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This document provides supplementary details, additional experiments, and enhanced visualizations1

to complement the main paper. Sec. 1 outlines the detailed experimental settings discussed in the2

main paper. Sec. 2 presents additional experiments conducted to extend the findings. Sec. 3 offers3

further statistical insights into our DexGraspNet 2.0 benchmark. Sec. 4 details the methodology4

used for generating grasp labels. Sec. 5 elaborates on the technical aspects involved in constructing5

and training our model for dexterous grasping in cluttered scenes. Sec. 6 highlights specific imple-6

mentation details related to applying our model with parallel grippers. Sec. 7 provides additional7

visualizations showcasing our dataset and model.8

1 Experiment Details9

We provide additional details on the experiment settings due to space constraints in the main paper.10

Sec. 1.1 delineates how we evaluate a grasp in a simulator and enumerates some of the physics11

parameters involved. Sec. 1.2 elaborates on the three ablation groups in detail. Sec. 1.3 outlines the12

three baseline methods benchmarked in the main paper.13

1.1 Evaluation Metric14

We evaluate various grasping models by measuring their simulation success rates in the Isaac Gym15

simulator. For each test scene, a model is expected to take a single-view depth point cloud as input16

and output one grasp pose Gp. If capable of generating multiple grasps, the model must select the17

best proposal, as required in the main paper. Following this, the evaluator determines whether Gp18

constitutes a successful grasp. Specifically, a predefined rule is applied to calculate a pregrasp pose,19

squeeze pose, and lift pose, thereby establishing a complete action trajectory T . Subsequently, T is20

executed within the simulator, and success is determined by its ability to lift an object off the table21

without any initial intersection with the table or surrounding objects. Consistency is ensured across22

all experiments by maintaining the same trajectory generation rule and physics parameters. Some23

of the important physics parameters are listed in Tab. 1.24

Parameter Value Parameter Value
friction coeff 0.2 object mass 0.1 kg
joint stiffness 800 joint damping 20

Table 1: Physics Parameters

1.2 Ablation Details25

We explain the settings of the three ablation groups from our main paper in detail.26

Local Feature. Our grasping method aims to achieve higher generalization efficiency by condi-27

tioning on local features. We investigate this design by training a diffusion model that predicts the28
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distribution of all valid grasps conditioned on the scene’s global feature. This ablated version has29

three major differences compared to our original model: (1) it discards the UNet decoder and re-30

tains only the encoder; (2) during training, each grasp label corresponds to the global feature vector31

of the scene point cloud (output by the encoder) instead of the local feature vector of the grasp’s32

corresponding point (one of the point-wise vectors output by the decoder). (3) during inference, the33

model does not predict graspness or propose seed points, but only encodes the scene point cloud and34

directly generates grasp poses conditioned on its global feature vector.35

Decomposed Pose Modeling. Our grasp generation module models the conditional distribution36

p(T,R, θ|fs) in a decomposed manner: a conditional generative model predicts the conditional37

distribution p(T,R|fs), followed by a deterministic model predicting θ from fs and (T,R). Sur-38

prisingly, the above design slightly outperforms a seemingly more elegant approach: using a single39

conditional generative model to fit the joint distribution p(T,R, θ|fs) without decomposing the wrist40

pose (T,R) from the joint angles θ. We postulate that this phenomenon results from the distribution41

of the training data, rather than an inability to properly tune the second approach. Specifically, our42

training dataset primarily consists of power grasps that utilize all fingers, resulting in a single-mode43

distribution of θ conditioned on (T,R) and fs. Consequently, the deterministic model regressing44

θ is not confused by this data distribution; instead, it potentially becomes more robust to outliers.45

Essentially, the outcomes of this ablation group are highly specific to our task and training data. If46

we incorporate additional grasping modes into our dataset, such as precision grasps and functional47

grasps, it would violate our assumption of a single-mode distribution of θ conditioned on (T,R) and48

fs. In such a scenario, jointly modeling p(T,R, θ|fs) with a single conditional generative model49

might outperform our current design.50

Randomly-Packed Training Scenes. In addition to ablating our network designs, we also conduct51

one experiment to ablate our dataset in the main paper. Our training set comprises 100 densely-52

packed scenes (with 8 to 11 objects) and 7500 randomly-packed scenes (with 1 to 10 objects). All53

dense scenes are sourced from [1]. However, we observed that training solely on these dense scenes54

resulted in the inability to generate valid grasp poses when the table is nearly clear. Therefore, we55

incorporated the randomly-packed scenes to ensure performance across all density levels.56

