± 0.1 0.4± 0.1 0.6± 0.1 0.5± 0.1
SixteenRooms 0.9± 0.0 0.1± 0.1 0.7± 0.1 0.9± 0.1 1.0± 0.0 0.8± 0.1 1.0± 0.0
SixteenRooms2 0.7± 0.1 0.0± 0.0 0.0± 0.0 0.6± 0.1 0.5± 0.1 0.7± 0.1 0.7± 0.1

Mean 0.4± 0.0 0.0± 0.0 0.2± 0.0 0.4± 0.0 0.5± 0.1 0.6± 0.1 0.7± 0.1

0 250M
0

1

M
ea

n
re

tu
rn

Protagonist

0 250M
0

1
Antagonist

0 250M
0.0

0.5
Generator (Adversary)

Steps

DR Minimax PAIRED REPAIRED PLR PLR

Figure 9: Training returns for each participating agent in each method, when trained with a 25-block budget.
Plots show the mean and standard error over 10 runs.

0 250M
10.0

20.0

30.0

LZ
W

 c
om

pl
ex

ity

Action complexity

0 250M

10.0

20.0

B
lo

ck
 c

ou
nt

Number of blocks

0 250M

5.0

10.0

P
at

h
le

ng
th

Shortest path length

0 250M
2.5
5.0
7.5

10.0

P
at

h
le

ng
th

Solved path length

Steps

DR Minimax PAIRED REPAIRED PLR PLR

Figure 10: Complexity metrics of environments generated by the teacher throughout training with a 25-block
budget. Plots show the mean and standard error of 10 runs.

Additional complexity metrics tracked during training are shown in Figure 10. Alongside the number
of blocks and shortest path length of levels seen during training, we also track solved path length and
action complexity. Solved path length corresponds to the shortest path length from start position to
goal in the levels successfully solved by the primary student agent (e.g. the protagonist in PAIRED).
Action complexity corresponds to the Lempel-Ziv-Welch (LZW) complexity—a commonly used
measure of string compressibility—of the action sequence taken during the primary student agent’s
trajectories. As expected, DR results in constant complexity for number of blocks and path length
metrics. REPAIRED generates mazes with significantly greater complexity in terms of block count.
The lower path lengths seen by REPAIRED suggest that it trains agents that more readily generalize
to different path lengths, thereby pressuring the adversary to raise complexity in terms of block
count. Further, given the high replay rates used, the REPAIRED adversary sees far fewer gradient
updates with which to adjust its policy. As its shortest path lengths exceed that of PAIRED after
adjusting proportionately by replay rate, foreseeably, over a longer period, the shortest path lengths
generated by REPAIRED may meet or exceed that of PAIRED. In all cases, the action complexity
reduces as the agent becomes more decisive, and we see that both PAIRED and REPAIRED lead to
more decisive policies—as indicated by the simultaneously lower action complexity and greater level
complexity in terms of higher block count (relative to DR) and, in the case of PAIRED, higher path
length metrics. Lastly, it is interesting to note that while the random generator used by PLR produces
levels of average complexity, the complexity of curated levels, as revealed in Figure 4, is significantly
higher and, in the case of path length, steadily increasing.

20

C.1.2 Mazes with a 50-block budget

Similarly, Figures 12, 13, and 14 report the training dynamics and test performance of agents trained
using each method with a 50-block budget for 500M steps. Figure 11 shows that DR and all replay-
based methods are able to reach near perfect solve rates on most test mazes after 500M steps of
training, with the exception of the Maze and PerfectMaze environments, where the test performances
across methods are not markedly dissimilar, making the setting with a 50-block budget uninformative
for assessing performance differences among these methods. The example mazes generated by each
method, presented in Figure 15, shows that the larger block budget allows DR to sample mazes
with greater structural complexity, leading to robust policies and diminishing the benefits of the
UED methods studied. Therefore, in this work, we focus the main results for the maze domain on
the more challenging setting with a 25-block budget. Note that the impact of the block budget on
test performance further highlights the importance of properly adapting the training distribution
for producing policies exhibiting high generality—a problem that our replay-based UED methods
effectively address, as demonstrated by the results for the 25-block setting.

