A Mathematical Derivation

The intrinsic reward function of skill discovery is shown as follows.

L(z; 8) + I(a; z[s) + Hlals, 2]
|

= (M[2] - Hlzls]) + (Hlals] — Hlals, 2]) + Hals, 2] (12)
——
©) @ ®

We first analysis #[a|s] in term 2). We present a lower bound of the policy entropy H[a|s]. Here, we
give the details of its proof as follows.

Theorem 1. The lower bound on the policy entropy Hlal|s] corresponds to:

Hlals] > Epaz.e) [bg M“‘ﬂ (13)

Proof.

Zp Hlals = §']
= 2 p)) o i
_ ZZp a,s log /|5)

s’/

p(zla, s
- IEp(a,z,s) |:10g (|):| (14)

Then we describe how to insert Equation 5 and 6 into Equation 4 to get Equation 7.

Equatlondetalls how to transform E,,,) [log p(zla, S)} into Equation 6.

p(a,z|s)

14

» 1
Ep((LZ,S) [10g p:| = Ep(a,z,s) [Ing(Z|a7 S)] +]EP(G»ZxS) |:10g p(a72|s)]

1
=E a,s [E z|a,s Ing(z|av 8)] +E a,z,s I:log :|
p(a,s) ['Ep(z|a,s) p() p(z|)

1 1 1
=-E a,s E zla,s) T 1 N E a,z,s 1 1
p(a.s) [p(z| ’)logp(z|a,s)} T Ep(a,z.s) {ng(zs) + ng(a|z,s)}

1
=-E E log ——
p(a,s) [H[p(z\a, S)H + Lpa,z,s) i 0g p(Z‘S)_ +
1
E E log ——
| L
= _]Ep(a,s) [H[p(z\a, 5)” + Ep(a’z,S) log p(2]s) + Ep(z,S) [’H[p(a|z, S)H
] ' (15)
For the term E,(, -5 [log (z‘s)} we can transform it into:
Ep(““){] ZZZ““@{H)}
—ZZZp p(z, sla log[l}
p(zs)
= z,8)log | ——
2. 2 () log)
= H|z|s] (16)

Equation 17| details how to get Equation 7.

r™ =1I(z;8) + Z(a;z|s) + Hlalz, s]
= (H[z] = H[zls]) + (Hlals] — Hlal|z, s]) + Hlalz, 5]

> (H[z] — H[z[s]) + Epa,z.) [log M]

= (] — i) + (Bt (M0l 9] + Epny 1o =] + By [lplal=)
= HIP()] + By (Hlplal.)] — By [l)] a7

B Experimental Details

B.1 Baselines

We compare our approach with multi-agent value decomposition methods (QMIX and QPLEX),
role-based methods (ROMA and RODE), diversity-based method (CDS) and skill-based method
(HSD). For QMIX, QPLEX, RODE, ROMA, CDS and HSD, we use the codes with fine-tuned
hyper-parameters, which are provided by the authors.

B.2 Architecture and Hyper-parameters

We develop our method based on the Python MARL framework (PyMARL) on the github. Configura-
tion of the hyper-parameters of the agent network and the mixing network are the same as those in
QMIX, which could be found in the source codes. We list these hyper-parameters of our method in

15

Table 1: Hyper-parameters for HSL.

Parameter Value

Algorithm hyper-parameters

Discount factor 0.99
Batch size 32
Buffer size 5000
Optimizer RMSprop
Learning rate 0.0005
Interval of target network update 200

Agent network hyper-parameters

Temporal module in Agent network GRU
Dimensions of hidden states of temporal module 64

Mixing network hyper-parameters

Dimensions of mixing network embedding 32
Number of hyper network layers 2
Dimensions of hyper network embedding 64
HSL hyper-parameters
Dimensions of skill representation encoder embedding 20
Reward decoder scaling factor 10
Cosine distance scaling factor 0.1, 1
Skill representation learning mechanism training steps 50000
Dimensions of skill selector encoding network embedding 32
Decision interval of the skill selector 5

the first three parts in Table[I] For exploration, we use e-greedy in the training procedure and keep
e constant for the test. The e anneal times are different on different environments. In most of the
scenarios in SMAC and all scenarios in GREF, € is annealed linearly from 1.0 to 0.05 over 50K time
steps. For Super Hard scenarios 3s5z_vs_3s6z, 6h_vs_8z in SMAC and all scenarios in GoBigger, € is
annealed linearly from 1.0 to 0.05 over 500K time steps. Configuration of the hyper-parameters of
the skill representation learning mechanism and the skill selector in our framework is shown in the
last part in Table[l] Particularly, the cosine distance scaling factor is set to 1 in all scenarios in SMAC
and 0.1 in all scenarios in GRF and GoBigger.