1.3 Baseline Details57

We outline the three baselines compared in the main paper and detail how we adapted two of them58

from their original setting of single-object grasping to our cluttered scenarios.59

HGC-Net [2]. HGC-Net is a two-stage method for grasping in cluttered scenes. Initially, a segmen-60

tation model divides the scene point cloud into graspable points and ungraspable points. Following61

this, a deterministic model predicts a grasp pose near each graspable point. Given that this method62

already focuses on cluttered scenes, minimal modifications were required. The only change made63

was switching their end effector from the HIT-DLR II hand to the LEAP hand.64

ISAGrasp [3]. ISAGrasp is a regressive method designed for grasping single objects. It employs a65

PointNet++ encoder [4] to encode the object point cloud into a global feature vector. Subsequently,66

an MLP is utilized to predict the wrist translation, wrist quaternions, and joint angles. We extensively67

modified this method to adapt it for cluttered scenes: (1) We replaced their PointNet++ encoder with68

a ResUNet14 encoder-decoder and incorporated a seed point proposal module based on point-wise69

graspness prediction, similar to our method. (2) During inference, this modified model predicts70

the grasp parameters from the local feature vector of the proposed seed point, instead of the global71

feature vector obtained from their original point cloud encoder. (3) During training, each grasp label72

is associated with its corresponding point rather than its target object. We designate the modified73

model as ISAGrasp†. It is worth noting that this adaptation already rectifies a major suboptimal74

aspect of their original baseline by integrating one of our key designs: replacing global conditioning75

with local conditioning. Consequently, the adapted method differs from our model solely in the use76

of a regressive model to predict the wrist pose, whereas we employ a conditional generative model.77
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Method GraspNet-1Billion ShapeNet
Dense Random Loose Dense Random Loose

Ablation

Euler Angle 87.6 82.0 73.0 78.0 76.4 75.2
Axis Angle 86.4 81.7 70.5 79.0 76.4 74.1
Quaternion 87.9 81.5 72.0 78.6 77.0 72.9
6D 88.2 81.5 71.9 80.2 79.0 73.0
Ours 90.6 83.7 73.2 81.0 85.4 74.2

Table 2: Ablation studies for representations of rotation. Euler Angle represents rotation as 3D
Euler angle; Axis Angle represents rotation in 3D as the angle of rotation multiplies the rotation
axis; Quaternion represents rotation as 4D quaternion; 6D represents rotation with the first two
rows of the rotation matrix. Ours represents the rotation as the rotation matrix.

Method GraspNet-1Billion ShapeNet
Dense Random Loose Dense Random Loose

Ablation

Graspness 81.8 76.6 68.0 73.7 71.3 64.4
Log Probability 78.1 78.4 75.1 72.4 71.6 74.6
Random 65.1 62.0 57.2 61.7 58.9 56.4
Ours 90.6 83.7 73.2 81.0 85.4 74.2

Table 3: Ablation studies for sampling strategy. Graspness ranks samples by graspness score
only; Log Probability ranks samples by log probability only; Random randomly draws from sam-
pled poses; Ours ranks samples by combination of graspness scores and log probabilities.

GraspTTA [5]. GraspTTA utilizes a CVAE for grasping single objects. It leverages PointNet [6]78

to encode the object point cloud into a global feature vector, which serves as conditioning for the79

CVAE to predict the distribution of the wrist translation, wrist axis angles, and joint angles. We80

adapt it for cluttered scenes using the same approach as ISAGrasp†, and denote the adapted version81

as GraspTTA†. Furthermore, we discard the test-time optimization of the original method because82

it relies on the full point cloud, which is an invalid assumption in our task settings.83

2 Additional Experiments84

2.1 Ablate Rotation Representation85

Our method employs the rotation matrix to represent wrist rotation and applies SVD [7] to orthog-86

onalize network predictions. We compared this design against several alternatives: Euler Angle87