0.0

0.5

1.0

S
ol

ve
d

ra
te

SixteenRooms SixteenRooms2 Labyrinth Labyrinth2 Maze Maze2 PerfectMazes LargeCorridor

DR Minimax PAIRED REPAIRED PLR PLR

Figure 11: Zero-shot test performance on OOD environments when trained with a 50-block budget. The plots
show the median and interquartile range of solved rates over 10 runs.

SixteenRooms

S
ol

ve
d

ra
te

B
lo

ck
 c

ou
nt

Number of blocks

P
at

h
le

ng
th

Shortest path length

PPO updates

0 5K
10

20

30

40

0 5K
6

8

10

12

0 5K

0.0
0.2
0.5
0.8

0 5K

0.0

0.2

Labyrinth

Steps

S
ol

ve
d

ra
te

DR Minimax PAIRED REPAIRED PLR PLR⊥

Labyrinth MazeSixteenRooms

0 500M
0

1

0 500M
0

1

0 500M
0

1
PAIRED, 3B steps
Median

Figure 12: Test performance as a function of number of training steps with a 50-block budget (left), and test
performance and complexity metrics as a function of number of PPO updates (right). The plots show the mean
and standard error over 10 runs.

0 500M
0

1

M
ea

n
re

tu
rn

Protagonist

0 500M
0

1
Antagonist

0 500M
0.0

0.5
Generator (Adversary)

Steps

DR Minimax PAIRED REPAIRED PLR PLR

Figure 13: Training returns for each participating agent in each method when training with a 50-block budget.
Plots show the mean and standard error over 10 runs.

21

0 500M
10.0

20.0

30.0
LZ

W
 c

om
pl

ex
ity

Action complexity

0 500M

20.0

40.0

B
lo

ck
 c

ou
nt

Number of blocks

0 500M

5.0

10.0

P
at

h
le

ng
th

Shortest path length

0 500M

5.0

10.0

P
at

h
le

ng
th

Solved path length

Steps

DR Minimax PAIRED REPAIRED PLR PLR

Figure 14: Complexity metrics of environments generated by the teacher throughout training with a 50-block
budget. Plots show the mean and standard error of 10 runs.

DR PLR PLR⊥REPAIREDPAIRED

Figure 15: Example mazes generated by each method when using a 50-block budget.

C.2 Extended Results for CarRacing

The training return plots for each agent, shown in Figure 16, reveal that PAIRED’s generator
(adversary) overexploits the relative advantages of the antagonist over the protagonist, leading to
a highly suboptimal protagonist policy. In fact, as shown in the right-most plot of Figure 16, the
resulting protagonist policies suffer such performance degradation from the adversarial curriculum
that they can no longer even successfully drive on the original, simpler CarRacing tracks.

Additionally, we present per-track zero-shot transfer returns for the entire CarRacing-F1 benchmark
after 5M training steps (equivalent to 40M environment interaction steps due to the usage of action
repeat) in Table 3. Results report the mean and standard deviation over 100 attempts per track across
10 seeds. While DR acts as a strong baseline in terms of zero-shot generalization in this setting,
PLR⊥ either attains the highest mean return, or matches the method achieving the highest return
within standard error on all tracks. The mean performance of PLR⊥ across the full benchmark is
statistically significantly higher (p < 0.001) than that of all other methods. Notably, PAIRED sees
poor results, likely due to the generator’s ability to overexploit the differences between antagonist
and protagonist to detrimental effect in this domain. We see that REPAIRED mitigates this effect to a
degree, resulting in more competitive policies. Note that due to the high compute overhead of training
the AttentionAgent (8.2 billion steps of training over a population 256 agents) [38], we resorted to
evaluating its mean F1 performance using the pre-trained model weights provided by the authors with
their public code release. As a result, we only have a single training run for AttentionAgent. This
means we cannot reliably compute standard errors for this baseline, but we believe that showing the
performance for a single training seed of AttentionAgent on the F1 benchmark alongside our methods,
as done in Figure 6, nonetheless provides a useful comparison for further contextualizing the efficacy
of our methods. This comparison highlights how, by only modifying the training curriculum, our
methods produce policies with test returns exceeding that of AttentionAgent—which in contrast, uses
a powerful attention-based policy and a much larger number of training steps.