For configuration of the rest hyper-parameters in our framework, we list them in Table[2] We first
introduce the important hyper-parameter of the number of the skills. In fact, the number of skills
is dependent on the difficulty of one scenario and the number of agents in this scenario. Then we
introduce hyper-parameters related to the intrinsic reward, i.e., 85, B, a1, 2. In SMAC, S; is set
to 0.01. In GRF and GoBigger, [, is set to 0.1 because skill selector plays an important role in
these scenarios providing similar observations for agents. For (3,,,, 1, o, we apply the grid search
mechanism (3,,, a1, as € {—1,-0.1,-0.01,0.01,0.1, 1, 2}) to fine-tune these hyper-parameters.
All the tuned hyper-parameters are shown in Table [2]

B.3 MARL benchmarks

SMAC: Each agent receives local observation based on its field of view at each timestep. The
local observation includes information about the map within a circular area whose radius equals the
sight range(9) around each agent. The feature vector of the local observation consists of 4 parts:
available movements, enemies’ attributes, allies’ attributes and attributes of the agent itself. Available
movements have 4 bits, and each bit indicates whether the agent can move in this direction or not.
Attributes of enemies and allies are similar, which contain information about distance, relative x,
relative y, health, shield and unit_type. Attributes of the agent itself have health, shield and unit_type.

The global state contains information about all units on the map. The state vector includes features
present in agents’ observations. Particularly, the state vector contains the coordinates of all agents

16

Table 2: Hyper-parameters for the skill-based policy learning mechanism in HSL.

Environment Nsgii Bs Bm a1 Qo
MMM?2 4 0.01 0.1 1 -0.1
3s5z_vs_3s6z 4 0.01 0.01 1 -0.1
27m_vs_30m 3 0.01 0.1 1 -0.1
SMAC corridor 3 001 1 1 0.1
6h_vs_8z 3 0.01 0.1 1 -0.1
Sm_vs_6m 3 0.01 0.1 1 -0.1
3 vs 1 with keeper 3 0.1 1 1 1
GRF Hard Counter-attack 4 0.1 0.1 1 0.1
Corner 5 0.1 1 1 0.01
GoBigger GoBigger 3 vs 3 3 0.1 1 0.1 1
GoBigger 3 vs 3 with thorn 3 0.1 1 0.1 0.1
il o -t © Jnt O ¢
I
(a) 3 vs 1 with keeper (b) Hard Counter-attack (c) Corner

Figure 1: Visualization of three scenarios in Google Research Football.

relative to the center of the map. Moreover, energy of the special unit Medivacs, cooldown of the rest
units and the last actions of all agents are also included.

Actions of agents belong to a discrete action space. Each agent can select an action from the following:
move north, south, east and west, attack one of the enemies, stop and the null action. Notice that the
number of attack actions in the attack action set equals the number of enemies. The Medivacs, which
is a healer unit, uses heal actions instead of attack actions. The maximum number of actions ranges
from 7 to 70, which depends on the scenario.

Rewards received by agents consist of total damage to enemies, points for killing opponents and
scores for winning the game.

Enemy units are controlled by a built-in handcrafted AI. The game ends when all units on one side
die or the time exceeds a fixed period.

GREF: In GREF tasks, agents are supposed to cooperate in timing and positions to seize the fleeting
opportunity to score goals. MARL controls left-side players (in yellow in the visualization). The
right-side players are controlled by rules from the game engine. Notice that goalkeepers of both sides
are also controlled by rules.

The observation of each agent consists of 3 parts, namely the positions of the ego-agent, other-agents
and the ball. This local observation calculates relative positions between the agent itself and other
objects. In addition, the moving directions of these objects are also included in the observation.

Similarly, the global state contains the absolute positions and the moving directions of all players and
the ball. The z-coordinate of the ball is also included

Agents have a discrete action space of 19. Each agent can select an action from moving in eight
directions, passing, sliding, and shooting.

Rewards received by agents are only related to scoring. Agents can only score to get positive rewards.
The game ends when agents score and get rewards.

The detailed configuration of each scenario in our experiments is shown in Figure|[T}

17

(a) GoBigger: 3 vs 3 (b) GoBigger: 3 vs 3 with thorn

Figure 2: Visualization of two scenarios in GoBigger.