(representing rotation as 3D Euler angles), Axis Angle (rotation represented by the angle of rota-88

tion multiplied by the rotation axis), Quaternion (represented as a 4D quaternion), and 6D (using89

the first two rows of the rotation matrix). The results in Tab. 2 demonstrate that our choice out-90

performs all other methods across the evaluated task. As discussed in [7], rotation representations91

in Euclidean space with fewer than five dimensions, such as Euler angles, axis-angle, and quater-92

nions, are inherently discontinuous. Although the 6D representation circumvents this issue, it is93

coordinate-dependent. Introducing small noises in different directions to the rotation in a 6D rep-94

resentation results in changes of varying magnitudes. In contrast, our 9D representation is both95

continuous and coordinate-independent, thereby outperforming other rotation representations.96

2.2 Ablate Ranking Strategy97

During inference, we rank all predicted samples to identify the best one using a linear combination98

of the graspness scores of the seed points and the estimated log probabilities of the wrist poses. We99

ablate this ranking strategy by removing the graspness score, the log probability, or both. Tab. 3100

presents the results. Our method (Ours), which ranks samples based on a combination of grasp-101

ness scores and log probabilities, consistently outperforms the other strategies. Ranking solely by102

graspness scores (Graspness) or log probabilities (Log Probability) yields moderate performances,103

while selecting samples randomly (Random) results in the lowest success rates. These findings un-104

derscore the efficacy of our proposed ranking strategy in identifying optimal grasp poses.105
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Interesting to note, despite the theoretical challenges in defining a probability density function106

p(T,R|fs) on a 6-dimensional data manifold embedded within a higher-dimensional parameter107

space (12D), experiments demonstrate that our estimated log probabilities consistently enhance the108

performance of our ranking strategy. Nevertheless, we acknowledge this theoretical inelegance and109

defer the solution to future studies, such as exploring the use of normalizing flows on SE(3) or110

employing manifold diffusion methods.111

2.3 Scaling the Dataset for Grippers112

Figure 1: AP metric evaluated on models trained with downscaled dataset. Top: downscaling the
number of grasp labels in each scene. Bottom: downscaling number of scenes trained on

Fraction of Grasps Success Rate
1/100(42k) 81.3

1(4.2M) 92.4
Table 4: Success Rate of real-world experiment on Ours model trained over downscaled
dataset. We train Ours model with random 1/100 fraction of grasp labels and the entire grasp
pose dataset, amounting 42k and 4.2M labels, respectively.
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Depth Restoration Diffuse Trans Hybrid
With 94.1 80.0 90.7

Without 94.1 50.0 86.4
Table 5: Real-world cluttered scene dexterous grasping with/without depth restoration. Diffuse
includes only diffuse objects, Trans comprises only transparent or specular objects, and Hybrid
includes scenes used in the main paper, consisting of a mixture of diffuse, transparent, and specular
objects for comparison.

End Effector Normal Large
Parallel Gripper 92.4 0.0
Dexterous Hand 81.5 100.0

Table 6: Comparison of real-world grasping performance using a parallel gripper or a dexterous
hand across different scene types. The five Normal scenes consist of typical cluttered environments,
while the Large scene includes 4 large objects.

We scale down the training data of parallel gripper by (1) reducing the number of grasps in each113

scene, and (2) decreasing the number of training scenes. We evaluate the AP metric in simulation114

for each setting and success rate in real world.115

As shown in Fig. 1, although under the full-data setting our generative model only slightly outper-116

forms GSNet by +1.4 AP, the AP metric of GSNet drops by a significant amount of 35.4 as we117

downscale the number of grasps by 100, whereas our generative pipeline drops by only 2.2. This118

suggests that our generative pipeline is significantly more sample-efficient than GSNet. Both meth-119

ods are robust to downscaling of number of training scenes at the scope of our experiment, with only120

slightly dropped AP.121

The resulting statistics in terms of AP is much to our surprise, as being trained with 1/100 total grasp122

labels, namely only 42k grasp labels, our generative model seems to still reatin strong performance.123

In order to validate this counter-intuitive result, we carry out real-robot experiments with Ours mod-124

els trained with downscaled number of grasps and report success rate in Tab. 4. With 42k training125

labels, our generative model achieve 81.5% success rate in real-woorld cluttered scenes as shown in126