As a further analysis of robustness, we inspect the minimum returns over 10 attempts per track,
averaged over 10 runs per method. We present these results (mean and standard error) in Figure 17.
PLR⊥ achieves consistently higher minimum returns on average for many of the tracks compared to
the other methods, including on the challenging Russia and USA tracks. The fact that simply curating
random levels, as done by PLR⊥, more reliably approaches a minimax regret policy than PAIRED
and REPAIRED suggests that RL may not be an effective means for optimizing the PAIRED teacher.

22

Table 3: Mean test returns and standard errors of each method on the full F1 benchmark. Results are aggregated
over 10 attempts for each track across 10 runs per method. Bolded figures overlap in standard error with the
method attaining the maximum mean test return in each row. We see that PLR⊥ consistently either outperforms
the other methods or matches PLR, the next best performing method. Note that we separately report the results
of a single run for AttentionAgent due to its high compute overhead.

Track DR PAIRED REPAIRED PLR PLR⊥ AttentionAgent

Australia 484± 29 100± 22 414± 27 545± 23 692± 15 826
Austria 409± 21 92± 24 345± 19 442± 18 615± 13 511
Bahrain 298± 27 −35± 19 295± 23 411± 22 590± 15 372
Belgium 328± 16 72± 20 293± 19 327± 15 474± 12 668
Brazil 309± 23 76± 18 256± 19 387± 17 455± 13 145
China 115± 24 −101± 9 7± 18 84± 20 228± 24 344
France 279± 32 −81± 13 240± 29 290± 35 478± 22 153
Germany 274± 23 −33± 16 272± 22 388± 20 499± 18 214
Hungary 465± 32 98± 29 414± 29 533± 26 708± 17 769
Italy 461± 27 132± 24 371± 25 588± 20 625± 12 798
Malaysia 236± 25 −26± 17 200± 17 283± 20 400± 18 300
Mexico 458± 33 67± 31 415± 30 561± 21 712± 12 580
Monaco 268± 28 −28± 18 256± 26 360± 32 486± 19 835
Netherlands 328± 26 70± 20 307± 21 418± 21 419± 25 131
Portugal 324± 27 −49± 13 265± 21 407± 15 483± 13 606
Russia 382± 30 51± 21 419± 25 479± 24 649± 14 732
Singapore 336± 29 −35± 14 274± 21 386± 22 566± 15 276
Spain 433± 24 134± 24 358± 24 482± 17 622± 14 759
UK 393± 28 138± 25 380± 22 456± 16 538± 17 729
USA 263± 31 −119± 11 120± 25 243± 28 381± 33 -192

Mean 341± 22 19± 15 293± 18 408± 12 534± 7 477

0 5M
0

400

800

M
ea

n
re

tu
rn

Protagonist

0 5M
0

450

900
Antagonist

0 5M
0

1

2
Generator

0 5M
0

450

900
CarRacing-v0

Steps

DR PAIRED REPAIRED PLR PLR

Figure 16: From left to right: Returns attained by the protagonist, antagonist, and generator (adversary)
throughout training; the protagonist’s zero-shot transfer performance on the original CarRacing-v0 during
training. The mean and standard error over 10 runs are shown.