GoBigger: GoBigger is a multi-agent decision intelligence environment. Players control one or
multiple balls in GoBigger to gain as much size as possible by eating other smaller balls in the
environment. Each player can choose operations provided by GoBigger such as moving, splitting,
ejecting and stopping. Moving means balls can move in a certain direction with a custom speed and
acceleration. Ejecting means balls can eject a spore-ball to decrease its size and make itself move
faster. Splitting allows balls to split themselves into two pieces of the same size. Stopping first stops
the balls and then gather all balls slowly if it has several clone balls. In GoBigger, there are 4 kinds of
balls, i.e., the food ball, the thorn ball, the spore ball and the player ball. The player ball is controlled
by the player. Food balls are the neutral resources which are static in the game. A player ball can
gain its size by eating food balls. If the player ball eats a thorn ball whose size is smaller, the player
ball will be split into several pieces.

In our experiment, we add two teams to the game. One of the teams is controlled by our framework
and the other is controlled by the built-in rule in GoBigger. For both scenarios used in our experiments,
the map size is 500 x 500 and the size of the player ball’s partial vision is 50. There are 300 food
balls in these scenarios. Particularly, the scenario GoBigger 3 vs 3 with thorn has 4 thorn balls.

The local observation of each agent contains 5 parts. The first is the coordinates of the partially
observed rectangle of each agent. The second is the features of food balls. Features of food balls are
constructed as a grid. Each grid computes the density of food balls in this grid and the offsets of its
coordinates compared with those of the player ball. The next part is the relative positions and radius
of thorn balls. Then comes the relative positions of spore balls. The final part is the relative positions,
radius, the player id and the team id of other player balls containing allies and enemies.

The global state is similar to the local observation of each player ball except for the positions and the
features of food balls. The global state computes the absolute positions of all objects. Features of
food balls are still absolute positions instead of the density grid.

GoBigger has a hybrid action space. For simplicity, we design discrete action space to split into 4
directions. Agents can move, eject and split into 4 directions. With the stop action, the size of the
discrete action space is 13.

Rewards received by agents are related to the size increase of the controlled player ball.

If one of the player ball is eliminated by other player balls, it will be respawned. The game ends
when the maximum time limit is reached.

The detailed configuration of each scenario in our experiments is shown in Figure

B.4 Infrastructure

A PC with CPU Intel Core 19-10920X and GPU NVIDIA RTX 8000 is utilized to run all experiments.
The training time ranges from 6 hours to 60 hours, which is based on the number of allied agents and
enemies of each scenario, the map size and the total training steps.

18

C Additional Results

In this section, we show results of additional experiments. These experiments include skill demon-
strations on SMAC benchmark and GRF benchmark.

C.1 Skill Demonstration on GRF

N
\

Figure 3: Skill demonstration on GRF: Hard Counter-attack.

We then describe experimental results of skill demonstration on GRF benchmark. We choose the
Hard Counter-attack scenario and train HSL with 4 skills in order to visualize the skill demonstration
intuitively. Results are shown in Figure 3] Figure [3] contains skill assignments at the bottom part
and visualization of discovered skills at both the top part. Our framework has discovered 4 skills,
i.e., attacking the left, covering, running without the ball, running and scoring. We describe the skill
assignment and skill-based policies in order from left to right of Figure[3] In the first graph, agent 0
keeps the ball and chooses the skill of attacking the left. Agent 3, choosing the skill of running and
scoring, cooperates closely with agent 0. By selecting this skill, agent 3 runs as close to the goal as
possible and seizes the opportunity to score. In the second graph, agent 2 chooses the covering skill
to cooperate with agent O who keeps the ball. In fact, agent 2 chooses this skill through the match.
Agent 1 chooses the skill of running without the ball. In the last graph, agent 0 passes the ball to
agent 3. Agent 3 with the skill of scoring can score once it gets the ball.

C.2 Skill Demonstration on GoBigger

In this section, we conduct a case study on scenario Gobigger: 3_vs_3 with thorn to demonstrate
what HSL learn, which is shown in Figure 4]

In the figure, the horizontal arrow shows the time step of this experiment, while the line chart shows
the total size of agents in our team changes over time. Results of the skill assignment and skill-based
policies are shown at the top and the bottom of the figure, respectively. We can observe that HSL
has learned three skills, i.e., collision with thorn balls, eating food balls and eliminating enemy balls.
Based on the change in the size of the agents, we take three parts to illustrate different skills. In the
first part, the skill selector chooses the first skill for the agent near the thorn ball. This agent soon
collides with the thorn ball and splits into many clones, resulting in a rapid increase in total size later.
Then most agents are assigned the second skill, which is to find food balls and eat them to get most of
the reward. In the last part, one agent meets an enemy ball which is much smaller. The skill selector
chooses the last skill for the agent, allowing the agent to split in the direction of the enemy ball and
eliminate it.