Fig. 2, which is affirmative to the AP statistics.127

In summary, the experiments in this section give strong evidence that the distribution of valid grasp128

poses does exist and the amount of data required to simulate at least a valid support of such a129

distribution may prove to be much smaller than previously been conjectured.130

2.4 Using Raw Depth in the Real World131

In our real-world experiments, we integrated depth restoration techniques [8] to facilitate grasping132

transparent and specular objects amidst cluttered scenes. Here, we conduct additional experiments133

to demonstrate that our method do not rely on depth restoration when grasping diffuse objects.134

We constructed four additional cluttered scenes in the real world: two scenes (Diffuse, as shown in135

Fig. 2) consisting solely of diffuse objects and two scenes (Trans, as shown in Fig. 3) containing only136

transparent and specular objects. The original five test scenes from the main paper, which include137

a mixture of objects, are denoted as Hybrid. We then evaluated our model on all test groups both138

with and without the application of depth restoration techniques. The results in Tab. 5 demonstrate139

two key findings: firstly, our model’s effectiveness in real-world grasping is independent of depth140

restoration for Diffuse scenes; secondly, our model exhibits enhanced robustness to object texture,141

particularly transparent and specular surfaces, when depth restoration is applied.142

2.5 Discussion on Dexterous Hands vs Parallel Grippers143

While grasping systems utilizing parallel grippers have already achieved impressive robustness in144

the real world [9, 10], we advocate that dexterous hands can further enhance performance. In ad-145
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Figure 2: Two Diffuse scenes in real world.

Figure 3: Two Trans scenes in real world.

dition to the 5 test scenes (Normal, as shown in Fig. 4) demonstrated in the main paper, we also146

construct an additional scene (Large) consisting of 4 large objects, as shown in main paper. Real-147

world experiment results in Tab. 6 indicate that the dexterous hand can grasp each object in this148

scene, whereas the parallel gripper cannot grasp any object. This is because the dexterous hand149

possesses strong envelopment capabilities, allowing it to grasp larger objects effectively.150

Figure 4: Five Normal test scenes for gripper in the main paper.

3 Benckmark Specifications151

This Section presents further details about the DexGraspNet 2.0 benchmark proposed by this work.152

Sec. 3.1 provides statistics of the DexGraspNet 2.0 benchmark, including both the Training Set153

that contains ground truth grasp pose annotations and the Test Set with no ground truth provided.154

Sec. 3.2 identifies the objects used to generate our benckmark. Sec. 3.3 presents the pipeline used155

to generate training scenes with selected objects. Sec. 3.4 elaborates the protocol of generating test156

scenes and how we divide them into different splits.157
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3.1 Benchmark Statistics158

Splits number of objects number of scenes
Training 60(GraspNet1B) 100(seminal)+7500(augmented)
Test 88(GraspNet1B) + 1231(ShapeNet) 670
Total 88(GraspNet1B) + 1231(ShapeNet) 8270

Table 7: Statistics of the DexGraspNet 2.0 Benchmark

Tab.7 illustrates the overall statistics. The entire benchmark encompasses two components: a Train-159

ing Set used to train our models and a Test Set to evaluate dexterous grasping pose generation mod-160

els on. Note that ground truth grasp pose annotations are only provided for training set. In total, the161

benchmark contains 8270 scenes, 1319 objects and 426.6M grasp pose annotations.162

Training Set contains 7600 scenes and 60 objects in total. all training objects are from the GraspNet-163

1Billion [1] dataset164

Test Set contains 670 scenes and 1319 objects in total. the 88 objects from the GraspNet-1Billion [1]165

dataset are used to compose 450 of the test scenes, and 1231 objects picked from ShapeNet [11] are166

used to compose the remaining 220 test scenes167

3.2 Object Selection168

The 60 objects in Training Set are those appeared in GraspNet-1Billion [1] scenes 0000-0099. The169

Test Set contains 1319 objects, 88 of them are all the objects in GraspNet-1Billion [1], and the170

remaining 1231 objects are picked from ShapeNetSem [11].171

3.3 Training Scenes Specification172

In the 7600 training scenes, 100 are called seminal scenes, which corresponds to the Scenes 0000-173

0099 in the GraspNet-1Billion [1] dataset composed and rendered using their official meshes and174

annotations. We augment each seminal scenes 75 times by randomly deleting objects in the scene.175