23

Mex
ico

20
00

20
0

40
0

60
0

Minimum return

Aus
tra

lia

Ita
ly

Aus
tria

Spa
in

Hun
ga

ry

Rus
sia

UK

Sing
ap

ore

Belg
ium

Bah
rai

n

Mon
ac

o

Port
ug

al

Braz
il

Germ
an

y

Mala
ys

ia

Fran
ce

Neth
erl

an
ds

USA

Chin
a

D
R

PA
IR

E
D

R
E

PA
IR

E
D

P
LR

P
LR

Fi
gu

re
17

:M
in

im
um

re
tu

rn
s

at
ta

in
ed

ac
ro

ss
10

te
st

ep
is

od
es

pe
rt

ra
ck

pe
rs

ee
d.

B
ar

s
re

po
rt

m
ea

n
an

d
st

an
da

rd
er

ro
ro

ve
r1

0
tr

ai
ni

ng
ru

ns
.

24

Table 4: Hyperparameters used for training each method in the maze and car racing environments.

Parameter MiniGrid CarRacing

PPO
γ 0.995 0.99
λGAE 0.95 0.9
PPO rollout length 256 125
PPO epochs 5 8
PPO minibatches per epoch 1 4
PPO clip range 0.2 0.2
PPO number of workers 32 16
Adam learning rate 1e-4 3e-4
Adam ε 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping yes no
Return normalization no yes
Value loss coefficient 0.5 0.5
Student entropy coefficient 0.0 0.0

PLR
Replay rate, p 0.5 0.5
Buffer size, K 4000 8000
Scoring function MaxMC positive value loss
Prioritization rank proportional
Temperature, β 0.3 1.0
Staleness coefficient, ρ 0.3 0.7

PLR⊥
Scoring function MaxMC positive value loss

PAIRED
Generator entropy coefficient 0.0 0.0

REPAIRED
Generator entropy coefficient 0.0 0.01
Scoring function MaxMC MaxMC

D Experiment Details and Hyperparameters

This section details the environments, agent architectures, and training procedures used in our
experiments discussed in Section 6. We use PPO to train both student and generator policies in all
experiments. Section 6 reports results for each method using the best hyperparameter settings, which
we summarize in Figure 4. Note that unless specified, PPO hyperparameters are shared between
student and teacher, and PLR hyperparameters are shared between REPAIRED and REPAIRED. The
procedures for determining the hyperparameter choices for each environment are detailed below, in
Sections D.1 and D.2.

D.1 Partially-Observable Navigation (MiniGrid)

Environment details Our mazes are based on MiniGrid [7]. Each maze consists of a 15× 15 grid,
where each cell can contain a wall, the goal, the agent, or navigable space. The student agent receives
a reward of 1 − T/Tmax upon reaching the goal, where T is the episode length and Tmax is the
maximum episode length (set to 250). Otherwise, the agent receives a reward of 0 if it fails to reach
the goal. The observation space consists of the agent’s orientation (facing north, south, east, or west)
and the 7 × 7 grid immediately in front of and including the agent. This grid takes the form of a
3-channel integer encoding. The action space consists of 7 total actions, though mazes only make use
of the first three: turn left, turn right, and forward. We do not mask out irrelevant actions.

Level generation Each maze is fully surrounded by walls, resulting in 13× 13 = 169 cells in which
the generator can place walls, the goal, and the agent. Starting from an initially empty maze (except
the bordering walls), the generator is given a budget of W = 50 steps in which it can choose a grid
cell in which to place a wall. Placing a wall in a cell already containing a wall results in a no-opt.

25

After wall placement, the generator then chooses cells for the goal and the agent’s starting position. If
either of these cells collides with an existing wall, a random empty cell is chosen. At each time step,
the generator teacher receives the full grid observation of the developing maze, the one-hot encoding
of the current time step, as well as a 50-dimensional random noise vector, where each component is
uniformly sampled from [0.0, 1.0].

