
Supplementary Material:
Characteristic Circuits

This supplementary document is organized as follows. Appendix A provides a detailed description of
notations and the definition of induced trees. Appendix B gives the proof of marginal and moments
computation in characteristic circuits. The experimental settings for parameter learning, as well as
extra experimental results of numerical integration, are listed in Appendix C. In addition, we provide
an analytical solution for calculating the characteristic function distance between two compatible
characteristic circuits in Appendix D. Lastly, we describe the statistics of the employed heterogeneous
data sets in Appendix E.

A Notation and Background

In this section, we recap the notations and the background.

A.1 Notation

We use the following notations throughout the paper. Let G be a computational graph with sum nodes
S, product nodes P, leaf nodes L, and graph parameters θG . Denote V(G) the vertices of G and E(G)
the edges of G. The scope of a node N is denoted as ψ(N), with pN the number of RVs in the scope
of N. ch(·) denotes the children of a node.

Let X = {Xj}dj=1 be a set of random variables. X can also be used as a random vector. Denote
φX(t) the characteristic function of X for t ∈ Rd, and φC(t) the estimation of characteristic function
from a characteristic circuit C. Let k ∈ N+ denote the order of partial derivatives of each variable in
φC(t), and ∂dkφC(t)

∂tk1 ···∂tkd
the partial derivative of φC(t) given the order k.

A.2 Induced Trees

The notion of induced trees is proposed to interpret SPNs as deep structured mixture models, which
is defined as the following [Zhao et al., 2016].

Definition A.1 (Induced Trees). Given a complete and decomposable SPN S over X =
{X1, · · · , Xn}, T = (TV , TE) is called an induced tree SPN from S if

1. Root(S) ∈ TV .

2. If v ∈ TV is a sum node, then exactly one child of v in S is in TV , and the corresponding
edge is in TE .

3. If v ∈ TV is a product node, then all the children of v in S are in TV , and the corresponding
edges are in TE .

Here TV is the node set of T and TE is the edge set of T .

Given the definition of induced trees, the distribution of an SPN S(x) can be written as

S(x) =
τ∑
i=1

∏
(S,N)∈E(Ti)

wS,N

∏
L∈V(Ti)

p(x | θL), (17)

where τ denotes the number of induced trees. In the main paper, we use the notion of induced trees
to express the inversion output and the moments computation of the characteristic circuit.

B Proofs

B.1 Proof of Marginal Computation

In this subsection, we provide the proof of computing marginals in CCs.

Proof. Let C = ⟨G, ψ, θG⟩ be a CC on RVs Z = X ∪ Y with univariate leave nodes. Further, let
n = |X|, m = |Y | and let t = tX ∪ tY ∈ Rn+m.

Leaf nodes. For leaf nodes L in C, we have

φL(tj) =

{
1 if tj = 0

φL(tj) otherwise
(18)

by definition of CFs.

Product nodes. Without loss of generality, let P be a product node that splits at least one Yj from
its scope into a single child and let this child be denoted as Lj , and the remaining scopes to be X .
Then by setting tj = 0, we have

φPX∪Yj
(tX ∪ tj) = φPX∪Yj

(tX ∪ 0) = φLj (0)︸ ︷︷ ︸
=1

∏
N∈ch(P)\Lj

φN(tψ(N)) = φPX
(tX). (19)

Sum nodes. We assume sum nodes to be convex combinations, i.e., the weights sum up to one.
Therefore, by setting tY = 0 and recursively apply the above, we obtain the sub-circuit corresponding
to the marginal of X tractably in CCs.

B.2 Proof of Moments Computation

In this subsection, we provide the proof of computing moments in CCs.

Proof. Let C = ⟨G, ψ, θG⟩ be a characteristic circuit on RVs X = {Xj}dj=1 with univariate leave
nodes and pN the number of RVs in the scope of N. Denote k ∈ N+ the order of moments.

Sum Nodes.

Given a sum node S, let t̂ = tψ(S) denote the projection of t onto the scope of S and let pS = ∥ψ(S)∥0
denote the length of the scope of S. Further, let us recall that for smooth sum nodes, the children
of the sum node have the same scope, and the scope of the sum node is given as the union of the
children’s scopes, i.e., equivalent to the scope of each child. Then by linearity, we have:

∂pSkφS(t̂)

∂t̂k1 · · · ∂t̂kpS

∣∣∣
t̂1=0,...,t̂pS=0

=
∑

N∈ch(S)

wS,N
∂pSkφN(t̂)

∂t̂k1 · · · ∂t̂kpS

∣∣∣
t̂1=0,...,t̂pS=0

, (20)

where we applied Xψ(S) = Xψ(N) for N ∈ ch(S) at sum node S. Therefore, computing the derivative
at S reduces to a weighted sum of the derivatives at its children.

Product Nodes.

Given a product node P, again let t̂ = tψ(P), and denote pP = ∥ψ(P)∥0 the length of the scope of P.