In each augmented scene, the number of objects deleted is uniformly sampled from [1,k-1], where k176

is the number of objects in the original scene. In total, we generate 7500 augmented training scenes177

with 100 seminal scenes, totalling 7600 scenes in the entire training set.178

3.4 Test Set Scenes Specification179

As shown in Tab. 1 of the main paper, the Test Set is divided into 6 splits. In the following, we180

specify each of these splits.181

GraspNet-1Billion Dense composes of 90 scenes that correspond to the Scenes 0100-0189 in the182

GraspNet-1Billion [1] dataset. Each scene contains 8-11 objects.183

GraspNet-1Billion Random composes of 180 scenes. This split is generated by augmenting each184

GraspNet-1Billion Dense split scenes twice with the process as described in Sec.3.3185

GraspNet-1Billion Loose composes of 180 scenes by augmenting each GraspNet-1Billion Dense186

split scenes twice with the process as described in Sec.3.3, with only 1-2 random objects remaining187

in the scene.188

The three ShapeNet splits are generated by dropping objects on a 30cm×50cm tabletop. In specific,189

we follow the scene generation process of DREDS [12] with the material randomization function190

disabled. We run the scene generation process in PyBullet [13] and filter physically stable ones in191

IsaacGym [14]. The Dense/Random/Loose splits are divided according to the number of objects192

appearing in each scenes.193

ShapeNet Dense composes of 100 scenes, each containing 8-11 objects194

ShapeNet Random composes of 90 scenes, each containing 5-9 objects195
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ShapeNet Loose composes of 30 scenes, each containing 1-2 objects196

4 Grasp Label Generation197

This section elaborates our pipeline for generating dexterous grasping poses on single objects. First,198

we define initial hand poses by retargeting GraspNet-1Billion [1] annotations to dexterous hand.199

Then we run physics-based optimization to generate stable grasps. To maximally diversify the pro-200

duced data, we adopt two different methods, [15] which targets Grasp Wrench Space (GWS) opti-201

mality, and [16] which targets force-closure, as optimization algorithms, each generating half of the202

dataset. Lastly, we filter stable and collision-free grasps via simulation in the IsaacGym [14] simu-203

lator. As shown in Fig. 5, in total we generate 44.9M stable grasp poses for 88 objects from 280M204

initial poses. Even in the face of our very strict friction coefficient µ=0.2, our method still maintains205

overall success rate of 16.07%. In the following subsections we detail each of these components.206

4.1 Hand Pose Initialization207

As discovered in [16], the success rate of dexterous grasp generation is very sensitive to initial hand208

pose. Moreover, we aim to cover valid grasp modes for each object as comprehensively as possible.209

Therefore, we initialize dexterous hand poses by retargeting the exhaustive GraspNet-1Billion [1]210

gripper anntations.211

In specific, we filter points where stable gripper grasp poses are annotated in [1] as grasp points. As212

shown in Fig. 7, for each grasp point, we align the +y axis (pointing forward out of the palm) of213

dexterous hand with the +x axis of gripper pose annotation, retreat the center of palm a fixed distance214

from grasp point in the approacting direction, initialize hand joint qpos with a set of predifined values215

and exhaustively apply transformations corresponding to 256 approaching directions, 4 depths and216

12 in-plane angles as defined in [1].217

4.2 Grasp Pose Optimization218

4.2.1 GWS-based optimization (adapted version of [15])219

We reimplement [15] on the CuRobo [17] framework for better computation parallelism. We set the220

target Task Wrench Space (TWS) as a unit sphere in 6D wrench space such that the task objective is221

identical to forming a force-closure grasp, and run 600 iterations with naive gradient descent.222

4.2.2 force-closure-based optimization (adapted version of [16])223

We adopt [16] with modification in its definition of force-closure energy, and reimplement the mod-224

ified algorithm on the CuRobo [17] framework as well.225

We observe that the force-closure energy used in [16] assumes unit contact force is applied to each226

contact point, whereas human naturally adjust contact forces applied to different contact points in227

order to maintain a firm grasp. The above assumption limits the objective of optimization in [16]228

onto a submanifold of the space of all valid grasp poses, hurting the quality and diversity of generated229

data. Following the notations in [16], we relax the unit-contact force assumption by reformulating230

the force closure energy as the following bilevel form:231

• At each timestep, given the current hand pose, we solve the optimal contact forces applied to232

current contact points such that the total wrench imposed on the object is minimized. We formulate233

this intuition into the following linear program:234

Pt =min
λt

∥G(λt ⊙ c)∥2

s.t.max
i

(λt)i = 1

(λt)i ≥ 0, i = 1, 2, ..., n
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Where Pt has the physical meaning as the total wrench applied to the object when the combination235

of contact force magnitude, λt, is applied to the contact points. ⊙ means element-wise product.236