Generator architecture We base the generator architecture on the the original model used for
the PAIRED adversary in [10]. This model encodes the full grid observation using a convolution
layer (3 × 3 kernel, stride length 1, 128 filters) followed by a ReLU activation layer over the
flattened convolution outputs. The current time step is embedded into a 10-dimensional space,
which is concatenated to the grid embedding, along with the random noise vector. This combined
representation is then passed through an LSTM with hidden dimension 256, followed by two fully-
connected layers, each with a hidden dimension 32 and ReLU activations, to produce the action
logits over the 169 possible cell choices. We further ablated the LSTM and found that its absence
preserves the performance of the minimax generator in both 25-block and 50-block settings, as well
as that of the PAIRED generator in the 50-block setting, as expected given that the full grid and time
step form a Markov state. However, the PAIRED generator struggles to learn without an LSTM
in the 25-block setting. We believe PAIRED’s improved performance when using an LSTM-based
generator in the 25-block setting is due to the additional network capacity provided by the LSTM.
Therefore, in favor of less compute time, our experiments only used an LSTM-based generator for
PAIRED in the 25-block setting.

Student architecture The student policy architecture resembles the LSTM-based generator
architecture, except the student model uses a convolution with 16 filters to embed its partial
observation; does not use a random noise vector; and instead of embedding the time step, embeds the
student’s current direction into a 5-dimensional latent space.

Choice of hyperparameters We base our choice of hyperparameters for student agents and generator
(i.e. the adversary) on [10]. We also performed a coarse grid search over the student entropy coefficient
in {0.0, 0.01}, generator entropy coefficient in {0.0, 0.005, 0.01}, and number of PPO epochs in
{5, 20} for both students and generator, as well as the choice of including an LSTM in the student and
generator policies. We selected the best performing settings based on average return on the validation
levels of SixteenRooms, Labyrinth, and Maze over 3 seeds. Our final choices are summarized
in 4. The main deviations from the settings in [10] are the choice of removing the generator’s
LSTM (except for PAIRED with 25 blocks) and using fewer PPO epochs (5 instead of 20). For
PLR, we searched over replay rate, p, in {0.5, 0.95} and level buffer size, K, in {500, 2000, 4000},
temperature β in {0.1, 0.3}, and choice of scoring function in {positive value loss,MaxMC}. The
final PLR hyperparameter selection was then also used for PLR⊥ and REPAIRED, except for the
scoring function, over which we conducted a separate search for each method.

Zero-shot levels We make use of the challenging test mazes in [10]: SixteenRooms, requiring
navigation through up to 16 rooms to find a goal; Labyrinth, requiring traversal of a spiral labyrinth;
and Maze, requiring the agent to find a goal in a binary-tree maze, which requires the agent
to successfully backtrack from dead ends. To more comprehensively test the agent’s zero-shot
transfer performance on OOD classes of mazes, we introduce Labyrinth2, a rotated version of
Labyrinth; Maze2, another variant of a binary-tree maze; PerfectMaze, a procedurally-generated
maze environment; and LargeCorridor, another procedurally-generated maze environment, where the
goal position is randomly chosen to lie at the end of one of the corridors, thereby testing the agent’s
ability to perform backtracking. Figure 3 provides screenshots of these mazes.

Compute All maze-navigating agents were trained using Tesla V100 GPUs. DR required
approximately 40 hours to reach 250 million training steps; minimax, 50 hours; PLR variants,
100 hours; and PAIRED variants, 160 hours. In total, our main experimental results, across 25-block
and 50-block runs, required roughly 18,300 hours (around 763 days) of training.