D Limitations

The limitations of our proposed HSL are three-fold. 1) Rewards for the skill selector are not
proper enough for efficient training. In this paper, we directly use rewards from the environment
to train the skill selector. However, the skill selection policy is independent of the agents’ pol-
icy, which requires an explicitly designed skill selection reward design. In particular, training of
the skill selector in multi-agent tasks with sparse rewards can benefit a lot from independently

19

Agent
oOw>

Size

Figure 4: Skill demonstration on GoBigger: 3 vs 3 with thorn.

designed reward mechanisms. Although an intrinsic reward based on the policy entropy in HSL
encourages diverse skill selection, the gap between it and the ideally designed reward mecha-
nism is still huge. 2) There is no explicit design for a mechanism for synchronous course of the
skill execution, which might introduce side effects to the training efficiency. The ideal way is
to train skill policies conditioned on all z-ids simultaneously. Without redevelopment of multi-
agent environments, we can only assign specific skills for agents to achieve this goal coarsely.

3) HSL is challenged by huge numbers of skills in complex
multi-agent tasks. In our experiment, we set the number
of skills to be less than or equal to the number of agents
in MARL benchmarks, which is proved to achieve satis-
factory performance. Multi-agent tasks in the real world
usually contain many agents and rely on numerous skills.
In fact, we have conducted experiments on setting more
skills in our framework. Results are shown in Figure 3]
However, we find our framework with more skills cannot
achieve better performance than that with the number of
skills less than or equal to the number of agents.

E Broader impact

We propose a novel multi-agent reinforcement learning
method that leverages the skill mechanism to learn hetero-
geneous policies for agents. Our work can contribute to
a wide range of applications, including multi-agent games,
robotics and quantitative finance. For example, in Multi-

801 —— HsL-3-skills
—— HSL-10-skills
701 —— HSL-20-skills
HSL-40-skills

Test Win %
I
8

oA 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
T (mil)

Figure 5: Comparison of HSL with dif-
ferent numbers of skills on 6/4_vs_8z.

player Online Battle Arena (MOBA) games, the MARL method usually controls five different heroes
to fight with human players. Our work enables each agent to learn many useful skills to cooperate
with each other efficiently and thus beat the top human players. Also, in quantitative finance scenarios,

20

our method can help agents learn valuable heterogeneous trading policies. The goal of our method
is to tackle a fundamental problem in multi-agent reinforcement learning. Therefore, we do not
anticipate a direct negative outcome. In practical applications involving our method, potentially
negative outcomes might occur.

Here we give two examples to show the potential negative outcome of our method in practical
applications. The first is related to the human oversight of a MARL system. Trusty Al systems
must allow for human oversight to support human autonomy and decision-making. However, MARL
applications may pose challenges to human oversight because these applications aim to increase
the autonomy of machines. For example, a MARL system for monitoring and adjusting energy
usage in a building may be constantly making so many small decisions. These decisions are difficult
for a human to review and change decisions after the fact. One way to address this problem is to
impose constraints while the system is being designed such as waning a human if levels go beyond
a certain threshold. The second is related to the security of a MARL system. For example, even
a demonstrably safe MARL-based multi robot system could be forced into dangerous collision
scenarios by perturbing its sensory input or disrupting its reward function. Possible ways to address is
to oversee the transparency of the training data and the reward function or to develop safe multi-agent
reinforcement learning methods.

F Discussion

First, we talk about the potential to improve the training efficiency of our framework. Our framework
contains a skill representation learning mechanism, a skill selector and a skill-based policy learning
mechanism. The skill representation learning mechanism is first trained in the early exploration of
our framework. After the early exploration is finished (usually 50000 time steps), the training of the
skill representation learning mechanism stops. We fix the parameters of the encoder in this module to
generate representation features for all skill ids. The skill selector and the skill-based policy learning
mechanism are organized as a bi-level learning structure. Although we get satisfactory results on
challenging MARL benchmarks, we can further improve the training efficiency of our framework. In
this paper, we use Q-learning method to train the skill selector. However, based on the efficient skill
representation mechanism, we reckon that it can be replaced with a more lightweight approach, such
as dot production.

Then comes the future study. Improving the quality of skill representations is a straightforward
direction. We can design a more flexible and lightweight skill selector. For example, it is interesting
to introduce GCN-based graph clustering methods in the skill selector. Besides, designing a particular
mechanism to perform skill-based policy learning with more skills in our framework is also promising.

21

	Introduction
	Background
	Method
	Skill Representation Learning
	Skill Selector
	Skill-based Policy Learning
	Overall Optimization Objective

	Experiments
	Performance
	Ablation Study
	Skill Demonstration

	Related Work
	Conclusion
	Acknowledge
	Mathematical Derivation
	Experimental Details
	Baselines
	Architecture and Hyper-parameters
	MARL benchmarks
	Infrastructure

	Additional Results
	Skill Demonstration on GRF
	Skill Demonstration on GoBigger

	Limitations
	Broader impact
	Discussion