Note this linear program admits closed-form solution therefore imposes neglectable computation237

burden.238

• Across timesteps, we optimize the differentiable force-closure metric in awareness of the plausi-239

bility of the current hand pose:240

EFC =

{
∥G(λt ⊙ c)∥2, if Pt < τFC ,min

i
(λt)i ≥ τλ, and B = 1

∥Gc∥2, otherwise

Where τFC , τλ are predefined thresholds, and B is a binary random variable with P (B = 1) = 0.9.241

If the current hand pose is already capable of forming a force-closure grasp on the object, mathemat-242

ically defined as Pt < τFC (total wrench acceptably small) and min
i
(λt)i ≥ τλ (a minimum contact243

force is applied to each contact point), then we decide the current pose is good enough in terms of244

force-closure property. In this case, we scale the force closure energy to prevent overoptimization.245

In effect, the force closure energy now works as a regularization term. Otherwise, if the current hand246

pose is not stable enough, we keep searching for more stable poses by optimizing the force closure247

metric with original energy term. In addition, even for the former case, we stochastically use the248

original energy term with probability 0.1 to encourage forming more robust grasp poses.249

Note in the above formulation, the global minimum set of hand poses for EFC are the poses for250

which there exists a non-trivial contact force combination such that the total wrench executed to251

the object is zero. This global minimum set exactly corresponds to the original definition of force252

closure in [18].253

4.3 Filtering Stable and Collision-Free grasps254

We perform grasp filtering in the IsaacGym simulator. First, we check for each grasp pose if the255

penetration between hand mesh and object mesh is below 2 mm. For all collision-free grasps, we256

execute the grasp with a predefined heuristic and simulate for 60 timesteps at 60Hz. The grasp pose257

is validated as stable if it can deny gravity in all 6 axis-aligned directions. The friction coefficient µ258

for both hand and objects are set to 0.2, making the filtering process very strict.259

Fig. 5 shows the Valid Rate for each object, which is defined as the portion of generated grasps that260

are both collision-free and stable. The overall success rate is 16.07%, as we generate in total 44.9M261

valid grasp poses out of 280M grasp pose initializations. The method-specific valid rate for [15] and262

[16] are 7.91% and 24.19% respectively.263

5 Implementation Details for Dexterous Hands264

In this section, we elaborate on the data organization (Sec. 5.1) and model architecture (Sec. 5.2) of265

our method for dexterous grasping.266

5.1 Data267

Data Reblancing In each training scene, the numbers of grasp labels on graspable objects may be268

uneven. Randomly sampling grasp labels uniformly across all valid ones in each scene could slow269

down the learning of grasping objects that have fewer labels. To address this, we implement a two-270

stage sampling approach to rebalance the training process: first, we randomly sample a graspable271

object, and then we randomly sample one of its labels.272

Data Augmentation. We implement data augmentation by rotating the scene point cloud and grasp273

labels around the camera axis with a random angle uniformly sampled from the interval [0, 2π). No274

further augmentations are needed.275
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Ground-truth Graspness Definition. For each training scene, we define a graspness score for the276

surface points of each object to represent its graspability. This score is determined by identifying277

a seed point and then assigning graspness to the nearby points. For an object o in this scene, we278

denote all valid grasp labels that target o as Go = {gio}, and the surface points of o as Po = {pjo}.279

We then define a grasp cone with c being the apex, vector cm being the axis and an aperture of280