D.2 CarRacing

Environment details Each track consists of a closed loop around which the student agent must drive
a full lap. In order to increase the expressiveness of the original CarRacing, we reparameterized the
tracks using Bézier curves. In our experiments, each track consists of a Bézier curve [22] based on 12
randomly sampled control points within a fixed radius, B/2, of the center of the B×B playfield. The

26

track consists of a sequence of L polygons. When driving over each previously unvisited polygon,
the agent receives a reward equal to 1000/L. The student additionally receives a reward of -0.1 at
each time step. Aligning with the methodology of [18], we do not penalize the agent for driving out
of the playfield boundaries, terminate episodes if the agent drives too far off track, and repeat every
selected action for 8 steps. The student observation space consists of a 96× 96× 3 pixel observation
with RGB channels with a clipped, egocentric, bird’s-eye view of the vehicle centered horizontally
in the top 84 × 96 portion of the frame. The remaining 12 × 96 portion of the frame consists of
the dashboard visualizing the agent’s latest action and return. Note that despite the lossiness of the
downsampled dashboard, our hyperparameter sweep for the best PPO settings found that including
the full frame enabled better performance. Given this observation, the student then decides on a
3-dimensional continuous action, where the components correspond to control values for steer (torque,
in [−1.0, 1.0]), gas (acceleration, in [0.0, 1.0]), and brake (deceleration, in [0.0, 1.0]).

Level generation Starting from an empty track, the adversary generates a sequence of 12 control
points, one per time step, spaced within a fixed radius, B/2 of the centerO of the playfield. The agent
always begins centered at the track polygon closest to 0◦ relative to O, facing counterclockwise.

Generator architecture At each time step, the generator policy receives the set of all control points
so far generated, the current time step encoded as a one-hot vector, and a 16-dimensional random
noise vector. The control points are spatially encoded in a 10×10 grid, called the sketch, representing
a downsampled and discretized version of the playfield bounds within which the generated track
resides. Choosing a control point then corresponds to selecting one of the cells in this grid. After the
control points are chosen, each control point’s cell coordinates are upscaled to match the original
playfield scale. This ensures no two control points are too close together, preventing areas of excessive
track overlapping. The sketch is embedded using two 2× 2 convolutions using a stride length of 1
with 8 and 16 channels respectively, each followed by a ReLU layer. The flattened outputs of this
sequence of convolutions is then concatenated with an 8-dimensional embedding of the time step and
the random noise vector. This combined embedding is then fed through two fully connected layers,
each with a hidden size of 256, where the first is followed by a ReLU activation, to produce the policy
logits over the 100 choices of control points. Note that we mask out any cells in the sketch that have
already been chosen to prevent double selection of the same control point. We also experimented with
outputing continuous, downsampled control points in [0.0, 1.0] by learning the α and β parameters of
a Beta distribution for each of x and y coordinates instead of categorical logits, but found this latter
parameterization led to slower learning of generator policies, where the generator policy tended to
remain close to or revert to an approximately uniformly random policy.

Student architecture The student policy architecture is based on the competitive PPO
implementation in [18], which was used as a baseline for AttentionAgent in [38]. This architecture
consists of an image embedding module composed of a stack of 2D convolutions with square kernels
of sizes 2, 2, 2, 2, 3, 3, channel outputs of 8, 16, 32, 64, 128, 256, and stride lengths of 2, 2, 2, 2,
1, 1 respectively, resulting in a 256-dimensional image embedding. The image embedding is then
passed through a fully connected layer with a hidden size of 100, followed by a ReLU layer. This
latter output is then fed through two separate fully-connected layers, each with hidden size of 100 and
output dimension equal to the action dimension, followed by softplus activations. We then add 1 to
each component of these two output vectors, which serve as the α and β parameters respectively for
the Beta distributions used to sample each action dimension. When training the student, we normalize
rewards by dividing rewards by the running standard deviation of returns so far encountered.