∂pPkφP(t̂)

∂t̂k1 · · · ∂t̂kpP

∣∣∣
t̂1=0,...,t̂pP=0

=
∂pPk

∏
N∈ch(P) φN(tψ(N))

∂t̂k1 · · · ∂t̂kpP

∣∣∣
t̂1=0,...,t̂pP=0

=
∏

N∈ch(P)

∂pNkφN(tψ(N))

∂t̂k1 · · · ∂t̂kpN

∣∣∣
t̂1=0,...,t̂pN=0

, (21)

where we utilized Xψ(P) =
⋃

N∈ch(P) Xψ(N) and
⋂

N∈ch(P) Xψ(N) = ø following the decomposabil-
ity of product nodes. And in turn we have t̂ =

⋃
N∈ch(P) tψ(N) and

⋂
N∈ch(P) tψ(N) = ø. Therefore,

computing the derivative at P reduces to a product of the derivatives at its children.

Leaf Nodes.

If N is a univariate leaf node L, we can directly have:

∂kφN(tψ(N))

∂tkψ(N)

∣∣∣
tψ(N)=0

=
dkφL(tψ(L))

dtkψ(L)

∣∣∣
tψ(L)=0

. (22)

Through the recursive application of Eq. (20) and Eq. (21), we obtain that Eq. (15) reduces to
derivatives at the leaves and can be computed efficiently.

Note that the moments computation can be easily extended to the mixed moments, where each
random variable can have a different order of derivatives.

C Experiments

C.1 Experimental Settings for Parameter Learning

In this section, we illustrate the details of the settings for parameter learning.

Random Structure. The random structure for parameter learning is created by recursively creating
sum and product nodes. A sum node is created with random normalised weights with two children,
and a product node is created by randomly splitting the scopes into two subsets. The splitting
terminates when there is only one scope at a node, and then a leaf node with randomly initialised
parameters is created. The categorical leaf nodes are initialised with uniformly sampled weights after
normalization, the mean and location of normal and α-stable distribution leaves are initialised with
samples from a normal distribution centred at the average of training data. Gaussian leaves are used
for synthetic data sets and α-stable distribution leaves are used for the UCI data sets.

Parameter Learning. For all parameter learning experiments, we employ a linearly decreasing
learning rate from lr1 to lr2 with iterations iter. The gradient is obtained from the training data
without using batches, as the data sets in our experiments are of small size. The objective CFD is
calculated with a fixed η = 1 and k = 100.

For results on synthetic data sets in Table 1 from the main paper, the column Random Structure is
directly evaluated from the above randomly initialised CC without parameter learning. The results of
Random Structure & Parameter Learning are obtained from the above CC after parameter learning
with lr1 = 0.5, lr2 = 0.01 and iter = 300 for data set MM, and lr1 = 1.0, lr2 = 0.05 and iter = 40
for data set BN. Structure Learning follows the structure learning setup described in the main body.
When applying parameter learning on the model from Structure Learning with lr1 = 0.5, lr2 = 0.005
and iter = 300 for data set MM, and lr1 = 0.5, lr2 = 0.01 and iter = 200 for data set BN, we obtain
the results of Structure Learning & Parameter Learning. Finally, we randomise the weights and
leaf parameters of the model from Structure Learning and apply parameter learning with lr1 = 0.5,
lr2 = 0.01 and iter = 300 for data set MM, and lr1 = 1.0, lr2 = 0.05 and iter = 40 for data set BN,
resulting in Structure Learning (random w) & Parameter Learning. Note that the mean of a Gaussian
leaf is initialised with samples from a normal distribution centred at the average of training data.

C.2 Numerical Integration with Quadrature

Throughout the paper, we use Gauss-Hermit quadrature for numerical integration at the leaves. In
order to demonstrate the reliability of the numerical integration, we test with an increasing number
of grid points {50, 100, 200, 300} through quadrature and show the corresponding output at the
root in Fig. 5. The CCs are learned from structure learning with either the simplified G-test-based
splitting or the random dependency coefficient (RDC) based splitting. For the RDC-based splitting,
the threshold, denoted as ξ, is chosen from grid search from {0.1, 0.2, · · · , 0.9} on each validation
set with 50 grid points for the quadrature. The results indicate that a low value of degree in quadrature
is sufficient since numerical integration is only required on the real line (1D). The results also show
that RDC-based structure learning outperforms the G-test-based splitting on most of the data sets, as
it is designed based on an independence test on heterogeneous data.

100 200 300

20

30

40

Abalone, ξ = 0.4

L
og

-l
ik

el
ih

oo
d

100 200 300

−5

0

5

10

Adult, ξ = 0.4

100 200 300

−3

−2

−1

0

Australian, ξ = 0.2

100 200 300
−18

−16

−14

−12

Autism, ξ = 0.5

L
og

-l
ik

el
ih

oo
d

100 200 300
−13.5

−13

−12.5

−12

Breast, ξ = 0.4

100 200 300
−13.5

−13

−12.5

−12

Chess, ξ = 0.3

100 200 300
−6

−4

−2

0

Crx, ξ = 0.3

L
og

-l
ik

el
ih

oo
d

100 200 300
−25

−24.5

−24

−23.5

Dermatology, ξ = 0.8
100 200 300

0

2

4

Diabetes, ξ = 0.3

100 200 300
−15.5

−15

−14.5

−14

German, ξ = 0.3

L
og

-l
ik

el
ih

oo
d

100 200 300
−28

−27.5

−27

−26.5

Student, ξ = 0.4
100 200 300

15

20

25

Wine, ξ = 0.4

Figure 5: Log-likelihoods from CCs with varying numbers of grid points in the quadrature (x-axis).
The CCs are learned from structure learning with either simplified G-test or RDC based
splitting for product nodes.