60◦, as shown in Fig. 8. Subsequently, we compute the projected distance of vector cpjo along cm,281

denoted as d, and the spanning angle θ between cpjo and cm. Using these quantities, the value of282

f(gio, p
j
o) is defined in Eq. 1. Numerically, this function is designed to attenuate exponentially with283

response to θ and d, halving at 10◦ or 1.5 cm. Then the seed point is defined as the point with the284

largest f as shown in Eq. 2.285

Finally, the seed point assigns graspness to nearby points with exponential decay and the grasp-286

ness score of pjo is computed as the logarithm of the sum of all contributed graspness, as in Eq. 4.287

Empirically, this score reflects the number of valid grasp labels near pjo.288

From another perspective, this correspondence implicitly defines a grasp distribution conditioned289

on a point within a scene. Although articulating this distribution in precise mathematical terms is290

difficult, we contend that it objectively exists. This distribution represents the target distribution that291

the grasp generation module approximates.292

Figure 8: Grasp cone for the
graspness definition.

f(gio, p
j
o) =

{
0 pjo /∈ this cone
exp(− ln 2

10
180
π θ − ln 2

0.015d) pjo ∈ this cone
(1)

seed point(gio) = argmax
pj
o∈Po

f(gio, p
j
o) (2)

h(gio, p
j
o) = 10−150||seed point(gi

o)−pj
o||2 (3)

graspness score(pjo) = ln

0.001 +
∑

gi
o∈Go

h(gio, p
j
o)

 (4)

293

5.2 Model294

Network Structure. In the following paragraph, we elaborate on the network structures of our fea-295

ture extractor, denoising model, graspness MLP, and joint MLP. First, our feature extractor employs296

the ResUNet14 architecture implemented with MinkowskiEngine [19] to derive point-wise feature297

vectors fp ∈ R512 from a scene point cloud P , which is quantized into sparse voxels. This network298

resembles the one utilized in GSNet [9]. Second, our denoising model vΘ(ĝtE , fs, t) is implemented299

as an MLP with layer sizes (524, 512, 256, 12) and Mish activations [20]. This model embeds t into300

R512 using sinusoidal position embedding, adds this embedding with fs, concatenates the resulting301

sum with ĝtE , and feeds this concatenation into the MLP to predict the velocity. Third, our graspness302

MLP comprises a single-layer linear transformation, which maps fp to three values. The first two303

are interpreted as binary classification logits indicating whether this point is an object point, while304

the thid value represents the predicted graspness score GPp. Fourth, our joint MLP is a 6-layered305

MLP with ReLU activations and residual block designs following [21].306

Detailed Diffusion Dynamics. The forward and backward processes of the diffusion each consist307

of Ttrain and Tinference time steps, respectively, evenly distributed within the interval [0, 1]. Addi-308

tionally, the number of time steps of the backward process is required to be a divisor of that of the309

forward process. We denote the interval between two neighboring time steps of the backward pro-310

cess as dt = 1/Tinference. The DDPM [22] scheduler is employed to schedule the forward process311

variances βt for each time step t = i/Ttrain, i = 1, 2, . . . , Ttrain:312

βt = βmin +
i− 1

Ttrain − 1
(βmax − βmin) (5)

where βmin, βmax are hyper-parameters. Then we define αt = 1− βt and its cumulative product as313

αt =
∏i

j=1 αj/Ttrain
. At each training step, αt is utilized to determine the magnitude of noise to314
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Hyper-parameter Value Hyper-parameter Value Hyper-parameter Value
Scene in each Batch 8 Grasp in each Scene 64 Init LR 1e-3

LR Scheduler Cosine Iter 50000 Point Num 40000
Voxel side length 0.005 m ktrans 25 Ttrain 1000

Tinference 200 βmin 0.0001 βmin 0.02
λo 1 λg 1 λd 10
λθ 1 η 10

Table 8: Hyper-parameter Setup

be added to the sample, as detailed in the main paper. At each inference step, we denoise a noisy315

sample ĝtE into a less noisy sample ĝt−dt
E by solving the following ODE with t from 1 to 0:316

ĝtE − ĝt−dt
E = dĝtE =

Ttrainβt

√
αt

2
√
1− αt

vΘ(ĝ
t
E , fs, t)dt (6)

Moreover, [23, 24] introduce a PDE to estimate the probability p(gE |fs):317

∂ log p(ĝtE |fs)
∂t

= −Tr

(
∂v̄t
∂ĝtE

)
, where v̄t =

Ttrainβt

√
αt

2
√
1− αt

vΘ(ĝ
t
E , fs, t) (7)