Choice of hyperparameters To determine the best hyperparameters for the student agents, we
performed a grid search, in which we trained a student agent with domain randomization for 300
PPO updates. The grid search covered PPO learning rate in {0.001, 0.0003}, λGAE in {0.0, 0.5, 0.9},
number of PPO epochs in {4, 8}, PPO number of minibatches per epoch in {2, 4, 8}, value loss
coefficient in {0.5, 2.0}, whether to grayscale frames, whether to crop frames (i.e remove the
dashboard portion), and whether to normalize returns. Further, we found entropy regularization
tended to hurt performance of the student policy. Similar to the sharing of PPO hyperparameters
between student and generator in [10], we then shared the best PPO hyperparameters for the student
with the generator, with the exception of searching over separate choices for the entropy coefficient
in {0.0, 0.01}. We selected the best performing settings based on average return on the validation
levels of F1-Italy, F1-Singapore, and F1-Germany over 3 seeds. For PLR, we searched over replay
rate, p, in {0.5, 0.95}, level buffer size K, in {500, 2000, 4000, 8000}, replay prioritization in
{rank, proportional}, staleness coefficient ρ in {0.3, 0.7}, and replay distribution temperature β in

27

{0.1, 1.0, 2.0}. The best settings for PLR were then shared with REPAIRED and REPAIRED, except
for the scoring function, over which we performed a separate search for each method.

Zero-shot levels Our zero-shot levels are based on 20 real-world Formula One (F1) tracks designed
to challenge professional racecar drivers. We predominantly selected tracks based on recent F1
seasons, including some historical favorites such as the Nürburgring Grand Prix.2 This collection of
tracks, which we call CarRacing-F1, provides a new benchmark for testing robustness and zero-shot
generalization in a continuous control setting. Importantly, these tracks are strictly out-of-distribution
and of higher complexity with respect to the training levels, as they cannot be represented by Bézier
curves limited to 12 control points. Moreover, each F1 track requires more time steps to solve (1500
or 2000) than allotted for the training tracks (1000). Table 5 provides per-track descriptions, and
Figure 19 shows bird’s-eye views of each track.

Compute All car racing agents were trained on Tesla V100 GPUs. DR and PLR variants required
approximately 18 hours to reach 5 million training steps, while PAIRED variants, 24 hours. Our
experiments in this domain entailed a total of roughly 9,600 hours (around 400 days) of training.

Table 5: Descriptions for each track in the CarRacing-F1 benchmark.

Environment Real-world track Max episode steps

Australia Albert Park 1500
Austria Red Bull Ring 1500
Bahrain Bahrain International Circuit 2500
Belgium Circuit de Spa-Francorchamps 1500
Brazil Autódromo José Carlos Pace 2000
China Shanghai International Circuit 2500
France Circuit Paul Ricard 2000
Germany Nürburgring 2000
Hungary Hungaroring 2000
Italy Monza Circuit 1500
Malaysia Sepang International Circuit 2500
Mexico Autódromo Hermanos Rodríguez 2000
Monaco Circuit de Monaco 1500
Netherlands Circuit Zandvoort 2000
Portugal Algarve International Circuit 2500
Russia Sochi Autodrom 1500
Singapore Marina Bay Street Circuit 2000
Spain Circuit de Barcelona-Catalunya 2000
UK Silverstone 2000
USA Circuit of the Americas, Austin 2000

2We chose not to include the Japanese and Canadian Grand Prix due to the overlapping tracks at Suzuka and
the Circuit Gilles Villeneuve.

28

(a) DR (b) PAIRED (c) REPAIRED (d) PLR (e) PLR⊥

Figure 18: A randomly-selected set of CarRacing tracks generated by each method. (a) Domain Randomization
(DR) produces tracks of average complexity, with few sharp turns. (b) PAIRED often overexploits the difference
in the students, leading to simple tracks that incidentally favor the antagonist. (c) REPAIRED mitigates this
degeneracy, recovering track complexity. (d) PLR and (e) PLR⊥ similarly generate tracks of considerable
complexity, by prioritizing the most challenging randomly generated tracks.

29

(a) Australia (b) Austria (c) Bahrain (d) Belgium

(e) Brazil (f) China (g) France (h) Germany

(i) Hungary (j) Italy (k) Malaysia (l) Monaco

(m) Mexico (n) Netherlands (o) Portugal (p) Russia

(q) Singapore (r) Spain (s) UK (t) USA

Figure 19: All tracks in the CarRacing-F1 benchmark used for evaluating zero-shot generalization.

30