D Analytical Solution of the Characteristic Function Distance

The squared characteristic function distance (CFD)

CFD2
ω(P,Q) =

∫
Rd

|φP(t)− φQ(t)|2 ω(t; η)dt (23)

can not only be estimated with MC methods by sampling from ω(t; η), but also be calculated through
the characteristic circuits analytically, if φP(t) and φQ(t) are compatible characteristic circuits.

Eq. (23) can be rewritten as

CFD2
ω(P,Q) =

∫
Rd

(φP(t)− φQ(t))
(
φP(t)− φQ(t)

)
ω(t; η)dt (24)

=

∫
Rd

(
φP(t)φP(t)− φP(t)φQ(t)− φQ(t)φP(t) + φQ(t)φQ(t)

)
ω(t; η)dt, (25)

where z denotes the conjugate of the complex number z. Without loss of generality, let us derive
the analytical solution of

∫
Rd φP(t)φQ(t)ω(t; η)dt, since the derivation can be directly applied to

the other terms in Eq. (25). In the following, we omit the term ω(t; η) at sum and product nodes for
simplicity. At sum nodes S and S′,∫

S(t)S′(t)dt =

∫  ∑
N∈ch(S)

wS,NN(t)

 ∑
N′∈ch(S′)

wS′,N′N′(t)

 dt (26)

=

∫ ∑
N∈ch(S)

∑
N′∈ch(S′)

wS,NwS′,N′N(t)N′(t)dt (27)

=
∑

N∈ch(S)

∑
N′∈ch(S′)

wS,NwS′,N′

∫
N(t)N′(t)dt. (28)

At product nodes P and P′,∫
P(t)P′(t)dt =

∫  ∏
N∈ch(P)

N(t[ψ(N)])

 ∏
N′∈ch(P′)

N′(t[ψ(N′)])

 dt (29)

=

∫ ∏
(N,N′)∈∆P×P′

N(t[ψ(N)]︸ ︷︷ ︸
=t̂

)N′(t[ψ(N′)]) dt (compatibility) (30)

where ∆P×P′ denotes the diagonal of the Cartesian product of the children of P and P′, i.e.,
diag(ch(P) × ch(P′)), compatibility ensures that both product nodes apply the same partition
of the scope ψ(P) = ψ(P′) with parts in the same order, and t[ψ(N)] is the projection of t to the scope
of N. Therefore,

=
∏

(N,N′)∈∆P×P′

∫
RpN

N(t̂)N′(t̂) dt̂. (compatibility) (31)

At univariate leaf nodes L and L′, assuming both leaf nodes model univariate normal distribution with
parameters (µ, σ) and (µ′, σ′), and ω(t; η) = 1

η
√
2π

exp(−t
2

2η2), then∫
R
L(t)L′(t)ω(t; η)dt =

∫
R
exp(i t µ− 1

2
σ2t2)exp(i t µ′ − 1

2
σ′2t2)

1

η
√
2π

exp(
−t2

2η2
)dt (32)

=
1

η
√
2π

∫
R
exp(i t (µ− µ′)− 1

2
(σ2 + σ′2 +

1

η2
)t2)dt (ez = ez)

(33)

=
1

ησ̂
exp(

−µ̂2

2σ̂2
), (integral of a Gaussian function) (34)

where µ̂ = µ− µ′ and σ̂ =
√
σ2 + σ′2 + 1/η2 . Therefore, at univariate leaf nodes, it can be solved

either analytically or with Monte-Carlo integration:
∫
R L(t)L′(t)ω(t; η)dt ≈ 1

k

∑k
j=1 φL(tj)φL′(tj),

where {t1, · · · , tk}
i.i.d.∼ ω(t; η). With the above properties, the CFD between two compatible CCs

can be calculated from the bottom-up analytically and efficiently.

E Statistics of the Heterogeneous Data Sets

In this section we briefly describe some statistics of the heterogeneous data sets, to provide a better
and more detailed view of the data sets.

Table 3: Statistics of the heterogeneous data sets, including the number of instances in the train-
ing/validation/test sets and the number of total/discrete/continuous RVs for each subset.

Data Set #train #val #test #RVs #D. RVs #C. RVs

Abalone 2923 418 836 9 1 8
Adult 22792 3256 6513 13 7 6
Australian 482 70 138 10 3 7
Autism 2464 352 705 25 15 10
Breast 476 68 137 10 9 1
Chess 19639 2805 5612 7 7 0
Crx 455 65 131 11 5 6
Dermatology 256 36 74 34 33 1
Diabetes 537 77 154 8 1 7
German 700 99 201 17 14 3
Student 276 40 79 20 19 1
Wine 4547 650 1300 12 1 11