Based on the above equation, we can approximate a sample’s probability p(gE |fs) with numerical318

integration during the backward process. We rank each output g of the grasp generation module us-319

ing a linear combination of the estimated probability p(gE |fs) of the wrist pose gE and the predicted320

graspness GSs of the seed point s:321

rank(g) = p(gE |fs) + ηGSs (8)

Inference Speed and Memory Cost. Our model efficiently processes a scene point cloud com-322

prising 40,000 points, generating 128 grasp poses and ranking them all within 0.5 seconds. The323

maximum memory usage during this inference is approximately 3 GB. These evaluations were con-324

ducted on an NVIDIA 4090 graphics card.325

6 Implementation Details for Parallel Grippers326

6.1 Data Filtering and Refinement327

As our generative model considers all grasping poses from the dataset as successful, and since the328

original GraspNet-1Billion dataset [1] includes some imperfect poses, we introduce a data filtering329

and refinement process before training. We retain only the grasping poses with a score of ≥ 0.9 to330

ensure that all can successfully grasp the object with a friction coefficient of 0.2. To simplify motion331

planning, we assume that all grasps can be achieved by moving along the approaching vector and332

filtering out poses that would result in collisions during this movement. We also fix the depth to 4333

cm and adjust the translation accordingly.334

To handle poses that collide with the object and the table, we calculate the upper (u) and lower (l)335

bounds of the distance between the fingers along the original approaching vector. If the distance336

between any finger and the object is u − l < 1.5 cm, we discard the pose. We then uniformly337

sample new finger positions from the adjusted lower bound l′ = l+ s and the adjusted upper bound338

u′ = l′ +min(0.01, (u− l− 0.01)− 2s), where s = min(0.01, u−l−0.01
2 ). This ensures the fingers339

maintain a safe distance from the object without being too far. Finally, we calculate the intersection340

point of the object mesh and the new approaching vector, setting it as the seed point. Poses without341

a valid seed point are filtered out.342

6.2 Graspness Definition for Gripper343

For parallel grippers, after we define the intersection point as the seed point, we assign the graspness344

to nearby points with Eq. 3 and compute the total graspness for each point with Eq. 4, same as the345

dexterous hand experiments.346
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6.3 Sampling Poses from Prediction347

Given the variability in graspness among different objects, we developed a new sampling strategy to348

maintain diversity and select high-quality grasping poses. First, we identify all seed points within349

the top 1% for graspability. For each of these seed points, we collect all points within a 2 cm radius.350

We then select the top 10% of these points based on graspability as new seed points and calculate351

grasping poses with them.352

6.4 Real-World Experiments353

As a lot of the objects in the LEAP Hand’s experiment are too large for our parallel gripper, we use354

different scenes in those two experiments as shown in Fig. 4.355

7 Additional Visualizations356

In Fig. 9 we present more scenes with the predictions of our network. All point clouds are colored357

with heatmap of model predicted graspness, with lighter color meaning higher graspness. Each358

scene is also dubbed with the predicted grasping pose corresponding to highest rank.359

In Fig. 10 we show some renderings of test scenes composed of objects from ShapeNet [11].360
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Figure 5: Number of per-object initial grasp poses. The proportion corresponding to valid grasps
after optimization are colored green.
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Figure 6: Valid Rate of single object grasp synthesis in sorted order. Yellow and Blue curves present
per-object valid rates for our force-closure based optimization method (Sec.4.2.2) and GWS-based
optimization method (Sec.4.2.1), respectively. Averaged success rates are drawn in dotted line, with
values 24.19% and 7.91% respectively.

Figure 7: Initial dexterous hand pose superimposed with gripper grasp label at the same grasp
point. We retarget gripper annotation in GraspNet-1Billion [1] to initial 6D wrist pose of dexterous
hand, and use a predefined set of joint qpos for initialization.
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Figure 9: Gallery visualization of test scenes in our benchmark, corresponding to scenes 0100-0159
in GraspNet-1Billion [1]. All point clouds are colored with heatmap of model predicted graspness,
with lighter color meaning higher graspness. Each scene is also dubbed with the predicted grasping
pose corresponding to highest rank.
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Figure 10: Test scenes composed of objects from ShapeNet [11].
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